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Abstract

Support Vector Machine (SVM) learning from imbalanced datasets,
as well as most learning machines, can shows poor performance on the
minority class because SVM were designed to induce a model based
on the overall error. To improve their performance in this kind of
problems, a low-cost post-processing strategy is proposed based on
calculating a new bias to adjust the function learned by the SVM.

The proposed bias will consider the proportional size between classes
in order to improve performance on the minority class. This solution
avoids not only introducing and tuning new parameters, but also mod-
ifying the standard optimization problem for SVM training.

Experimental results on 34 datasets, with different imbalance de-
gree, show that the proposed method actually improves the classifi-
cation on imbalanced datasets, by using standardized error measures
based on sensitivity and g-means. Furthermore, its performance is
comparable to well-known cost-sensitive and SMOTE schemes, with-
out adding complexity or computational costs.

Keywords: Support Vector Machine, post-processing, bias, cost-
sensitive strategy, SMOTE
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1. Introduction

A major problem faced by classification learning algorithms is the
imbalance between classes in datasets. It appears when there are many ex-
amples of one or several classes, but very few in the remaining classes. Some
domains where this situation arises are medical diagnosis, text classification,
fraud detection in credit card usage, detection of communication network
intrusion, among others. Since it usually represents the target of the classi-
fication task, for such scenarios is very important to obtain models that ex-
hibit a high prediction performance on the minority class. However, standard
learning algorithms tend to produce hypothesis having a good performance
only on the majority class, because they construct classification models based
on error over the whole training set, independently of the representatives or
balance between classes.

To solve this problem, some mechanisms exist to allow these algo-
rithms showing good performance on minority class. To that effect, several
strategies have been proposed, such as re-balancing the dataset with sam-
pling techniques, construction of classifiers that take into account the cost
of errors on different classes, combination (ensemble) of results from sev-
eral classifiers trained with different data distributions (He and Garcia 2009;
López, Fernández, Garćıa, Palade, and Herrera 2013; Sun, Wong, and Kamel
2009).

In the case of SVM, its learning mechanism become an interesting
option to deal with imbalanced datasets, because SVM build its classification
model based only on a subset of training instances (Cristianini and Shawe-
Taylor 2000; Vapnik 1999). However, like other machine learning techniques,
SVM minimizes the error over all the dataset to generate these models, so
they are biased towards the majority class when the imbalance is severe.

To enhance the performance of SVM for problems with imbalanced
classes, several solutions have been proposed. Some of them are of gen-
eral application, like sampling techniques to re-balancing datasets in a pre-
processing stage; other, more specific, consider SVM’s particular features like
those based on cost-sensitive learning (Batuwita and Palade 2013). Some re-
search papers suggest using a post-processing stage in order to reduce the
bias towards the majority class of the classifier learned by the SVM (He and
Garcia 2009).
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Following this last research line, a strategy for SVMs based on cal-
culating a new bias or threshold is proposed. This new bias considers the
classes’ proportion in the dataset and allows tuning the original function
learned by the SVM to improve its performance on the minority class. Pro-
posed solution neither introduces new parameters, nor modifies the original
optimization problem for SVM training.

This paper is organized as follows: Section 2 briefly introduces the
SVM learning mechanism and provides an overview of strategies to improve
its performance on this kind of problems. In Section 3, the proposed post-
processing procedure for determining the new bias is detailed. Section 4,
presents the experiments performed to verify the applicability of the proposal,
along with an analysis of results, and a comparison between performance
of the new approach and a cost-sensitive scheme. Finally, conclusions and
further research are presented.

2. SVM on Imbalanced Datasets

SVM is based on statistical learning theory and has been applied suc-
cessfully in classification and regression problems in different domains (Cris-
tianini and Shawe-Taylor 2000; Oneto, Ridella, and Anguita 2016; Vapnik
1999). The hypothesis spaces of these learning machines are hyperplanes
(linear decision surfaces). Training looks for a decision function with the
maximum margin of separation between classes. Thus, for a binary clas-
sification task on a set of training data Z = {(x1, y1), . . . , (xN , yN)}, with
xi ∈ X ⊆ <m, yi ∈ Y = {+1,−1}, and the decision function f(x) = w ·x−b,
the optimal hyperplane is determined as follows,

min
w,b

1

2
‖w‖2 + C

N∑
i=1

ξi

s. t.

