UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Escola Tecnica Superior d’Enginyeria
de Telecomunicacio de Barcelona

SCRIPT-BASED TOOL FOR REMOTE DIGITAL FORENSIC
ANALYSIS

A Master's Thesis
Submitted to the Faculty of the

Escola Técnica d'Enginyeria de Telecomunicacié de
Barcelona

Universitat Politéecnica de Catalunya

by
Jordi Oliveras Boada

In partial fulfillment
of the requirements for the degree of
MASTER IN TELECOMMUNICATIONS ENGINEERING

Advisor: Josep Pegueroles

Barcelona, May 2017

Title of the thesis: Script-based tool for remote digital forensic analysis

Author: Jordi Oliveras Boada

Advisor: Josep Pegueroles

Abstract

In this Master Thesis it has been working in digital forensics and its aim is to create a tool
with a GUI that will allow people that are not specialist in digital forensics to perform an
analysis at the same time that preserve the chain of custody of the artifacts being
analyzed. This is done to make able digital forensics investigations at any part of the
world where there it may not be any specialist.

The tools that have been scripted and analyzed in this project are the following: binary
copy, file carving, timeline, OCR and eDiscovery. There are already some tools with GUI
but our aim is to create a new one so easy to use that if in one country there is no
specialist, the analysis can also be performed.

Acknowledgements

| would like to thank Josep Pegueroles to help me when making the project and guiding
and orientating me in the way it would be better to make this project and the contents and
tools it should contain. | would also like to thank Arnau Estabanell to help me in
developing one of the tools of this project.

Revision history and approval record

Revision |Date Purpose

0 19/05/2017 | Document creation

1 22/05/2017 | Document revision

Written by: Reviewed and approved by:
Date 19/05/2017 Date 22/05/2017

Name Jordi Oliveras Name Josep Pegueroles
Position Project Author Position Project Supervisor

Table of contents

ADSTIIACE ... ———— 4
ACKNOWIEAGEMENTS ... 5
Revision history and approval reCOrd...... ... e 6
Table Of CONENTS ... 7
LISt Of FIQUIES ..ottt e e e e e as 9
LISt Of TaDIES . 11
1. INrOAUCTION ... 12
1.1. Requirements and specifications...........cccc 12
1.2, PUIMPOSE .o ettt e e e ettt e e e e e e e e eaaaaans 12
1.30 MEENOAS ..o, 13
L S VA Lo Ty Q] =1 o PR 13
1.5. Deviations from the initial plan.............ccco 14
2. State of the art of the technology used or applied in this thesis..............cccccccccnniines 15
2.1. Current forensiCs ProCeAUIEcoiii i i 15
2.2, Forensic tools With GUIoiiiiiiiii e 16
3. Project develOPMENtuuuiiiiiiiiiiiiiiiii e 17
3.0 BINAIY COPY i 17
3.2. Recover (File CarviNg)......c.uuueeeiio et 24
3.3, TIMEINE e 28
K3 S © 10 PRSPPI 34
3.5, B SOV e 42
4. RESUIS e 48
T = 11 T [= TP TP PP PPPPPPPPPPP 49
6. Conclusions and future development...............uuuieiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 51
(=] o] [oTe] r=T o] o}V PP PPPPPPPPPP 53
F Y o] o1=T g o [To7 =T S0P P 54
Appendix 1. Binary copy python code to work from the terminal 54
Appendix 2. Binary copy python code to work withthe GUI..................................... 54
Appendix 3. Binary copy GUI glade code..........ooooiiiiiiiiiii 56
Appendix 4. Binary copy desktop COAe ... 60
Appendix 5. File carving python code to work from the terminal.................................. 60

Appendix 6. File carving python code to work with the GUI ... 61

Appendix 7. File carving GUI glade code ..o 64
Appendix 8. File carving desktop COe......o.uuuuiiii i 67
Appendix 9. Timeline python code to work from the terminal....................................... 68
Appendix 10. Timeline python code to work with the GUI.. 70
Appendix 11. Timeline GUI glade code ..., 76
Appendix 12. Timeline deskiop COde ... 79
Appendix 13. OCR python code to work from the terminal 79
Appendix 14. OCR python code to work with the GUI 82
Appendix 15. OCR GUI glade COdeooovviiiiiiiiiii e, 87
Appendix 16. OCR desktop COAeovviiiiiiiiii 92
Appendix 17. eDiscovery starting window python code ... 93
Appendix 18. eDiscovery grep python COde.........oooi i 94
Appendix 19. eDiscovery gawk python code............oooiiiiiiiiiii e 99
Appendix 20. eDiscvery starting window glade codecccccevviiiiiiii 105
Appendix 21. eDiscovery operating window glade code...........cccccevvviiiiiiiiin.. 108
Appendix 22. eDiscvery deskiop COAe ..o 116
GOSSANY ...ttt e et e e et e e e e e e e 117

List of Figures

Image 1: Gantt diagram of the Project ... 14
Image 2: "dconf-editor" WindOW..........oooiiiiiiiii 18
Image 3: Disabling the auto-mount of the USB devices using "dconf-editor". 18
Image 4: Example of how to install Python. ... 19
Image 5: Extract files from the compressed folder using the terminal.cccccoe. 19
Image 6: Look the full path to the directory of the scripts with the command "pwd" 19
Image 7: Opening Binary_Copy.desktop from gedit. ... 20
Image 8: Modify the document "Binary_Copy.desktop" with the new path...................... 20
Image 9: Getting the name of the device. ..., 21
Image 10: Double click to "Binary Copy" to run the script with the GUI........................... 22
Image 11: Window to choose the path to the folder..................... 22
Image 12: The text entry is filled automatically when clicking “Select”. 23
Image 13: Sudo password asked at the terminal to allow the binary copy. 23
Image 14: Locate the folder with the scripts. ..., 23
Image 15: Running the script from the terminal. ... 24
Image 16: Example of how to install Python. ..., 25
Image 17: Extract files from the compressed folder using the terminal. 25
Image 18: Look the full path to the directory of the scripts with the command "pwd". 25
Image 19: Modify the document "Recover.desktop" with the location of the script........... 26
Image 20: Running the recover tool with the GUI just clicking on "Recover" icon............ 26
Image 21: Window to choose the path to the binary copy. ... 27
Image 22: The text entry is filled automatically when clicking "Select".ccccceee. 27
Image 23: Locating the scripts with the terminal............coo 28
Image 24: Using the recover tool from the terminal. ... 28
Image 25: Photorec performing the file carving from the terminal. 28
Image 26: Example of how to install Python. ... 29
Image 27: Extract files from the compressed folder using the terminal. 30
Image 28: Look the full path to the directory of the scripts with the command "pwd". 30
Image 29: Opening Timeline.desktop from gedit. ..., 31
Image 30: Modify the "Timeline.desktop" with the new path................................... 31
Image 31: Double click to "Timeline" to run the script with the GUI................................. 32

