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Summary. This paper presents the results of the first phase of work on developing 
computational model of inflated modular shells. This type of bending active structures is 
composed of relatively small, modular inflatable cushions combined with cables and cross-
braces. The structure is self-erecting. Introduction of tension to the cable gives it shape and 
load carrying capacity. The initial experiments confirmed their technological feasibility. At 
the present stage the relationship between tensile force in the cable, and the initial 
deformation of the structure were analyzed. Modular shell was approximated by an elastic 
rod. The impact of the internal structure of the coating on the computational model is the 
subject of further research. 

1 INTRODUCTION 
The proposal to use relatively small, modular inflatable cushions for construction of covers 

of different span has been presented previously1,3. The modular inflated shells are composed 
of relatively small inflated cushions combined with cables and cross-braces. 

This solution allows construction of single or double curved shells, which stiffness can be 
adjusted by changing their structural height e.g. by changing the thickness of the cushions or 
length of cross-braces, and also by changing the pre-tension force in the cables. Thickness 
variation along the entire span of the structure enables not only changing of the stiffness, but 
also adjustment of the initial curvature, which may also be variable. This allows forming large 
and complex structures tailored to meet specific and even rapidly changing needs. 

The object can be open at the sides and the openings in its surface are allowed. The 
structure is not sensitive on local damage of elements – even if many cushions are out of 
service whole the structure can be safely used. Due to internal fit out, the structure can be 
easily maintained. This type of structures can be used for many military and civil applications, 
where a fast assembled and adaptable solution is required. 

The initial experiments confirmed the technological feasibility of this type of structures2. 
However, some technological problems have been revealed that needed to be analyzed with 
use of the large scale physical models4. 

Currently, an attempt was made to create a calculation model to describe them5. This paper 
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presents the results of the first phase of work, covering structure of a single curvature. It was 
assumed a beam-like structure between a roller support and a simple support. The end at the 
roller support is attached to a cable, which is pulled horizontally through a hole in the simple 
support. After the structure is deformed to its final position, the pulling cable is clamped at the 
simple support end. Then the equations describing the problem are derived, based on the 
theory of buckling with large deformations. At this stage the problem of modelling cables 
sliding through the nodes connecting them with cross braces has not been yet analyzed. This 
will be the subject of the next phase of work. 

2. FORMULATION OF THE PROBLEM 
Considered structure consists of the three groups of elements: modular inflated cushions, 

tension cables and cross-braces, Figure 1, left. The latter are optional and are used to increase 
the structural height. This can also be done by increasing the thickness of the cushions, in the 
whole structure or part thereof (variable rigidity of the structure). The structure may be shaped 
as an arc or a single or double curved shell. 

           
Figure 1: Typical configuration of the modular inflated shell (left); process of self-erection (right)

The flat structure is assembled at ground level as a near mechanism. It is stabilized and 
finally shaped in the self-erection process. The essence of the process is the introduction into 
the structure forces that cause its large deformation (uplift) and give the rigidity. The forces 
are introduced by pulling the bottom tension cable, thus reducing the distance between the 
supports. The system becomes bending-active. Figure 1, right, shows a general idea of this 
process. 

The formulation of the calculation model of bending-active inflated shell is a complex 
problem. To solve it, a simpler problem has been conceived, in which the beam-like structure 
is substituted for modular inflated shell. This allows figuring out the problem from an 
analytical view point, without being concerned about the details of the construction of the real 
structure. 

We consider a beam-like structure between a roller support A and a simple support B. The 
end at the roller support is attached to a cable, which is pulled horizontally through a hole 
drilled in the simple support, and, after the beam-like structure has deformed to a maximum 
height h, the pulling cable is clamped at the simple support end. 

A free body diagram of the system can be drawn, cutting out the cable, and assuming 
weight is not a significant force. It shows applied horizontal tension load T at the location of 
the roller support pointing toward the simple support, and the equal and opposite reaction RH

load at the simple support. Vertical reactions at the two supports are neglected, as they have to 
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be equal and opposite, but must be zero because there is no external agent capable of 
counteracting the resulting couple moment. Effectively, the free body diagram is the same as 
that of the Euler column, Figure 2. 

Figure 2: A free body diagram of the considered system 

If we make a cut at some coordinate x along the length from the simple support B to the 
roller support B and take a free-body diagram of one half of the body, the moment 
equilibrium equation is: 

( ) 0M x Ty+ = (1) 

Here, M(x) is the internal moment, T is the tension in the cable, and y is the amount of 
deflection at position x. From this point on, further analysis will be carried out in two steps: 
first, assuming that the deflections are “small enough”, then for large deflections. 