{
yi(w · xi − b) + ξi ≥ 1,
ξi ≥ 0,

i = 1 . . . N

(1)

where w is the vector of the hyperplane which defines its orientation, and
b is the bias which determines its position. Slack variables ξi measure the
error on the instances that violate the constraint yi(w · xi − b) ≥ 1. The
user-defined parameter C determines the trade-off between maximizing the
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margin and minimizing the error, i.e. the higher the value of C, the SVM is
more focused on minimizing errors. In a dual form, this optimization problem
can be solved as,

max
αi∈<

N∑
i=1

αi −
1

2

N∑
i,k=1

αiyiαkyk xi · xk

s.t.


0 ≤ αi ≤ C, i = 1 . . . N

N∑
i=1

αiyi = 0,

(2)

leading to the following decision function,

f(x) = sign

(
N∑
i=1

αiyi xi · x− b

)
. (3)

To construct nonlinear decision boundaries, input vectors are pro-
jected in an inner product space of higher dimension using a basis set of
nonlinear functions. In this new space the optimal hyperplane is determined.
Using the theory of kernels satisfying Mercer’s theorem, all operations can
be performed directly in an input space using xi · xj = K(xi,xj). Then, the
decision function is formulated as,

f(x) = sign

(
N∑
i=1

αiyiK(xi,xj)− b

)
. (4)

Among all the training vectors, only a few have associated a weight αi
greater than zero in (3) or (4). These elements lie in the decision margin and
are known as support vectors (SV). The unsigned value f(x) is a measure of
the distance of an example x to the hyperplane, while the sign determines
the class label (positive or negative).

For moderately imbalanced datasets, empirical results show that, un-
like other machine learning algorithms, SVM can produce a good hypothesis
without any modification (Akbani, Kwek, and Japkowicz 2004; Imam, Ting,
and Kamruzzaman 2006; Wu and Chang 2005). One explanation for such
phenomenon is that SVM uses only a set of support vectors to construct clas-
sification models, so negative instances that are far from the decision border
will not be taken into account and SVM will not be affected by them, even
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the numerous ones. However, SVM cannot overcome the problem of imbal-
ance when data distribution is very imbalanced. In such cases, it has been
observed that the hyperplane separation learned by the SVM is very close
to the minority class, resulting in a low performance or no generalization at
all for examples from this class, in comparison with those from the majority
class (Batuwita and Palade 2013; He and Ghodsi 2010; Liu, An, and Huang
2006, Wu and Chang 2005).

2.1 Strategies for SVM with Imbalanced Datasets

Several strategies have been proposed to improve the performance of
SVM on imbalanced datasets. Some of them are described and introduced
in this section according to the moment that they can be applied during the
learning process.

2.1.1 Pre-processing Strategies

They are based on re-sampling techniques to balance the dataset. One
way is through the over-sampling of data from the minority class; hence,
new instances are created in order to increase its proportion in the dataset.
In contrast, under-sampling seeks to reduce the size of the majority class
by removing a subset of these data. They are general-purpose procedures,
not targeted at particular machine learning technique. One of the most
commonly used is SMOTE, which employs the k-nearest neighbor technique
for over-sampling the minority class (Chawla, Bowyer, Hall, and Kegelmeyer
2002; Vilariño, Spyridonos, Vitrià, and Radeva 2005). Others strategies
apply clustering algorithms for sub-sampling the majority class (Li, Yu, Bi
and Huang 2014; Yu, Debenham, Jan, and Simoff 2006; Zhou, Ha, and Wang
2010).