Image 32: Window to choose the path to the folder................... 32
Image 33: Text entry is filled when clicking "Select". ... 33
Image 34: Document with the results of the analysis.............ccccciiiiic 33
Image 35: Owner and grup NUMDEIS.oooiiiiii e, 33
Image 36: Locate the folder with the scripts. ... 34
Image 37: Running the script from the terminal. ... 34
Image 38: Example of how to install Python. ... 35
Image 39: Extract files from the compressed folder using the terminal. 35
Image 40: Look the full path to the directory of the scripts with the command "pwd". 36
Image 41: Opening OCR.desktop from gedit. ..., 36
Image 42: Modify the document "OCR.desktop" with the new path................................. 37
Image 43: Double click to "OCR" to run the script woththe GUI.l. 37
Image 44: Window to choose the path to the folder..................... 38
Image 45: The text entry is filled automatically when clicking "Select". 38
Image 46: Preparing the folder names by clicking on "PREPARE". 39
Image 47: Dividing the pdf files into pages and saving the results into "all_pdf_text" by

ClickiNg ON "DIVIDE"...... .o et 39
Image 48: Performing the OCR. ..., 40
Image 49: Locate the folder with the scripts. ... 40
Image 50: Running the script from the terminal. ... 41
Image 51: Example of how to install Python. ..., 42
Image 52: Extract files from the compressed folder using the terminal. 43
Image 53: Look the full path to the directory of the scripts with the command "pwd" 43
Image 54: Modify the document "eDiscovery.desktop" with the location of the script.44
Image 55: Running the search tool with the GUI just clicking on "eDiscovery" icon......... 44
Image 56: Main window of the search tool once the search command has been selected.

... 45
Image 57: Window to choose the path to the folder containing the txt files to analyze.....46
Image 58: The text entry is filled automatically when clicking "Select". 46
Image 59: Typing the word to search (in this example "computer") and pressing the filter

button to start the search. ... 46
Image 60: Results shown after the search has finished. ... 47
Image 61: Document with the results saved. ..., 47

10

List of Tables

Table 1: Time required for the tools to analyse 1GB of information................ccccccccnninnes 48
Table 2: Grep and gawk time searching into 100 documents.cccccoooviiiiiiiieee s 48
Table 3: Cost Of the ProjeCt.c..eeiiii e 49
Table 4: Cost of the use Of the 100l ..o 50

11

1. Introduction

Digital forensics is a science that is in charge of investigating suspicious digital artifacts in
order to obtain some evidences in crimes that may have relation with computers or other
digital devices.

The aim of this Master Thesis is to study the different tools required when performing a
digital forensic analysis. In this project, the different requirements are explained and
analyzed.

Apart from that, this project also includes the elaboration of some scripts providing a GUI
(Graphical User Interface) to a user without much knowledge about digital forensics. The
aim of that part is to allow that user to perform nearly automatically a digital forensic
analysis without having to have the knowledge to do so.

This can be useful when the case we are working is located in another country. In order
to avoid having to send a forensic specialist to the other country, since the evidences
cannot be moved from the country, it can be used this tool so a non-specialist person can
perform the analysis as well.

The first idea of this project was to continue a project called “Analisis de alternativas,
desarrollo y puesta en marcha de una plataforma para analisis forense digital remoto” by
Jordi Blanco. However, due to the huge amount of work required to make a whole
platform working in those specifications, this project will just be focused on the scripts
required to perform the analysis separately, which will allow to perform the digital forensic
analysis but without the main structure estated in Jordi Blanco project.

1.1. Requirements and specifications

As it has been mentioned before, the requirements are simple: there must be some
scripts with some kind of GUI that must allow to perform a digital forensic analysis.

The technical specifications are the same that would be for a normal digital forensic
analysis: some tools that must allow to perform the actions required for the investigation
without breaking the chain of custody of the artifact, since this is crucial in order to be
presented as an evidence in a jury.

Apart from that technical requirements, there is also another requirement: this scripts
must be user friendly and quite easy to use. The reason of that is to allow a person that
has not much knowledge of digital forensics to be able to perform the analysis.

1.2. Purpose

As stated before, this Master Thesis will analyses the current requirements (talking about
tools) required to perform a digital forensic analysis, and to create some scripts in order
to provide a user friendly GUI to perform the analysis.

The purpose of doing so is to create a platform based on the project of Jordi Blanco, that
would allow to perform a remote digital forensic analysis. The reason of those
requirements is that the person that may be in charge of performing the analysis will not
be a forensic specialist.

12

1.3. Methods

According to the beginning of the introduction, this project was meant to be the
continuation of another project that already researched about all the problems
encountered in remote digital forensic analysis.

To do so, in this project it has been done some part of research job in order to get the
knowledge of the current requirements when performing a digital forensic analysis. Apart
from that, also it has been searched other tools that allow to perform the same actions.

The software that has been used to program the scripts is mainly python, combined with
glade tool to make the GUI easier to be created. All the scripts are prepared to be run in a
Linux Operative System. Some of the scripts are based on other tools already existing
whereas some of them are just providing a more friendly interface to simple Linux
commands.

1.4. Work plan

The work plan of this project is structured in the following way: first of all, the first
important task is to read the Jordi Blanco project and do some research about both digital
forensics and also about scripting.

Once done that, the next important tasks will be working with the 5 tools that are included
in this project. These tools are: binary copy, recover (file carving), timeline, OCR and
eDiscovery. For each of the tool there are three important tasks to be done with:
investigate and research about the use of the tool and the current options to perform that
action, program the script according to the requirements of the tool and at last test the
proper performance of the tool.

All those tasks are done for each tool, but tool by tool, first finish a tool before starting
with the next one. The time required for each tool is around a month, however there may
be some tools that are easier and will take less time to be finished whereas some others
may last more than 2 month.

Apart from all those tasks, there is also the usual task on any project of documenting it
and analyzing the results. This task is done during the whole project. In the pictures
below you can find the gantt diagram of all the task of the project:

13

Image 1: Gantt diagram of the project

1.5. Deviations from the initial plan

As it has been mentioned above, initially this project aimed to continue the Jordi Blanco
project, in order to create a platform allowing to perform remotely a complete digital
forensics analysis.

However, due to the amount of work that this represents, this project will only focus on
programming the scripts that will allow to perform the analysis in a friendly way, but will
not mount a full integrated platform automatizing all the process.

14

2. State of the art of the technology used or applied in this

thesis

In this part of the Master Thesis we are going to talk about the current state of the art of
the digital forensics. In this point we will focus specially on the already existing tools that
nowadays are used to perform the analysis.

To make a quick remind of what has already been commented in the introduction, the
digital forensics tools that are developed in this project and that will be commented here
in this point are the binary copy, file carving, timeline, OCR and eDiscovery.

Apart from talking about the different tools we also will talk about tools that already exists
and that also have a GUI, since creating tools like this is one of the main goals of the
project.

2.1. Current forensics procedure

When performing a digital forensic analysis, doing a binary copy is one of the most
important things to do during an investigation. It is required to get the information but
without accessing to it (like putting the artifact into a plastic-bag to avoid leaving
fingerprints but in a computer way). To do so what it has to be done is first of all to
disable the automatic mount of the USB devices, and afterwards connect the device
without mounting it and make a copy of all the 0 and 1 that the device contains. The
command used to perform this action is “dd” which allow to perform binary copies. To
proof that the binary copy is identically than the original artifact, it can be computed the
hash of both things and check that it is the same.

Recovering deleted files is an essential part of the forensics analysis. This is called
normally file carving. Once the binary copy is done, it can be used to recover files that
has been deleted from there. There are different tools to perform this part of the forensics
analysis, but in this project it will be used the Linux tool “photorec”. This tool has its own
interface in order to operate with it, but it can be used as well to be used in a script if it is
provided with the proper parameters.

