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Review 

This master thesis project contributes to the development of an energy management system 

(EMS), whereby the thesis is part of a bigger project carried out by the Barcelona-based 

software company GreenPowerMonitor. The developed EMS coordinates the different 

components of a hybrid power plant by repeatedly solving an optimization problem over one 

day and computing the optimal setpoints of the components’ controllers for the next minutes. 

In the context of the EMS project, optimality is defined as maximizing the amount of used solar 

power while minimizing the battery losses for several future generation and consumption 

scenarios over the course of one day. 

This thesis project focuses on examining ways to improve the computational costs of solving 

the optimization problem that lies at the core of the EMS and to implement the optimization 

problem in C++ as a “first draft” on its way towards a final product. Thereby, an already existing 

EMS prototype on the basis of Matlab/GAMS embedded in a simulation environment modeling 

a hybrid power plant in Cobija (Bolivia) is utilized. This prototype is translated into the open 

source modelling environment Julia/JuMP. The solver used throughout most of the project is 

the commercial mixed-integer linear problem (MILP) solver CPLEX. However, it is shown that 

the open-source solver CBC can be a serious alternative, especially for smaller power plants 

than the example case Cobija.  

Test are conducted with the aim to qualitatively evaluate ways to keep the computation time 

of the solver within boundaries, while at the same time maintaining the quality of the results. 

As a measure of the EMS performance, the accumulated objective values over one day are 

compared. The conducted tests show, that setting a time limit to the solver, or extending the 

time to solve the problem, are good measures to keep the computation time within boundaries. 

The negative effects on the results are less pronounced than expected.  

Furthermore, the optimization problem is implemented in the CPLEX solver specific application 

programming interface (API) in C++. The new C++ prototype is able to reproduce the expected 

results. In a future project, the input and output data processing will need to be implemented 

and refined.  

Finally, an accumulated cost analysis is conducted that is able to show the economic utility of 

the EMS for a power plant operator. 
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1. Glossary 

EMS Energy Management System 

OP Optimization Problem 

PV Photovoltaic 

LP Linear Program/Problem 

MILP Mixed-Integer Linear Program/Problem 

API Application Programming Interface 

VS Microsoft Visual Studio 

xml Extensible Markup Language 

csv Comma-Separated Values 

PPC Power Plant Controller 

GPM GreenPowerMonitor 

UPC Universitat Politècnica de Catalunya 
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2. Introduction 

The project presented in this master thesis is part of a bigger project to develop an energy 

management system (EMS) for the optimal operation of hybrid power plant in islanded power 

grids that contain a set of grid stabilizing diesel generators, a photovoltaic (PV) generator, and 

a storage system. The overlying project is initiated and supervised by GreenPowerMonitor 

(GPM) in Barcelona as a R&D project for the company. In the following, the reader is 

introduced into different aspects of this thesis project including its objectives.   

2.1. Motivation 

Due to the falling prices of photovoltaic (PV) generators and batteries, many islanded power 

systems all over the world that have been powered by diesel generators, are upgraded with, 

either only PV panels, or a combination of PV and a battery storage in order to save fuel costs. 

Introducing these additional components adds degrees of freedom to the control of the plant 

that carry the potential to optimize the power production in a desired way. The most obvious 

way, from an economic perspective, is to use the PV power in an optimal manner, by smartly 

controlling the battery storage, to save fuel. This smartness requires so-called energy 

management systems (EMS) that take the decisions on the behavior of the different 

components relevant to the objective of the system. This means, that the EMS is the highest 

technical instance in the system, coordinating the controllers of the power plant by 

manipulating their setpoints in a way that optimally fulfills the EMS’ (plant operator’s) 

objectives. GPM, as a manufacturer of monitoring and controlling solutions for large PV 

installations, has a natural interest in developing such a system, to integrate it with their 

controllers in order to satisfy customers with hybrid PV power plants. In a broader sense, all 

kinds of combined power generation systems need an EMS, however this thesis project 

focusses on the case with diesel generators. Some of the findings are however transferrable.  

At the core of the EMS, a mathematical optimization problem has to be solved. This problem 

is what mainly builds up the EMS model and it offers many opportunities for innovation. Not 

only at the mathematical core of the problem formulation, but also at the technical aspects, like 

solver and hardware choice, parameter specifications, data handling, etc.  

To explore these design questions of the optimization problem and to develop the EMS 

towards a product for GPM is what motivates the master thesis project on hand.  
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2.2. About GreenPowerMonitor 

Remark: A slightly extended version of this section was already formulated by the student for 

his internship report. The text has been reused here. 

GreenPowerMonitor (GPM) is a middle-sized software company located in Barcelona with 

small local branches abroad (e.g. in the UK). The company provides solar monitoring, -control 

and asset management solutions and is a leading player in that field. In summer 2016, GPM 

was acquired by the Norwegian technology corporation and classification society DNVGL and 

profits therefore from the global network that DNVGL has. At the moment GPM monitors 

roughly 5GW of solar power worldwide. Most of this solar capacity is installed in the US, Europe 

and Latin America (see Figure 1).  

 

Figure 1: Activity of GPM worldwide in MW monitored 

The company’s three main monitoring solutions are  

• PV SCADA 

• PV+ 

• PV Portal 

PV SCADA is the full solution for large scale photovoltaic plants with a server installed on site 

and real-time data measurement (1 second time resolution). PV+ and PV-Portal are based on 
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the GPM server in Zona Franca - Barcelona. PV Portal is the standard browser based 

monitoring solution while PV+ is a desktop application with additional functionality for 

customers with a large portfolio of power plants.  

Additionally, GPM provides high level customer service based on the concept of key account 

managers that are the personal contacts for PV SCADA customers. Also, the hardware 

services and setting up the monitoring infrastructure is entirely covered by the GPM project 

management team.  

Finally, GPM has developed a control algorithm for photovoltaic converters called GPM Power 

Plant Controller (PPC) that manages the power plant’s parameters like active power, reactive 

power, frequency, voltage and also external reactive power compensation. This control keeps 

the real values of the parameters selected by the customer at their set points at all times.  

To complement this portfolio, GPM is developing the EMS project, in order to be able to 

optimize the PPC operation for hybrid PV power plants. 

2.3. Previous requirements 

The first EMS prototype was developed at the CITCEA research institute at Universitat 

Politècnica de Catalunya (UPC) on the basis of Matlab/Simulink and GAMS. The work done 

at CITCEA is structured into 5 project phases: 

1. Project definition 

2. Definition of requirements and base case 

3. Management algorithm development 

4. Testing of algorithms in simulations 

5. Testing of algorithms in emulations with real power converters 

The first 4 stages where completed before the start of this thesis project and could therefore 

be considered when defining the objectives of the project. The 5th stage was running in parallel 

to this project and is only considered by implementing the functionality in the project code to 

be able to run emulations (see section 5.2.2).  

The basic design decisions for the EMS are adopted for this thesis, and the Simulink model 

developed for phase 4 is used to test different designs of the EMS. For code in Julia or C++ 

developed in this thesis project, the previous versions in other environments could be used as 

example.  
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2.4. Objectives and scope of the project 

The objectives of the project build upon the previous development steps of the EMS described 

above. After having a first prototype of the EMS, a need arose to explore different properties 

and behaviors of the system through tests. Thereby, it was focused on how the EMS results 

are affected by the limited time frame, and which measures are the most potent to tackle 

possible timing issues. The tests are conducted in the Simulink model of an exemplary hybrid 

power plant in Cobija (Bolivia) developed at CITCEA. Three different PV generation profiles 

are used. Then the results are qualitatively compared using the objective value of the results, 

and the time to solve the problem.  

However, the optimization problem (OP) of the EMS was implemented in the commercial 

modelling environment GAMS, making it necessary to purchase a license for it. The lack of an 

academic license for the EMS problem size made it completely impossible to run these tests 

at GPM with the original prototype. Therefore, a first objective was to translate the project’s 

optimization problem to an open source environment. 

As a first step of developing an EMS product from the prototype, another objective was defined 

as to implement the EMS in the programming language preferred within GPM – C++. This can 

be seen as a first draft, from which later, the project will be taken further and more functionality 

will be added. Because of the somewhat different advantages of a neutral modelling 

environment and a solver specific C++ interface, these two objectives where faced separately 

in two steps (see chapters 5 and 7). 

As a last objective, the economic potential of the EMS was to be evaluated. In the last chapter 

of this thesis, an accumulated cost analysis is conducted in order to estimate how feasible the 

EMS in the current layout is. 

In short, the objectives of this master thesis project are summed up to: 

• Transfer the GAMS implementation of the OP to an open source environment 

• Find out about the dependencies of the EMS on different parameters in tests to 

facilitate future product development. 

• Translate the project to C++ 

• Study its feasibility 

In order to clarify the project scope, in the following some aspects are presented that do not 

belong to this thesis, and are left for later stages: 
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• Tests with real life equipment were already conducted at CITCEA. Further test will 

be necessary, once the EMS is getting implemented.  

• A final version of the EMS. Final decisions about the solver, the hardware, different 

parameters, or designs will be only possible when the system is implemented on a 

real plant. The findings from the tests conducted in this thesis are meant to speed 

up the process of determining the final design for every plant. However, there will 

still be a learning curve, once the EMS implemented in a real-life application.  

• This thesis focusses on the optimization problem of the EMS and how to practically 

implement it. Other system parts like forecast processing and the scenarios are not 

studied or implemented. The forecasts and scenarios used are identical with the 

once used and developed at CITCEA for the first prototype. Neither is the 

mathematical formulation of the OP changed. Changes are suggested based on test 

results, however the decisions, whether these changes are feasible or not, are left 

for further evaluation by a mathematician. 

Concluding, this thesis qualitatively examines different designs of the EMS OP 

implementation and the effects these design decisions have on the EMS performance, and 

is meant to set the first brick on the way to a final product.  
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3. Project foundations 

The project of this master thesis cannot be seen as an isolated work but rather as a contribution 

to the development of an energy management system at GPM. At the beginning of this thesis 

project, several development steps for the EMS had already preceded in the months before. 

This thesis builds upon the results of these earlier stages. Furthermore, to understand the 

implementations and decisions made during the course of this project, some basic knowledge 

about mathematical optimization and its computational implementation tools is required. 

Therefore, in the following sections, the EMS project stages until the start of this master thesis 

project are illustrated, a summary of the mathematical foundations of solving mixed-integer 

linear problems (MILPs) (and as a basis for that, linear problems (LPs)) is given, and finally, 

the auxiliary software tools used in this thesis are described.  

3.1. The EMS project 

Remark: The work presented in this section was already existent when starting the thesis 

project and the thesis builds upon that work. It is, however, not possible to cite publications, 

because the reports are created exclusively for GPM and are confidential. So far, there exist 

no publications on the described project phases. Responsible for the work presented in this 

section are the following members of CITCEA research institute: Andreu Vidal, Monica 

Aragüés, Eduard Bullich, Guillem Vinyals, and Oriol Gomis. 

The energy management system (EMS) has the task to coordinate all the components in a 

hybrid PV power plant in such a way, that energy losses and fuel consumption are minimized. 

This is done by repeatedly solving a mathematical optimization problem (OP) in which the 

mentioned objective and all the physical constraints are mathematically modelled. As a result, 

the computation returns all the computed decision variables for which the objective function 

takes its maximum value. These variables are sent as setpoints to the control systems of the 

different components of the plant (battery storage, diesel generators, and PV converters) that 

than keep the real values close to these optimal set points. The basic principle is shown in 

Figure 2. The EMS takes into account forecast data for PV generation and consumption, and 

the actual state of charge of the battery. After solving the optimization problem, it sends power 

set points to the battery storage and the PV converter(s), and a number of diesel generators 

that need to be running. This means that the most important prerequisite for the functioning of 

the system is the existence of reliable forecast data and preferably much historical data for PV 

generation and consumption in order to generate generation and consumption scenarios (see 

section 3.1.2). Another crucial prerequisite is the existence on preferably powerful power plant 

controls and models for their behavior (see section 3.1.3) on which the EMS working principle 
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is based. 

The steps of developing the EMS depend on the system the EMS is designed for. For every 

system, the steps in section 3.1.2 and section 3.1.3 have to be repeated to design the suiting 

EMS. The development steps of the EMS are summarized in the following. At the end of this 

section, the scripts and Simulink models developed before the start of this thesis project are 

presented in short. Some of the basic theory of this section can be studied more in detail in [1] 

and [2]. 

EMS
SP

SP

SP

FC

FC

SOC

 

Figure 2: Working principle of the EMS (SP=set points, FC=forecasts, SOC=state-of-

charge) 

3.1.1. Type of system 

The first step is to determine which kind of power plant the EMS will be designed for. The 

factors are: 

• Is the system connected to a grid or does it work in an islanded mode? 
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• How many diesel generators are installed in the system? 

• Does the system have a battery? 

• What quality do the available forecasts have? Are cloud movements observed (short 

term PV generation forecasts)? 

• What is the relationship between installed PV power, consumption, and available 

diesel power? 

All these factors influence in what order of magnitude the power deviations are, how significant 

the frequency deviations are allowed to be, and therefore, how much power reserve is required 

(diesel generators that are always running with a power margin).  

In the case of the EMS project, a power plant in Cobija (Bolivia) was used as a test case. The 

properties of this power plant are listed in the following: 

• The system works islanded, that is, not connected to a superior grid 

• The installed PV power almost never exceeds the consumption. That means, that 

the PV power can be seen as support of the diesel generation which takes the main 

role 

• The diesel generators maintain the system frequency. In every moment, there is 

inertia in the system.  

• The battery storage works as frequency support regarding variations in PV 

generation and consumption 

• The battery storage does not work as long or medium-term storage 

• The minimum diesel power allowed, compromises the maximal usable PV power 

• The PV generation shows a high degree of variability, especially in the afternoons 

• The measured consumption in the point of common coupling shows clear patters 

even though sometimes there are deviations. This facilitates the prevision of the 

consumption. 

• All the system components can be regarded as connected in the same point in the 

system which means that effects on system voltage/reactive power can be 

disregarded. 

3.1.2. Stochastic model of uncertainty 

In order for the EMS to correctly minimize battery losses and fuel consumption, it depends on 

high quality statistic input data. Therefore, it is necessary to find the right forecast models 
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based on long term observations.  

The class of model that is needed for the EMS is called “two-stage problem”. The principle of 

these kind of problems is, that a decision is taken based on the known parameters at the time 

of the decision. This decision may have different possible outcomes in the future (second 

stage), on which the system responds with another decision based on a decision catalogue. 

This second decision can compensate for possible negative effects of the first decision. 

Different future outcomes for the second stage decision are modelled as scenarios that are 

obtained by analyzing the statistical distribution of historical consumption and PV generation 

data, also called time series. If we, for example, look at the statistical distribution of the 

consumption in Cobija (Bolivia), we observe that the data is normal distributed. Thus, the mean 

value of the distribution and the standard deviation can be calculated and scenarios can be 

randomly generated based on these mathematical parameters.  

With this approach, the uncertainty of calculating optimal set points for future time periods is 

included into the mathematical problem formulation. In case of this project, parameters of the 

first stage are the number of running diesel generators and the maximum allowed PV power. 

These variables are identical for every scenario, because once a decision is made, these 

parameters will not change. Second stage variables are diesel generator output power and 

battery power, since the controls of these components will react on frequency changes that 

are the results of the first stage decision. These variables are calculated separately for every 

scenario. That means that adding scenarios to the model, significantly increases its complexity 

since every scenario adds variables and constraints to it. Therefore, the number of scenarios 

must be limited to those scenarios with significantly high variability.  

It is important to say, that the availability and quality of historical data is crucial for the efficiency 

of the EMS.  In case of this research project, time series data of about one month (only labor 

days) has been deployed to obtain the statistical parameters and distribution of consumption 

and generation. If there was data of one or several years, the model could also include season 

specific patterns and thus, the EMS would be even more efficient because the statistical 

distribution parameters could be chosen less conservative.  

The stochastic model of the plant is composed of two model parts:  

• The battery model (or long-term model) with a time horizon of an entire day that 

makes the EMS manage the SOC of the battery in an optimal way. That means, for 

example, that the preferred SOC around noon is very low, so that preferably much 

solar power can be used at a later point in time and thus, decreasing the fuel 

consumption. When there is no PV generation, the SOC should be preferably high 

to support the diesel generation in times of high consumption.  
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• The EMS model (or short-term model) with a time horizon of several minutes, that 

makes the EMS manage all the other system components in an optimal way.  

These two parts have to be considered when generating scenarios for the EMS. In the course 

of the project, the historical data (several days for the long-term model, and 48 hours for the 

short-term model) have yielded the following distributions: 

Long term Short term 

PV Generation Consumption PV Generation Consumption 

Beta Normal 
Normal, parameters depend 

on quality of cloud forecast 
Normal 

Table 1: Statistical distribution of historical data 

By means of this information and the obtained distribution function parameters, several 

scenarios are generated for PV generation and consumption that can be deployed in the 

optimization problem of the EMS. In the following, the schematic development of the statistical 

models and the scenario generation from these is summarized: 

1. Examination of historical data for consumption and PV generation in regard to 

distribution patterns. This analysis should be executed several times for different 

seasons and different types of days (Labor Day, Saturday, holidays). The data is 

examined on a long-term and a short-term time scale. 

2. Saving the distribution parameters for the site. 

3. During EMS operation, the distribution parameters are used to create consumption 

and PV generation scenarios by randomly deviating the available forecast data with 

the distribution functions determined before.  

3.1.3. System stability 

As mentioned in the introduction of section 3.1, an important prerequisite for the operation of 

the EMS is to have a model of the power plant and its PPCs. This model is used for three 

purposes in the project:  

• Find out the worst case of power deviations for the EMS to consider and its effect 

on the system frequency 
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• Find out the impact of the three variables that the EMS can manipulate on the 

system frequency: number of diesel generators that are turned on, battery power, 

and PV power limit 

• Use the power plant model for simulations to test the performance of the EMS after 

completed development 

Therefore, an important step in the EMS project was to develop a Simulink model of the Cobija 

power plant. In this section only main characteristics of the model from the view of the EMS 

are summarized.  