3. INITIAL APPROACH – SMALL DEFLECTION SOLUTION 
Assuming a linearly elastic material, the equation (1) for the bending structure can be 

written as: 
0EI Tyκ + = (2) 

Here, according to Euler-Bernoulli law, κ is the curvature of the elastic curve of the 
structure: 
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If θ is introduced as the first derivative of y: /dy dxθ = , and is then assumed to be an 
explicit function of y, then: 
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When deflections are small, the denominator of the above expression approaches a value of 
1 and κ is approximated by the second derivative of y.

d d dy d

dx dy dx dy

θ θ θκ θ= = = (5) 

Substituting equation (5) into equation (2) and separating variables yields: 
2

1d ydyθ θ λ= − (6) 

Here, λ1 is defined as: 

1
T

EI
λ = (7) 

It should be noted that from this point forward that λ1 does not have a strong relationship 
with T as implied by equation (7), but is used simply as a mechanism to derive a compatible 
shape. The value of T is determined through the following methodology. 

From the equations (2) and (5) it follows that for “small enough” deflections, moment M is 
related to the second derivative of y times EI. Given the form of the differential equation, the 
boundary conditions and the desired result for maximum deflection, a guess for the form of y
is:

( ) sin x
y x h

π=
ℓ

(8) 

Where, l is the current distance between the supports, and is considered an unknown in the 
problem. The beam-like structure has a net compression transmitted through it; however, at 
this stage we will ignore the deformation associated with this compression. Thus, for a given 
value of h, the variable l can be solved using the equation: 

2

0

1 dy
L dx

dx
 = +  
 ∫

ℓ

(9) 

Here, L is the length of the beam-like structure when undeformed.  
The strain energy of the beam-like structure is formulated by using equations (1) and (8), 

and on the base of the Clapeyron theorem can be shown to be:
2 2

4
T h

U
EI

= ℓ (10) 

Applying the Castigliano theorem, one now takes the derivative of the strain energy with 
respect to T to yield the movement of the roller support toward the simple support, which 
equals L – l.  Solving for T yields: 

2

2 1EI L
T

h
 = − 
 ℓ

(11) 

Now we can return to equation (6) in order to analyze on this basis the elastic curve of the 
structure. Integrating equation (6) yields: 
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2 2 2
1 1

1 1
2 2

y Cθ λ= − +   (12) 

Here, C1 is an arbitrary constant. Assuming symmetry of deformation and maximum 
deflection h, then θ = 0 when y = h. Using this boundary condition, solving for C1 and 
plugging back into equation (12) yields: 

( )2 2 2 2
1

1 1
2 2

h yθ λ= − (13) 

Manipulating equation (13), remembering the definition of θ, and separating variables 
yields: 

2 2
1

dy
dx

h yλ
=

−
(14) 

Here, we incorporate the boundary condition that when x = 0 then y = 0. This can be done 
by taking definite integrals from 0 to y of the left side of equation (14) and from 0 to x on the 
right side of equation (14). 

It may be advantageous to non-dimensionalize at this point, defining η and ξ as: 

;y x

h
η ξ= =

ℓ
(15) 

We then substitute into equation (14) and manipulate to obtain: 

21

d
d

η λ ξ
η

=
−

(16) 

Here, the non-dimensional parameter λ is λ1 multiplied by l. Integrating both sides and 
rearranging yields: 

sinη λξ= (17) 

When ξ = ½, η = 1; thus, the simplest assignment for λ is π. Substituting for the non-
dimensional variables as defined in equation (15) gives us the half-sine wave shape, which is 
then used to define the strain energy. 

4. EXTENSION OF THE SOLUTION TO LARGE DEFLECTIONS 
Dealing with large deflections is based on a similar approach. Here, the curvature is 

described by full expression given in equations (3) and (4).  
The latter term is used on the left-hand side of equation (6) after separation of variables. 

Following the same procedure as above, and defining β = h / l yields: 

( ) ( )

( )

2 2

2 2
2 2

11 1
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λβ η η

λβ η η λ ξ
ηλβη η

 − −   = =
− − − − 

 

 (18) 
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Where M is a multiplicative factor, which is a function of λβ and η: 

( ) ( )

( )

2 2

2
2

11 1
2[( ); ]

1 1
2

M
λβ η

λβ η
λβ η

− −
=

 − − 
 

 (19) 

It can be seen that for “small” values of β that the left-hand side of equation (18) reduces to 
that of equation (16). 

A few comments should be made about the multiplicative factor M. First, looking at the 
square root in the denominator, it is seen that λβ can never exceed 2. Looking at the 
numerator, it is seen that if λβ exceeds 2  that negative contributions will be made to the 
integral. Physically, this implies that the shape of the structure will “double back” in the x
coordinate. 

5 DISCUSSION OF THE RESULTS 
In order to understand the relations expressed by equation (18), calculations were carried 

out to allow presentation of particular quantities versus λβ. The problem is thus laid out as 
follows: 

- Choose a value of λβ
- Integrate the left hand side; the result is λ / 2; thus solving not only for λ, but β as 

well 
- Assuming a value of λ is found, determine the shape by integrating equation (18) 

partially to generate a y vs. x curve. 
- Numerically integrate to find the strain energy in a manner similar to that presented 

in paragraph 3. 
- Repeat this procedure for a family of values of λβ. 