To get the timeline of the files in a specific directory is another tool that is sometimes
used by forensics. There are already some scripts that does this functionality such as
Quickfish. It consists on creating a document which contains the name of all the files
located inside a certain directory and some useful information that can be used to filter
the documents trying to encounter evidences. This information includes size, format of
the file, day of creation, day of the last modification, user that created the document, user
that has done the last modification...

Some of the problems that may be encountered when performing the investigation are
that not all the documents will be text documents. There may be pictures, videos, PDFs
among other different format files. Since the amount of information to analyze tends to be
quite big, it would require to find some way to be able to analyze all this data. To do so it
can be performed a massive OCR (Optical Character Recognition) To extract the text that
appears | all those documents in a txt format to be able to perform searches on it. There
are lots of tools to do so, since open source tools such as Tesseract (in that case it
should be combined with other Linux tools like Imagemagick or Unpaper to prepare the

15

image before the OCR) to payment tools like Addove or Abby (this ones there is no need
to prepare the image).

Another important tool really useful is to be able to find from all the documents, the ones
that contain certain key words for the investigation. In digital forensics, this is called
eDiscovery. To do so, there are some commands but in this project it will be used the
Linux command “grep”. Another tool that has being used in this project is “gawk”. This
command is quite slower than “grep” but it allows the user to do logical searches (looking
for more that one word and deciding if both words have to be contained in the same
document or if any of those appear decide to analyze the document).

2.2. Forensic tools with GUI

As it has been commented in other points of the project, one of the main goals of this
project is to create some scripts with a GUI, in order to help to make this type of
investigations available at any part of the world even without a forensic specialist there.
There are different tools that already do some of the parts with GUI, the most used ones
are Autopsy and EnCase.

Autopsy is one of the most known forensic tools. It has a GUI that is run from an HTML
browser, and it is really intuitive to use. This tool allows you doing most of the tools that
are treated on this project so it is important to take a look into it. It allows to make timeline
analyses, keyword search (eDiscovery), file carving, and also some other tools that has
not been scripted in this project, such as hash filtering or diferent tools to extract
information about the properties of multimedia files.

However, even this tool is really intuitive to use, it does not have an OCR in order to
convert images and pdfs into txt files before performing the search of keywords. Another
problem is that it does not have the possibility to perform the binary copy. Since this is a
really delicate part of the process since it is vital to preserve the chain of custody, if this
part has to be done manually, this must be done by a forensic specialist.

Another tool that should be mentioned is EnCase. This tool also have its own GUI and
allows the user to perform some basic forensic tasks. It focuses on the investigation of
mobile phones. It helps to acquire the information from any phone of a wide diversity of
OS. It has also tools such as eDiscovery to analyze the results.

The problem with this tool is also the same one with Autopsy. It is a really powerful tool if
the user is a forensic specialist but it is delicate if someone who is not tries to use it since
it may break the chain of custody. One of the aims of this project is preparing the tools in
order that the user will preserve untouched the chain of custody.

16

3. Project development

In this point of the project, there are stated all the different 5 tools that have been
analyzed and scripted in this project. This tools are the following: binary copy, recover
(file carving), timeline, OCR and eDiscovery.

All of those are really useful tools in digital forensics. In this point of the project, they are
explained a little bit, explained the main tools that normally are used to perform those
actions and it is explained as well how the scripts work. It also contains an administrator
guide (containing how to prepare the tool in order to be ready to use) and a user guide
(containing instructions of how to use the tool). There are both guides for each of the 5
tools.

3.1. Binary copy

In forensics, when the police arrives at the scene of the crime, it puts the evidences into a
plastic bag to avoid leaving fingerprints. In digital forensics it has to be done the same. In
order to do so, there is an option that consists in not to mount the evidence but connect to
the computer and perform a binary copy of it.

The binary copy consists on copying the 1 and 0 that there are inside the evidence, that
from now we will call it artifact. The aim of doing a binary copy of the artifact is to be able
to analyze its content but without modifying anything from the original content. Doing so it
is crucial in digital forensics, since this artifact will not be able to be presented as an
evidence if the chain of custody is not maintained untouched.

To make easy this process we have created a tool which will allow performing a binary
copy of an artifact automatically. To use this tool it is important to have the computer that
is going to be used configured in a way that has disabled the auto-mount of the USB
devices before connecting the artifact that is going to be analyzed.

This tool what mainly does is to compute the hash of the device, it makes a binary copy
of the device (which will be saved into the path provided by the user of the tool) and it
makes a hash of the copy (to ensure that is the same and that nothing has been
modified). There are several tools to perform those actions but in this scripts it is used the
Linux commands “md5sum” to compute the hash and “dd” to perform the binary copy.

If you are interested in the code of the files to run this tool, in the appendix from 1 to 4
you can found all the codes of the scripts and the graphical interface to run this scripts.

ADMINISTRATOR GUIDE:

When preparing a computer to use this tool, first of all it is interesting to look at the
system requirements. This tool, as well as all the others, is prepared to be run in a Linux
Operative System, however, if the computer has another OS, it can be run as well using a
virtual machine like VirtualBox with a Linux system installed.

This Operative system must have the USB auto-mount disabled. In order to disable the
USB auto-mount, it is necessary to have a tool installed called “dconf-editor”. This tool
can be installed using the Linux command “sudo apt-get install dconf-editor” in a terminal.
Once this is done this program has to be run by typing in the terminal “dconf-editor”. This
will show up the following window:

17

- Editor del dconf e | Q

> ca

» com

» desktop
» org

» system

&

No hi ha claus a aquest cami

Image 2: "dconf-editor" window

Now you have to modify some parameters of it. To do so you have to click on “org”, then
on “gnome”, then on “desktop” and then on “media-handling”. Once there the parameters
“automount” and “automount-open” must be set to false. This will disable the auto-mount
of the USB devices.

» apps
»ca

Si els suports s'han de muntar automaticament

automount

» com
» desktop

L0r9g

ompiz

P) autorun-x-content-ignore 0 Llista dels tipus «x-content/*» amb els que no es fara res
autorun-x-content-open-folder [] Llista dels tipus «x-content/*» amb els que no s'obrira la carpeta

GWeather

Si s'ha d'obrir automaticament la carpeta dels suports muntats automaticament

automount-open

autorun-nev No preguntis ni executis programes automaticament quan s'introdueixi un suport

> Tot autorun-x-content-start-app ['x-content/unix-software'] Llista dels tipus «x-content/*» amb els quals s'iniciara la seva aplicacié preferida
otem

» baobab
calculator
calendar

» charmap
cheese

» deia-dup
»atlly
» app-folders
» applications

background
datetime
file-sharing
input-sources
interface
Jontt———

» peripherals

privacy
remote-access

Image 3: Disabling the auto-mount of the USB devices using "dconf-editor".

Take into account that if the tool is run in a virtual machine, both systems have to be
disabled the USB auto-mount.

Apart from the operative system with the USB auto-mount disabled, this will have to have
installed already some programs. In the case of this tool, the requirements are the

18

following: Python with its corresponding libraries (logging, time, sys, os, stat, time,
hashlib, argparse, csv, gi with Gtk version 3). It is also recommended to have glade
installed. All this tools can be installed using the command “sudo apt-get install xxxxxx”
where xxxxxx is the name of the program required.

jordi@jordi-virtualBox:~/Escriptori$ sudo apt-get install python
[sudo] contrasenya per a jordi:
S'esta llegint la 1llista de paquets.. Fet

S'esta construint 1'arbre de dependéncies
S'esta llegint 1la informacidé de 1'estat.. Fet

Image 4: Example of how to install Python.