The diesel generators’ output power is controlled by a PI-control that keeps the system 

frequency at 50Hz. For the EMS, the diesel output power is variable. Thus, the diesel power 

can be seen as a slack variable, balancing out power fluctuations. In tests it has been identified, 

that the controller’s step response has a dip and an overshoot in frequency, whereas the dip 

is significantly more pronounced than the overshoot. Thus, the critical limit used for the EMS 

is the minimum allowed frequency.  

EMS setpoint 
computation

P setpoint
Battery

P saturationP saturation

Droop 
Control

P

Consumption

PV Generation

Available 
diesel units

Charging/
Discharging

Frequency

 

Figure 3: EMS battery control 

Moreover, the PV generator and the battery contribute to frequency stability by means of a 

droop control. The underlying principle is that the control follows a droop curve that assigns a 

certain change in output power to a certain change in system frequency. This simulates the 

behavior of a synchronous generator and prevents the converters from “fighting” for control, 

meaning starting to oscillate heavily as response to frequency deviations. The battery has an 

energy reserve of 10% of the total SOC implemented to be able to always contribute to system 

stability. This frequency control is an inner loop with significantly finer time resolution than the 
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EMS loop. That means that the battery’s output/input power is determined by the EMS for 

every 30-second period after which the droop control of the battery can modify the power in an 

inner loop to contribute to system stability. The schematic battery control is displayed in Figure 

3. 

 

Figure 4: Worst negative power deviations depending on maximum PV power (top 

line: 1000 kW, bottom line 4000 kW) 

The worst case of power deviations for the EMS to consider is composed of largest increase 

in consumption and largest decrease in generation. To obtain the worst case in consumption, 

the simulation data (time resolution: 1 second) was scanned for the most pronounced steps 

between two seconds. Then this was repeated for a time period of 2 seconds and so on up to 

a time period of one minute. The results would look like one of the lines in Figure 4. Taking 

into account the fact, that the examined data is not totally representative for every single 

situation, the worst cases for every time resolution are multiplied with a security factor. For the 

generation, this procedure is complicated by the fact, that the largest deviations depend on the 

available solar power. When there is a high solar generation, the power drops will be higher 

than if there is only little available solar power. Therefore, the approach for the consumption is 

repeated iteratively for different available solar powers. The results for exemplary generation 

data are plotted in Figure 4. The two cases are then combined to obtain the worst frequency 

deviations for the EMS to consider. In case of this project, this was done by simply adding up 

both cases which is the most conservative approach. A less conservative way of combining 

both cases would be to obtain a simultaneity factor. This would have a positive impact on the 

PV power curtailment, the necessary energy reserve of the battery, and the minimum number 

Maximum PV Power = 1000kW 

Maximum PV Power = 4000kW 
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of diesel generators that need to be running at all times.  

 

Figure 5: Result of multi-regression for the frequency constraint 

The worst case of power deviations found out in the foregoing section is now used to obtain 

the system stability constraint, included in the mathematical model of the EMS. This inequality 

constraint relates the three variables over which the EMS has control (number of running diesel 

generators, PV power limit, and battery power) to the system frequency and defines this 

system frequency to be higher or equal than the minimum allowed system frequency. This 

inequality constraint is formulated as follows, assuming linearity: 

 𝑓𝑚𝑖𝑛 ≤ Φ0 + Φ1 ∗ 𝑛𝐷𝑖𝑒𝑠𝑒𝑙𝑂𝑁 + Φ2 ∗ 𝑃𝑏𝑎𝑡 + Φ3 ∗ 𝑃𝑃𝑉𝑚𝑎𝑥  (1) 

with 𝑓𝑚𝑖𝑛 being the minimum allowed system frequency, 𝑛𝐷𝑖𝑒𝑠𝑒𝑙𝑂𝑁 being the number of diesel 

generators that are running (can be modified to be the number of diesel generators running 

over which the EMS has control, that is without the minimum number of diesel generators), 

𝑃𝑏𝑎𝑡 being the battery power, and 𝑃𝑃𝑉𝑚𝑎𝑥 being the PV power limit. The coefficients  Φ0 to Φ3 
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are determined experimentally using the Simulink model of the power plant for which the EMS 

is developed (in case of this project: the Cobija power plant). A series of load and generation 

steps are applied to the Simulink model modifying 𝑛𝐷𝑖𝑒𝑠𝑒𝑙𝑂𝑁, 𝑃𝑏𝑎𝑡, and 𝑃𝑃𝑉𝑚𝑎𝑥. The step size 

is the worst case for consumption and PV generation obtained in the previous part. For every 

step simulation, the minimum frequency is registered, and then, a multiple linear regression is 

applied to find the coefficients of the stability constraint (1). The results of the step simulations 

are plotted in Figure 5. The three variables adjustable by the EMS (number of connected diesel 

generators, battery power, and PV power limit) are displayed in relation to the minimum 

measured system frequency after the step occurred. The important graphs are the three on 

the right-hand side and on the bottom of Figure 5 respectively. 

In can be noted, that for negative battery power (battery is charging), the relation to the system 

frequency is not linear. Therefore, only the positive battery power is included in the frequency 

constraint of the mathematical model of the EMS. This is sufficient, because only deviations of 

the positive battery power cause critical frequency deviations. 

3.1.4. Mathematical model of the system 

The type of the system defines the mathematical problem that has to be solved by the EMS. 

Properties of the mathematical model in case of this project are: 

• The constraints introduced by the battery and PV models are a set of linear 

equations. 

• The power balance equations and the variable bounds are a series of linear 

relations. 

• Diesel generator state (ON/OFF) introduces binary variables into the model. This is 

where the model changes from LP to MILP which significantly increases the 

computational effort so solve the problem (see sections 3.2 and 3.3). 

• In some cases, to correctly model the PPC behavior, it can be necessary to add 

conditional constraints which also add binary variables to the model. 

In case of this project, neither the battery wear, nor the dependency of diesel generators on 

the rotational speed has been modelled. These factors can introduce non-linearities into the 

model. Therefore, in case of this project, the system model belongs to the OP model class 

Mixed-Integer linear problem (MILP).  

Formulating the mathematical model for the EMS means connecting all the theory and 

development steps discussed in the previous parts of section 3.1. It is the core of the EMS, 

meaning that it contains all the theory behind it in formulas. Other parts of the EMS, apart from 
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the mathematical model, are the scenario generation, programming theory when implementing 

the model, and underlying technology like the power plant controller which is necessary for the 

EMS to work. 

In the following, the indices (sets), decision variables, input parameters, and the objective 

function are introduced for a better understanding of later chapters in this work. Not all the 

variables are shown here and most of the constraints of the model are kept confidential in this 

thesis, since the EMS is still under development at GPM.  

3.1.4.1. Indices 

There are four sets in the mathematical model of the EMS which are used to calculate indices 

and counters: 

Scenarios to consider for the stochastic optimization 

𝑆 = {1, … , 𝑛𝑆} 

Number of executions of the optimization problem left until 00:00 

𝑇𝐸𝑀𝑆 = {1, … , 𝑛𝑇𝐸𝑀𝑆
} 

Number of 30 second periods between two executions of the optimization problem 

𝑇𝑖𝑛𝑡𝑟𝑎 = {1, … , 𝑛𝑇𝑖𝑛𝑡𝑟𝑎
} 

Number of diesel generators 

𝑁𝐷𝑖𝑒𝑠𝑒𝑙 = {1, … , 𝑛𝐷𝑖𝑒𝑠𝑒𝑙} 

3.1.4.2. Decision Variables 

In the following, the most important decision variables of the EMS for the understanding of this 

thesis are displayed: 

Battery power every 30 seconds in kW 

𝑃𝑡,𝑝
𝑏𝑎𝑡  , 𝑡 𝜖 𝑇𝐸𝑀𝑆 , 𝑝 𝜖 𝑇𝑖𝑛𝑡𝑟𝑎 

Binary variable for exclusion of simultaneous charging and discharging 

𝑋𝑡,𝑝
𝑐𝑎𝑟 𝜖 {0,1}, 𝑡 𝜖 𝑇𝐸𝑀𝑆 , 𝑝 𝜖 𝑇𝑖𝑛𝑡𝑟𝑎 

State of charge of the battery every 30 seconds in p.u. 
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𝑆𝑂𝐶𝑡,𝑝
𝑏𝑎𝑡 , 𝑡 𝜖 𝑇𝐸𝑀𝑆 , 𝑝 𝜖 𝑇𝑖𝑛𝑡𝑟𝑎 

Diesel power every 30 seconds for every scenario in kW 

𝑃𝑡,𝑝,𝑠,𝑑
𝑑𝑖𝑒𝑠 , 𝑡 𝜖 𝑇𝐸𝑀𝑆 , 𝑝 𝜖 𝑇𝑖𝑛𝑡𝑟𝑎 , 𝑠 𝜖 𝑆, 𝑑 𝜖 𝑁𝑑𝑖𝑒𝑠𝑒𝑙 

Binary status of all diesel generator units (ON(1) / OFF(0)) every OP execution period 

𝑂𝑁𝑡,𝑑
𝑑𝑖𝑒𝑠 𝜖 {0,1}, 𝑡 𝜖 𝑇𝐸𝑀𝑆, 𝑑 𝜖 𝑁𝑑𝑖𝑒𝑠𝑒𝑙 

PV power every 30 seconds for every scenario in kW 

𝑃𝑡,𝑝,𝑠
𝑃𝑉 , 𝑡 𝜖 𝑇𝐸𝑀𝑆 , 𝑝 𝜖 𝑇𝑖𝑛𝑡𝑟𝑎, 𝑠 𝜖 𝑆 

PV power limit every 30 seconds in kW 

𝑃𝑡,𝑝
𝑃𝑉𝑚𝑎𝑥, 𝑡 𝜖 𝑇𝐸𝑀𝑆 , 𝑝 𝜖 𝑇𝑖𝑛𝑡𝑟𝑎 

These decision variables (among others) are returned as a result after the OP execution 

together with the maximum possible value of the objective function (see below). All these 

variables are necessary for the mathematical optimization. However, the EMS only sends the 

results of {𝑃1,1
𝑏𝑎𝑡, … , 𝑃1,𝑝

𝑏𝑎𝑡}, {𝑃1,1
𝑃𝑉𝑚𝑎𝑥 , … , 𝑃1,𝑝

𝑃𝑉𝑚𝑎𝑥}, and ∑ 𝑂𝑁1,𝑑
𝑑𝑖𝑒𝑠𝑑

𝑛=1  as setpoints to the power 

plant controller. These are the setpoints until the next EMS execution provides new setpoints. 

3.1.4.3. Input Parameters 

The EMS requires some input parameters before the computation can start. These parameters 

are listed in the following: 

Consumption scenarios every 30 seconds in kW 

𝐿𝑡,𝑝,𝑠
𝐶 , 𝑡 𝜖 𝑇𝐸𝑀𝑆 , 𝑝 𝜖 𝑇𝑖𝑛𝑡𝑟𝑎, 𝑠 𝜖 𝑆 

PV generation scenarios every 30 seconds in kW 

𝐿𝑡,𝑝,𝑠
𝑃𝑉 , 𝑡 𝜖 𝑇𝐸𝑀𝑆 , 𝑝 𝜖 𝑇𝑖𝑛𝑡𝑟𝑎, 𝑠 𝜖 𝑆 

Battery capacity in kW*30s 

𝐶𝑎𝑝𝑏𝑎𝑡 

State of charge of the battery when input parameters are dispatched in p.u., also called “initial 
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SOC” because it is the SOC value that foregoes all future SOC values in 𝑆𝑂𝐶𝑡,𝑝
𝑏𝑎𝑡. 

𝑆𝑂𝐶𝑖 

Battery efficiency in p.u. 

𝜂𝑏𝑎𝑡 

Power boundaries of the battery and a diesel generator unit in the generator set in kW 

𝑃𝑚𝑥𝐵, 𝑃𝑚𝑛𝐵, 𝑃𝑚𝑥𝐷, 𝑃𝑚𝑛𝐷 

SOC boundaries for the battery in p.u. 

𝑆𝑂𝐶𝑚𝑥, 𝑆𝑂𝐶𝑚𝑛 

Minimum allowed system frequency in Hz 

𝑓𝑚𝑛 

Required power margin for stability purposes as sum for the whole diesel generator set in kW 

𝑚𝑎𝑟𝑔𝑒𝑑𝑖𝑒𝑠 

3.1.4.4. Objective Function 

The EMS is formulated as a maximization problem. The objective function of the EMS model 

maximizes the total utilized PV energy over 24 hours while minimizing the battery losses over 

the same time interval. Furthermore, this energy is summed up for every considered scenario. 

This way, the result takes into account the uncertainty of generation and consumption forecast 

data and makes the setpoints calculated by the EMS valuable for many different futures. The 

objective function is formulated as  

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑(𝑃𝑡,𝑝,𝑠
𝑃𝑉 − 𝑛𝑆 ∗ (1 − 𝜂𝑏𝑎𝑡) ∗ 𝑎𝑏𝑠(𝑃𝑡,𝑝

𝑏𝑎𝑡))

𝑡,𝑝,𝑠

 (2) 

3.1.5. Existing scripts and the Simulink model 

Remark: A slightly adjusted version of this section was already formulated by the student for 

his internship report. The text has been reused here. 

To execute the tasks described in the previous sections (3.1.1 to 3.1.4) and to run Simulations 

to test different versions of the EMS without a power plant (or at least physical converters), 

different R-scripts and a Matlab Simulink simulation environment were created during the 
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course of the EMS project. In the following, these scripts and the Simulink model are presented 

shortly. 

The statistical part, described in sections 3.1.2 and 3.1.3, is processed by means of programs 

written in R, a language for statistical computing, stored in the folders “00 - DADES 

SEGUNDALS” and “1 - PROBLEMA DETERMINAR SOC”. To run the scripts, it is necessary 

to download the R-environment and the software R-Studio to edit or run the scripts. Moreover, 

the scripts require certain packages. These packages will be displayed in an error message in 

the console window when trying to run a script. To download and install the necessary 

packages the user can type install.packages(“packagename”) into the console and press 

enter. Normally the package will be downloaded and unpacked automatically then. In the 

following the R-scripts are listed: 

• The script “1 - Agreggated _data.R” does two tasks of reading raw data: First the 

DIA 1 data is loaded and consumption and PV generation is saved as 

“consum_segundal.RData” and “generacio_segundal.RData”. These files are the 

basis for entire day simulations with HEMS (see above). Then the data from DIA 1 

and DIA 2 (resolution 1sec, only from 8am-8pm) is loaded and stored as a mat-file 

“M_Data.mat”. This file is used in the Load-Step Simulation Series  

• “Agragated_data_noves_dades.R” is used in addition to “Agreggated _data.R”  

when alternative generation data is used. The user sets the data number, e.g. “3” to 

read the generation data in the folder “Dia 3” also used in this thesis (later called 

“Data 3”). 

• “2 - Time_series_Analisis.R” reads the data in the folder “TS_ANALYSIS” and 

creates an ARIMA model in order to be able to make forecast emulations of the 

consumption to use in simulations and to create scenarios from forecast data for 

every new day.  

• “Var_otg_Resta_del_dia.R” creates a vector of consumption forecasts for the day 

that is going to be simulated and stores it as “forecast_cons_final.mat”.  

• “0 - Model variabilitat Previsions_corregit.R” generates a prevision and a model 

of the statistical errors of the available solar power. The results are saved as 

“forecast_gen.mat”. 

• “0 - Positive_changes.R” and “0 - Negative_changes.R” determine the most 

significant generation/load changes for different time intervals (1,2,3,4,… seconds) 

and store them as M_change_neg.mat and M_change_pos.mat respectively in the 

sub-directory “Fitxers_resultats”. 
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• “Generacio Escenaris corregit.R” creates the different scenarios for the PV 

generation using the results of the previous parts. These scenarios are then used 

for the optimization during the simulation. Historically also the consumption 

scenarios were generated using this script. Now however, they are generated during 

the EMS execution. This way scenarios for both consumption and generation will be 

created in the final implementation of the EMS. 

In the following, the Simulink simulation environment developed at CITCEA is introduced. In 

this environment, the power plant in Cobija, which is used exemplary in this work to develop 

the EMS, is modelled with all its components. These include 

• Physical models of PV generator (panels and inverter), battery system (battery and 

converter), and diesel generator set. 

• Droop controls of PV generator and battery system for the simulation of the behavior 

of a synchronous machine. 

• Centralized controller for every component as part of the PPC, including diesel 

generator set, battery system, and PV generator. 

• Power balance model of the plant, modelling the diesel generator power as slack 

variable of the system: 𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 − 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 − 𝑃𝑃𝑉 = 𝑃𝑑𝑖𝑒𝑠𝑒𝑙. 

• “Input sockets” for the simulation parameters and simulation input data (e.g. 

consumption). Allows the user to choose between simulation data input as Matlab 

vectors in the workspace, or step functions for the stability examinations of the 

system (see section 3.1.3). 

To perform the step simulations for the frequency constraint coefficients (see section 3.1.3), 

the user first executes the script “parameters_balanc.m” in the folder “0 – SIMULINK”. This 

script sets all the parameters used by the Simulink model in the Matlab base workspace. Then 

the script “LOOP_simulations_HEMS_v1.m” is able to perform a series of load- and generation 

step simulations with value ranges for PV power, battery power, and number of diesel value 

arrays specified by the user in the script. After the very short simulations have finished, the 

multi-regression to find the relationships of the adjustable value ranges and the system 

frequency response, can be executed with the R-script “read_results.R” in the same folder and 

the results are plotted as R-plots.  

The same simulation environment, simulating the Cobija power plant, is used to test the EMS 

in simulations with the length of one day. However, the EMS model is added which is an 

embedded Matlab function, triggered every OP execution period (e.g. every 5 minutes of 
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simulation time), requiring the current simulation time and battery SOC as input parameters 

and returning the setpoint arrays containing the values until the next EMS executions for all 

the EMS controlled elements in the model. The EMS Simulink model is shown in Figure 6. 