Equation (18) was solved using Simpson’s Rule. Half-steps of 0.001 were taken from η = 0 
to 0.998; 0.0001 from 0.998 to 0.9998; 0.00001 from 0.9998 to 0.99998; and 0.000001 from 
0.99998 to 0.999998. For the last 0.000002 where the integrand becomes very large, it can be 
shown that the integral is to a high degree of precision 2(0.000002)  or 0.002. Note that M is 
essentially 1 for η = 1. 
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Figure 3: λ as a function of the λβ

Figure 4: β as a function of the λβ

Figures 3 and 4 depict the results for λ and β. For Figure3, it should be noted that for λβ = 0 
that λ = π as expected. The value of λ then decreases as the non-linearity increases. It should 
be noted that somewhere between λβ = 1.8 and 1.9 that λ will go to 0; the physical meaning of 
this, and the effect on β are not known at this time. 

One of the sub-computations is to determine l by setting the length of the deformed curve 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lambda * beta

la
m

bd
a

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lambda * beta

be
ta



387

First A. Author, Second B. Author and Third C. Coauthor. 

8

to the original length L. This relationship can be expressed as: 
2 2( ) ( )ds dx dy L= + =∫ ∫  (20) 

Substituting the non-dimensional relationships of equation (15) and the definition of β
yields: 

2 2 1( ) ( )d d dσ ξ β η
γ

= + =∫ ∫  (21) 

Here, γ is defined as l / L and dσ is defined as ds / l. A plot of γ is presented in Figure 5. 

Figure 5: γ as a function of the λβ

It can be shown that for small values of λβ that: 
2

1
2

λβγ  ≈ −  
 

(22) 

The integration of equation (18) is now used to generate η vs. ξ plots for selected values of 
λβ. In order to increase the physical meaning of these plots they are converted back to y and x, 
respectively, each non-dimensionalized by L, by multiplying η by γβ and ξ by γ. These plots 
are displayed in Figure 6. It is important to note that the full shape of each curve includes a 
symmetrical segment about the right end of the curve as shown. It should also be noted that 
for λβ approaching 0 the shape is a half sine wave (including the reflected portion of the 
curve) with infinitesimal height. 
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Figure 6: Shape curves for different values of λβ

The final set of calculations determines the tension T required to form the shapes noted. As 
discussed previously in paragraph 3, the tension can be determined by taking the derivative of 
the strain energy with respect to T. It can be shown that it is related to the shortening of the 
distance between the two supports by: 

2T
L y ds

EI
− = ∫ℓ (23) 

Note that the integral is taken over the length of the structure, not just the x coordinate, to 
account for the large deformation. Non-dimensionalizing and re-arranging yields: 

2

1 1 1
2 ( )

τ
γµ γβ
 

= − 
 

(24) 

Here, τ represents non-dimensionalized tension defined as TL2 / EI, and µ represents non-
dimensional strain energy: 

0.5
2

0

dµ η σ= ∫ (25) 

Figures 7 and 8 are plots of µ and τ, respectively, vs. λβ.  
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Figure 7: Non-dimensional strain energy µ as a function of the λβ

Of interest is the limit of τ as the non-linearity gets small. It should be noted that: 
0.5

2

0

sin 0.25dµ πξ ξ= =∫  (26) 

Furthermore, if one substitutes the approximation of equation (22), the zero β terms cancel 
and: 

2 2

2 28
λ πτ
µγ

= = (27) 

This appears consistent with the rest of Figure 7. It should be noted that this is half of the 
classical Euler load for the structure. 
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Figure 8: Non-dimesionalized tension τ as a function of the λβ

6. CONCLUSIONS 
Presented in this paper attempt to computational modeling of modular inflated shell is 

based on a simplified physical model. The complex internal structure of the shell was 
approximated by an elastic rod. Issues of determining the flexural stiffness EI of the structure 
composed of inflated cushions were omitted. Similarly, were omitted issues of the interaction 
between the cushions-cross braces system and cable sliding through the nodes of the bottom 
chord. It should be noted that he analysis included only initial stage – self-erection of bending 
active structure. No cases of the external load were considered. These issues will be examined 
in further stages of work. 

However, the analytical study carried out in paragraph 5 allowed making some general 
observations regarding the behavior of the structure. The conclusions of this analytical study 
are as follows: 

- Unless initial imperfections in the straightness of the structure are taken into effect, 
no deformation of the structure will occur until the tension reaches a magnitude of 
half of the Euler buckling load. This is consistent qualitatively with experimental 
observation. 

- As the tension increases, the two supports move closer to each other as expected.  
Eventually, the two supports will meet. No exploration of that event was pursued in 
this study. 

- The parameter λ is associated with the shape of the deformed curve. It is somewhat 
related physically to the square root of τ times 2 times γ2 though not in an exact 
way. Accordingly, this physical relationship will not be emphasized. 

- The combined parameter λβ has a mathematical limit of 2; however, there appears 
to be a physical limit imposed on the equations of somewhat greater than 1.8. 
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