Once all of this is ready, the tool has to be prepared in order to be used. First of all, it is
needed to get the compressed folder with all the scripts required to use the tool and unzip
it into a known location. This can be done manually just by the default program on the
operative system or to use the command “tar -xvf BINARY_COPY .tar.gz”.

jordi@jordi-VirtualBox:~/Documents$ 1s

jordi@jordi-VirtualBox:~/Documents$S tar -xvf BINARY_COPY.tar.gz
BINARY_COPY/Binary_ Copy gui.py

BINARY_COPY/Binary_Copy.desktop

BINARY_COPY/Binary_Copy.glade

BINARY_ COPY/

BINARY_COPY/Binary_Copy_ Terminal.py
jordi@jordi-virtualBox:~/Documents$ [

Image 5: Extract files from the compressed folder using the terminal.

Make sure to know the exact path to the location where it has been extracted the
documents. In case it is not known, using the terminal command “cd” to enter to the
proper folders until reaching the folder where the scripts have been extracted, and once
there use the command “pwd” to look for the current directory.

O ® @ jordi@jordi-VirtualBox: ~/Documents/BINARY_COPY

jordi@jordi-virtualBox:~$ 1s

Baixades Escriptori glade Masica Public testl.tiff
Documents examples.desktop Imatges Plantilles res.txt Videos
jordi@jordi-virtualBox:~$ cd Documents/
jordi@jordi-virtualBox:~/Documents$ 1s

BINARY_COPY

jordi@jordi-virtualBox:~/Documents$ cd BINARY_COPY/
jordi@jordi-virtualBox:~/Documents/BINARY_COPYS 1s
Binary_Copy.desktop Binary_Copy_gui.py
Binary_Copy.glade Binary_Copy_Terminal.py
jordi@jordi-VirtualBox:~/Documents/BINARY_COPYS pwd

jordi@jordi-virtualBox:~/Documents/BINARY_CoOPYS [i

Image 6: Look the full path to the directory of the scripts with the command "pwd"

This path it is necessary to make the script runnable from anywhere. To do so, it is
necessary a text editor or if it is preferred to read it from the terminal. Open a text editor
like gedit and once opened, oped the file called “Binary_Copy.desktop”. It is essential to
do it that way since this file cannot be opened by double clicking on it (it is prepared to
execute the scripts when clicking on it).

19

® @ obre

© utilitzats recentment | ¢ X jordi = Documents = BINARY_COPY

X Inici Nom -~ Mida Modificat

[Escriptori

& Baixades Binary_Copy.glade 52k 14:06
Binary_Copy_gui.py 2,5kB 12:23

[Documents Binary_Copy_Terminal.py 618 bytes 12:51

&1 Imatges

dd Musica

'@ Videos

{) Paperera

M sf TFM a

Codificacié de caracters: | Detectat automaticament v Tots els fitxers v

Cancel-la Obre

Image 7: Opening Binary _Copy.desktop from gedit.

Now, this document has to me modified using the proper path of the location of the
scripts. The lines that have to be replaced are the ones that start with “Exec=" and
“Path=", and the path that there is afterwards has to be replaced with the new location
obtained using “pwd”. It is important not to modify the name of the script at the end of the
line exec. Once done that just save the file with the same name.

[Desktop Entry]

Name=Binary Copy

Exec= Binary_Copy_gui.py
Path=/home/jordi/Eskriptori/TFM/Forensics_Scripts/Scripts_with_GUI/BINARY_COPY/

Terminal=t

Type=Application

[Desktop Entry]

Name=Binary Copy

Exec=/home/jordi/Do¥uments/BINARY_ COPY/Binary Copy gui.py
Path=

Terminal=t

Type=Application

[Desktop Entry]

Name=Binary Copy
Exec=/home/jordi/Documenfs/BINARY_COPY/Binary_Copy_gui.py
Path=/home/jordi/Documen¥s/BINARY_COPY/

Terminal=true

Type=Application

Image 8: Modify the document "Binary_Copy.desktop" with the new path.

Once all of this is done, just move or copy the file “Binary_Copy.desktop” to anywhere in
order to execute the scripts with the GUI (Graphical User Interface). Take into account
that if this is moved to the account of another user, make sure it have the rights to
execute scripts, otherwise it will not work. Consider as well that the icon of this file won'’t
show the entire name, just “Binary Copy”.

It is also important to look for the name of the USB in the folder “/dev” and set as default
the name assigned by the computer. This can be done just by typing into a terminal “cd
/dev”, then “Is”, then plugging the USB and typing “Is” again. The name that has appeared
is the name you should provide to the person that is going to use the tool. Another way of

20

doing so is typing “Isblk” before and after plugging the USB and the one that has been
added is the one that has to be provided to the user.

S @ jordi@jordi-VirtualBox: /dev

cpu_dma_latency net ttysis vecs2
network_latency ttysié vcs3
network_throughput ttysi7 vcs4
null ttysis vess
port ttysis vcs6
PPP ttys2 vcs7
psaux ttys2o vcsa
ptmx ttys21 vcsal
ttys22 vcsa2
ttysas vcsa3
ttys24 vcsad
ttysas vcsas
ttysaé vcsaé
ttysa7 vcsa7
ttysas vfio
ttys29 vga_arbiter
ttys3 vhei
ttys3o vhost-net
ttys3i zero
ttys4
snapshot ttyss
snd ttyse
Loop3 sro ttys7
jordi@jordi-virtualBox:/devs i
O SO jordi@jordi-VirtualBox: /dev

cpu_dma_latency net ttysi2 vboxuser
network_latency ttysi3 vcs
network_throughput ttysi4 vcsl
null ttysis vcs2
port ttysié vecs3
PPP ttys1i7 vcs4
psaux ttysis vcsSs
ptmx ttys19 vcs6
pts ttys2 ves7
random ttys20 vcsa
rfkill ttys21 vcsal
ttys22 vesa2
ttys23 vcsa3
ttys24 vcsad
ttysas vcsas
ttysaé vcsaé
ttys27 vcsa7?
ttys2s vfio
ttys29 vga_arbiter
ttys3 vhei
ttys3e vhost-net
ttys3i zero
Lloop3 ttys4
jordi@jordi-virtualBox:/dev$S I

Image 9: Getting the name of the device.
USER GUIDE

This tool can be used in two different formats: the first one is with the GUI and can be run
just by double-clicking into the icon “Binary Copy”. And the second one is a version that
does not need GUI and is completely run using just a terminal.

Using the tool with the GUI:

To run this tool it is really easy and intuitive. First of all make double click on the icon of
the binary copy will open the main window of the tool (see the picture below). Apart from
the main window it will also open a new terminal. This terminal will be needed later.

21

4 1 Carpetadel'usuari Documents BINARY_COPY

@ Inici
[Escriptori @J
¥ Baixades

[Documents Binary Copy Binary_Copy.glade Binary_Copy_gui.py oec

Binary Copy tool

BINARY COPY

DEVICE| sdb1

@ Imatges
dd Musica
| Vid N
. videos Results Directory Choose

@ Paperera MAKE BINARY COPY

M sf TFM sshoriginallbxt

Welcome to the UPC forensics app. This is the Binary Copy tool.
+ Altres ubicacions
1
10
101
1010

image.dd

Binary Copy Recover .

hashcopy.bxt

Image 10: Double click to "Binary Copy" to run the script with the GUI.