Furthermore, instead of step functions, the simulation model for EMS tests uses generation 

and consumption input data over one day with time resolution of one second. These simulation 

time lines are generated with the scripts “1 - Agreggated _data.R” and “Agragated _data 

_noves _dades.R”. The Simulink file containing the EMS model in addition to all the other 

power plant components listed above is called “HEMS_v4.slx” in the folder “2 - MODEL 

MATEMATIC 60S”. 

 

Figure 6: Simulink model of the EMS 

Also for this Simulink model, it is necessary to run the script “parameters_balanc.m” first to 

initialize all the necessary simulation parameters in the Matlab base workspace. However, a 

superscript called “Execute.m” was created by the student before the beginning of this thesis 

project, that automates the entire process of running the single scripts and simulating the 

model for an EMS test. Depending on the user configuration, it runs the statistical scripts to 

prepare new data for the simulation, runs the script “parameters_balanc.m”, simulates a day 

with the Simulink model, saves the simulations results from the base workspace and the 

optimization results that are buffered in the general script folder during the simulation, and plots 

the results for later analysis of the EMS performance. The plots are also saved automatically 

if required.  
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3.2. The theory behind solving MILPs 

Mixed-integer linear problems in standard form are defined as 

 

minimize 

𝒄𝑻 ∗ 𝒙 

subject to 

𝑨𝒙 ≤ 𝒃, 𝑥𝑖 ≥ 0 

with 

𝑨 ∈ ℝpxn, 𝒙 = (𝑥1, … , 𝑥𝑛), 𝒄 = (𝑐1, … , 𝑐𝑛),

𝒃 = (𝑏1, … , 𝑏𝑝) 𝑤𝑖𝑡ℎ 𝑏𝑗 ≥ 0 

and  

𝑥𝑖 ∈ ℤ,     𝑖 ∈ {1,2, … , 𝑛} 

(3) 

The last row is called the integrality condition of the MILP and makes the difference between 

a LP and a MILP. It states, that some (or all) of the variables in the solution vector must be 

integer values. Some of these variables can also be restricted to be either 0 or 1, which makes 

them binary variables. More details on LPs and the standard representation are given in 

section 3.3. 

State of the art solvers for MILPs nowadays use an approach that is often called branch and 

cut algorithm which is a combination of the traditional branch and bound algorithm to solve 

mixed-integer problems (not necessarily only linear), the cutting plane method, and other tools 

like heuristics. Cutting planes are a powerful tool to reduce the total size of the problem-to-

solve. However, in modern MILP solvers, way more methods and extensions are exploited. In 

the following, a functional overview about the branch and bound algorithm, the cutting plane 

method, and some other additional methods in modern MILP solvers is given, based on the 

description in [3]. 

3.2.1. Branch and bound algorithm 

The branch and bound algorithm is based on the idea to subdivide the original MILP into 

smaller problems and treat them as if they were normal LPs. That is the reason, why a MILP 

solver always uses an underlying LP solver to solve the sub problems. 
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The first step is to solve the original MILP as if it was a normal LP. That means, that the 

integrality conditions for the integer variables are dropped. This first problem relaxation is 

called root relaxation. If the integer variables of the optimal solution all have integer values 

despite not explicitly enforced, this solution is the optimal solution for the original problem. 

However, the likelihood that the root relaxation also solves the MILP is very low and normally 

the root relaxation result will contain integer variables with non-integer values. In that case, the 

next step is to select one of these variables and “branch” on it. That means that two sub-

problems are created that have the additional constraint, that the selected variable has to be 

greater or equal and lower or equal than the neighboring integer values of the non-integer 

value of the “branching variable” respectively. Exemplary this step could look as in the 

following:  

The root relaxation was solved, yielding an optimal solution that assigned the value 5.72 to 

one of the integer variables which is called “x”. Thus, it is possible to branch on this variable. 

The two sub-problems have the additional constraint x ≤ 5 and x ≥ 6 respectively.  

After this step, one of the branches is chosen and again the LP relaxation is solved. This 

procedure goes on until one of the optimal solutions of an LP relaxation also fulfils the MILP, 

meaning that all its integer variables have integer values. This solution is also a solution to the 

original (less restricted) MILP and is called “feasible solution”. If the objective value of this 

feasible solution is better than all the other feasible solutions’ objective values, or if there were 

no feasible solutions yet, the actual feasible solution is called the “incumbent”. In any case this 

feasible solution marks an endpoint of the tree and can be fathomed. That means that it is not 

necessary to branch again on this variable. However, yielding a feasible solution is not the only 

reason for a branch to be marked as fathomed. Another reason is, if the current LP relaxation 

cannot be solved. If the LP relaxation is infeasible, then obviously, there is no feasible MILP 

solution either. A third reason is, if the optimal solution of the current LP relaxation has an 

objective value that is worse than the objective value of the current incumbent. In this case, it 

is impossible to obtain a better feasible MILP solution on the current branch and it becomes 

unnecessary to continue branching further down on it.   

This algorithm generates a “search tree” in which every node is a sub-problem of the original 

MILP. Fathomed solutions are symbolized by leaves of the tree since they represent 

endpoints. The “leaf” with the best objective value is the final optimal solution of the original 

MILP.  

The incumbent during the branch and bound execution can also be seen as an upper bound 

(in case of minimization) to the final optimal solution because the final solution will either be 

the current incumbent or one with an even better objective value. A lower bound (in case of 

minimization) is given by taking the minimum objective value of all the current nodes in the 

search tree. If the difference between the upper and the lower bound, called “gap”, is zero, the 
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current incumbent is the optimal solution to the MILP.  

 

Figure 7: Schematic image of the branch and bound algorithm [3] 

In principle, the schedule for sub-problems to branch on is chosen according to the objective 

values of the leaves. That is, all the objective values of the different available LP relaxations 

are compared and the LP subproblem with the best objective value is chosen. 

In conclusion, the branch and bound algorithm makes MILPs solvable by using very well 

explored LP solving algorithms by increasing the total problem size which is also the major 

disadvantage of it. During the last years, the performance of the classic branch and bound 

algorithm could be drastically increased by adding numerous “tricks” that all have in common, 

that they reduce the size of the search tree part, that has to be explored. The most important 

improvement has been the cutting plane method that changed the name of the branch and 

bound algorithm to branch and cut algorithm. 

3.2.2. Cutting plane method 

The cutting plane method has been the most powerful improvement of the branch and bound 

algorithm in the past. To speed up the branch and bound algorithm, it is crucial to reduce the 

number of problems to solve, and cutting planes were found to be a powerful tool to do so. By 

introducing additional constraints, called “cuts”, to the LP relaxations dynamically, domains of 

the search tree that contain only fractional solutions are “cut off”. That means that the number 

of variables to branch on is reduced. Normally, many cutting planes are added already before 

branching for the first time, right after solving the root relaxation. In case of the biggest instance 

of the EMS OP, CPLEX adds tens of thousands of cuts to the root problem. These additional 

constraints considerably reduce the search tree size. However, also during the process of 

exploring the search tree, new cuts can be added to the subproblems to cut off branches, in 

cases when a cut possibility only became visible at a certain subproblem. 
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The subject of cutting planes is still being explored and special cutting planes can even mean 

a competitive advantage for a commercial solver. In the following, an example on one famous 

cutting plane is cited to illustrate the cutting plane method.  

Suppose our formulation includes the following constraint: 6x1 + 5x2 + 7x3 + 

4x4 + 5x5 ≤ 15, where x1 through x5 are restricted to be binary. Suppose in 

addition that we have just solved an LP relaxation and that these variables 

take the following values in this LP relaxation: x1 = 0, x2 = 1, x3 = x4 = x5 = 

3/4. This undesirable solution can be excluded with the following 

observation: since 7 + 4 + 5 = 16 > 15, it is not possible that x3 = x4 = x5 = 1, 

and hence that the following new inequality is a valid addition to the given 

MIP: x3 + x4 + x5 ≤ 2. Since 3/4 + 3/4 + 3/4 = 9/4 > 2, the new inequality cuts 

off the current solution. This inequality is an example of a so-called 

knapsack cover. [3] 

More information about different cuts in CPLEX is available in [4]. 

3.2.3. Other extensions and tools 

In the following, the most important additional tools to the branch and cut algorithm are 

introduced. Modern MILP solvers, however, come with way more techniques to speed up the 

search for the optimal solution. Many of which are held confidential to keep a competitive 

advantage.  

The MILP presolve, reduces the initial problem size and tightens its formulation. This is done, 

for example, by identifying variables that only have one possible value they can take. These 

variables are part of the final solution and can be substituted in the whole problem formulation. 

The presolve is divided in MILP presolve and LP presolve, the former fixing integer variables 

at an integer value and being a way more powerful tool than the latter, that only fixes 

continuous variables. Also, eliminating redundant constraints or merging constraints is part of 

the presolve. 

Heuristics are a powerful tool to obtain good feasible solutions to the problem sooner in the 

branch and cut process. A heuristic is a non-deterministic approach to the problem that takes 

advantage of experiences with different types of problems. Heuristics are very problem specific 

and can make a big difference between different MILP solvers. The reason for this is, that it is 

very valuable for the branch and bound process, when a good incumbent is found fast, 

because more relaxations will have worse objective values than the incumbent and can 

therefore be marked as fathomed. Furthermore, in cases when the solver has only limited time 

(as is the case for the EMS OP in this thesis), the faster the objective value of the incumbent 

improves, the better the final result of the optimization. There are numerous kinds of heuristics 
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and solvers of different vendors come with different heuristics. Usually, the experienced user 

is given flexibility to try out different heuristics for his problem himself in order to improve solve 

times. CPLEX provides the possibility to set the behavior in terms of applying heuristics during 

the solve process to “aggressive”, meaning that it spends more time on applying heuristics. An 

exemplary heuristic is cited in the following to illustrate the idea behind the topic: 

[…] it has turned out to be extremely valuable to do a little extra work at 

some of the nodes of the search tree to see if a good integer feasible 

solution can be extracted, even though integrality has not yet resulted due 

to the branching. For example, it may be that many of the integer variables, 

while not integral, have values that are quite close to integral. We could then 

consider rounding some of these variables to their nearby values, fixing 

them to these values, solving the resulting LP relaxation, and repeating this 

procedure several times in the hopes that all integer variables will fall into 

line. If they do, and if the resulting feasible has a better objective value than 

the current incumbent, we can replace that incumbent and proceed. [3] 

The natural parallelism that lies in the branch and bound procedure that is due to the 

numerous search tree leaves that can be solved independently, can be exploited very well 

when the solving computer has several CPUs or cores.  

3.3. The underlying theory of solving LPs 

As described in section 3.2, an important part of solving MILPs, is to solve linear relaxations of 

the basic problem and sub-problems. Therefore, the basis of solving MILPs fast, is to use a 

fast LP solver. In case of this work, the CPLEX optimizer was chosen to solve the EMS 

optimization problem (see chapter 4). In continuous mode CPLEX provides the following 

solving algorithms [4]: 

• Primal simplex 

• Dual simplex 

• Networked simplex 

• Barrier 

• Sifting 

In default mode, CPLEX solves the EMS problem by using the dual simplex algorithm. 

Therefore, in the next two sections, the theories of both the primal (as a theoretical basis) and 

the dual simplex methods are explained. 
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3.3.1. Primal simplex method 

The primal simplex method is applied on linear optimization problems in the standard form: 

 

maximize 

𝒄𝑻 ∗ 𝒙 

subject to 

𝑨𝒙 ≤ 𝒃, 𝑥𝑖 ≥ 0 

with 

𝑨 ∈ ℝpxn, 𝒙 = (𝑥1, … , 𝑥𝑛), 𝒄 = (𝑐1, … , 𝑐𝑛),

𝒃 = (𝑏1, … , 𝑏𝑝) 𝑤𝑖𝑡ℎ 𝑏𝑗 ≥ 0 

(4) 

Every linear program can be brought into standard form by means of simple mathematical 

operations. This linear problem is a convex polytope (possibly unbounded). The principle of 

the simplex method is to jump from one extreme point of the polytope to the next along the 

edges until the objective function cannot be improved anymore (see Figure 8). The extreme 

point of the polytope with the best objective value is the optimal solution to the problem. 

Extreme points are also called basic feasible solutions. If there is a basic feasible solution with 

a better objective value than the current one, there is also an edge leading away from the 

current basic feasible solution so that the objective function is strictly increasing (in case of a 

maximization problem). If the length of the edge is finite, there is another basic feasible solution 

at the end. If the edge is infinite, the problem is unbounded and there is no optimal value to 

the objective function.  

The nature of the simplex algorithm implies that an optimal solution (or the absence of it) can 

be reached within a finite number of computation steps.  

The initial step (step 0) of the simplex method, is to transform the problem 𝑨𝒙 ≤ 𝒃 to a problem 

of the type 𝑨𝒙 = 𝒃 by introducing slack variables. For example, if there is a constraint 𝑥1 +

𝑥2  ≤ 5, it can be transformed to 𝑥1 + 𝑥2 + 𝑥3 = 5 by means of the slack variable x3.  

Following step 0, the first step of the simplex method is to find a starting point (the first basic 

feasible solution) for the algorithm. There are different methods depending on the problem to 

solve. For example, the Northwest Corner Rule that can be applied to find a basic feasible 

solution to the transportation problem among others (see pages 75 and 76 of [5]). In case, the 

original problem has only lower-than-or-equal signs in all constraints (as given in the standard 

formulation above), the slack variables give a first basic feasible solution. However, if this is 
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not the case, the process of finding a first basic feasible solution is not trivial and is normally 

the reason for not using the primal simplex algorithm (see section 3.3.2). If no basic feasible 

solution exists, the problem is called infeasible. Otherwise the algorithm enters the second 

phase, in which either an optimal solution to the problem is obtained, or the problem is found 

to be unbounded. 

 

Figure 8: Graphic scheme of 3-dimensional simplex algorithm [6] 

To understand the second simplex phase more in detail, it is necessary to first understand the 

concept of pivoting which is central to the simplex method. Assuming there is a basic feasible 

solution to the problem that is being solved, one can bring the linear system of equations 𝑨𝒙 =

𝒃 into canonical form as shown in the following: 

 

 

 𝒙𝟏 𝒙𝟐 𝒙𝟑 … 𝒙𝒎 𝒙𝒎+𝟏 𝒙𝒎+𝟐 … 𝒙𝒏   
�̅�𝟏 1 0 0 … 0 �̅�1(𝑚+1) �̅�1(𝑚+2) … �̅�1𝑛 �̅�10  

�̅�𝟐 0 1 0 … 0 �̅�2(𝑚+1) �̅�2(𝑚+2) … . �̅�20  

. 0 0 1 … . . .  . .  

. . . .  . . .  . .  

. . . .  . . .  . .  

. . . .  . . .  . .  
�̅�𝒎 0 0 0 … 1 �̅�𝑚(𝑚+1) �̅�𝑚(𝑚+2) … �̅�𝑚𝑛 �̅�𝑚0  

 (5) 

The variables x1 to xm are the basic variables of the basic feasible solution (xm+1 to xn are non-

basic variables analogously) and �̅�1 to �̅�𝑚 are the rows of the modified matrix �̅� (without the 

last row). The last column of the tableau (�̅�10 to �̅�𝑚0) is equal to the basic entries of the solution 

vector x. All remaining entries of x are zero and do not appear in the tableau. The modified 

matrix �̅� is obtained from A by bringing the system 𝑨𝒙 = 𝒃 into canonical form by means of 

Gaussian elimination operations.  

To find another basic feasible solution, one of the basic variables, 𝑥𝑝, 1 ≤ 𝑝 ≤ 𝑚, has to be 

replaced by a non-basic one, 𝑥𝑞 , (𝑚 + 1) ≤ 𝑞 ≤ 𝑛. This is only possible if �̅�𝑝𝑞 ≠ 0. To replace 



Pg. 36   Chapter 3 

 

the columns of the tableau and get a new basic feasible solution, the following formulas are 

applied. Denoting the coefficients of the new system in canonical form by �̅�′𝑖𝑗, we get 

 �̅�′𝑖𝑗 = �̅�𝑖𝑗 −
�̅�𝑖𝑞

�̅�𝑝𝑞
∗ �̅�𝑝𝑗  ,   𝑖 ≠ 𝑝 (6) 

and 

 �̅�′𝑝𝑗 =
�̅�𝑝𝑗

�̅�𝑝𝑞
 (7) 

These equations are called Pivot Equations and are the tool of the simplex method to jump 

from one basic feasible solution to the next. However, the algorithm needs the additional 

information, on which element it needs to pivot, in order to find a new basic feasible solution 

with a better objective value. For this purpose, the tableau (5) is extended to the following form 

called the simplex tableau. 

 

 𝒙𝟏 𝒙𝟐 𝒙𝟑 … 𝒙𝒎 𝒙𝒎+𝟏 𝒙𝒎+𝟐 … 𝒙𝒏   
�̅�𝟏 1 0 0 … 0 �̅�1(𝑚+1) �̅�1(𝑚+2) … �̅�1𝑛 �̅�10  

�̅�𝟐 0 1 0 … 0 �̅�2(𝑚+1) �̅�2(𝑚+2) … . �̅�20  

. 0 0 1 … . . .  . .  

. . . .  . . .  . .  

. . . .  . . .  . .  

. . . .  . . .  . .  
�̅�𝒎 0 0 0 … 1 �̅�𝑚(𝑚+1) �̅�𝑚(𝑚+2) … �̅�𝑚𝑛 �̅�𝑚0  

𝒓 0 0 0  0 𝑟𝑚+1 𝑟𝑚+2 … 𝑟𝑛 −𝑧0  

 (8) 

The simplex tableau contains one additional row (here called r) with the relative cost 

coefficients rj. This last row is the result of bringing the objective function into the form  

 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 − 𝑧 = 0 (9) 

and appending it to tableau (5). Then the first m elements of the new row are eliminated by 

Gaussian elimination operations (in this case the objective value z is treated as another 

variable). The modified row looks like the following: 

 𝑟𝑚+1𝑥𝑚+1 + 𝑟𝑚+2𝑥𝑚+2 + ⋯ + 𝑟𝑛𝑥𝑛 − 𝑧 = −𝑧0 (10) 

Because z is treated like another variable and because it can be defined as a basic variable, 

the column corresponding to z does never change (0, 0, 0, …, 1) and is therefore not included 

in the simplex tableau.  