There are also strategies for the SVM that seek increasing the minority
class considering the margin area between the two classes (Castro, Carvalho,
and Braga 2009). Other works are based on the use of SVM to obtain
the positive support vectors, and over-sample from these data (Hernández-
Santiago, Cervantes, López-Chau, and Garćıa-Lamont; Wang 2008). This
feature has also been exploited to build under-sampling algorithms (Tang,
Zhang, Chawla, and Krasse 2009; Wang 2014), where an SVM is used to
build a new dataset composed only by the most informative negative support
vectors and the positive data. Other solutions use sampling methods with
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ensembles (Kang and Cho 2006; Liu et al. 2006; Waske, Benediktsson, and
Sveinsso 2009; Yang, Zhang, Zhou, and Zomaya 2011; Sukhanov, Merentitis,
Debes, Hahn and Zoubir 2015). Furthermore, there are proposals that seek
over-sampling during training by using active learning (Ertekin 2013).

2.1.2 Training Strategies

These strategies include those proposals that modify the standard op-
timization problem for SVM training in order to incorporate information
related to the proportion of classes in the dataset. One approach of cost-
sensitive learning is that incorporates into the learning problem information
related with the penalties associated with wrong predictions for each class.
In the case of SVM, the cost information about the two types of errors can be
introduced into the formulation of the learning problem, using two regular-
ization parameters, C+ and C−, associated with errors on the positive and
negative class, respectively (Ver-opoulos, Campbell, and Cristianini 1999;
Cohen, Hilario, Sax, Hugonnet, and Geissbuhler 2006),

min
w,b

1

2
‖w‖2 + C+

∑
i|yi=+1

ξi + C−
∑

i|yi=−1

ξi

s. t.

{
yi(w · xi − b) + ξi ≥ 1,
ξi ≥ 0,

i = 1 . . . N

(5)

Some works have also added new restrictions on the slack variables
ξi, in order to control the margin of separation between the two classes (He
and Ghodsi 2010; Yang, Wang, Yang, and Yu 2008). A different approach
is presented in Batuwita and Palade (2010), where only one regularization
parameter C is used, but information about the cost of errors is incorporated
by allocating different weights to each variable ξi. Other proposed solutions
combine cost-sensitive learning with other techniques (Akbani et al. 2004;
Muscat, Mahfouf, Zughrat, Yang, Thornton, Khondabiand, and Sortanos
2014; Wang and Japkowicz, 2010; Ziȩba, Tomczak, Lubicz, and Świa̧tek
2014).

Other proposals are those that modify the kernel matrix according to
the observed imbalance in the distribution of data, as KBA algorithm (Wu
and Chang 2005). In Ramı́rez and Allende (2012) a method is proposed such
that training two one-class SVM, one fitted to each class, and aggregating
their decisions in a nested manner the boundary is improved. Finally, in
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He, Wu, Silva, Zhao, and Qian (2015), a model-based approach integrat-
ing cost-sensitive learning with Gaussian Mixture Model for the imbalanced
classification problem is proposed.

2.1.3 Post-processing Strategies

In general, these approaches are oriented either, towards modifying
the weight vector w in the function of decision or determining a new bias,
in order to adjust the decision boundary learned by the SVM to provide a
good margin of separation for the positive class. For example, the z-SVM
method is proposed in Imam et al. (2006), which determines the value of
a new parameter z, solving an added optimization problem. This optimal
parameter weights the contribution of support vectors of the minority class
in the vector w of the decision function obtained after training.

In Li, Hu, and Hirasawa (2008), the bias of the decision function is
modified by calculating an offset θ from the average of the unsigned values
generated by f(x) for the support vectors. A similar strategy is used in
Shanahan and Roma (2003), with the new offset being calculated by applying
the Beta-Gamma algorithm.

Other studies suggest re-interpreting the outputs of the SVM. For
example, a fuzzy decision function is applied in Li et al. (2008), whose
parameters are estimated from the observed distribution in the dataset. In
Wang and Zheng (2008), the decision process incorporates a post-processing
module, whose construction is based on methods of information theory to
define a new bias for classification.