As it can be seen in the picture, there are two parameters required to perform the
analysis. Do not touch the parameter of the field device unless you know exactly what
you are doing. The second field is a path where the copy will be saved.

To choose it can be done into two different ways, one is just typing the path on the
corresponding text entry (be careful of not making any miss-spell or it will not work) or
clicking at the button next to it. When doing this second option it will appear a window
where you will be able to navigate through the folders and select the proper one. Clicking
“Select” will automatically fill the text entry with the selected path.

® ® @ select afolder

© Uutilitzats recentment | « 1 jordi = [Mm Escriptori) [l
@ Inici Nom - Mida Modificat
[Escriptori | (& lewis 20abr

. ixad i testing_folder dl

s Baixades = TEM 20abr
[Documents

[Imatges

dd Musica

'@ Videos

M sf TFM a

@ BINARY_COPY

+ Altres ubicacions

Cancel-la

Image 11: Window to choose the path to the folder.

Select

22

BINARY COPY

DEVICE| sdb1
Results Directory | /home/jordi/Escriptori Choose

MAKE BINARY COPY

Image 12: The text entry is filled automatically when clicking “Select’.

It is important to take into account that the parameters that the script will use are the ones
written there, so if the user selects a folder and then modify its name, the second name
will be the one used.

Once it is selected just press the button “MAKE BINARY COPY” in order to start the
binary copy. This is the point where the terminal is needed. It will ask the sudo password
in order to perform the copy. Just type it on the terminal and press enter.

@ ® @ Terminal
Welcome to the UPC forensics app. This is the Binary Copy tool.

Gtk-Message: GtkDialog mapped without a transient parent. This is discouraged.

md5sum: /dev/sdbil: ELl fitxer o directori no existeix
[sudo] contrasenya per a jordi: i

Image 13: Sudo password asked at the terminal to allow the binary copy.

Using the tool with the Terminal:

Running this tool from the terminal is quite simple if you are used to work with the
terminal. What you first need to do is to locate the folder where the scripts are located as
it can be seen in the picture below:

@ ® @ jordi@jordi-VirtualBox: ~/Documents/BINARY_COPY

jordi@jordi-VirtualBox:~$ 1s

Baixades Escriptori glade Masica Public testl.tiff
Documents examples.desktop Imatges Plantilles res.txt Videos
jordi@jordi-virtualBox:~$ cd Documents/
jordi@jordi-VirtualBox:~/DocumentsS 1s

BINARY_COPY

jordi@jordi-virtualBox:~/Documents$S cd BINARY_COPY/
jordi@jordi-VirtualBox:~/Documents/BINARY_COPYS ls
Binary_Copy.desktop Binary_Copy_gui.py time_binary_copy.log
Binary_Copy.glade Binary_Copy_Terminal.py
jordi@jordi-virtualBox:~/Documents/BINARY_COPYS [I

Image 14: Locate the folder with the scripts.

Once there just type the command “python Binary_Copy_Terminal.py”. This will
automatically run the script at the terminal. To use this tool from here, you just need to
answer all the parameters that the script asks you. And after doing so it will start
performing the binary copy automatically. Be careful when using this tool and inserting
the device name parameter. The image below shows an example of how to use it:

23

Enter the device name:
sdb1

Write the destinetion route:

/home/jordi/Escriptori
md5sum: /dev/sdbil: El fitxer o directori no existeix
[sudo] contrasenya per a jordi: |}

Image 15: Running the script from the terminal.

The results in both cases will be three documents, 2 ones .txt that will contain the hash of
the original device and the hash of the binary copy, and the third document will be the .dd
file which is the binary copy of the device. All three files will be saved at the location
indicated during the script.

3.2. Recover (File Carving)

In digital forensics, one of the most important tools is to recover files that has been
corrupted or just that have been deleted. This tool is known with the name of “file carving”
or just “carving”. This is a tool that is really often used on the forensics analysis, so we
have considered that our tool must have a script to perform so.

In this case we have created a python script that allows the user to perform the file
carving from a binary copy that has already been created from a device. The parameters
required as inputs are only the location of the binary copy as well as the folder to put the
results after the recover. There are several tools to perform the file carving, however,
based on the results obtained by the project of Jordi Blanco, in this script we have used
the free tool photorec.

The code of the tool | really simple, it just asks for the location of the image as well as the
folder to save the results, and when the users runs it it will automatically perform the file
carving process. The duration of this process can be different depending of the size of the
binary image.

This tool is normally used after performing the binary copy of the artifact the user wants to
analyze, so it can recover the deleted files of the artifact without touching it, which is
really important to preserve the chain of custody.

If you are interested in the code of this tool check the appendix files from 5 to 8. There
you will be able to find all the scripts used to run the tool as well as the graphical
interface.

ADMINISTRATOR GUIDE:

In order to use this tool, as well as all the tools in this project, the operative system of the
computer must be Linux. If the computer that the user is going to use has another
operative system, it will have to use a virtual machine with a Linux system installed in
order to run this tool.

This tool apart from the operative system also requires other programs to be installed:
Python with its corresponding libraries (os, time, logging and gi with Gtk version 3). It is
also recommended to have glade. All this tools can be installed using the command
“sudo apt-get install xxxxxx” where xxxxxx is the name of the program required.

24

jordi@jordi-virtualBox:~/Escriptori$ sudo apt-get install python
[sudo] contrasenya per a jordi:
S'esta llegint la 1llista de paquets.. Fet

S'esta construint 1'arbre de dependéncies
S'esta llegint la informacidé de 1l'estat.. Fet

Image 16: Example of how to install Python.

If the computer accomplishes all of this requirements, it is ready to prepare the tool for
working. First of all, it is needed to get the compressed folder with all the scripts required
to use the tool and unzip it into a known location. This can be done manually just by the
default program on the operative system or to use the command “tar -xvf
RECOVER:.tar.gz”.

jordi@jordi-VirtualBox:~/Documents$ 1s

jordi@jordi-VirtualBox:~/Documents$S tar -xvf RECOVER.tar.gz
RECOVER/recover.glade

RECOVER/Recover_terminal.py

RECOVER /Recover .desktop

RECOVER /Recover_gui.py

RECOVER/

jordi@jordi-VirtualBox:~/Documents$ [j

Image 17: Extract files from the compressed folder using the terminal.

You have to know the exact location where the scripts have been unzipped. If you do not
know it, you can use the terminal command “cd” to enter to the proper folders until
reaching the folder where the scripts have been extracted, and once there use the
command “pwd” to look for the current directory.

jordi@jordi-virtualBox:~$ 1s

Baixades Escriptori Imatges Plantilles Videos

Documents examples.desktop Misica Pablic
jordi@jordi-virtualBox:~$ cd Documents/
jordi@jordi-virtualBox:~/Documents$ 1s

RECOVER

jordi@jordi-virtualBox:~/Documents$ cd RECOVER/
jordi@jordi-virtualBox:~/Documents /RECOVERS 1s

Recover.desktop recover.glade Recover_gui.py Recover_terminal.py
jordi@jordi-VirtualBox:~/Documents /RECOVERS pwd

jordi@jordi-virtualBox:~/Documents/RECOVERS []

Image 18: Look the full path to the directory of the scripts with the command
"de".