The relative cost coefficients rj indicate whether there is a basic feasible solution with a better 

objective value or not. If, in a maximization problem, there is one relative cost coefficient that 
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is negative, then making the corresponding column a basic column will improve the objective. 

Analogously, in a minimization problem, a column with a positive relative cost coefficient is 

chosen. If there is more than one negative relative cost coefficient, either one of them can be 

used to choose a pivot element. Usually the most negative one is chosen. When all relative 

cost coefficients are non-negative, the current basic feasible solution is the optimal solution.  

3.3.2. Dual simplex method 

Corresponding to the primal problem formulation presented in the previous section, there is a 

dual formulation defined as  

 

Minimize 

𝒃𝑻 ∗ 𝒚 

Subject to 

𝑨𝑻𝒚 ≥ 𝒄, 𝑦𝑖 ≤ 0 

With 

𝑨 ∈ ℝpxn, 𝒚 = (𝑥1, … , 𝑥𝑛), 𝒄 = (𝑐1, … , 𝑐𝑛) 𝑤𝑖𝑡ℎ 𝑐𝑖 ≤ 0,

𝒃 = (𝑏1, … , 𝑏𝑝)  

(11) 

Where the roles of the objective function and the right-hand side of the constraints are reversed 

and the constraint matrix A is transposed. If the primal problem is a maximization problem, the 

dual is a minimization problem. Instead of the positive primal variable x, we use the negative 

dual variable y. This formulation can also be seen as the inverse of the primal. If the primal 

solution is unbounded, the dual problem is infeasible and vice versa. Both problem 

formulations have the same optimal value. Therefore, the feasible solutions of the dual 

formulation provide upper bounds on the primal simplex formulation.  

As an example, in Figure 9 the primal and dual mechanisms are schematically displayed for a 

2-dimensional case with the primal objective “maximize x1 + x2” and two linear constraints. 

Both problems tend towards the same optimal objective value from two sides. Therefore, 

optimizing the dual formulation is sometimes seen as a “backdoor” method that leads to the 

same optimal result.  
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Figure 9: 2-D visualization of primal and dual simplex methods [7] 

The dual simplex method optimizes the dual formulation of the optimization problem while 

actually using the primal simplex tableau. That has the advantage, that there is no need to 

reformulate the problem before optimizing it. However, using the dual simplex method requires 

two conditions to be true: 

1. If the original (primal) problem formulation is a maximization problem, all the 

coefficients of the objective function need to be negative. Analogously, for a 

minimization problem, all the coefficients need to be positive. This is equivalent to 

saying that the problem prices out optimally. 

2. At least one of the constraints needs to have a greater-than-or-equal or equal sign, 

which means that the first basic solution is infeasible.  

In the next step, a pivot row is chosen from the simplex tableau (8) in the last section by looking 

at the right-hand side values of the constraint matrix am0. If there is a negative value, the 

corresponding row can be chosen to be the pivot row. The pivot element on this row can then 

be found by conducting the minimum test: Dividing all non-zero values of the last row “r” 

(objective function z) that has a corresponding negative value in the pivot row (same column), 

by this value without considering the sign. The element in the pivot row that yields the lowest 

result is the pivot element. The next step is, to make the pivot column a new basis vector by 

means of Gaussian eliminations. This way, by looking at the values am0 instead of the relative 

cost coefficients ri we solve the dual problem without actually formulating it.  

As mentioned above, the dual simplex method works very well when there is a basis to the 

primal problem that “prices out” optimally (all the relative cost coefficients are non-negative for 
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a maximization problem, i.e. all the objective function coefficients are negative) but which yields 

an infeasible solution (one or more xi are negative). Then this basis can be used for the dual 

simplex method to work towards feasibility while maintaining optimality, instead of spending 

more effort to look for a feasible basis and work towards optimality by maintaining feasibility 

with the primal simplex method. That is the reason why in many cases the dual simplex method 

is faster than the primal simplex method: less effort is necessary to find a suitable basis. The 

primal simplex method is usually faster, when there is a basic feasible solution to the problem 

available from the start. Otherwise, the effort of finding one, makes the dual simplex method 

more attractive.  

More details about solving algorithms of linear problems can be found in [5]. 

3.4. Deployed modelling tools 

Over the course of this thesis, different modelling tools were used to examine the behavior of 

the EMS under different conditions and to develop the EMS prototype developed at CITCEA 

towards a final product for GPM. Whereas Matlab and Simulink, as general engineering tools, 

are assumed to be known to the reader, the mathematical modeling tools are specific to 

optimization computing and might need additional explanation. Therefore, the modelling tools 

used in this thesis project are introduced in the following. 

3.4.1. JuMP modeling language for mathematical optimization 

JuMP is a mathematical modeling language embedded in the relatively new technical 

programming language Julia. It was released in 2012 and has still not reached version number 

1. The language’s performance can be compared to C or FORTRAN whereas it is as easy to 

use as for example Matlab.  

JuMP is built on the Julia-concept of syntactic macros. This approach allows JuMP to avoid 

operator overloading. A concept that most of the other open source modeling languages use, 

which can, however, make the code very slow. An example is given in [8]: 

Given is the expression 1 + ∑ ∑ |𝑐𝑗 − 𝑖|(1 − 𝑥𝑖,𝑗)𝑥1,𝑗
𝑑
𝑗=1

𝑑
𝑖=1  typed in directly in a high-level 

programming language. In the case of Python the expression takes advantage of the built in 

sum() command.  In this case however, the partial sums are quadratic expressions with d2 

terms. Thus, the operation would result in d2 summations because every term is accumulated 

one by one. In Julia, the expression could be written as a macro 

 

(‘@’ denotes a macro in Julia) keeping the easy to use syntax, which than internally runs a 



Pg. 40   Chapter 3 

 

routine that sums up all the partial sums at once, improving the performance significantly. 

Therefore, in JuMP variable definitions or writing constraints is realized by calling macros 

(@variable(), @constraint()) allowing the user to type in the expressions very naturally and at 

the same time keeping a high model building performance.  

Within the computer science community, macros have been recognized as 

a useful tool for developing domain-specific languages, of which JuMP is an 

example. [8] 

3.4.2. CPLEX Concert technology – CPLEX’s C++ API 

In the last phase of this thesis project, it was decided to implement the EMS in C++, as this is 

the standard at GPM. A prerequisite for this decision, was the foregoing decision to use the 

CPLEX solver, as CPLEX was found to be the only possible solver for the OP of the EMS (see 

chapter 4). Therefore, the solver specific API of CPLEX could be deployed. It is worth noting 

at this point, that a change in the solver decision will result in the necessity for re-coding the 

EMS in the new solver specific API. Furthermore, after careful considerations, it was decided 

to develop the EMS in C++ for Windows platforms. The reason for that is, that the only devices 

that are powerful enough to solve the EMS in its current formulation, in a reasonable time 

frame, are GPM’s micro servers that run on Windows operating systems. For this purpose, 

IBM provides a C++ API for the CPLEX optimizer, based on ILOG Concert Technology. This 

API contains all the functionality of CPLEX organized in classes and methods, also called 

objects. In the documentation [9], the structure of the API is described as in the following:  

[Figure 10] shows a program using CPLEX Concert Technology to solve 

optimization problems. The optimization part of the user’s application 

program is captured in a set of interacting C++ objects that the application 

creates and controls. These objects can be divided into two categories: 

• Modeling objects are used to define the optimization problem. 

Generally an application creates several modeling objects to specify 

the optimization problems. Those objects are grouped into an 

IloModel object representing the complete optimization problem. 

• Solving objects in an instance of IloCplex are used to solve models 

created with the modeling objects. An instance of IloCplex reads a 

model and extracts its data to the appropriate representation for the 

CPLEX optimizers. Then the IloCplex object is ready to solve the 

model it extracted. After it solves a model, it can be queried for 

solution information. 
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The CPLEX C++ API makes use of the pointer concept in C++. All instances of Ilo-classes in 

Concert Technology are only pointers referring to the actual memory location were the real 

object (created in the background) is saved. This implementation has the advantage, that the 

user can create several pointers, referring to the same memory location. However, the user 

must be careful to avoid creating empty pointers and to always delete objects, that are not 

needed anymore to avoid memory leaks.  

More information on the decision for Visual C++ for Windows systems and the Concert API 

can be found in chapter 7 of this thesis. 

 

Figure 10: A view of Concert Technology for C++ users [9] 
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4. Decision on solver 

4.1. Solver Tests 

In order to decide whether an open source solver is sufficient to solve the EMS optimization 

problem or if it is too extensive and a commercial solver would be necessary, several quick 

tests were run to check the solver performance on this specific problem. The fact that the EMS 

optimization problem is modeled as a mixed-integer linear program (MILP) already gives a 

limited number of specialized solvers. For simplicity reasons, these first tests were run in 

GAMS where the problem was already formulated.  

The tests on GAMS were run at the CITCEA lab for license reasons. The following five MILP 

solver licenses were available in the GAMS version on the used computer: 

• CPLEX: Is a powerful commercial solver that can solve very large mixed-integer 

linear programs among others. It was first commercially available in 1988 from 

CPLEX Optimization Inc. which now belongs to IBM.  

• CBC: Coin-or Branch and Cut is an open source solver for MILPs available on the 

Coin-Or platform. It is considered to be one of the open-source solvers with the 

highest performance. 

• BDMLP: Is a free LP and MILP solver available in the standard GAMS suit. It was 

originally developed by the World Bank but is now maintained by GAMS 

Corporation. The solver is not very powerful and is only intended for small to medium 

sized problems. 

• GLPK: GNU Linear Programming Kit is another free solver collection for large scale 

LPs and MILPs. It is maintained by the GNU project. 

• SCIP: Solving Constraint Integer Programs is the most powerful non-commercial 

solver currently available. In contrast to commercial solvers it gives the user wide 

low-level control over the solving process. SCIP is only free for academic use. 

All the solvers deploy a branch- and cut algorithm based on one or several simplex methods 

for the LP relaxations (see sections 3.2 and 3.3). 

The computer at CITCEA has the following data: 

• Intel® Core™ i5-3330 CPU@ 3.00GHZ, 4 main cores 
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• 16GB RAM 

• Microsoft Windows 7 Professional 64bit 

The tests were run by solving the problem with three different versions of input data. Two of 

the input files (2 and 3) are from the beginning of a simulated day which is also the point with 

the largest optimization problem because the number of variables and constraints depends on 

the number of optimization executions left for the day (see section 3.1.4). The first input file is 

from the middle of the day (184/287 five-minute periods left). In the following diagram the 

results of the time to solve is plotted over the time-to-solve of CPLEX. Only the smaller input 

file was used to test all five solvers. On the second and third file only CPLEX and the fastest 

alternative solver (SCIP) were tested.  

 

Figure 11: Results of solver test relative to CPLEX time 

It can be seen that CPLEX is the fastest solver followed by SCIP, then CBC. The difference is 

significant. BDMPL is far behind the other solvers and GLPK did not manage to solve the 

model at all. The harder the problem gets the more difficulties the alternative solvers have in 

comparison to CPLEX. However, in test 2 and 3 SCIP solved the problem almost equally fast 

for both test whereas it CPLEX took significantly longer to solve test 2 in comparison to solve 

test 3.  

The results acknowledge MILP solver test results from other sources. For example, in [10] test 

results from [11] are summarized. The test was run on real world test cases from the Netlib 

repository [12].  
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Figure 12: MILP solver test results from [11] 

Also in this test, CPLEX was by far the best option from the ones tested for this thesis, in terms 

of running time as well as in terms of solved instances. The next best open source option is 

SCIP with SoPlex as underlying LP-solver (SCIP-S). It is still double as fast as CBC and solved 

18% more test instances. GLPK only solved 3.45% of the test instances. This bad performance 

was also experienced during the GAMS test for this thesis. Among the commercial solvers in 

this test, GUROBI and XPRESS seem to perform slightly better than CPLEX. Here the 

deciding factor is the price for the license. 

Based on the experiences during the GAMS tests and the presented extern test results, it was 

decided to use a commercial solver for this project. 

To get a more reliable and detailed picture about the solver performance, more tests with 

CPLEX (and CBC) are performed in chapter 6. This quick test serves only to get a first picture 

of solver performances for the EMS optimization problem.  

4.2. License considerations 

As shown in the previous part, the optimal solution of the EMS OP (project case Cobija) 

requires the performance of a commercial solver due to its complexity and limited time frame. 

The leading commercial MILP solvers are CPLEX and Gurobi, but also XPRESS and MOSEK 

are popular commercial solvers in the market. These four solvers perform very similarly in 

terms of solving times and number of problems solved in many tests throughout the internet. 

As an example of such a test row, Figure 12 is given in the previous section. Considering the 

similar test results, the main decision element are license costs and availability. During the 
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course of this thesis, only academic licenses were an option and the only available licenses 

were the following: 

• IBM ILOG CPLEX Optimization Studio 12.6.3 – Student 

o Windows X86-64 

o Linux X86-64 

o OSX 

• IBM ILOG CPLEX Optimization Studio 12.7.1 – Student 

o Windows X86-64 

o Linux X86-64 

o Linux On System I/P 

o Linux On System Z 

o AIX 

o OSX 

The former (older CPLEX) version is compatible with the currently available “CPLEX.jl” 

interface package for Julia/JuMP and was therefore used for the tests in chapter 6 of this 

thesis. The latter, which is the most recent version of CPLEX, is compatible with Microsoft 

Visual Studio 2017 installed on the student’s machine and therefore deployed in chapter 7 of 

this thesis.  
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5. EMS implementation in JuMP 

In the original prototype developed at CITCEA, the optimization problem was solved in GAMS, 

which is a high-level modelling tool for mathematical optimization. It allows the user to 

formulate the problem in a language, which is very close to the native mathematical 

formulation. However, GAMS is a commercial software and therefore, apart from requiring a 

license for the solver (CPLEX in the case of this thesis), a license for GAMS itself is needed. 

Since this license is not available at GPM, an alternative to model the EMS optimization 

problem was required. There are several alternatives to the GAMS software.  

1. Using another commercial modeling environment. The most famous representative 

is AMPL. However, here again it would be necessary to pursue a license.  

2. Using an open source modeling environment. 

3. Using the direct solver interfaces to C++. Since GPM products are written in that 

language, it would be the most direct way to call the solver. However, solver libraries 

differ from solver to solver. Therefore, the solver must be chosen first before 

implementing the optimization problem. 

In the beginning of this thesis project, it was not clear which solver would be used in the final 

EMS implementation (see chapter 4). Therefore, at this point, option number 3 was not a 

possibility yet (in chapter 7, the EMS is implemented also with option number 3, using the 

CPLEX C++ interface). However, option 1 would not be optimal either, because the reason for 

not using GAMS anymore were the high license expenses. In an end product, the solver will 

be called directly, as proposed in option 3 (see chapter 7) and therefore, the modeling 

environment is only needed during the development phase of the EMS, while the Simulink 

simulation environment is used (see section 3.1.5). This means, that purchasing a license only 

for the development phase is not advisable, when other alternatives are available. Therefore, 

an open source modeling environment was chosen.  

In [8] a benchmark analysis on the performance of different modeling environments was 

conducted. The studied models were quadratic and conic quadratic respectively of different 

sizes. In Figure 13, the elapsed times (in seconds) between launching the executable that 

builds the model and the start of the solver are compared. Since Gurobi 6.0.0 was chosen as 

a solver in the source, also the direct interface of Gurobi and C++ (GRB/C++) was included in 

the test.  
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Figure 13: Benchmark analysis results of different modeling environments in seconds 

to build the model [8] 

The results show that JuMP has a performance that is comparable to commercial modeling 

languages, especially for very large models. The EMS optimization model can be considered 

as very large. All the other open source languages tested in the paper turned out to be 

considerably inferior. The reason for this is JuMP’s syntactic macro approach based on Julia 

technology in contrast to the alternative’s operator overloading approach (see section 3.4.1). 

Another important factor when choosing a modeling language is its suitability to write 

programs. The modeling language JuMP is embedded in Julia which is a very recent language 

for technical computing. When developing Julia, the focus was set to provide performance 

comparable to low-level languages while at the same time be as easy to use as for example 

Matlab. JuMP benefits significantly from these properties of Julia. Because commercial 

modeling environments are designed as stand-alone applications and because their syntax 

and data structures are very specialized for modeling mathematical optimization problems, 

they have shortcomings when it comes to embedding the optimization into a larger project. 

Loading and saving external data to and from other programs is difficult.  

In case of the EMS, the conversion to and from the GDX-files for the GAMS optimization 

became completely obsolete after the implementation in JuMP, because it accepts inputs in 

the Matlab format by means of the MAT package in Julia. This leads to another advantage of 

open source software: Packages are constantly added and the functionality expands quickly. 

By using JuMP, it is possible to reduce the size and complexity of the EMS optimization model, 

but even more importantly, to omit the interface between GAMS and Matlab. At the same time, 

the solver selection process is kept simple. To choose another solver, only one line of code 

needs to be adapted. That makes it easy to compare different solvers during the course of this 

thesis and beyond. In conclusion, it can be noted, that implementing the EMS in JuMP instead 

of GAMS has many advantages without any drawbacks. 

During the development phase, the JuMP implementation is also superior to the C++ version 
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developed in chapter 7. As described above, it is very intuitively linkable to Matlab, in which 

the simulation of the power plant is run. Furthermore, JuMP takes advantage of the Julia 

workspace, in which all variables used by the program are saved and hence, visible for the 

user. The Julia workspace is comparable to the Matlab workspace. This provides the user with 

a powerful tool, to explore different configurations of the EMS OP and to find bugs inserted 

during the development phase. Concluding, it is advisable to use the JuMP implementation 

while working with simulations, to find the best EMS layout for a specific plant. Only afterwards, 

the found layout should be included in the C++ implementation. 

