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Abstract 
 

The aim of the present study is to investigate the vertical distribution of the Nitrate Reduction 

Potential (NRP) at different depths on a natural (Evi site) and a re-stablished (Brynemade site) 

wetlands. The obtained NRP together with other environmental parameters provides a valuable 

data of the main driving factors affecting denitrification, the competitive process Dissimilatory 

Nitrate Reduction to Ammonium (DNRA) and the performance of a re-stablished wetland.  

 

Intact soil cores (0-3 m) were collected and were divided in 10 cm slices for the determination of 

Organic Matter (OM) through Loss of Ignition (LOI) as well as Dissolved Organic Carbon (DOC) and 

Nitrate Reduction Potential (NRP) spiking nitrate in batch tests. The nitrate reduction was fitted as a 

pseudo-first order rate constant (k) from where NRPs were obtained. 

 

Nitrate reduction took place in a very narrow superficial zone showing a dropping natural 

logarithmic trend along depth. The main driving factor of denitrification, besides depth, was OM. 

Although, DOC and LOI could not express by themselves and absolute correlation with NRP, high 

amounts of DOC ensured enough quantity and quality of labile organic matter for nitrate reduction. 

On the other hand, high concentration of recalcitrant LOI but a scarce abundance of DOC failed to 

drive nitrate reduction. DNRA showed to be important only in very superficial samples with high 

contents of OM. Lastly, the high nitrate reduction performance of the re-stablished wetland 

confirms that wetlands can be restored satisfactorily. 

 

Introduction 
 

Wetlands are examples of habitats that can be used directly to decrease nutrient loading of 

surface waters and to improve its quality. Nitrate Reduction (NR) in a riparian area is 

commonly attributed to denitrification, immobilization and plant uptake. [1, 2] 
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Specifically, denitrification is a biological process based on the biochemical reduction of 

nitrate and nitrite in groundwater thanks to the presence of anaerobe facultative bacteria in 

the site which can be autotrophic (if sulphur [3] or hydrogen [4] are present) or 

heterotrophic. In the latter case, electrons needed for nitrate reduction are originated from 

the oxidation of organic matter that also acts as a source of cellular carbon (heterotrophism). 

Illustrative, a stoichiometric reaction of a complete heterotrophic denitrification to nitrogen 

gas is presented in Equation 1 [5]. 
 

5CH2O + 4NO3
- → 2N2 + 4HCO3

- + 3H2O + CO2 Eq. 1 

 

Riparian soils are rich in organic carbon substrate in top layers (Horizon O, e.g. Peat layer), 

that leaches dissolved Organic Matter (OM) which provides a carbon source to the 

heterotrophic denitrification pathway. In this way the age of the OM and the constant input 

of fresh OM from decayed vegetation is a key point for the process performance. The aging 

of (OM) has an important influence on the denitrification through soil depth because the 

disappearance of labile fraction against horizons and time, limits the labile leachate that 

reaches deeper horizons. [6, 7] 

 

In addition, microorganisms are strongly influenced by environmental conditions: dissolved 

oxygen, mineralizable carbon, pH, nutrients (e.g. phosphorus) [8, 9], water table elevation 

[10, 11], temperature and other seasonal conditions, [12]. All these conditions are critical for 

the denitrification process. Moreover, environmental conditions in Northern European 

countries where low temperatures (around 10 ºC) are common in groundwater might have a 

negative impact on denitrification performance since it is a temperature dependent process  

[13, 14].  

 

Reported nitrate reduction rates ranged from 0.004 to 26.5 mg nitrate·l
-1

·day
-1

  [15] and first 

order constants were in the range 3·10
-5

 to 1.4 day
-1

 [16] for different types of vegetal-based 

materials and under different conditions. 

 

Due to high environment heterogeneity in riparian soils, past studies of spatial distribution 

of the denitrification potential in these systems showed high variations in width and depth, 

[17-21]. In addition to previously exposed factors in riparian zones, variability can be caused 

by the great diversity of minerals and organic materials that can be found in different 

stratigraphic positions, due to sediment transport and settling mechanisms. These 

mechanisms are affected by frequency and duration of floods, flow patterns, stream velocity 

and distance from the main channel and eventually sediments could be flushed at one place 

and filled at another. [22] 

 

Dissimilatory Nitrate Reduction to Ammonium (DNRA) could also be present. DNRA is a 

respiratory or fermentative pathway where nitrate is reduced step by step to ammonium 

competing with denitrification for the nitrate in groundwater [23] and in riparian zones [24], 

Equation 2.  
 