3. A Novel Post-processing Strategy Based on the Bias

Strategies proposed to improve the performance of SVM on imbal-
anced datasets generally require tuning new parameters such as the sample
rate or the number k of selected neighbors. Other methods can be computa-
tionally expensive considering the construction of several classifiers (such as
methods based on ensembles), or based on iterative algorithms, such as mod-
ifying the kernel matrix (KBA) and some sampling techniques that require
several over-training steps. In cost-sensitive approaches, the standard SVM
optimization problem must be modified and costs of errors on the classes
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must be known. Moreover, they can produce over-fitted models (Wang and
Japkowicz 2010).

On the other hand, it has been empirically shown that the hyperplane
learned by SVM in presence of imbalanced datasets have approximately the
same orientation as the ideal hyperplane (He and Ghodsi 2010; Liu et al.
2006; Wu and Chang 2005). Reduced generalization on the minority class
would be indeed associated with the bias b, as positive instances lie far from
this ideal limit, i.e., the SVM learns a boundary that is too much close to this
class. Other studies, such as those presented in Sun, Lim, and Liu (2009)
at the domain of text classification, suggest increasing research on strategies
determining new thresholds for the SVM’s decision function. Modifications
should be based on the distribution of classes in the dataset, which also do
not directly affect standard SVM training.

Following the latter research line, a novel post-processing strategy
based on calculating of a new bias is proposed in this paper. The proportion
among classes in the dataset will be considered, hence adjusting the function
learned by the SVM in order to improve their performance on the minority
class. The proposed solution does not involve tuning new parameters. Fur-
thermore, it neither requires modifying the standard optimization problem
for training the SVM, nor additional steps of re-training.

The proposal, based on the developments presented in Gonzalez-Abril,
Angulo, Velasco, and Ortega (2008), modifies, after training, the separating
margin of the hyperplane towards the majority class in order to achieve better
generalization performance on data from the minority class. The new bias is
calculated as follows (Núñez, Gonzalez-Abril, and Angulo 2011).

Let Z = {(x1, y1), . . . , (xN , yN)} be a training set, with xi ∈ X ⊆ <m,
yi ∈ Y = {+1,−1}. Also, let Z1 and Z2 be the datasets belonging to
the positive class (+) and the negative one (-), respectively. The standard
formulation of the bias, for the linearly separable case indicates that bias
could be obtained as,

bs =
α + β

2
(6)

(bs = bstandard) where α is the maximum value of the hyperplane without
bias applied to the set of negative instances Z2, and β is the minimum value
of the hyperplane without bias applied to the entries in the minority set Z1,
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that is,

α = max
xk∈Z2

N∑
i=1

αiK(xi,xk), and β = min
xk∈Z1

N∑
i=1

αiK(xi,xk). (7)

Let us indicate that if the bias b is chosen as b = β, then all instance of
the positive class are correctly labeled. Furthermore, β is the smallest value
that ensures a 100% correct classification of the training vectors (Gonzalez-
Abril, Núñez, Angulo, and Velasco 2014).

Definition for bs in (6) has been extended for taking into account the
proportion of classes in the dataset. Hence, for N1 and N2 being the number
of patterns in classes (+) and (-) respectively, a new proportional bias bp is
defined,

bp =
N1α +N2β

N1 +N2

. (8)

Hence, for imbalanced problems, N1 � N2, this new bias will move
the decision limit towards the negative class, thus increasing the margin of
separation for the positive class. Moreover, as the maximum and minimum
values for the hyperplane without bias are reached on support vectors, it can
be considered only these points for calculation of α and β,

α = max
xk∈SV2

N∑
i=1

αiK(xi,xk), and β = min
xk∈SV1

N∑
i=1

αiK(xi,xk) (9)

where SV1 and SV2 are the set of support vector in classes (+) and (-),
respectively. The new decision function would simply be expressed as follows,

f(x) = sign

(
N∑
i=1

αiyiK(xi,xj)− b

)
. (10)

Furthermore, as the SVM decision function is generated only from
the support vectors (the most informative instances for the classification
task), an additional modification to this proposal exists: to consider the
number of support vectors for the positive and negative classes, Nsv1 and
Nsv2, respectively, rather than values N1 and N2.