The path to the location of the scripts is required to make the script runnable from any
location with the file “.desktop”. To make it ready, just open the file “Recover.desktop”
with a text editor. First start the text editor and open the document from there, since if you
try to open it by clicking on it it will just try to run the script.

Once you have the document opened it has to me modified using the proper path of the
location of the scripts. The lines that have to be replaced are the ones that start with
“‘Exec=" and “Path=", and the path that there is afterwards has to be replaced with the
new location obtained using “pwd”. It is important not to modify the name of the script at
the end of the line exec. Once done that just save the file with the same name.

25

[Desktop Entry]

Name=Recover

Exec= Recover_gui.py
Path=/home/jordi/Escriptofi/TFM/Forensics_Scripts/Scripts_with_GUI/RECOVER/
Terminal=false

Type=Application

[Desktop Entry]

Name=Recover

Exec=/home/jordi/Documents /RECOVER/Recover qui.py
Path=

Terminal=fa

Type=Application

[Desktop Entry]

Name=Recover

Exec=/home/jordi/Documapts /RECOVER/Recover_gqgui.py
Path=/home/jordi/Documents/RECOVER/

Terminal=f

Type=Application

Image 19: Modify the document "Recover.desktop" with the location of the script.

Once all of this is done, just move or copy the file “Recover.desktop” to anywhere in order
to execute the scripts with the GUI (Graphical User Interface). Take into account that if
this is moved to the account of another user, make sure it have the rights to execute
scripts, otherwise it will not work. Consider as well that the icon of this file won’t show the
entire name, just “Recover”.

USER GUIDE

The recover tool can be used with two different formats, one with a GUI that is really user
friendly for somebody that is not used to work from a terminal, and a second option that is
an script that is run from the terminal.

Using the tool with the GUI:

To run this tool it is really simple. In order to start using the tool just make double click on
the icon of the “Recover” and this will start the tool (see the picture below).

@ Carpetade l'usuari Documents RECOVER

@ Inici ‘ QJ =
4 y
[Escriptori | - -

recover.glade Recover Recover_gui.py Recover_terminal.
<, Baixades py

[Documents
@ Imatges
dd Mdusica
'@ Videos

{@® Paperera

»

8 sf_TFM ©® @ Recover tool

"RECOVER TOOL

B connectaaunservi... Image directory:| | Choose
Recover results: Choose

RECOVER

«Recover» seleccionat (147 bytes)

Image 20: Running the recover tool with the GUI just clicking on "Recover” icon.

As it has been explained before, this tool requires two input parameters. The first one is
the location of the binary copy of the artifact that you want to analyze. Take into account

26

that this must include the name of the image. The second parameter is just the path to a
folder where the script will save the results that it has been able to recover.

To choose them, it can be done just by typing the path on the corresponding text entry
(be careful of not making any miss-spell or it will not work), or clicking at the button next
to it. When doing this second option it will appear a window where you will be able to
navigate through the folders and select the proper one. Clicking “Select” will automatically
fill the text entry with the selected path.

® ™ select an image

@ utilitzats recentment | « | @jordi [Escriptori

@ Inici Nom - Mida Modificat
& lewis dj

& Baixades i results_recover 01:50
W TFM di

[Documents B

B Imatges Timeline_Results.csv 4,2k dj

dd Mdsica

'm Videos

M sFTFM a

@ RECOVER

+ Altres ubicacions

Cancel-la Select

Image 21: Window to choose the path to the binary copy.

RECOVER TOOL

Image directory:| /home/jordi/Escriptori/image.dd Choose
Recover results:| /home/jordi/Escriptori/results_recover Choose |
RECOVER

Image 22: The text entry is filled automatically when clicking "Select".

It is important to take into account that the parameters that the script will use are the ones
written there, so if the user selects a folder and then modify its name, the second name
will be the one used.

When both parameters have been selected, you can just click on the button that says
‘RECOVER” in order to start the file carving of the binary image. This may take quite
some time, depending mainly on the size of the binary image. The results will be stored in
another folder located inside the folder of the path named Recovered_files.# where # is a
numeral (in that example will be 1).

Using the tool with the Terminal:

To run this tool from the terminal, first of all open a terminal and go to the location of the
scripts.

27

S @ jordi@jordi-VirtualBox: ~/Documents/RECOVER

jordi@jordi-vVirtualBox:~$ 1s

Baixades Escriptori Imatges Plantilles Videos
Documents examples.desktop Misica Pablic
jordi@jordi-virtualBox:~$ cd Documents/
jordi@jordi-VirtualBox:~/Documents$ 1s

jordi@jordi-virtualBox:~/Documents$S cd RECOVER/
jordi@jordi-VirtualBox:~/Documents/RECOVERS 1ls

Recover.desktop recover.glade Recover_gui.py Recover_terminal.py
jordi@jordi-virtualBox:~/Documents/RECOVERS

Image 23: Locating the scripts with the terminal.

Once the terminal is on that folder, just run the command “python Recover_terminal.py”.
This will start the script but asking the parameters at the terminal without any type of GUI.
To use the tool in this way just keep answering the parameters that the script asks you
and after all are filled it will start automatically. In the image below can be seen an
example of how to use the recover tool with the terminal:

ordi@jordi-VirtualBox: ~/Documents/R

jordi@jordi-virtualBox:~/Documents/RECOVERS python Recover_terminal.py

fordi@jordi-virtualBox:~$ cd Escriptori/ Welcome to the UPC forensics app. This is the Recovery Files tool.

fjordi@jordi-virtualBox:~/Escriptori$ 1s

i lewis results_recover TFM Timeline_F
[jordi@jordi-virtualBox:~/Escriptori$ pwd
home/jordi/Escriptori
[jordi@jordi-virtualBox:~/Escriptori$ D

Write the name of the file (ex. image.dd):
image.dd

Write the file route (ex. /root/docs):
/home/jordi/Escriptori

Write the destinetion route (ex. /root/results):
/home/jordi/Escriptori/results_recover

PhotoRec 7.0, Data Recovery Utility, April 2015
Christophe GRENIER <grenier@cgsecurity.org>
http://www.cgsecurity.org
jordi@jordi-VirtualBox:~/Documents/RECOVERS I

Image 24: Using the recover tool from the terminal.

As it has been stated at the beginning, this tool uses the free tool photorec to perform the
file carving. When the script uses this, the terminal will change a little. You do not need to
touch anything, just wait until it finishes and it will return to the other terminal again.

© ® 6 jordi@jordi-VirtualBox: ~/Documents/RECOVER
PhotoRec 7.0, Data Recovery Utility, April 2015
hristophe GRENIER <grenier@cgsecurity.org>
ttp://www.cgsecurity.org

Disk /home/jordi/Escriptori/image.dd - 1048 MB / 999 MiB (RO)
Partition Start End Size in sectors
P FAT16 e o 1 127 121 59 2047937 [USB DISK]

Pass 1 - Reading sector 595320/2047937, 80 files found
Elapsed time 0h0Om23s - Estimated time to completion ©0h0OMS56
: 73 recovered

: 2 recovered
: 2 recovered
: 1 recovered
: 1 recovered
qlite: 1 recovered

Image 25: Photorec performing the file carving from the terminal.

3.3. Timeline

In digital forensics, talking about getting the Timeline of a certain directory is to get all the
information about all the files inside that directory. The information normally it is

28

interesting to include in a timeline are the name of the file, the creation time, the
modification time, the access time, the size...