2CH2O + NO3
-+ H2O → NH4

+ + 2HCO3
- Eq. 2 

 

Ammonium is retained in the soil until nitrification, plant uptake or anaerobic ammonium 

oxidation process occurs (Anammox). DNRA are less understood than denitrification 

although it can be a significant or even a dominant process in some ecosystems, [25]. 

Conditions favouring DNRA may include high temperature [26] and high C/N ratio, [27]. It 
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is believed, that heterotrophic denitrification supplies more free energy than DNRA, but 

under nitrate limiting conditions or high OM concentrations DNRA could be favoured 

because more electrons can be transferred per mole of nitrate, [28]. Notice that in both 

pathways nitrite is an intermediate. 

 

In this work a lab-based methodology for the measurement of the Nitrate Reduction 

Potentials (NRP) on a natural and re-stablished wetlands at different depths is performed. 

The obtained NRP together with other environmental parameters provides a valuable data of 

the main factors affecting denitrification and the competitive process DNRA. It will validate 

the feasibility to restore wetlands with a working remediation role and assist the design of 

future re-stablished wetlands taking into account the key parameters affecting the 

denitrification performance.  

 

 

Materials and methods  

 
Description of the sites  

 

Two Danish wetland field sites with an extremely similar geology and climate were selected 

for the present study. The Brynemade site (Odense river basin in Odense Island) has been 

chosen as a model of a well re-established wetland and the Evi site (Holtum river basin in 

Jutland, Western Denmark) as a model natural wetland-river system.  

 

The two sites present a very similar geology, both are glacial flood plains composed by a 

first layer of freshwater deposits such as peat, organic silt, clay and sand followed by a 

deeper layer of sand and gravel deposited by glacial streams from the Weichsel glacial 

period. Sites were previously characterized in terms of geology by means of drilling and 

borehole logging. Several monitoring campaigns were performed after the sampling of the 

cores in order to compose their respective hydrogeological models and to acquire 

information about the groundwater chemistry. [29-31] 

 

Brynemade wetland at the Odense river Basin (Denmark) (55º13’12’’N, 10º17’35’’E; 

WGS84) was restored in 2003 and was used to document seasonal changes in flow 

dynamics and nitrate/pesticide degradation performance in a re-established wetland-river 

system. The restoration included re-raising the riverbed and re-meandering the river to the 

position it had prior to the 1958 channelization. The site is bordered by a Christmas tree 

plantation and crop land in the northern part. 

 

The seasonal flow and transport of water and nitrates in this wetland was extensively 

modelled using hydrogeological characterization with wells, slug and infiltration tests, 

geophysical image of the subsurface using multi electrode profiling and measurements of the 

discharge to the river by seepage -meter and river bed temperature studies, [29]. From this 

modelling it was found that in non-flooding periods groundwater flow was horizontal from 

wetland to river. During flooding periods (75% of the year) flow was upward through the 

peat layer. It was estimated that between 25 and 37% of the total groundwater was 

discharged through the peat. The main climate parameters were an annual mean temperature 

of 8.9ºC and an annual accumulated precipitation of 733 mm (Years: 2001 to 2010, grid 

20x20 km for temperature and 10x10 km for precipitation), [32]. 
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Evi site is a natural wetland located close to Lake Ejstrup and the city of Ejstrupholm, in 

Jutland, (55º59’28’’N, 9º19’43’’E; WGS84). The catchment area is at the border of the 

maximum extension of the Weichselian glaciers corresponding to the last glacial advance. 

Unlike the Brynemade site, the Evi site is never flooded. Groundwater flow is strongly 

dependent on precipitations and no reverse flow from streambed to aquifer was observed, 

[30, 31]. The main climate parameters were an annual mean temperature of 8.4ºC and an 

annual accumulated precipitation of 860 mm (Years: 2001 to 2010, grid 20x20 km for 

temperature and 10x10 km for precipitation), [32]. 

 

Sampling of soil cores and characterization 

 

Two intact soil cores from Brynemade (B C.1 and B C.2, up to 3 m) and Evi site (E C.1 up 

to 3 m and E C.2 up to 2 m) were collected in May 2012 and May 2013, respectively. The 

soil cores were divided in slices of 10 cm in the laboratory and these subsamples were 

handled under anaerobic (nitrogen glove box) conditions for determination of NRP.  