Hence, a second bias bp1 is also proposed,

bp1 =
Nsv1α +Nsv2β

Nsv1 +Nsv2

. (11)
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Let us see the relationship among these biases for N1 � N2. In this
case, the optimization problem usually provides a number of support vectors
such that Nsv1 < Nsv2 and, defining R = N2/N1 and r = Nsv2/Nsv1, then
1 ≤ r ≤ R (this fact can be checked in Section 4). Hence, it results,

|β − bp| =
1

1 +R
|β − α| ,

|β − bp1| =
1

1 + r
|β − α| ,

|β − bs| =
1

2
|β − α| ,

(12)

and
0 ≤ |β − bp| ≤ |β − bp1| ≤ |β − bs| (13)

that is, bs is farther from β than bp1, that in its turn, is farther away from
β than bp. Thus, it can be checked that the decision function is moving
away from the zone of the positive samples, increasing, as it will be later
demonstrated, the accuracy on this class. Therefore, these new biases move
the hyperplane learned by SVM to obtain a better classification performance
for the positive class, considering the proportions of the classes: the greater
the imbalance, the greater margin of separation for the minority class.

4. Experimentation and Results Analysis

Performance of post-processing strategy proposed was tested on 34
datasets from the UCI repository (Frank and Asuncion 2010). Characteristics
of the datasets are shown in Table 1. Label (+) was assigned to the class
shown in brackets, and label (-) to the remaining data. The performance of
the classifiers obtained by using the new biases was measured using sensitivity
and geometric mean (g-means) (He and Garcia, 2009). Sensitivity measures
positive accuracy, indicating how many examples of the minority classes are
correctly classified; g-means evaluates the performance in terms of sensitivity
and specificity (negative accuracy) as follows,

g-means =
√

sensitivity · specificity (14)
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Table 1: UCI datasets used in the experimentation. These datasets are ordered
from extreme to moderate imbalance.

Datasets number of % of Datasets number of % of
instances positives positives instances positives positives

Winequality white (3) 4868 20 0.41 User Modeling (1) 258 24 9.30
Abalone (19) 4177 32 0.77 Sat (4) 4435 415 9.36
Winequality red (8) 1593 18 1.18 Satimage (4) 6435 626 9.70
Page-Blocks (5) 5473 115 2.10 Euthyroid 2000 238 11.90
Yeast (7) 1483 35 2.36 Glass (7) 214 29 13.55
Thyroid (1) 3772 93 2.47 Segment (1) 2310 330 14.29
Nursey (3) 12960 328 2.53 Hepatitis 129 24 18.60
Fault (5) 1941 55 2.83 Column 310 60 19.35
Winequality white (4) 4864 163 3.35 Cmc (2) 1473 333 22.61
Yeast (5) 1483 51 3.44 Dna 2000 464 23.20
Muns (3) 8124 292 3.59 Vehicle (1) 846 199 23.52
Letter (a) 20000 789 3.95 Transfusion 748 178 23.80
Car (3) 1728 69 3.99 Haberman 306 81 26.50
Derma (2) 358 21 5.87 German 1000 300 30.00
Ecoli (5) 336 20 5.95 Waveform (0) 5000 1657 33.00
Balance(2) 625 49 7.24 Pima 768 268 34.00
GTC 2126 176 8.28 TicTac (2) 958 332 34.66

Sensitivity allows us to show how well the positive class is classified
and g-means shows the balance between the accuracy of positive and neg-
ative classes. Also, accuracy was included, as being the standard metric.
For SVM training, the usual RBF kernel was used, as well as the Matlab’s
Bioinformatics Toolbox for processing. The values of σ (RBF width) and
C (regularization term) were obtained by exploring a two-dimensional grid:
σ = {20, 21, . . . , 26}, C = {20, 21, . . . , 210} and the best values for accuracy
for each classifier (SVM, cost-sensitive SVM and SMOTE SVM) were used.