Looking for the timeline of a directory is a tool frequently used in forensics. That's a
motivation to create a tool that will automatically perform an analysis of a directory and all
of the files that it contains and will create a document with all the interesting information.

To do so, we have created a python script that the input parameters will be the path of
the folder that we want to analyze and the directory of where to save the results of the
analysis. We have used some part of the code of the tool “Quickfish” that allows
performing timelines among other things. Since the aim of this project is to create a really
easy to use tool, it is not necessary to use all the functionalities that this program allows
so it has just been used certain part of the code.

This code what mainly does is it enters to the directory and looks for all the files that are
inside of it. For each of the files it checks if it is able to open and if so looks for all the
information that it might be interesting to get. All this information is stored into a “.csv” file
that will be saved at the location that has been introduced.

If you are interested in the code of the files to run this tool, in the appendix from 9 to 12
you can found all the codes of the scripts and the graphical interface to run this scripts.

ADMINISTRATOR GUIDE:

When preparing a computer to use this tool, first of all it is interesting to look at the
system requirements. This tool is prepared to run in the operative system Linux. In case
the computer has another operative system, it will have to have a virtual machine with a
Linux version installed on it.

Apart from the operative system, this will have to have installed already some programs.
In the case of this tools, the requirements are the following: Python with its corresponding
libraries (logging, time, sys, os, stat, time, hashlib, argparse, csv, gi with Gtk version 3). It
is also recommended to have glade installed as well as a program able to read “.csv” files
like OppenOffice Calc. All this tools can be installed using the command “sudo apt-get
install xxxxxx” where xxxxxx is the name of the program required.

jordi@jordi-virtualBox:~/Escriptori$ sudo apt-get install python
[sudo] contrasenya per a jordi:
S'esta llegint la llista de paquets.. Fet

S'esta construint 1'arbre de dependéncies
S'esta llegint la informacid de 1l'estat.. Fet

Image 26: Example of how to install Python.

Once all of this is ready, the tool has to be prepared in order to be used. First of all, it is
needed to get the compressed folder with all the scripts required to use the tool and unzip
it into a known location. This can be done manually just by the default program on the
operative system or to use the command “tar -xvf TIMELINE .tar.gz”.

29

jordi@jordi-VirtualBox:~/Documents$ 1s

jordi@jordi-vVirtualBox:~/Documents$ tar -xvf TIMELINE.tar.gz
TIMELINE/Timeline.desktop
TIMELINE/Timeline.glade

TIMELINE/Timeline_terminal.py
jordi@jordi-virtualBox:~/Documents$ [

Image 27: Extract files from the compressed folder using the terminal.

Make sure to know the exact path to the location where it has been extracted the
documents. In case it is not known, using the terminal command “cd” to enter to the
proper folders until reaching the folder where the scripts have been extracted, and once
there use the command “pwd” to look for the current directory.

® ® @ jordi@jordi-VirtualBox: ~/Documents/TIMELINE

jordi@jordi-virtualBox:~$ 1s

Baixades Escriptori Imatges Plantilles Videos
Documents examples.desktop Misica Public
jordi@jordi-virtualBox:~$ cd Documents/
jordi@jordi-vVirtualBox:~/Documents$ 1s

TIMELINE

jordi@jordi-virtualBox:~/Documents$ cd TIMELINE/

jordi@jordi-virtualBox:~/Documents/TIMELINES 1s
Timeline.desktop Timeline.glade Timeline_gui.py Timeline_terminal.py
jordi@jordi-VirtualBox:~/Documents/TIMELINES pwd

This path it is necessary to make the script runnable from anywhere. To do so, it is
necessary a text editor or if it is preferred to read it from the terminal. Open a text editor
like gedit and once opened, oped the file called “timeline.desktop”. It is essential to do it
that way since this file cannot be opened by double clicking on it (it is prepared to execute
the scripts when clicking on it).

30

© utilitzats recentment | « | fjordi Documents ' TIMELINE

@ Inici Nom ~ Mida Modificat

[Escriptori |

& Baixades Timeline.glade 5,2kB dg
Timeline_gui.py 5,5kB dg

D Documents Timeline_terminal.py 31k8 dg

[Imatges

dd Musica

' Videos

i Paperera

| sf TFM a

+ Altres ubicacions

Codificacié de caracters: | Detectat automaticament v Tots els fitxers >

Cancel-la Obre

Image 29: Opening Timeline.desktop from gedit.

Now, this document has to me modified using the proper path of the location of the
scripts. The lines that have to be replaced are the ones that start with “Exec=" and
“Path=", and the path that there is afterwards has to be replaced with the new location
obtained using “pwd”. It is important not to modify the name of the script at the end of the
line exec. Once done that just save the file with the same name.

[Desktop Entry]
Name=Timeline
Exec= Timeline_gui.py
Path=/home/jordi/Eskriptori/TFM/Forensics_Scripts/Scripts_with_GUI/TIMELINE/

Terminal=false

Type=Application

[Desktop Entry]
Name=Timeline
Exec=/home/jordi/Documents/TIMELINE/Timeline gui.py
Path=

Terminal=f
Type=Application

[Desktop Entry]
Name=Timeline
Exec=/home/jordi/Decuments/TIMELINE/Timeline_gui.py
Path=/home/jordi/Documents/TIMELINE]

Terminal=false

Type=Application

Image 30: Modify the "Timeline.desktop" with the new path.

Once all of this is done, just move or copy the file “Timeline.desktop” to anywhere in order
to execute the scripts with the GUI (Graphical User Interface). Take into account that if
this is moved to the account of another user, make sure it have the rights to execute
scripts, otherwise it will not work. Consider as well that the icon of this file won’t show the
entire name, just “Timeline”.

USER GUIDE

This tool can be used in two different formats: the first one is with the GUI and can be run
just by double-clicking into the icon “Timeline”. And the second one is a version that does
not need GUI and is completely run using just a terminal.

Using the tool with the GUI:

31

To run this tool it is really easy and intuitive. First of all make double click on the icon of
the timeline will open the main window of the tool (see the picture below).

@Y Carpetade l'usuari Documents = TIMELINE

@ Inici = =
| et et
[Escriptori
. Timeline Timeline.glade Timeline_gui.py Timeline_terminal.
~ Baixades
Py
[Documents
@ Imatges
dd Musica
| Videos ©®® @ Timeline tool
 rees TIMELINE
M sf TFM a
Folder Directory || Choose
@ ordinador Results Directory Choose
B Connectaaun servi. ANALYSE

«Timeline» seleccionat (150 bytes)

Image 31: Double click to "Timeline" to run the script with the GUI.

As it can be seen in the picture, there are two parameters required to perform the
analysis: the folder directory and the results directory. The folder directory is the path to
the folder that the user wants to analyze. The results directory is the path of the place
where the user wants the results of the analysis.

To choose them, it can be done just by typing the path on the corresponding text entry
(be careful of not making any miss-spell or it will not work), or clicking at the button next
to it. When doing this second option it will appear a window where you will be able to
navigate through the folders and select the proper one. Clocking “Select” will
automatically fill the text entry with the selected path.

® ® © select afolder

© Uutilitzats recentment | « @jordi [REscriptori B

@ Inici Nom -~ Mida Modificat

i lewis 11:33

Baixades sl
Documents

Imatges

Musica

Videos

»

sf_TFM

Fes &BDO ¢

TIMELINE

+ Altres ubicacions

Cancel-la Select

Image 32: Window to choose the path to the folder.