 

Moisture (M) was determined gravimetrically as the loss of mass after drying at 105ºC 

overnight according to the method ISO 11465:1993 values were expressed in wet basis. 

Loss of Ignition (LOI) was calculated as the fraction of dry matter that was removed after 16 

hours at 400 ºC employing the standard method, [33]. 

  

Dissolved Organic Carbon (DOC) was determined at 1 hour batch experimental time and at 

the final of the test, the analyses were performed using a TOC analyzer (Multi N/C 3100) 

after being filtered through 0.2µm nylon filter, acidified with concentrated sulfuric acid and 

purged with synthetic air. These DOC values were used to estimate the initial concentration 

of DOC that could take part in nitrate reduction. 

 

NRP and DNRA of the soil cores 

 

Batch tests were used to study the kinetics of NRP in subsamples. 10 g of soil from each 

subsample was mixed with deionised water (100 ml) and placed in 115 mL vials (97 mm in 

height, 48 mm in diameter). Vials were sealed with butyl rubber septums. The culture was 

enriched up to 25 mg·l
-1

 of nitrate supplied by sodium nitrate stock solution. All procedure 

was performed in a globe box in a nitrogen atmosphere. Tests were incubated at 10ºC in a 

non-stirred system until nitrate depletion or up to 42 days. During incubation, water samples 

were withdrawn periodically through the septum and inside the globe box to analyse 

inorganic nitrogen species (nitrate, nitrite and ammonium).  

 

Concentration of nitrogen species in batches were determined by ion chromatography 

(Dionex ICS-2100). In particular, nitrate and nitrite were analysed by using the column Ion 

pack AS19 4x250mm (quantification limit for both analytes of 1 mg·l
-1

) and ammonium 

with the Ion pack CS16 4x250mm column (quantification limit of 0.2 mg·l
-1

). Concentration 

of DOC was determined by high temperature catalytic combustion – CO2 NDIR-Detector. 

(Multi N/C 3100) (quantification limit of 0.2 mg·l
-1

). 
 

First-order nitrate reduction rate constants (k) were determined by fitting the concentration 

results to Equation 3. Although the batches were analysed up to one month only the first 

days were considered in order to avoid side effects such as changes or contamination in 
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microbial populations. Quantification limit of k=0.01 d
-1

 was considered by using this 

method. 

 
 

��	[�]� = ��	[�]		 − 	� ·  Eq. 3 
 

Where:  

[C]t : Concentration of nitrate at time t (mg·l-1) 

[C]0 : Concentration of nitrate at time 0 (mg·l-1) 

k: nitrate reduction rate constant (d-1) 

t: reaction time (d) 

 

The generated data of k and characterization values have been treated by XLSTAT 

2015.1.01 Addinsoft
TM

 in order to perform Pearson Matrices. 

 

Ammonium and nitrite were analysed in some depths in order to assess DNRA importance. 

Both, denitrification and DNRA have a first parallel step where nitrate is reduced to nitrite, 

but the important difference to determine DNRA is if finally nitrogen is present as 

ammonium or as gaseous nitrogen, Equation 1 and 2. 
 

 

Results and Discussion 
 

Characterization of cores 

 

Brynemade site 

 

At Brynemade site, based on the measurements of multi electrode profiling [29], the wetland 

hydrogeology could be characterized by a three-layer system, i.e., an upper 1-2 m thick peat 

layer followed by an approximately 8-18 m thick heterogeneous sand aquifer, and a lower 

more silty/clayey layer of an undetermined thickness. This conceptual model has been 

confirmed by the following core characterization. 

 

The LOI content of the cores showed a top (0-100 cm) rich peat layer, with values close to 

90% in B C.1 and 70% in B C.2., Figure 1. The deeper layers in B C.1 and B C.2 were 

inorganic, whereas in B C.2, the top peat was succeeded by a second layer (100-140 cm) of 

increased LOI content, averaging 13.8% (n=4). 

 

Initial DOC, Figure 1, from lixiviates of B C.1 and B C.2 at 1 hour of running experiment 

presented high values in the upper part (0-100 cm) averaging 43.2 and 23.1 mg·l
-1 

(n=10, 

each core) respectively following a decreasing in a saw-tooth trend. 