Average values for accuracy, g-means and sensitivity are shown in
Table 2, for each dataset, using ten-fold cross-validation like empirical exper-
imentation and repeating this procedure 10 times in order to ensure a good
statistical behavior. From these results some statements can be established:

• Working with imbalanced datasets, evaluation metrics like g-means and
sensitivity measure the classifiers performance independently of the
data distribution, so their election is correct for this kind of problems.
For example, SVM has an accuracy value of 0.99 over Abalone dataset.
However, it completely fails classifying the positive class, which is re-
flected in the value of g-means.
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Table 2: Average values for accuracy, g-means and sensitivity for each dataset,
using ten-fold cross-validation (100 replications).

Datasets accuracy g-means sensitivity
SVM bp bp1 SVM bp bp1 SVM bp bp1

Wineq white (3) .996 .968 .969 .120 .449 .449 .038 .235 .235
Abalone (19) .992 .491 .619 .000 .625 .552 .000 .828 .592
Wineq red (8) .989 .506 .813 .000 .603 .296 .000 .835 .280
Page-Blocks (5) .984 .761 .892 .534 .858 .803 .296 .974 .821
Yeast (7) .978 .649 .961 .300 .749 .831 .143 .891 .723
Thyroid (1) .992 .928 .992 .851 .95 .886 .733 .976 .794
Nursey (3) .993 .981 .984 .878 .983 .602 .774 .986 .37
Fault (5) .955 .938 .951 .323 .594 .432 .166 .417 .247
Wineq white 4) .963 .764 .921 .336 .621 .568 .128 .513 .353
Yeast (5) .965 .464 .953 .000 .628 .623 .000 .907 .453
Muns (3) .954 .953 .954 .572 .903 .587 .349 .858 .366
Letter (a) .998 .994 .998 .975 .995 .994 .951 .996 .991
Car (3) .960 .973 .968 .000 .941 .595 .000 .911 .39
Derma (2) .968 .951 .957 .923 .944 .935 .864 .936 .906
Ecoli (5) .986 .968 .974 .851 .950 .902 .775 .945 .855
Balance(2) .921 .774 .845 .749 .830 .851 .623 .909 .867
GTC .980 .882 .975 .912 .920 .950 .804 .970 .924
User modeling (1) .979 .981 .985 .885 .968 .971 .791 .956 .956
Sat (4) .948 .868 .943 .787 .894 .837 .634 .929 .727
Satimage (4) .945 .911 .942 .811 .889 .83 .678 .865 .716
Euthyroid .907 .761 .889 .703 .809 .809 .517 .887 .727
Glass (7) .951 .879 .953 .855 .898 .868 .768 .935 .792
Segment (1) .996 .993 .996 .988 .994 .991 .977 .995 .984
Hepatitis .852 .721 .741 .643 .732 .744 .562 .855 .84
Column .867 .872 .868 .758 .873 .714 .645 .883 .57
Cmc(2) .759 .630 .714 .527 .618 .594 .320 .607 .452
Dna .967 .949 .957 .948 .957 .96 .914 .972 .967
Vehicle (1) .986 .983 .985 .982 .985 .985 .975 .988 .986
Transfusion .779 .748 .778 .540 .614 .557 .327 .462 .350
Haberman .719 .634 .661 .464 .617 .609 .273 .606 .512
German .762 .623 .708 .667 .660 .695 .517 .804 .680
Waveform (0) .897 .873 .895 .877 .884 .863 .824 .921 .783
Pima Diabetes .755 .742 .753 .672 .725 .676 .518 .687 .530
TicTac (2) .983 .997 .997 .974 .996 .997 .950 .995 .998
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• For some datasets, despite the imbalance, the original SVM can get
a reasonable model (e.g. Ecoli); but in other cases, it fails (Abalone,
Winequality, Yeast).