5.1. Implementation of the mathematical model 

To avoid the need for a GAMS license during the development phase of the final EMS, the 

problem formulation was ported from GAMS to JuMP which is a modelling toolkit in the Julia 

language (see section 3.4.1). The solver was decided to be CPLEX (see chapter 4). Under 

these conditions three Julia packages are needed to perform the solution of the optimization 

problem: 

• JuMP (Julia for Mathematical Optimization) brings language features to model 

optimization problems based on the Julia concept of macros. It currently supports a 

number of solvers for different classes of optimization problems 

• CPLEX provides an unofficial interface to the popular solver by IBM. There needs 

to be a working installation of the CPLEX optimizer installed on the machine and a 

valid license. Solver options can be handed over in the CPLEX C-syntax.  

• MAT makes it possible to read and write mat-files in Julia. This makes it very easy 

to link the Julia program to the main part in Matlab/Simulink. 

The packages can be installed by using the Julia package manager. The syntax is (exemplary 

for the JuMP package): 

 

Then on top of the script the packages are included by writing: 

 

The first step in the jl.-file execution is to import the file “OP_input.mat”. This file is created in 

every period of the EMS and contains all the sets and parameters necessary to build the model 

that has to be solved by CPLEX. The file is loaded with the command 
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which stores the data into a Dict-object called “data”. This kind of object is a look-up table 

where every parameter or array of parameters is mapped to a name. The matread-command 

stores the Matlab vectors and matrices as Julia arrays into the Dict with their key being their 

Matlab identifier. Therefore, in the next step, these arrays and values can be extracted as 

exemplary shown in the following for the minimum frequency allowed in the system: 

 

Now a JuMP optimization model object can be created and a solver can be assigned to the 

model. In this case, the CPLEX optimizer is used through the Julia CPLEX package and a 

solver time limit is set. Over the course of the examinations, is has been found effective to set 

the time limit 20 seconds before the next optimization period starts, in order to completely finish 

the previous optimization before the start of the next one. Experiments with and without a 

solver time limit were conducted and no significant difference was found in the results (see 

section 6.2.1). In the following the syntax for the model assignment, solver choice, and solver 

time limit is shown: 

 

As can be easily seen in the code snippet above, to change the solver only requires the user 

to change a single line of code. That makes JuMP (as a free alternative to GAMS or AMPL) 

very interesting for this kind of research when the final decision about the solver choice is not 

yet reached.  

Remark: In section 6.4, it was made use of this functionality of JuMP: the open source solver 

CBC could be tested again under new conditions by only adapting the code line shown above. 

In the next steps, variables, constraints, and the objective function are added to the model 

called ‘m’. In JuMP, this is done by means of Julia macros denoted by the operator ‘@’. In the 

case of the EMS project, the mathematical model of the optimization problem has variable- 

and constraint arrays (see section 3.1.4). These arrays can be naturally created in JuMP which 

significantly simplifies the model creation. In the following, it is exemplarily shown for the 

variable array ‘P_bat’ how to create the array and how to create a constraint array linking the 

variable arrays ‘P_bat’, ‘P_bat_car’, and ‘P_bat_desc’ in order to model the different algebraic 

sign of the battery power when charging or discharging the battery.  
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The variable bounds are set in the variable definition between the input parameters of the 

optimization problem ‘P_mnb’ and ‘P_mxb’. The decision variable ‘P_bat’ as well as the 

constraint array ‘Bat3’ are two-dimensional with T_EMS (number of remaining optimization 

problem executions) times T_intra (number of setpoint dispatches between two executions) 

entries. The objective function is created in the same way using the macro ‘@objective(…)’.  

After having defined the objective for the model ‘m’, the model is complete. By executing the 

command  

 

The model is handed over to the solver together with the solver options and the solver output 

is printed in the console. The solution of the model is the main part of the program in respect 

to execution time.  After CPLEX finishes execution it returns a status (for example ‘Optimal’ if 

the solver was able to solve to optimality). As last step of the Julia script, the decision variables 

calculated by the solver, and the parameters ‘solve_time’ (elapsed time in seconds of the sum 

of all operations executed by the CPLEX optimizer to solve the model), and ‘solve_status’ 

(quality of solution reported by the CPLEX optimizer. E.g. ‘Optimal’ or ‘AbortTimeLim’) are 

printed into the file ‘OP_results.mat’ by means of the MAT-package functions ‘matopen()’, 

‘write()’, and ‘close()’.  

 

Figure 14: optimization output file 'OP_results.mat' loaded into the Matlab workspace 

An overview over the program flow of ‘Optimization.jl’ is given below. 
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Optimization.jl called from 
Matlab

Specify used packages

Load input parameters 
from ‘OP_input.mat’

Create model ‘m’ and choose 
solver and solver options

Add variables, constraints and the 
objective function to model ‘m’

Solve model ‘m’

Save variables and meta data 
to output file ‘OP_results.mat’

Close Julia and return control 
to Matlab

 

Figure 15: Schematic program flow of the of the OP execution script 'Optimization.jl' 

5.2. Embedding the Julia script 

As in the original implementation by CITCEA, the optimization script is embedded in a Matlab 

script that prepares the input file, executes the OP script, and reads the output file with the 

decision variables/setpoints. Depending on whether the optimization is executed during a 

simulation or during an emulation with real power converters, the embedding script differs. In 

the following a description of the different implementations is given. 

5.2.1. Embedding the OP for simulations 

The Simulink simulation model in which the EMS was developed and all the corresponding 

Matlab functions were developed at the CITCEA laboratories. However, the original 

implementation called GAMS to solve the optimization problem (see introduction of this 

chapter). Therefore, the embedding Matlab function needed to be adapted. The schematic 
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structure of how the OP execution is embedded in the simulation flow is displayed in Figure 

16. In this example, the OP period is the original one with 5 minutes between the OP 

executions. That means that within one day, the OP is solved 288 times. The sequence of 

actions is elaborated in the following: 

Call M-function 
‘opti_handover.m’

Embedded Jl-
script 

Optimization.jl

Call M-function 
‘opti_handover.m’

Embedded Jl-
script 

Optimization.jl

Call M-function 
‘opti_handover.m’

Embedded Jl-
script 

Optimization.jl

Call M-function 
‘opti_handover.m’

Embedded Jl-
script 

Optimization.jl

Call M-function 
‘opti_handover.m’

Embedded Jl-
script 

Optimization.jl

Call M-function 
‘opti_handover.m’

Embedded Jl-
script 

Optimization.jl

Simulate 5 
minutes

Simulate 5 
minutes

Simulate 5 
minutes

Simulate 5 
minutes

Simulate 5 
minutes

Simulate 5 
minutes

Simulate 5 
minutes

Simulate 5 
minutes

 

Figure 16: Scheme of Simulink simulation 

In a first step, the parameters defined by the user are loaded from a csv-file in the same folder 

as the M-function. These parameters are 

• The scaling factor to scale the PV generation up or down in order to match the 

consumption and to create more interesting simulations to test the EMS 

• The OP execution period “op_exe_step” that is used to calculate indices for the 

optimization 

• The resolution of the forecast data “forc_res_step”. During this thesis project, it is 

always 35 minutes. 

• The mode selection variable “acc_sub_opt”. If it is set to 1, the program will accept 

CPLEX results that were interrupted by a CPLEX time limit and not solved to 

optimality. If it is set to 0, the simulation will be continued with setpoints calculated 

in a previous OP execution.  

After defining the indices for the OP execution and forecast data by means of “op_exe_step”, 

“forc_res_step”, and the simulation time which is an input parameter to the M-function, the 

forecast data is loaded into the workspace. This forecast needs to be transformed into several 

scenarios, for the solver to take into account the uncertainty of the decision (see section 3.1.2). 

For the PV generation, a matrix with five forecast scenarios is generated by the R-script 

“Generacio Escenaris corregit.R” (see section 3.1.5). The only modification made during 

simulation runtime is to replace small negative values by 0+ (very small positive values) to 

make the OP feasible at all times. This step is necessary because one of the constraints of the 

OP forces the PV power to take values between 0W and the maximum forecasted/allowed 

values. The scenarios for the consumption however are generated during simulation runtime. 

For that purpose, the loaded forecast data is modified by means of the Matlab function 

“normrnd(µ,σ)”. The variance σ2 of the consumption data is calculated as described in sections 
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3.1.2 and 3.1.5. µ is 0. This function generates normal distributed random numbers that are 

added to the consumption forecast data as many times as there are scenarios. Dimensions of 

the two forecast containers handed over to the Julia script are  

𝑁º 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑂𝑃 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 𝑿 𝑁º 30𝑠 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑂𝑃 𝑒𝑥𝑒 𝑠𝑡𝑒𝑝 𝑿 𝑁º 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 

As an example, with OP execution step = 5, number of scenarios = 5, and OP index 1, we 

obtain 287x10x5. 

In addition to the scenario containers, more input parameters are defined in the M-function: 

• Number of scenarios 

• Number of remaining OP executions for the day 

• Number of 30s periods within two OP executions 

• Number of diesel generators in the system 

• Min/max values of SOC, diesel power, and battery power 

• Battery capacity in kW*30sec 

• Minimum allowed system frequency 

• Actual SOC of battery handed over from Simulink as second input parameter to the 

M-function 

In total, 15 parameters are saved to the mat-file OP_input.mat.  

In the next step, the Julia script is executed as a shell escape command. The script is run and 

Matlab waits for its completion to continue executing the M-function. After the optimization is 

finished and the results are saved in OP_results.mat, the script continues by loading all the 

setpoint arrays into the workspace. In the last step, these arrays are extracted and the 

necessary setpoints (number of running diesel generators, maximum PV output power, and 

battery power) are handed back over to Simulink as output parameters, whereas only the 

setpoints needed until the next OP execution are extracted. For instance, if the OP execution 

period is 5 minutes long, only 10 setpoints per control are handed over.  

In case, the user sets “acc_sub_opt” to 0 and the most recent OP results are not optimal, the 

last result file with optimal results is loaded and the corresponding setpoints are extracted from 

there. The optimality check is performed by reading the variable “solve_status” in the result 

file. CPLEX replies “OPTIMAL” if the OP was completely solved, and “ABORT_TIME_LIM” if 

the solving process was interrupted by a time limit set by the user. In case the new OP results 

are used for the simulation, the results are saved in the result folder, from where they can be 

loaded, if the future results are not optimal.  
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The scheme of the M-function described in this part is also shown in Figure 17. 

Load user parameters and forecast/scenario data

Create consumption scenarios and bring data into the right format

Define all the other parameters and save everything as 

“OP_input.mat”

Execute the Julia script as a shell escape. Wait until script has 

finished.

Load new OP results

OP results suboptimal and 

acc_sub_opt = 0 ?

Load last optimal results

Handover setpoints to simulink to continue to simulate

Save new results in result 

folder

YES NO

 

Figure 17: Flow chart of M-function opti_handover.m 

5.2.2. Embedding the OP for emulations 

The main difference when comparing the simulation on a computer with a real-world test or an 

emulation with real power converters is, that the simulation is paused during the OP execution 

in a Simulink simulation. In a real-world case, the problem must be solved before the start of 

the next OP execution to generate setpoints for the next OP execution period. That means that 

the current SOC is used to calculate setpoints during the next OP period to use in the period 
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after the next, instead of stopping the simulation and solving the optimization to use during the 

next OP period. That means, it has to be made sure that the optimization finishes in time to be 

able to send new setpoints to the converters. This can be assured by setting a time limit for 

the solver. Another possibility is, to send setpoints from the last OP execution that was 

successful, similar to the implementation in the previous chapter (see Figure 17). The 

difference here is, that the setpoints are sent individually every 30 seconds instead of all 

together every OP execution period. Therefore, every 30 seconds, the script first checks, 

whether the previous OP execution had finished in time, and if not, if it has now. If yes, the 

script continues with the newest setpoints. 

Only after this part, a new OP execution is initialized, if a new OP execution period starts. That 

also includes the loading of scenarios and initialization of OP input parameters as described 

in section 5.2.1. If, for instance, the OP execution period is 5 minutes, the script is executed 9 

times during that period without initializing a new OP execution, just to send new setpoints to 

the converters, and to check whether to use the old results, as long as a delayed optimization 

run has not finished yet. Only every tenth execution executes the Julia script. The same holds 

true for the dispatch of the setpoint for the number of diesel generators that are turned on.  

The dispatch of the setpoints is realized by means of the tcpip-function in Matlab, that creates 

a tcpip-object, that can be written on and queried for data. The format of this data sent over 

the tcpip-object is the Modbus protocol. For this purpose, external functions are used, to 

convert the Matlab data into Modbus compatible data and reverse. These functions need the 

tcpip-object, the Modbus address, and the data to send (in case of sending data), as input 

parameters. 

The execution of this Matlab script is managed by a Simulink timer object that executes the 

script every 30 seconds.  

The basis of this script was developed at CITCEA to run emulations on the basis of Matlab 

and GAMS. In the course of this thesis project, the script was changed to work with the Julia 

script developed in this project. 
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6. Examinations for the final EMS implementation 

One of the objectives of this thesis is to examine the computing resources that are needed for 

the EMS to work satisfactory. Since the required time to solve the OP primarily depends on 

the deployed hardware, there is not a final decision on the exact design of the EMS until the 

hardware platform is chosen. On the other hand, the layout of the EMS and its performance 

can help to decide on the hardware platform needed (see section 7). At this stage of the project, 

it is not constructive to take a final decision about the hardware or the exact layout of the EMS. 

Instead, this chapter examines the advantages and disadvantages of different EMS layouts 

and compares them. This way, in a later implementation phase, one or several of the presented 

layouts can be applied/combined to make the EMS work properly in the selected environment.  

The computer used for the testing of different EMS layouts has the following properties: 

• Microsoft Windows 7 Professional 

• X64 based system 

• Intel® Core™ i3-2100 CPU @ 3.10GHz, 4 logical cores  

• 4GB RAM 

On this platform, even though the CPLEX optimizer is one of the fastest optimizers available, 

it is not able to solve the basic layout of the OP for the test case “Cobija” to optimality in under 

five minutes in the beginning of the day, when the optimization needs to take into account most 

of the day to come. This means, that the optimal set points for the converters are not computed 

in time.  

 

Figure 18: Time to solve all OPs over one day - Dataset "Data 1" 



Examinations for the final EMS implementation     Pg. 57 

 

In the following, different approaches to reduce OP solve times or increase the OP time frame 

and their effects on the results are presented. The criteria to compare different simulations is 

the total PV power generated over the day, and the battery losses that are proportional to the 

energy that flows into or out of the battery. Therefore, to evaluate the results and compare 

different settings of the EMS, the result of the formula 

 𝐸𝑠 = ∑ (𝑃𝑃𝑉

𝑇

𝑡=1
− (1 − 𝜂𝑏𝑎𝑡) 𝑃𝑏𝑎𝑡) 𝑡 (12) 

which is the amount of energy saved compared to the scenario with only diesel generators. It 

is essentially the objective function of the optimization problem that is solved by CPLEX 

repeatedly, with the difference that only the result is evaluated and therefore, no scenarios 

appear in the formula. EMS settings that result in higher Es are generally considered better 

than settings with lower Es (exceptional case number of scenarios in section 6.3). 

For the tests, three different PV generation data sets were used:  

1. “Data 1” is the basic data set that was used to develop the EMS. It was measured 

during a day with clear sky in the morning (low volatility) and some clouds in the 

afternoon (high volatility). The data is scaled up with a scaling factor of 2 in order to 

match the consumption data. Maximum value: 8134 kW. 

2. “Data 3” was measured during a day with high solar power but also high volatility 

(partly cloudy summer day). It has the most significant generation drops of the three 

data sets. The data is scaled down with a scaling factor of 0.6 in order to match the 

consumption data. Maximum value: 9592 kW. 

3. “Data 5” was measured during a completely sunny day. That means that there is no 

volatility and the curve is very smooth. The data is scaled up with a scaling factor of 

1.2 in order to match the consumption data. Maximum value: 7590 kW. 

 

Figure 19: Scaled generation data sets used in this thesis 
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In order to determine the deviations that occur between several runs of the same simulations, 

first tests were run by just repeating simulations of the base case (OP execution period = 5 

minutes, no time limit). Because neither the solver itself, nor the simulation work completely 

deterministic, the same simulations can yield different results. The difference between these 

results is then used to decide, whether the measures tested in the following sections improve 

the EMS yield considerably or not. The results of these preliminary test are displayed in Table 

2. Additionally, the case without the EMS is shown in the table, when the battery does only 

help to stabilize the system frequency instead of receiving optimized setpoints from the EMS.  

  Test 1 Test 2 Test 3 
Max. 

Deviation 

No 

EMS 

Es [MWh] 

Data 1 44.232 44.053 44.152 0.179 37.710 

Data 3 43.341 43.659 43.509 0.318 30.737 

Data 5 47.530 47.244 47.003 0.527 36.263 

Table 2: Deviations of solution for identic simulations 

As can be seen, the deviations range between 0.5% and 1% of the total utility of the EMS. 

Another observation is, that the more predictable the PV generation is, the higher becomes Es. 

6.1. Adapting the OP execution period 

The most obvious way to give the optimizer more time to reach an optimal solution is to 

increase the time interval for the optimizer. At the start of this thesis, the optimization period 

was a fixed period of five minutes. In order to change that interval, a variable called 

‘op_exe_step’ was added to adjust the indices and time steps that are handed over to the 

optimizer. To give an example: if the optimization interval is increased to 10 minutes instead 

of 5 minutes, there will be 20 setpoint updates instead of only 10, because the setpoints are 

updated every 30 seconds. That means, the index parameter ‘T_intra’ that is handed over to 

the Optimization.jl script, changes from 10 to 20, whereas the maximum value that the 

parameter ‘T_EMS’ will take, is 144 instead of 288 (first OP execution of the day, 144/288 

10/5-minute intervals remaining until next day).  