 

Final DOC from lixiviates (results not shown) were higher than initial ones for upper layers 

and were lower for deeper layers in B C.1, pointing to the peat as an slow releasing source of 

DOC obstructing stoichiometric study of denitrification. Probably, an excess of DOC was 

present in upper layers and denitrification was not limited by the substrate, completing all 

the reduction of the spiked nitrate. In the case of B C.2, the DOC concentration did not 

change during the experiment in any of the depths.  
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Moisture showed similar behaviour with a very humid peat layer (70-80%) and deeper 

layers ranging between 10-20%, Figure 1. In this case there was a more progressive 

transition than was the case of LOI which could be due to capillary effects. 

 

Evi site 

 

The LOI content of the cores from the Evi site (Figure 2) was very high. E C.1 had a 

relatively low concentration in the top layer (first 10 cm) with 17.1% followed by high 

organic content layer from 40 to 160 cm in depth averaging 76.9% (n=13) then a saw-tooth 

trend to extinction was observed. In E C.2 transitions between organic layers and mineral 

layers were very marked with a very rich top layer 0-30 cm averaging 73.7% (n=3) and 

other layer at 70-80 cm with 25.1% (n=1).  

 

Interestingly, initial DOC concentrations in both cores were very low in contrast to its LOI 

content, Figure 2. In E C.1 lixiviates were constant without a trend to extinction with depth, 

averaging 14.7 mg·l
-1

 in all samples (n=29). Contrarily, E C.2 averaged very low 

concentrations. A sharp DOC decrease with depth was observed, from the upper 20 cm with 

a 18.3 mg·l
-1

 to a base level of 3 mg·l
-1

. These values were appreciably lower than in the 

Brynemade site. No important DOC evolution was observed at the end of the experiment 

matching with the poor NRP observed.  

 

Moisture values, such as those observed in Brynemade, were in accordance to LOI values, 

but in Evi the moisture was much lower than in Brynemade with an organic layer (more than 

10%) and deeper layers less than 10% moisture, Figure 2. As in Brynemade, the different 

materials suppose different moisture that could be linked to field capacity as deep levels 

were saturated with water. 
 

Nitrate reduction potential results 

 

The nitrate concentration data in NRP experiments were fitted to Equation 3 model. 

Examples of the fitting are shown in Figure 3. As it can be observed, nitrate reduction was 

explained as a pseudo first-order constant in the first days which is in agreement with the 

literature, [34]. Finally the lack of proper DOC for the nitrate reduction or the kinetic 

quantification limit of the technique restricted the application of the first-order model. 

Despite the low incubation temperature (10 ºC) used in order to simulate field conditions, 

high NRP were observed. 

At Brynemade site, high NRPs were found in the upper part of the cores <30 cm (Figure 1) 

that also showed high concentrations of LOI and DOC <70 cm. In this zone high first-order 

rate constants were achieved, reaching 1.43 d
-1

 B C.1 and 1.49 d
-1

 B C.2 in the top (0-10 

cm), then kinetics decreased exponentially with depth. Into these first 30 cm of soil NRP 

averaged 1.05 d
-1

 (n=3) B C.1 and 0.70 (n=3) d
-1

 B C.2. The high NRPs and rich OM zone 

was succeeded by a lower NRP and OM zone, nitrate reduction was undetectable, 

considered as 0.01 d
-1

, in many samples under 70 cm depth and in most samples under 130 

cm depth giving an overall mean of 0.14 d
-1

 (n=31) 0 to 310 cm B C.1 and 0.14 d
-1

 (n=31) 0 

to 320 cm B C.2. A remarkably exception in B C.2 at 130-140 cm depth with 0.63 d
-1

 was 

found. Samples from below 315 cm would probably also be below the detection limit of 

0.01 d
-1

. In addition, DOC was probably recalcitrant compared to the top layers because rate 

constants were negligible. The origin of this recalcitrant DOC in the cores was unlikely to 
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come from the sand and possible came from upper layers where the labile OM for nitrate 

reduction has been consumed. 

 

The Evi site showed a poor nitrate reduction potential in both cores in spite of high LOI 

content, even in the top zone of the soil (0-10 cm) being 0.11 d
-1

 E C.1 and 0.18 d
-1 

E C.2, 

respectively. The averages for the first 30 cm were: 0.09 d
-1

 (n=3) in E C.1 and 0.11 (n=3) d
-

1
 in E C.2. Then NRP followed a quickly trend to extinction also in E C.1 which presented a 

very high LOI content from 30 to 170 cm. Global means were 0.04 d
-1

 (n=29) 0 to 300 cm in 

E C.1 and 0.03 d
-1

 (n=20) 0 to 200 cm in E C.2, Figure 2. 
 