• The new biases improve the performance of the standard SVM in all
datasets with respect to g-means and sensitivity metrics. Furthermore,
the performance on the sensitivity metric when using the bp bias is
better than employing bp1, in all datasets except for Tic-Tac dataset.
This fact is due to that the Tic-Tac dataset is the unique of the 34
datasets such that r ≤ R is not true.

To compare the performance of this post-processing strategy with
other reported in the literature, both, SMOTE and a cost-sensitive scheme
were used to train a SVM on the listed UCI datasets. Comparison was only
made with the bp bias. The Matlab Bioinformatic’s toolbox provides a cost-
sensitive scheme where the values for C+ and C− in (5) are calculated from
C as:

C+ = C
N

2N1

, and C− = C
N

2N2

. (15)

It is worth noting that from the above, C = C+N1+C−N2

N1+N2
, that is, a similar

formula to the bias bp by changing C+ and C− for α and β, respectively.
Results obtained using the same evaluation metrics, as well as the

same ten-fold cross-validation structure, are shown in Table 3. Moreover, a
comparison about the proportion of support vectors of the learned decision
function in relation with the number of training data is offered for all the
schemes in Table 4. This ratio is a measure of the complexity of the SVM
classifier. Therefore, it can be concluded than both, SMOTE and cost sen-
sitive approaches provide a decision function more complex and hence, as
aforementioned, they can produce over-fitted models.

In order to measure the similarity of results between schemes, the
Friedman test was applied (Demser 2006). This is a non-parametric test
used to detect significant differences in multiple classifiers. The obtained
p-values for accuracy, g-means and sensibility are 0.1076, 0.0150 and 0.0083,
respectively. From these results, if a confidence level is fixed to 5%, it can
be concluded the following:

• For the accuracy measure, as long as the p-value in the Friedman test
is 0.1076, it can be concluded that there is no significant evidence of
equivalence for the three methods.
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Table 3: Comparison of the novel method vs the cost-sensitivity and SMOTE
approaches. Average values for accuracy, g-means and sensitivity for each dataset,
using ten-fold cross-validation.

Datasets accuracy g-means sensitivity
bp cost SMOTE bp cost SMOTE bp cost SMOTE

Wineq white (3) .968 .950 .963 .449 .147 .497 .235 .050 .328
Abalone (19) .491 .739 .584 .625 .682 .605 .828 .648 .646
Wineq red (8) .506 .787 .789 .603 .653 .588 .835 .650 .458
Page-Blocks (5) .761 .932 .808 .858 .795 .704 .974 .690 .619
Yeast (7) .649 .896 .902 .749 .875 .876 .891 .860 .853
Thyroid (1) .928 .975 .989 .950 .957 .885 .976 .934 .795
Nursey (3) .982 .982 .955 .983 .991 .977 .986 1.00 1.00
Fault (5) .938 .945 .697 .594 .353 .627 .417 .178 .579
Wineq white (4) .764 .839 .897 .621 .657 .627 .513 .515 .441
Yeast (5) .464 .867 .863 .628 .843 .871 .911 .834 .775
Muns (3) .953 .962 .964 .903 .951 .981 .858 .939 .998
Letter (a) .994 .997 .998 .995 .997 .995 .996 .995 .991
Car (3) .973 .899 .903 .941 .946 .948 .911 1.00 1.00
Derma (2) .951 .931 .904 .944 .935 .917 .936 .944 .939
Ecoli (5) .968 .943 .945 .950 .976 .959 .945 1.00 .978
Balance(2) .774 .584 .813 .830 .781 .801 .909 .684 .796
GTC .882 .972 .887 .920 .941 .894 .970 .907 .904
User modeling (1) .981 .950 .949 .968 .933 .926 .956 .961 .904
Sat (4) .868 .919 .921 .894 .892 .863 .929 .861 .799
Satimage (4) .911 .934 .919 .889 .847 .863 .865 .749 .803
Euthyroid .761 .897 .887 .809 .826 .883 .887 .782 .881
Glass (7) .879 .896 .945 .898 .905 .897 .935 .863 .842
Segment (1) .993 .995 .996 .994 .994 .991 .995 .992 .985
Hepatitis .721 .817 .695 .732 .740 .589 .855 .720 .440
Column .872 .864 .866 .873 .874 .887 .883 .898 .926
Cmc(2) .630 .668 .737 .618 .643 .595 .607 .556 .435
Dna .949 .971 .965 .957 .959 .955 .972 .941 .937
Vehicle (1) .983 .983 .964 .985 .983 .972 .988 .985 .988
Transfusion .748 .698 .522 .614 .633 .548 .462 .546 .615
Haberman .634 .721 .642 .617 .485 .572 .606 .359 .490
German .623 .728 .714 .660 .691 .657 .804 .629 .557
Waveform (0) .873 .884 .853 .884 .888 .856 .921 .901 .866
Pima Diabetes .742 .733 .634 .725 .725 .649 .687 .694 .723
TicTac (2) .997 .983 .984 .996 .983 .982 .995 .987 .978