To test the influence of this variable on the results, two additional simulations where run with 

the same simulation data but different OP periods. Additionally, the same simulations where 

run with two different PV generation data sets. That results in nine simulations in total. The 

three periods were 5 minutes, 10 minutes, and 15 minutes. The resulting Es is shown in the 

following table. 
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OP execution 

period 
5 minutes 10 minutes 15 minutes 

Es [MWh] 

Data 1 44.232 44.110 44.102 

Data 3 43.341 43.079 42.674 

Data 5 47.530 46.899 47.214 

SUM 134.681 134.088 133.990 

Table 3: Comparison of different OP execution periods 

It can be seen, that the resulting Es are relatively close to each other. Moreover, it is not always 

one period, that yields the best results, as in the dataset “Data 3” has the best value at an OP 

execution period of 10 minutes. However, the differences lie within the tolerances shown in 

Table 2. This means that there is no significant quality difference between the cases. 

In Figure 20, solving times during the course of the 9 simulations of Table 3 are displayed. The 

arrangement of the plot corresponds to the order in Table 3, row 1 to 3 being the three data 

sets, and column 1 to 3 being the three OP execution periods. The red line marks the end of 

the OP execution period, when the solver would need to be finished in a real-would application.  

 

Figure 20: Comparison of OP solving times for different OP execution periods and 

different data sets 
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The first observation is, that increasing the OP execution period, generally reduces the 

complexity of the problem. That means, that the solver gets more time to solve the problem, 

and additionally, the problem can be solved in less time. These two effects add up. 

Furthermore, spikes in computation time are reduced when increasing the OP execution 

period. 

Another observation is that the time needed by the solver, and the obtainable benefit by 

increasing the OP execution period, depend on the input data of the model. On a day with less 

volatility (Data 5/last row), the benefit of increasing the period is higher than on a day with high 

volatility (Data1/first row).  

It should be recalled here, that the fact, whether the OP could be solved in time or not, is of 

limited interest, because it depends on the deployed hardware. The conclusions are of 

qualitative nature. 

6.2. Enforcing the OP execution period 

In the real case, in contrast to running simulations in Simulink, the OP time period is a hard 

deadline, after which new setpoints need to be available. In the following, two different 

possibilities to ensure this, are presented and compared. It has to be noted, that the results 

will differ more, if the machine that solves the optimization has less performance. If, on the 

other hand, the machine is powerful enough to solve the OP in time for every OP step during 

one day, the cases are identical to the base case.  

6.2.1. Setting a time limit in the CPLEX optimizer 

The CPLEX optimizer provides the option to limit the time the optimizer has, to compute a 

solution to the optimization problem. For this purpose, CPLEX provides the option parameter 

‘CPX_PARAM_TILIM’. The time limit needs to be inserted in seconds. In this implementation, 

the limit was set to 20 seconds before the start of the next OP period in order to give the system 

enough time to generate, save, read, and remove all the previous files. The implementation is 

shown in the following: 

 

If the time limit runs out before CPLEX has found an optimal solution, CPLEX will return the 

variables and objective value for the best feasible solution it has found up to that point. 

Furthermore, the status variable will be set to ‘AbortTimeLim’.  

The effect of the time limit is illustrated in Figure 21 exemplary for the data set “Data 1” and an 

OP execution period of 5 minutes. The results are shown in Table 4.  
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Figure 21:Comparison of OP solving times - with and without time limit 

6.2.2. Using previous results 

Since the optimization is solved every time considering the remaining day, all the setpoints for 

the remaining day from the perspective of the current OP period (actual forecasts, scenarios, 

SOC) are available in every generated result file. Therefore, there is the possibility to extract 

the new setpoints from an older file, in case the OP was not solved in time, and there does not 

exist a new result file. The results are compared with the suboptimal results from the aborted 

optimization, and the base case in the following table: 

 
 No time limit 

CPLEX time 

limit 

Use previous 

results 

Es [MWh] 

Data 1 44.232 44.369 44.315 

Data 3 43.341 43.004 43.548 

Data 5 47.530 47.558 47.751 

Table 4: Comparison of base case (no time limit), time limited results, and using older 

results instead 

6.2.3. Discussion and comparison 

Comparing the results displayed in Table 4, it can be noted that neither the suboptimal solution, 

nor using the previous result, decreases the quality of the EMS in this test case. The reason 

for this is, that CPLEX already finds very good incumbents, way before the problem is solved 

to optimality. These incumbents have an offset of 1-2% to the root relaxation objective. In 

Figure 22, one can see the typical jump of the gap when CPLEX finds the first integral solution 

while exploring the search tree: In the 3rd column one can see the objective value of the current 

relaxation, in the 5th column the objective of the best incumbent,and in the 6th column the 
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objective of the dual problem (upper bound). The gap (in the last column) is the difference 

between the upper bound and the incumbent’s objective in percent. From the moment of the 

jump from 18.76% to 0.08%, the solution can already be regarded as technically optimal for 

the EMS case. This is why the simulation results for the CPLEX time limit and the base case 

in Table 4 are technically identical. 

The reason why the results for using the previous results are not worse either is very similar: 

between two OP execution periods, the circumstances do not change as much as to 

considerable yield different results for the optimization. This might change, if the forecast is 

updated more frequently.  

Considering the low effort of setting a time limit for the solver and the low impact that this 

normally has on the results, it can be concluded, that setting a time limit is a very good option 

in many cases to keep the solution time of the OP under control.  

 

Figure 22: CPLEX output of first OP execution of the day 

6.3. Reducing the number of scenarios 

It is possible to reduce the complexity of the mathematical model of the EMS by considering 

less scenarios for consumption and generation. The size of 2 of 9 variable arrays (P_diesel 

and P_pv) is proportional to the number of scenarios. The same applies to 5 of 11 constraint 

arrays and for the objective function. This shows, that the impact of reducing the number of 

scenarios on the problem size is significant. However, the reduction of scenarios comes with 

the cost of reducing the variability that the EMS can consider. That means, the less scenarios 

are considered in the optimization, the more likely the frequency restrictions will be violated 
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when facing big power fluctuations. In other words: The less scenarios are considered, the 

larger the power reserves for the PPC need to be. This leads to the conclusion, that another 

optimization problem needs to be solved when setting up a concrete project containing the 

EMS optimizing: 

• Number of scenarios 

• Optimal power reserves 

o Minimum number of connected diesel 

o Maximum power setpoint for diesels 

o Battery SOC reserve 

o Battery power reserve 

The objective of this optimization can be the same as in the EMS OP, measuring the PV energy 

used minus the battery losses. This optimization will require extensive historic data of the 

specific power plant. As a second step, on the basis of this optimization, hardware and solver 

for the EMS can be chosen accordingly.  

The yield-increase for the EMS for this test case due to reducing the number of scenarios is 

illustrated exemplary for Data 3 in Table 5. In this test case, the scenario reduction did not 

significantly change the frequency behavior. This is due to relatively large power reserves 

chosen for the EMS. As can be observed, less scenarios increase the EMS yield, as long as 

the forecast is mostly correct.  

Number of 

Scenarios 
5 4 3 

Es [MWh] 42.919 43.170 43.330 

Table 5: Es in MWh for different numbers of considered scenarios for Data 3 

As shown in Figure 23 (exemplary for Data 3), the reduction of the OP by only one scenario 

has a significant influence on the computation time for the EMS in the test case of this thesis 

project. The difference amounts to about 100 seconds computation time per scenario in the 

beginning of the day.  

Concluding it can be said, that the number of scenarios is a variable, which needs to be 

optimally determined for every new EMS project, depending on the specific power plant and 

consumption/weather patterns, that apply. It has the potential to significantly change the 

complexity/computational costs of the OP. The algorithm to determine the optimal number of 

scenarios lies beyond the scope of this thesis and will need to be developed in the future. 
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Figure 23: Computation time for different numbers of scenarios (Data 3) 

6.4. Warm start / solver change 

Since the OP is solved for the same time periods repeatedly with only lightly changed 

preconditions (updated forecast, SOC different than expected), it is expected to be very useful 

to use the solution of the previous OP, to re-dimension it for the current problem, and to hand 

it to the solver as first feasible solution. This user-proposed solution is called warm-start and 

should already be close to the optimal solution. Thus, the remaining OP period, after having 

found a solution for the root relaxation, can be spent on trying to find a better solution than the 

warm start.  

Because, as shown in the foregoing sections, the CPLEX optimizer is already able to solve the 

OP sufficiently well, even when interrupted before having found an optimal solution, the tests 

where run with the open source solver CBC, in order to determine, whether a warm start could 

bring the free solver back into competition. In chapter 4, it was shown that CBC was not able 

to find an optimal solution to the OP of the EMS. However, as demonstrated in section 6.2, it 

is not necessary to find an optimal solution, since the variance of the objective for several 

simulations of the same day without a time limit is higher than the degree of optimality lost by 

deploying a solver time limit. Technically, the time limit has no negative effect on the EMS 

results in this test case with CPLEX. Therefore, in this section, CBC is tested on its ability to 

find satisfactory results when a solver time limit and a warm start are deployed.  

Remark: Another reason for changing the solver is, that problems arose by combining Matlab 

and CPLEX. These problems are described in section 7.5.  

The results for the three PV generation data sets are shown and compared to the time 

limited CPLEX simulations in Table 6.  
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CPLEX time 

limit 
CBC time limit  

CBC time limit 

& warm start 

Es [MWh] 

Data 1 44.369 43.898 43.574 

Data 3 43.004 43.167 43.201 

Data 5 47.558 46.808 46.941 

Table 6: Comparison of CBC and CPLEX 

 

Figure 24: Comparison of time limited CPLEX (top), time limited CBC (middle), and 

time limited CBC with warm start (bottom) - Data 1 

Surprisingly, and somewhat opposing the findings of the quick test in chapter 4, CBC is clearly 

able to compete with CPLEX for the current test case. In Figure 24, a graphical comparison 

between the three cases is shown for the three variables controlled by the EMS (exemplary 
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for Data 1). It can be seen, that the simulations on CBC basis have a less “detailed” behavior 

than the CPLEX simulation. Nevertheless, the overall behavior can be labeled as acceptable. 

The warm start seems to slightly increase the quality of the behavior as the SOC trajectory is 

a bit more similar to the CPLEX case. This has, however, no positive effect on the objective 

value of the results. 

The warm start tested in this section does not result in a significant improvement of the results 

in opposition to the prediction. If any, it only increases the results slightly. More tests on other 

systems should be run to evaluate the warm start. Considering the low effort of implementing 

a warm start, it is worth to implement it anyway, even with low positive effects on the results.  

Furthermore, once again it can be demonstrated clearly, that an optimal solution to the OP is 

not required for a good performance of the EMS. Under the current conditions, other factors 

have a way stronger impact on the EMS result than the optimality of the solution. This finding 

is particularly interesting for smaller systems, as CBC becomes more competitive.  

6.5. Modelling the problem as a LP instead of a MILP 

To solve a MILP, many LP relaxations have to be solved successively (see section 3.2). 

Therefore, if the problem is reformulated to a LP, the time to solve the problem decreases 

significantly to the order of magnitude of the LP root relaxation. In case of the first OP execution 

of the day, the MILP problem took 515.5 seconds to solve, whereas the LP relaxation only took 

16.2 seconds to solve on the same machine. Generally speaking (independently of the 

machine where the OP is solved) that means that the LP can be solved about 30 times faster 

than the MILP. Therefore, in theory it would extremely increase performance to model only 

with continuous variables instead of including binary variables. How much the performance 

would increase exactly, depends on the real LP implementation of the problem (in this case 

only the binary variables were made continuous which is not a valid model for the EMS). The 

exact benefit will only be clear when the mathematical model is reformulated.  

A very important cost factor is, that, in contrast to the best open-source MILP solver CBC (see 

chapter 4 and previous section), the best available open-source LP solver (CLP) is very 

comparable to CPLEX in terms of performance as demonstrated in [13] (when solving a 

problem to optimality). That means, CLP is able to solve many problems within the same time 

frame as CPLEX. As a small test, the root relaxation of the EMS problem was solved to 

optimality with CLP which took 70 seconds on the student’s machine (hardware details given 

at the start of section 6). Although this is about 4 times slower than CPLEX, it is still very 

suitable for the EMS application. The objective value of the result is the same for both solvers. 

Considering that the license costs for CPLEX lie in the range of several thousands of dollars 
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per year per machine, the LP has a very big financial advantage over the MILP. Since 

reformulating the mathematical problem, however, is a very complex task and lies beyond the 

scope of this thesis, it is only recommended at this point, that the financial and mathematical 

advantages and disadvantages of reformulating the mathematical model in the future should 

be evaluated.  

6.6. Conclusions 

The tests conducted for this thesis project show that the results cannot be significantly 

improved/changed in terms of objective value of the results by any of the measures tested. In 

comparison to the fluctuations between several identical simulations of the standard case, the 

influence of the parameters tested are visible but small. These fluctuations observed for 

identical simulations most probably result from the random scenario generation and the non-

deterministic nature of day-long simulations for the EMS. The solver might find different 

variables for the same objective value, which can create differences between OP results 

although the objective value of the OP of both has the same optimal value.  

This observation, on the other hand, means that measures to keep the OP solve time within 

its boundaries, result in no significant reduction of the EMS yield. Be it setting a time limit to 

the solver, using older results, or adapting the optimization period. Having that in mind, in most 

cases it will be the cheapest and easiest alternative to set a time limit to the solver. This will 

not significantly decrease the overall OP results. Only in cases, where the limit is very low 

compared to the solve time without limit (mean value over the whole day), the results might be 

heavily affected. This must be tested, when implementing the EMS in a real case.  

Another measure that has no risks/costs but was expected to have the potential to improve 

the results, is to utilize the warm start functionality present in most solvers. To reuse the 

previous result as first feasible solution to the solve process did not result in the expected 

benefits. The improvements that resulted from the warm start were only very light (if even 

observable). Still, considering the low effort of implementing a warm start and no drawbacks, 

it could make sense to use it. More tests should be conducted on other systems. 

One of the most surprising findings is, that the open source solver CBC could generate results, 

that are comparable to the ones using CPLEX. The realization that the solver does not need 

to solve to optimality in the EMS case, made it possible to produce acceptable results by 

deploying a time limit for CBC. This result somewhat corrects the findings in chapter 4, where 

the solvers where compared merely based on the time to solve (to optimality) of a single OP.  

This finding could have a significant impact on the costs of the EMS. 

Reducing the number of scenarios could, in fact, improve the objective of the results. However, 
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reducing the number of scenarios negatively impacts the EMS’ ability to successfully 

counteract uncertainties und unpredicted events. Therefore, the following approach is 

proposed when implementing the EMS in a real case: 

1. Choose the acceptable/necessary power reserves (minimum number of connected 

diesel generators, power margin of diesel generators, battery SOC reserve, battery 

power reserve, ...) 

2. Conduct tests over some months to determine what number of scenarios is sufficient 

to face unpredictability and to keep the frequency within desired boundaries 

3. Choose hardware/solver combination that can solve the OP in acceptable time and 

that are affordable for the customer. Maybe other factors play a role here like what 

hardware is already installed on the plant. 

It must be recalled here, that the tests conducted in this chapter cannot be regarded as 

representative due to the limited project time frame. The results are only meant to give 

qualitative advice on how to best implement the OP in a final implementation that will vary 

based on the plant size and customer requirements. The final tests will take place, when the 

EMS is implemented on a power plant.  
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7. EMS implementation in C++ 

As a preparation for the final implementation of the EMS, it was decided to implement the 

system in C++. The background for the C++ decision is rather practical: GPM employs mainly 

C and C++ developers and the product, once finished, will have to run as a stand-alone 

application (without Matlab) in the field. Therefore, using C++, the EMS will fit in with other 

GPM products and there is no need to learn a new programming language. This is particularly 

important considering, that some parts of the EMS, like the statistical preparation of the 

forecast data, are still to be implemented in the future for the final application. In this work, the 

forecasts and scenarios created artificially with the R programming suit (see section 3.1.5) are 

used. Only the main parts of the EMS were implemented and tested in this section of the thesis 

project.  

Before the OP could be implemented, the target platform was to be determined. GPM uses 

three different platforms to run software and processes in the power plant: 

• IA240 RISC-embedded computer with the following specifications [14]: 

o MOXA ART ARM9 32-bit RISC CPU, 192 MHz 

o 64 MB DDR2 SDRAM 

o Linux 2.6.9 operating system 

• UC-8100-ME-T Series - Communication-centric RISC computing platform with the 

following specifications [15]: 

o ARMv7 Cortex-A8 1000 MHz processor  

o 512 MB DDR3 SDRAM 

o Debian ARM 7 operating system  

• ProLiant DL360 Generation9 server platform with the following specifications 

depending on the specific model [16]: 

o Intel® Xeon® E5-26XXXv3 or v4 processors with 1.7 – 3.6 GHz 

o DDR4 Registered (RDIMM) or Load Reduced (LRDIMM) ranging between 

128GB and 3TB 

o Windows Server operating system 

o Servers can be upgraded with hardware depending on the requirements  

Both Linux based devices have considerably less power than the desktop computer used in 

this work to test the EMS performance, which was not able to solve the EMS test case (Cobija) 

in less than 5 minutes at the beginning of the day. As described and shown in the previous 

sections, the hardware power is a critical parameter for the effectivity of the EMS. It was 
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therefore decided to (first) implement the EMS as an application for the GPM micro servers 

that are the most powerful devices deployed on the power plants monitored by GPM. This way, 

the EMS is likely to solve to optimality in every OP execution of the day and thus, maximize 

the EMS utility. It must be recalled here, that the complexity of the OP varies widely with the 

size of the system among other parameters (see section 6). It is not possible to take final 

decisions about the hardware needed in this early stage of the EMS implementation. 

Therefore, the EMS was implemented in Microsoft Visual Studio (VS) as a C++ Windows 

application. Another argument that confirmed this decision was the absence of an academic 

CPLEX license for the deployed Linux system.  