 

Link of NRP to environmental parameters 

 

Cores from the same sites had a similar behaviour in NRP and had similar environmental 

parameters. Statistical analysis was performed merging the data from both cores of each site 

in order to unveil relevant correlations between the main parameters involved in the NRP.  

 

The Pearson Matrix (PM) Table 1 (Brynemade) and 2 (Evi) produces the correlation 

coefficients between all the couples of variables. This matrix has been extended by adding 

the natural logarithm of the measured variables to test linear, exponential and potential 

fitting models. For all these correlation studies, significance levels of 5% and 1% were 

calculated. 

 

From Table 1, all correlations in Brynemade exceeded 1% of significance level and showed 

a strong correlation between parameters. The most important correlations were the 

anticorrelations of soil depth (z) vs: ln k, ln LOI, ln DOC and M demonstrating a natural 

logarithmic extinction through soil depth. It was also observed that k, LOI, DOC and M 

were positive and strongly correlated. 

 

The most important correlation found in Evi’s PM, Table 2, were k vs ln z. As in Brynemade 

all the measured parameters decrease with z. In parallel, only DOC-LOI, k-DOC, DOC-LOI 

and LOI-M correlations were significant. 
 

From statistical analysis, it was observed that the most relevant driving factors for k in 

Brynemade were ln z and OM and in Evi ln z. 

 

The link between NRP and OM (LOI and DOC) was only significant in the Brynemade site. 

In the Evi site NRP was lower than in Brynemade with high amounts of LOI but low DOC. 

This means that in this case the quality of the OM is more important than the quantity as 

stated in previous cases. [35-38] 

 

In order to compare the trends of k values with z, Table 3 shows the fitting of k vs ln z that 

was the best empirical correlation that fitted the trend of k measurements with z. As it can be 

seen, Brynemade showed much higher initial values of k (intercept is k value for 1 cm) with 

higher decreasing trend compared to Evi values. 
 

 

DNRA Evaluation 
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DNRA evaluation was performed from the measurement of the increment of ammonium that 

is shown in Table 4.  
 

As is seen in Table 4, B C.1 and B C.2 between 0-10 cm depth accumulated an important 

amount of ammonium. Nitrite in the same samples was negligible, with maximum 

increasing values of 1 mg nitrite·l
-1

 in core B C.2 at 25 cm and without increase for cores B 

C.1, E C.1 and E C.2.  

 

Taking into account that the nitrogen contained in an ammonium concentration of 7.2 mg·l
-1

 

is equal to 25 mg·l
-1

 of nitrate (spiked initial concentration), the following expression could 

be used to evaluate the fraction of DNRA, Equation 4. Table 5 shows the results of DNRA 

fraction. 
  

����� = −3,472
∆[���

�]

∆�
 Eq. 4 

 

Where: 

�����, DNRA fraction 

∆[NH4
+] is the increment with time of ammonium concentration (mg·l-1) 

∆C is the variation in time of nitrate (mg·l-1) measured in the same points. 

 

 

 

As is seen in Table 5 the fraction of DNRA was only significant in the first 10 cm of 

Brynemade cores (between 43 and 50% in B C.2 and B C.1, respectively). Contrarily, at the 

Evi site, the DNRA activity was only important between 20 and 30 cm at E C.1, other 

samples always showed a DNRA fraction below 1%. These results could be explained by 

the high superficial concentration of organic matter that favours DNRA pathway. 
 

 

Conclusions 
 

Nitrate reduction took place in a very narrow superficial zone showing a natural logarithmic 

decrease to extinction, hence being undetectable in the deepest samples. In addition, it is 

worth mentioning that nitrate reduction followed a pseudo first-order constant. 

 

DOC and LOI couldnot express by themselves an absolute correlation with NRP, but high 

amounts of DOC during the experiments ensured enough quantity of labile organic matter 

for nitrate reduction. On the other hand, low concentrations of DOC even in a rich LOI soil 

presented low NRPs, strengthening the idea that labile OM (quality) is more important that 

quantity. 

 

DNRA was only important in the very superficial samples of Brynemade, where a high 

content of labile OM could produce favourable conditions for DNRA. 

 

Wetlands can be restored satisfactorily concerning nitrate reduction performance. 