• With respect to the g-mean metric, as the p-value is 0.0150, the Fried-
man test detected significant differences. Furthermore, the test indi-
cates that there is not significant difference between post-processing
strategy and cost-sensitive SVM methods. Nevertheless, there is evi-

14



Table 4: Proportion of support vectors in relation with the number of training
data.

Datasets number of support vectors Datasets number of support vectors
bp cost SMOTE bp cost SMOTE

Wineq white (3) 1.79 7.93 16.52 User modeling (1) 12.02 17.83 6.78
Abalone (19) 6.08 55.99 52.78 Sat (4) 15.04 19.07 27.10
Wineq red (8) 6.28 36.66 38.32 Satimage (4) 9.09 10.29 18.64
Page-Blocks (5) 8.31 18.19 59.13 Euthyroid 22.00 38.00 31.25
Yeast (7) 4.18 27.91 28.79 Glass (7) 17.76 19.16 13.55
Thyroid (1) 2.49 11.24 9.92 Segment (1) 4.07 4.89 48.72
Nursey (3) 3.36 5.14 11.39 Hepatitis 32.56 47.29 38.37
Fault (5) 6.08 6.65 54.53 Column 25.80 26.77 29.51
Wineq white (4) 11.47 30.26 31.37 Cmc(2) 44.26 64.09 41.98
Yeast (5) 7.35 55.02 28.66 Dna 37.35 39.85 18.05
Muns (3) 5.87 52.90 5.85 Vehicle (1) 9.69 9.34 22.87
Letter (a) 1.36 2.18 1.27 Transfusion 42.65 57.62 58.82
Car (3) 8.22 17.48 17.53 Haberman 52.28 65.03 38.23
Derma (2) 14.80 25.42 30.31 German 45.70 50.60 36.25
Ecoli (5) 7.74 31.25 19.05 Waveform (0) 22.84 24.12 43.88
Balance (2) 17.44 53.92 21.28 Pima Diabetes 48.95 52.60 55.86
GTC 7.38 8.98 67.38 TicTac (2) 35.59 36.01 18.47

dence that these classifiers and SMOTE are significantly different.

• With respect to the sensitivity measure, the p-value is 0.0083, that is,
the Friedman test detected significant differences. Furthermore, the
test indicates us that there is significant difference among the post-
processing strategy and the other two methods. Therefore, it can be
concluded that the post-processing strategy is the best strategy in order
to maximize the sensitivity metrics.

5. Conclusions an Future Work

From the experimental results on datasets with different degrees of
imbalance, we can conclude that SVM performance is significantly improved
using a new bias that considers the proportion of classes. An important
benefit of the proposed approach is that the standard optimization problem
associated to the SVM is not modified.

Neither new parameters must be tuned, so the computational cost is
practically insignificant. By comparing this strategy with the cost-sensitive
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and SMOTE approaches, the bias modification approach achieves superior
performance in terms of sensitivity, and it does with a classification function
far less complex in terms of number of support vectors.

As future work, a theoretical framework for studying the movements
of the bias in the workspace according to their definition is being developed.
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