In the following sections, the development process and design decisions are presented more 

in detail.  

7.1. Core EMS and testing environment 

As long as the EMS is not controlling real converters and diesel generator sets, the system 

needs to be tested in an artificial testing environment. This is closely related to the statistical 

processing of input data which depends on whether there are real forecasts in a real test case 

used, or if the tests are executed in an artificial environment in which case the forecasts need 

to be generated artificially. The latter case is how the EMS prototype is implemented in Matlab 

and GAMS (i.e. Julia). Since, in the foreseeable future, the EMS will not be tested on a real 

power plant, it was decided to only implement the core EMS in C++ and keep the 

forecast/scenario part in R for now. This makes sense especially considering the fact that large 

parts of the statistical scripts implemented in R actually create forecast simulations by 

perturbating simulation data; a part that will not be necessary anymore, once the EMS works 

will real forecasts. Another large part of the statistical scripts examine the statistical properties 

of the generation and consumption data of the power plant and only need to be executed once 

when installing the EMS on the plant (see sections 3.1.2 and 3.1.3). The only part that will 

need to be added to the C++ implementation in the future, is the scenario generation from the 

forecast data. This will not be very complicated when the structure of the forecast data is 

known.  

In Figure 25, the whole EMS project is structured into parts in the same manner as the program 

scripts and pieces are structured. The statistical part is implemented in R and marked blue in 

the figure. The main part is implemented in Julia, using the CPLEX solver, and marked in 

green. This part was originally implemented in GAMS instead of Julia in the first prototype 

version of the EMS. The body of the simulation environment is implemented in Matlab/Simulink 

and marked in orange. When testing the EMS in simulations, the Matlab scripts and models 

coordinate the program execution.  
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Figure 25: Core EMS (marked red) and other parts of the EMS project 

For a stand-alone version of the EMS, all the red framed rectangles need to be implemented 

in the program. The black framed rectangles are only run once, when the EMS is set up on a 

specific power plant. Therefore, the parts do not need to be integrated into the EMS.exe 

program and are not run on the site. Thus, the implementation in R/Matlab/Simulink can be 

kept as it exists already in the first prototype (see sections 3.1.2, 3.1.3, and 3.1.5). The 

rectangles without frame will not be necessary anymore, once the EMS works independently 

of a simulation. All the red framed rectangles together form the core EMS. The two dashed 

boxes are currently not implemented in C++ yet, because of the following reasons: 

• The implementation of the scenario creation from forecast data mainly depends on 

the format and structure of the forecast data. This means, which file types (or data 

base structure), time resolution, update period, etc. is used. At the time of this thesis 

project, however, the format is not clear yet. 
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• The EMS output will most probably be sent to the converters via Modbus protocol 

as implemented and shown already in section 5.2.2. To properly implement the 

communication, the interface should be developed with specific knowledge about 

the communication capabilities of the converters on the plant. Therefore, it is more 

practical to develop the interface once, the EMS is installed on a plant. In can be 

added that the interface used in this project to communicate with Matlab (see section 

7.2) can be used as part of the final implementation. Another small program would 

be needed to send the comma-separated setpoints to the converters every 30 

seconds.  

In this thesis project, the C++ implementation of the EMS is tested in the Matlab/Simulink 

simulation environment. This means that Matlab calls the program EMS.exe once every OP 

execution period. In contrast to the Julia implementation described in section 5, the EMS.exe 

program loads all the required input data autonomously from xml and csv files (see sections 

7.2 and 7.4). Matlab only times the execution and loads the input and output data from and 

into Simulink. This means that in the final implementation, the program EMS.exe would need 

to be placed in a timed loop to be executed every 5 minutes. Another small program would be 

necessary, as mentioned above, to send the calculated setpoints to the converters every 30 

seconds via Modbus. A third small program would need to update the forecast data in the 

forecast folder whenever there are new forecasts available. 

7.2. Input and output data format 

The input and output data of the program is organized in text files of different formats. The 

generation and consumption scenarios are saved as csv-files. In the current test phase the 

format is as follows: 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

30-secondly 

data for 24 

hours – 2880 

data points 

30-secondly 

data for 24 

hours – 2880 

data points 

30-secondly 

data for 24 

hours – 2880 

data points 

30-secondly 

data for 24 

hours – 2880 

data points 

30-secondly 

data for 24 

hours – 2880 

data points 

Table 7: Schematic scenario input format in current test implementation 

There is one separate csv-file per scenario for both generation and consumption. That means 

that there are ten files for one complete update. Every file contains 2880 comma-separated 
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values; one value every 30 seconds for 24 hours. In this implementation, the scenarios are 

only updated once a day and a maximum number of 5 scenarios is available in the input data. 

Therefore, the scenarios, as they are now, have rather a dummy function than to really 

optimize the EMS performance. In the final implementation, the forecast and scenario 

preparation needs to be improved. This means that the forecast data should be updated e.g. 

every half an hour with high quality forecasts that might also include cloud movements. These 

forecasts are then perturbated with the standard deviation of historical data to create several 

scenarios (see section 3.1.2).  

The main input file is called usrInput.xml and contains all the necessary parameters (apart from 

the scenarios) for the optimization. It is subdivided in three groups of parameters: 

• <regularUpdate> contains the two parameters <timeIndex> with the index of the 

current OP execution period and <SOCini> with the current SOC of the battery. 

These two values are updated before the start of each OP period. 

• <userData> contains the setup parameters for the optimization: scaling factor of the 

simulation data, length of OP execution period in minutes, time resolution of 

forecast data in minutes, number of scenarios to be considered, and solver time 

limit information in seconds which is divided into an initial time limit for the first OP 

execution of the day and a time limit offset for the remaining OP execution which 

sets the number of seconds before the start of the next OP execution period when 

the current optimization needs to finish. 

• <OPInputParameters> contains all the parameters that appear as variable limits, 

constraint parameters, or parameters of the objective function in the mathematical 

formulation. In the Matlab prototype of the EMS, these values are set in the Matlab 

script that also initialized an OP execution. Examples of these parameters are the 

coefficients of the frequency constraint phi0 to phi3 (see section 3.1.3), the number 

of diesel generators and their minimum and maximum output power, the battery 

efficiency, or the minimum allowable system frequency. 

Both the “usrInput.xml” file and the scenario files are imported at the beginning of every OP 

execution. This leaves the possibility to modify every piece of data in these files between the 

runs. Examples are forecast updates or the <regularUpdate> parameters. 

The results are organized in four files that the EMS outputs after every OP execution. Three 

of the files are csv-files and contain the setpoints that are updated regularly. The battery power 

file “Pbat.csv” and the maximum PV power file “PpvMax.csv” are structured as follows: 
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First setpoint after 

current OP 

execution 

Setpoint 30 seconds 

after current OP 

execution 

… 

Last setpoint before 

next OP execution 

results are available 

… … … … 

First setpoint after 

last OP execution of 

current day 

Setpoint 30 seconds 

after last OP 

execution of current 

day 

… 
Last setpoint of 

current day 

Table 8: Schematic setpoint output format 

The rows contain all the setpoints between two OP executions separated by commas. Every 

row is separated by a line break. That means that the file contains setpoints for all remaining 

30 second periods of the day. For example, if the OP is solved every 5 minutes, there are 10 

columns and 288 rows after the 0th OP execution of the day (which takes place during the last 

5 minutes of the previous day). Every five minutes, a new table is generated with one row less 

than the previous table. In normal operation, it would be sufficient to only store the first row 

after which a new first row would be calculated. However, designed as shown in Table 8, if 

one OP fails, the setpoints calculated in the previous run (second row) can be used.  

For the number of diesels in the file “nDieselON.csv”, the table only has one column, as this 

setpoint is only updated once per OP execution period. In case that the OP execution period 

is 5 minutes, the file contains 288 values separated by line breaks after the 0th OP execution. 

This output data format is the one developed at CITCEA, as already implemented in the 

Matlab/GAMS prototype, with the difference that it is now implemented with csv-files instead 

of mat-files. 

The fourth output “metadata.xml” file is an xml-file and contains information about the OP 

process. The four fields that are currently implemented are  

• <SolveStatus>: Contains the CPLEX status of the optimization, e.g. “Optimal” when 

solved to optimality, or “AbortTimeLim” when the solution process was aborted due 

to a user defined time limit. 

• <ElapsedTime>: Measures the absolute time of the solving process 

• <AccumulatedCPUTime>: Adds up all the computation time for every core 

• <ObjectiveValue>: The objective value at the solution 
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7.3. Visual Studio settings 

For the correct functioning of the compilation with visual studio, some preparations need to be 

made. The first step when starting the project, is to create a new C++ console application. 

Then the project’s property pages need to be opened and in the configuration manager, the 

configuration needs to be set to “release” and the platform to x64. In general, the target 

platform needs to be the same for the precompiled CPLEX library and the code written by the 

user. Another important restriction is, that the libraries are available precompiled for different 

VS toolsets. In case of the CPLEX version used in this part of the project (Version 12.7), there 

are libraries available for VS versions 13 and 15. Since in this project, VS version 17 was used, 

the “Platform Toolset” field on the general property page needs to be set to Visual Studio 2015 

(v140). Then, the precompiled CPLEX libraries in the folder “x64_windows_vs2015” can be 

used by the linker.  

Under C/C++  General, the two include directories for “concert” and “cplex” in the CPLEX 

program folder need to be filled in. That lets VS find the CPLEX header files when writing 

#include <ilcplex/ilocplex.h> at the beginning of the main.cpp script. Under C/C++  

Preprocessor, “IL_STD” needs to be added to the preprocessor definitions.  

As a last step, the linker needs to be given the information which additional libraries are used 

and where they are located on the machine. For this purpose, the two full paths to the library 

directories of CPLEX and Concert need to be inserted in the “Additional Library Directories” 

field under Linker  General. In this case these are  

• …\CPLEX_Studio1271\concert\lib\x64_windows_vs2015\stat_mda 

• …\CPLEX_Studio1271\cplex\lib\x64_windows_vs2015\stat_mda  

Then, the three lib files “cplex1271.lib”, “concert.lib”, and “ilocplex.lib” need to be specified in 

the “Additional Dependencies” field under Linker  Input.  

When building CPLEX applications in general, it is crucial that there are library files available 

for the correct platform (e.g. 64bit Windows), and that a VS version is used, that is compatible 

with the toolset with which the libraries were built. If this is not given, the linker will not be able 

to link the CPLEX libraries to the rest of the program. When porting the application to another 

device, the Visual C++ Redistributable package for the corresponding VS toolset version (the 

one by which the application was build) must be installed and the correct CPLEX and Concert 

libraries need to be available and reachable by adding them to the system environment 

variable when installing CPLEX. 
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7.4. Program structure 

The way how the program EMS.exe is structured is due to how the development process will 

proceed. In the main function, the parameters are set, the model is created, the OP is solved 

and the output is written to files. The forecast loading and processing is separated from the 

main function. All the associated functions are defined in the file “LoadForecasts.cpp”. In the 

main function, the forecast data can be loaded by creating a forecast object and applying the 

“loadForcasts” function on it. Then the data is queried by means of the function “getForecasts”. 

The reason for this is that the forecasts loading process and the scenario generation will need 

to be revised, once real forecast data is available. This way, only the “LoadForecasts.cpp” file 

will need to be changed. The remaining source files contain the classes and functions for the 

csv- and xml-file processing. In the following, the source files are presented more in detail and 

the sequence of the EMS.exe is explained.  

7.4.1. LoadForecasts.cpp 

In the file “LoadForecasts.cpp”, the functions of the class “Forecast” are defined. This class 

has two private members and two public functions in the current implementation. The two 

members are the 2-dimensional vector matrices “Consumption” and “Generation”, that contain 

all the scenario data in columns.  

The first function in the class is “loadForecasts”. Its argument structure is shown in the 

following: 

void loadForecasts(const int scen, const int scale, const int timeIndex, const int 

tIntra); 

It fills the two members “Consumption” and “Generation” with scenario data stored as csv-files 

in the folder “Forecasts”. The function first loops through all the files called “consum”-scenario 

index-“.csv” (the highest considered scenario index is “scen”), reads all the values and stores 

them in columns. The exact process of reading csv-files is described in section 7.4.2. This 

process is repeated for the files named “irradiat”-scenario index-“.csv”. After that, all the values 

of the forecast data that lie in the past (as seen from the current OP execution) are deleted 

from the matrices. These values to delete are the “timeIndex” * “tIntra” values at the beginning 

of the vector. This step is crucial for the functioning of the EMS. The forecast data needs to 

contain values for all the considered scenarios, from the present (as seen from the current 

EMS execution) until the end of the day, and for every 30 seconds. In case that the forecasts 

are updated every 30 minutes, it is still necessary to erase data that lies in the past, in 5 out of 

6 EMS executions within these 30 minutes (in case of an OP execution period of 5 minutes). 

Only if the forecast update happens more frequently than the OP execution period, this step is 

not necessary anymore. As a last step, all negative values and zeros are deleted from 
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“Generation” and the complete vector is scaled with “scale” to better match the consumption 

data. The scaling of generation data only serves for research purposes and will not be part of 

a final implementation of the EMS.  

The other function queries the data in the two private members of “Forecast”. The function 

expects one of the two selector strings “Consumption” or “Generation”. Corresponding to the 

selector string, either the vector matrix “Generation” or “Consumption” is returned as output 

parameter. For other input arguments, the function throws and invalid_argument exception.  

7.4.2. Other external source files 

Two other source files and corresponding header files exist in the project that deal with the 

input and output data in csv- and xml-format. “CSVread.cpp” is a small file created to read the 

values separated by commas in the forecast input files. In the header file, a class “CSVrow” is 

defined that has the private member “m_data” with type std::vector<std::string>. The class has 

three public functions: 

• The operator [] is overloaded to return indexed elements in the class member 

“m_data”. This way, the read data from the csv-file can be queried from the private 

member.  

• The function “size()” returns the length of “m_data”. This function can be used in 

combination with the [] operator to return the whole vector.  

• “readNextRow” fills the vector “m_data” with the data of one row of the csv file. The 

values separated by commas are read and saved in the vector as strings. If this 

method is looped, a whole csv file can be read row by row.  

Furthermore, outside of the class “CSVrow”, the extraction operator >> is overloaded for 

“CSVrow” objects. Now, this operator can be used to extract data from input streams (files or 

other mediums) into a “CSVrow” object. The operator has the same effect as calling the 

function “readNextRow”, however the terminology is more logical to use with C++ streams.  

The other file included in the project is auxiliary software to parse xml files. “Pugixml” is one of 

the most frequently used xml-parsers. Its advantages, in this case, are the ease of use and its 

limitation on basic xml-file parsing operations. The library and more information can be 

downloaded from [17]. The library is just included in the project as cpp-file with the 

corresponding header files “pugiconfig.hpp” and “pugixml.hpp”. Then an exemplary numerical 

value “fMin” that is saved in the input file “usrInput.xml” under the tag path “EMSdata” -> 

“OPInputParameters” -> “fMin” can be extracted as double as shown below: 
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pugi::xml_document doc; 

doc.load_file("usrInput.xml"); 

const double fMin = 

doc.child("EMSdata").child("OPInputParameters").child("fMin").text().as_double(); 

7.4.3. Main function 

The main function of the EMS.exe application is structured into five parts: 

1. Allocation of EMS parameters with data from the file “usrInput.xml” 

2. Loading the forecast data 

3. Optimization model construction 

4. Solving the model 

5. Saving the results in output files 

In the first part, the file “usrInput.xml” is loaded by means of the xml parser “pugixml”, which is 

a widely used light-weight parser for basic operations with xml files [17]. First, an instance of 

the class “xml_document” is initialized which is then populated with the content of 

“usrInput.xml”. In the next step, the values are queried as integers or doubles and assigned to 

constants, that are then used later in the program, either as mathematical parameters, indices, 

scaling factors, or CPLEX option parameters.  

In the second part, the forecast data is loaded (scenario creation in future EMS version). First 

a forecast object is declared, then the function “loadForecasts” is applied on it to populate the 

object as described in section 7.4.1.  

All the remaining program parts utilize ILOG Concert Technology. This package contains a set 

of modelling objects available for C++ among other languages, that make it possible to embed 

CPLEX into a C++ application. The frame for the three last parts of the program is the 

declaration of an environment object “env” at the beginning and the destruction of it at the end 

of the program. The environment object contains all the other concert technology objects used 

within the program that are divided into modelling objects and CPLEX objects (see section 

3.4.2). In case of the EMS, the objects are 

• variable array of two, three, and four dimensions 

• constraints 

• an objective function 

• an IloCplex-object for the OP solve 

• other small objects like timer, expressions, iterators, etc. 
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All these objects are associated with the environment object. Calling the function “env.end()” 

at the end of the program deallocates all the space used by the Concert objects. Apart from 

the two lines where “env” is created and destroyed, the three last program parts are enclosed 

in a try-catch expression to deal with exceptions that are thrown, in particular “IloExceptions” 

that originate from Concert technology.  

First in the model construction step, the different variable containers are defined. All the 

variables in the mathematical model of the EMS are organized in 2- to 4-dimensional arrays. 

Since in Concert technology, only 1-dimensional “IloNumVarArrays” exist, the necessary 

arrays are defined as in the following: 

typedef IloArray<IloNumVarArray> NumVarMatrix; 
typedef IloArray<NumVarMatrix>   NumVar3Matrix; 
typedef IloArray<NumVar3Matrix>  NumVar4Matrix; 

In the next step, every single element in the arrays needs to be initialized. That means that 

arrays and sub-arrays are given a size and are connected to the environment object “env”; 

variables are given bounds, a type, and a connection to “env” as exemplary shown in the 

following: 

Xcar[i][j]  = IloNumVar(env, 0.0, 1.0, ILOBOOL); 

The first parameter is mandatory, because otherwise, only an empty pointer is created. The 

second and third parameters are the lower and upper bound on the variable which are negative 

infinity and positive infinity by default. The forth parameter is the variable type which is 

ILOFLOAT (Floating point number in Concert technology) by default.  