Comparing a natural wetland (Evi) to the re-stablished (Brynemade) with a similar geology 

and climate and taking into consideration the high NRPs observed in the latter, it is clear that 

other factors besides the re-stablishing condition play a more important role. 
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Figure 1. Depth-dependence of soil organic matter determined 

as DOC and LOI, soil moisture (M) and first-order nitrate 

reduction rate constants (k) at the Brynemade cores.  
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Figure 2. Depth-dependence of soil organic matter determined as 

DOC, LOI, soil moisture (M) and first-order nitrate reduction rate 

constants (k) at Evi Cores.  
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Figure 3. Kinetics fittings of first-order kinetics for 0-10 cm 

depth of Brynemade C.1 and C.2, Evi C1 and C.2. 
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Table 1. Matrix of Pearson correlation coefficients of  Brynemade site Core 1 and 2 processed jointly, a 

statistical significance at the level of 5% is indicated in* and at the level of 1% in**. n = 60. 

 
Variables z k LOI DOC M ln z Ln k ln LOI ln DOC Ln M 

z 1,00                        

k -0,55** 1,00   

LOI -0,78** 0,57** 1,00   

DOC -0,70** 0,71** 0,71** 1,00   

M -0,86** 0,55** 0,88** 0,68** 1,00 

ln z -0,80** -0,83** -0,82** -0,81** 1,00 

ln k -0,80** 0,81** 0,67** 0,80** -0,87** 1,00 

ln LOI -0,87** 0,54** 0,71** 0,94** -0,84** 0,79** 1,00 

ln DOC -0,75** 0,60** 0,71** 0,73** -0,79** 0,65** 0,74** 1,00 

ln M -0,88** 0,51** 0,81** 0,69**   -0,80** 0,76** 0,92** 0,75** 1,00 
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Table 2. Matrix of Pearson correlation coefficients of Evi site Core 1 and 2 processed jointly, a statistical 

significance at the level of 5% is indicated in* and at the level of 1% in**. n = 49. 

 

Variables z k LOI DOC M lnz Ln k lnLOI lnDOC Ln M 

z 1,00                   

k -0,53** 1,00 

LOI -0,28 0,24 1,00 

DOC -0,26 0,31* 0,60** 1,00 

      M 0,10 -0,15 0,53** 0,60** 1,00 

     ln z -0,72** -0,26 -0,31* 0,14 1,00 

ln k -0,50** 0,23 0,25 -0,21 -0,66** 1,00 

ln LOI -0,49** 0,36* 0,70** 0,62** -0,43** 0,35* 1,00 

ln DOC -0,31* 0,33* 0,64** 

 

0,67** -0,33* 0,27 0,79** 1,00 

 ln M -0,10 -0,02 0,62** 0,65**   -0,02 -0,09 0,71** 0,75** 1,00 
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Table 3. Nitrate reduction potential first-order kinetic constants (k) along depth 

fitted in natural logarithmic regressions. B (Brynemade), E (Evi), C (Core) and (n). z 

in cm. 

  

  

 

 

 

 

 

Brynemade wetland 

 

Evi wetland 

 

k B.C1(d-1) k B.C2(d-1) k E.C1(d-1) k E.C2(d-1) 

-0.30·ln(z) + 1.570 

R2 = 0.71 

(31) 

-0.23·ln(z) + 1.241 

R2 = 0.58 

(29) 

-0.02·ln(z) + 0.174 

R2 = 0.48 

(29) 

-0.03·ln(z) + 0.198 

R2 = 0.69 

(20) 
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Table 4.Measurements of ammonium (mg·l-1) at the beginning (1h) and 

at the end of nitrate reduction experiments. 

 

B C1 B C2 E C1 E C2 

Depth Initial Final Initial Final Initial Final Initial Final 

0-10 1.8 6.0 3.0 6.2 0.6 0.9 0.5 0.8 

20-30 0.6 1.0 0.6 1.0 0.3 0.7 < 0.2 < 0.2 

40-50 0.4 0.2 0.2 0.2 0.3 0.4 < 0.2 < 0.2 

180-190 <0.2 <0.2 < 0.2 <0.2 n.a. n.a. n.a. n.a. 
         

n.a. not available 

 

Page 18 of 19

URL: http:/mc.manuscriptcentral.com/tent

Environmental Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Table 5. Measurement of fDNRA in reduction 

experiments. 

 

Depth B C.1 B C.2 E C.1 E C.2 

0-10 0.50 0.43 0.04 0.04 

20-30 0.05 0.06 0.12 <0.01 

40-50 <0.01 <0.01 0.01 <0.01 

180-190 n.a.* <0.01 n.a. n.a. 
     

*n.a.: not available 
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