After having initialized every single element in the variable arrays, constraints are added to an 

“IloModel” object that is declared first, meaning to connect it to the environment object. All the 

variables created in the first step are only connected to the model through the constraints. The 

syntax for adding a constraint to the model is “model.add(IloExpression);”. As an example, in 

the following the creation of the set of SOC constraints is shown: 

for (IloInt i = 0; i < tEMS; i++) 
{ 
   for (IloInt j = 0; j < tIntra; j++) 
   { 

if (i == 0 && j == 0) 
 { 

   model.add(SOCbat[i][j] == SOCini - Pbat[i][j] / batCap);  
 } 
 else if (i > 0 && j == 0) 
 { 

   model.add(SOCbat[i][j] == SOCbat[i-1][tIntra-1] - Pbat[i][j] / batCap); 
 } 
 else 
 { 
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   model.add(SOCbat[i][j] == SOCbat[i][j-1] - Pbat[i][j] / batCap); 

 } 

   } 

} 

“tEMS”, “tIntra”, “SOCini”, and “batCap” are parameters imported from the input xml-file in the 

first part of the main function (see above), “SOCbat” and “Pbat” are 2-dimensional variable 

arrays.  

In the last step of the model formulation, the objective function is composed of the sums of 

battery power and PV power, and the parameters “scen” and “etaBat” from the input xml file. 

First the sums of all the elements in the variable arrays “PbatCar”, “PbatDesc”, and “Ppv” are 

created in a forward loop as IloNumExpressions “totalPpv”, “totalPbatCar”, and 

“totalPbatDesc”, then the objective function is added to the model as shown below: 

model.add(IloMaximize(env, totalPpv - scen * (1 - etaBat) * (totalPbatCar + 

totalPbatDesc))); 

The fourth part in the main function is to solve the model. For this purpose, an IloCplex object 

called “cplex” is declared providing the IloModel object as input parameter. In this format, the 

model can be solved and all kinds of aspects of the solution can be queried. Before solving 

the model, the input parameters are set as shown below for the CPLEX time limit: 

cplex.setParam(IloCplex::TiLim, timeLimit); 

The first input parameter to “setParam” is the name of the CPLEX parameter that is to be 

modified, the second provides the corresponding value. The value “timeLimit” is calculated 

from the input parameters to the EMS as follows: 

IloNum timeLimit = tIntra * 30 - tilimOffset; 

After that, as a last step before solving the model, the number of variables/columns and 

constraints/rows is printed on the console to check the correct composition of the model at 

every execution of the EMS.  

Then the CPLEX solver is called to solve the model with the command 

cplex.solve(); 

This part takes the main portion of the program execution time. The accumulated CPU time 

and the real computation time are measured with timers. During the execution, the solver 

outputs information about configurations, solve strategies, and events that happened, like 

number and type of applied cuts, best primal and dual continuous solutions, best integer 
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solution, gap between the two in percent, elapsed time of different steps in the solving process 

(e.g. root relaxation solution time), number of nodes in the search tree, and marks when a 

node was fathomed (integer, infeasible, cut-off) (see Figure 22). When the problem is solved, 

a summary of the solve process is given before the console window closes.  

As a last step, the (most important) results contained in the IloCplex object are extracted and 

written to text files by means of C++ output file streams. This C++ class allows to write to files 

in a very straight forward way. It makes use of the concept of Streams in C++ that lets the user 

write different types of data to all different kinds of storage media. First, the solve status, solve 

times, and objective value are written to a text file in the xml-format between the corresponding 

tags. Then the required setpoint data is written to csv-files by separating values in different 

columns by commas and rows by line breaks. The exact format is explained in section 7.2. 

Obviously, the exported data in the current implementation is only the minimum required data. 

It might be necessary to export more data at a later point, that is, to make modifications on this 

part of the program. As an example, how the cplex class of the Concert technology provides 

functions to extract data from the object, the syntax to extract the objective value of the solution 

is displayed in the following: 

cplex.getObjValue() 

At the end of the main function, the exceptions are caught (separated catch expression for 

IloExceptions and other exceptions). Then the environment object “env” and all other objects 

associated with it is deallocated by calling the end function. 

7.5. Test 

The developed EMS prototype is able to reproduce the desired results. The EMS yield cannot 

be compared directly to the results in chapter 6, because the generation scenarios used in the 

C++ prototype are pre-generated and only used as a space holder for a later scenario 

implementation. The behavior of the EMS is illustrated in Figure 26 (exemplary for Data 1 and 

an OP execution period of 10 minutes). Just as in the original prototype, the SOC of the battery 

decreases during the early morning hours to make space for preferable much PV power during 

the day that cannot be directly consumed. The number of diesel generators decreases as the 

PV power increases. In the morning, it can be decreased earlier due to the additional battery 

power. The curtailed PV power (red curve) is kept as high as possible. This shows, that the 

EMS was implemented correctly. 
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Figure 26: Behavior of the system controlled by the C++ EMS 

A problem that occurred during the tests seems to be due to an incompatibility between CPLEX 

and Matlab/Simulink when being run in parallel. In rare and unpredictable occasions, the EMS 

execution in combination with Matlab produces a segmentation fault in memory, causing the 

program to crash. In one case, this fault even resulted in a blue screen and a complete 

shutdown of the computer. The problem seems to be connected to a bug in CPLEX mentioned 

in [18], even though the described setup is not the same as in this project. It could not be 

determined exactly what causes the problem during the course of this thesis. This issue raises 

new questions about the solver choice. It may be necessary, to switch to another solver in the 

future if the problem persists. The findings about CBC in chapter 6 also suggest using CBC, 

at least for smaller power plants. 

Remark: The problem occurs in both applications containing CPLEX – C++ and JuMP, only in 

combination with Matlab.  



Pg. 84   Chapter 8 

 

8. Costs of the project 

One of the objectives of the project is, to study its economic feasibility. For this purpose, it was 

decided to compare the following three (main) cases: 

1. The power demand is met only by the diesel generator set. 

2. The hybrid power plant consists of a PV generator feeding into the grid when 

possible and a diesel generator set with all generators always running. 

3. The basic setup of this thesis: diesel generator set, PV generator, and a battery 

storage are coordinated by the EMS in order to optimize the system’s solar power 

utilization and battery losses.  

On the basis of these cases, a cost comparison is conducted over a project time frame of 10 

years. In this comparison, investment costs for different components as well as fixed and 

variable running costs of the cases are summed up. Assuming a discount rate of 5%, the costs 

are accumulated and actualized and can be compared. 

The dimensions chosen for the system components in this cost analysis are the same as in 

the previous parts: a battery storage with a capacity of 1120kWh and input/output power of 

2200kW and a diesel generator set of 9 generators with an output power between 400kW and 

1200kW each. The assumed demand for the first year is the integrated consumption profile 

multiplied by 365 days. In the following years, this sum increases by 3% per year. The diesel 

generation in the first year was estimated to be the mean value of the integrals of the three 

different simulations (Data1, Data3, Data5) for one case (Case 1, Case 2, or Case 3) multiplied 

by 365 days. The formulas are given in the following: 

 𝐸𝑑𝑒𝑚𝑎𝑛𝑑,𝑦𝑒𝑎𝑟1 = ∫ 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 ∗ 365 (13) 

 𝐸𝐷𝑖𝑒𝑠,𝑦𝑒𝑎𝑟1 =
∫ 𝑃𝐷𝑖𝑒𝑠1 + ∫ 𝑃𝐷𝑖𝑒𝑠3 + ∫ 𝑃𝐷𝑖𝑒𝑠5

3
∗ 365 (14) 

By means of these formulas, the energy sum of the first year is calculated. It must be noted 

that the generated diesel energy varies with the amount of PV power used by the system which 

in turn varies with the examined case. In the first case, the power generated by the diesel 

generator set is identical with the demand. Analogously, the energy generated by the generator 

set increases with the same offset to the demand as in the first year, since the PV generator 

does not produce more energy and the difference has to be balanced with diesel power. 

Obviously, this assumption is rather conservative, since the PV power is not fully used during 
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midday. Thus actually, the PV power could be increased a little over the following years if 

calculating in a less conservative style. 

In case of this comparison, the generators are assumed to be already installed at the beginning 

of the project, and no investment for the generator set is necessary. This also makes sense, 

as different cases are compared that all have the same number of generators, thus the 

investment costs would be cancelled out when subtracting the different cases (see Table 9). 

As maintenance costs, 5000€/machine and annum are stated for generators of this power 

class in [19]. Multiplied by the number of generators, these are the only running fixed costs in 

the first case. The variable costs are calculated by dividing the fuel price (0.64€/l in the first 

year, then increasing by 2.5% per annum [20] and [21]) by an energy content of 4kWh/l [22]. 

Then for every case, this price is multiplied by the energy generated by the generator set. 

In the second and third case, the PV investment costs are estimated to be 2M€/MWp installed 

PV power [23]. In the case of this project, 8MWp are installed, resulting in a total investment 

cost of 16M€ for the PV generator.  Additionally, 1.5% of the investment costs per year are 

necessary for its operation.  

In the third case, additionally to the PV generator, a battery storage and the EMS consisting of 

a workstation PC and the CPLEX license need to be purchased and operated. For the battery, 

an investment of 400€/kWh for the cells and 100€/kW for the converter is estimated [24], 

resulting in a total investment sum of 668k€. The fixed costs of the battery operation are 1.5% 

of the total initial investment, considering the price 8.5€/kWh per year [25]. Finally, the costs of 

the workstation (1000€ investment) and the CPLEX license (60000€/year) are added to 

complete the picture. For the CPLEX license, a four-core processor needing licensing for 100 

processor value units at a cost of 150€ per year and processor value unit is chosen as a basis 

for calculation [26]. 

 Accumulated actualized costs (€) Difference (€) 

Only Diesels 115,044,513.26 0 

Diesels + PV, no EMS 113,536,347.30 1,508,165.96 

Diesels + PV + Battery + EMS 110,950,829.12 2,585,518.17 

Table 9: Results of cost comparison 

In Table 9, the accumulated and actualized costs are displayed for the three cases over the 

project time frame of 10 years. The total costs rage between 111M€ and 115M€. Only adding 

a PV generator to the system decreases the costs by about 1.51M€. However, adding the 

EMS with a battery storage saves another 2.59M€ resulting in a saving of 4.10M€ in total 

compared to the first case with only Diesel generators. It is clearly visible that the EMS is able 

to significantly lower the costs of a hybrid power plant, even if a commercial solver is deployed.  
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Replacing the solver by an open source version would not have a large effect on the overall 

results, especially considering that it would very likely reduce the overall utility of the EMS 

(depending on the size of the OP). The costs of the license over ten years is 0.66M€. This 

acknowledges one of the conclusions of chapter 6 that it must be decided on a case by case 

basis which solver to choose. The larger the system and the harder it is to solve, the more 

feasible the deployment of a commercial solver becomes.  

The spreadsheets of the detailed cost analysis are attached to this thesis in the Appendix. 
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Conclusions 

For this thesis, a new EMS prototype on the basis of Julia/JuMP was developed in order to be 

able to run qualitative tests on the EMS behavior without a GAMS license. The tests focused 

on possibilities to reduce the computation time for cases, when the OP cannot be solved to 

optimality within the standard OP execution period. Furthermore, a first implementation in C++ 

based on the IBM Concert technology was created to serve as a “first draft” for further 

development. In the last chapter, a quick economic analysis based on an accumulated cost 

comparison was conducted to show the economic feasibility of the examined EMS. In the 

beginning of the thesis, the project foundations are presented, introducing the reader to the 

EMS project, relevant optimization theory, and deployed modelling software. 

By implementing the EMS OP in Julia/JuMP, the solver flexibility provided by GAMS could be 

maintained. At the same time, since it is a real programming language, developer freedom and 

simplicity of the overall system could be increased. The Matlab/Julia interface is significantly 

simplified compared to the original Matlab/GAMS interface. The raw structure of the original 

prototype was maintained. Furthermore, an EMS version for emulations with real converters 

was translated to Julia/JuMP, making it possible to run more accurate tests in the future without 

a GAMS license.  

The EMS tests conducted in this thesis resulted in the finding that the differences in EMS yield 

induced by randomly generated scenarios and other non-deterministic components in the 

simulations are generally larger than the differences resulting from different EMS setups. This 

means in return, that different measures to make the EMS solve the OP in time can be mainly 

evaluated based on their ability to do exactly that, as the EMS yield is never significantly 

decreased. The most effective measures were found to be setting a time limit in the solver, if 

necessary in combination with extending the OP execution period. The last OP executions of 

the day could be skipped (using an earlier result for the remaining setpoint updates of the day), 

in order to have more time to solve the first OP of the next day to optimality to use it as a warm 

start for the coming OP execution periods and to thereby accelerate the EMS even more.  

A very important finding of this thesis project is that, because of the large result variance, the 

OP is not required to be solved to optimality. Given that, the solving process can be 

abbreviated significantly as the most time-consuming part of the OP solution is to find the 

optimal solution after rather good feasible solutions have already been found. This finding 

brings the open source solver back into discussion, which can save a significant amount of 

license costs and is particularly interesting for OPs that are smaller than the example case 

“Cobija” of this thesis.  

The “first draft” of the EMS in C++ is able to reproduce the EMS behavior that was expected 
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from the experience with the research prototypes. Some space holders are included in the 

code, in order to facilitate the implementation of other EMS parts like forecast processing and 

scenario generation. In preparation of the development, the “core EMS” was defined in order 

to clearly distinguish the project parts that only serve as test infrastructure, and the parts that 

will be part of the product. Moreover, practical descriptions of the implementation process are 

given.  

The accumulated cost analysis conducted in the last chapter of this thesis acknowledges the 

economic feasibility of the EMS and justifies further project development. It could be shown 

that the project costs of a hybrid power plant could be significantly reduced by deploying an 

EMS despite the additional investment and fixed costs that the EMS and a battery storage 

system add to the cash flow. However, for a project of the size of the “Cobija” example, the 

solver license costs are comparably small and it is not advisable to use an open source solver. 

This situation may change for other cases.  

It has to be repeated here, that the findings are qualitative and are intended to give orientation 

when implementing the project. The exact layout and solver choice has to be determined on a 

case by case basis depending on the specific project properties. One important aspect of this 

case by case difference, is the number of necessary scenarios that heavily depends on the 

uncertainty (i.e. quality of available forecast data), the admissible energy and power reserves 

in the system, and the desired frequency tolerance. As this thesis demonstrates that more 

scenarios decrease the result quality and significantly increase the computational effort, 

preferably few scenarios should be deployed, while, however, using enough scenarios to make 

the system robust enough to face unpredicted events.  

This leads to an important future subproject. The development of the forecast processing and 

scenario generation algorithms should include another optimization problem that helps the 

project developers to determine the optimal number of scenarios for a specific EMS project.  

This is closely related to the natural follow up to this thesis project that targets the further 

development of the C++ EMS. This includes the improvement of existing code, the 

implementation of a sophisticated scenario/forecast functionality, and an improved output data 

processing part, depending on the enclosing infrastructure (e.g. transmission of setpoints via 

Modbus). A particularly important development step will be the transformation of the “1-day-

system” towards an EMS that runs over several days, mastering the transition from one day 

to the next. However, these follow up steps cannot replace a project dependent final 

development step to tailor the system for a specific power plant. 

Additionally, some further advices and ideas are presented in the following that result from this 

thesis project.  
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It was briefly shown in this thesis, that a LP has clear advantages over a MILP of the same 

size in terms of computational effort and thus, costs. Therefore, it could be re-evaluated 

whether it is possible to reformulate the problem as LP.  

Furthermore, it would be useful to develop another C++ program on the basis of the CBC C++ 

interface for cases where an open source solver is sufficient for the task. The program 

developed in chapter 7 of this thesis can serve as a model as the two codes will be very similar. 

However, due to the fact that the C++ interfaces are solver specific (different classes and 

objects), a translation is necessary.  

Crashes that occurred during the tests conducted in chapter 6 and 7, when deploying the 

combination of Matlab/Simulink and CPLEX, reveal a worrying problem of CPLEX. The error 

is due to a segmentation fault, randomly occurring when run in parallel with Matlab and 

therefore particularly hard to reproduce or track down. The fact that the CPLEX source code 

is not accessible, even aggravate the trouble shooting. As this bug makes it very hard to test 

the EMS in Matlab simulations, it should be taken into consideration to switch to a competing 

product like Gurobi or MOSEK as these solvers have a better reputation in this respect and 

especially Gurobi is generally known for solving bugs faster than IBM for CPLEX [18]. This 

would, however, mean to implement the problem in another C++ API. Moreover, the license 

has to be purchased. Nevertheless, as a cost comparison between commercial solvers is 

advisable anyway, this might not add extra work to the project. If CPLEX is found to be the 

most economic solver choice, it will be necessary to spend more time determining the bug’s 

origin, and to eliminate (or avoid) it. At least, if more simulation testing needs to be conducted. 

Finally, one suggestion for future improvement is to change the objective function of the EMS 

to optimize the operational costs (or at least fuel expenses) instead of PV power use and 

battery losses. As the final objective of every power plant owner is to optimize the profit of the 

power plant, this seems to be a more direct approach to manage the system components. It 

has to be taken into consideration that optimizing the fuel expenses will change the OP 

formulation and might increase the problem size as the relationship between diesel generator 

output power and fuel expenses needs to be modelled. This would mainly improve the battery 

schedule, causing the battery to discharge, when the demand is high and little PV power is 

available. 
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Appendix 

In this appendix, the spread sheets for the 

accumulated cost analysis in chapter 8 are attached. 

The spreadsheet on this page contains all the 

necessary assumptions and estimations for the 

calculations. Rows that are needed for all three 

cases are marked grey, rows for cases 2 and 3 are 

marked blue, and rows only used in case 3 are 

orange.  

The three spreadsheets on the next page contain 

the cost sums for the three cases presented in 

chapter 8. “Alternative A” corresponds to Case 1, 

“Alternative B” to Case 2, and “Alternative 3” to Case 

3. 
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