32

O ® @ Timeline tool

TIMELINE

Folder Directory | /home/jordi/Escriptori/TFM | | Choose
Results Directory Choose

ANALYSE

Image 33: Text entry is filled when clicking "Select".

It is important to take into account that the parameters that the script will use are the ones
written there, so if the user selects a folder and then modify its name, the second name
will be the one used.

Once both of the folders are selected just clicking the button “ANALYZE” will perform the
examination of the files and will automatically save a document -called
Timeline_Results.csv with all the results. This document will look like the image below:

A B c D E F H 1 J
1_|File Path Size Modified Time Access Time Created Time Owner Group Mode
2 |logfile.log jordi [TEM/Forensics_Script e.log 164 Sun Apr 16 03:10:27 2017 Sun Apr 16 05:18:25 2017 Sun Apr 16 03:10:27 2017 1000 1000 33204
3 |Timeline.py /home/jordi/Escriptori/ TEM/Forensics_Scripts/Timeline.py =~ 7467 Wed Apr 12 11:51:54 2017 Sun Apr 16 03:10:27 2017 Fri Apr 14 12:18:35 2017 1000 1000 33204
4 |names.py ji/Escriptori TEM/Forensics_Scrip oy 553 Wed Apr 12 11:51:48 2017 Sun Apr 16 03:10:27 2017 Fri Apr 14 12:18:352017 1000 1000 33204
5 |OCR_script.py Jhome/jordi/Escriptori S Scripts/OCR_script» 566 Wed Apr 12 11:51:52 2017 Sun Apr 16 03:10:27 2017 Fri Apr 14 12:18:352017 1000 1000 33204

6 [Timeline v1.py /home/jordi/Escriptori
7__|prepare_pd.py

ics_Scripts/Timeline_v1» 3820 Sun Apr 16 03:20:38 2017 Sun Apr 16 03:36:27 2017 SunApr 16 03:20:38 2017 1000 1000 33204

prepare_pdf» 1229 Wed Apr 12 11:51:54 2017 ‘Sun Apr 16 03:10:27 2017 FriApr 14 12:18:352017 1000 1000 33204
Binary_Copy 620 SatApr 15 00:27:45 2017 Sun Apr 16 03:10:27 2017 Sat Apr 15 00:27:452017 1000 1000 33204

8 [Binary_Copy.py jord ip
ordil pts/Recover.py 505 Wed Apr 12 11:51:48 2017 Sun Apr 16 03:10:27 2017 FriApr 14 12:18:352017 1000 1000 33204
i p pts_with> 5041 Sun Apr 16 04:32:55 2017 Sun Apr 16 04:33:04 2017 Sun Apr 16 04:32:55 2017 [_1000] 1000 33204
jordi ip ipts_with> 837 Sun Apr 16 03:42:41 2017 Sun Apr 16 03:45:12 2017 Sun Apr 16 03:42:41 2017 1000 1000 33277
ordil ipts/Scripts_withh 227 Sat Apr 15 14:32:09 2017 Sat Apr 15 14:32:09 2017 Sat Apr 15 14:32:09 2017 1000 27 33279
jordi/ p pts_with> 3087 Sun Apr 16 03:43:42 2017 Sun Apr 16 03:45:32 2017 Sun Apr 16 03:43:42 2017 1000 1000 33277
i pts/Scripts_with» 231 Sun Apr 16 05:23:30 2017 Thu Apr 20 11:37:58 2017 Sun Apr 16 05:24:56 2017 1000 1000 33279
ip ipts_with> 3063 Sun Apr 16 05:19:29 2017 Sun Apr 16 05:51:01 2017 Sun Apr 16 05:25:18 2017 1000 1000 33277
pts/Scripts_with® 5473 Sun Apr 16 05:19:35 2017 Thu Apr 20 11:38:02 2017 Sun Apr 16 05:19:352017 1000 1000 33277
17_|Timeline glade pts/Scripts_with» 5207 Sun Apr 16 04:32:53 2017 Sun Apr 16 04:33:17 2017 Sun Apr 16 04:32:53 2017 1000 1000 33204
18 |OCR_directory3.py ipl old/o 2261 Wed Apr 12 11:51:54 2017 'Sun Apr 16 03:10:27 2017 Fri Apr 14 12:18:35 2017 1000 1000 33204
19 [State of the art_v1.docx te of the art_vid> 10053Wed Apr 12 11:51:52 2017 Sat Apr 15 16:46:13 2017 Fri Apr 14 12:18:352017 1000 1000 33204
20 timeline.odt fordi/ FM/Memory/timeline. odt 24788 Thu Apr 20 12:58:31 2017 Thu Apr 20 12:58:31 2017 Thu Apr 20 12:58:31 2017 1000 1000 33204
21_|.~lock.timeline.odt# Ihomefjordi/Escriptori/TEM/Memory/.~lock timeline, odt# 82 Thu Apr 20 12:58:31 2017 Thu Apr 20 12:58:31 2017 Thu Apr 20 12:58:31 2017 1000 1000 33204
22 |Project odt il ory!) ¢ 157967 Sun Apr 16 06:03:55 2017 Sun Apr 16 06:03:55 2017 'Sun Apr 16 06:03:55 2017 1000 1000 33204
23 |plantilla_tim_v3.doc lory/plantilla_tfm_v3.doc 224768 Wed Apr 12 11:51:48 2017 Sun Apr 16 03:10:27 2017 FriApr 14 12:18:352017 1000 1000 33204
24 |Introduction.docx emor docx 107059 Wed Apr 12 11:51:52 2017 Sun Apr 16 03:10:27 2017 FriApr 14 12:18:352017 1000 1000 33204
25
26

Image 34: Document with the results of the analysis.

The information recorded in the order that it appears to the document is the following:
name of the file, path to reach the file, size of the file in bytes, time when the last
modification has been done, time of the last time this file has been accessed, time of the
creation of the document, owner of the document (its a number associated with the user,
to check them type id in the terminal), group of the document (the same as the owner but
referring to the group), and the last is the mode which is a number that makes reference
to the permissions (read, read-write....).

jordi@jordi-VirtualBox:~/Documents/TIMELINES 1id
1d=1000(jordi) gid=1000(jordi) grups=1000(jordi),4(adm),24(cdrom),27(sudo),30(d

ip),46(plugdev),113(1lpadmin),128(sambashare)

Image 35: Owner and grup numbers.

Using the tool with the Terminal:

Running this tool from the terminal is quite simple if you are used to work with the
terminal. What you first need to do is to locate the folder where the scripts are located as
it can be seen in the picture below:

33

O ® @ jordi@jordi-VirtualBox: ~/Documents/TIMELINE

jordi@jordi-virtualBox:~$ 1s

Baixades Escriptori Imatges Plantilles Videos
Documents examples.desktop Misica Pablic
jordi@jordi-virtualBox:~$ cd Documents/

jordi@jordi-virtualBox:~/Documents$ 1s

TIMELINE

jordi@jordi-virtualBox:~/Documents$S cd TIMELINE/
jordi@jordi-virtualBox:~/Documents/TIMELINES 1s

Timeline.desktop Timeline.glade Timeline_gui.py Timeline_terminal.py
jordi@jordi-virtualBox:~/Documents/TIMELINES [}

Image 36: Locate the folder with the scripts.

Once there just type the command “python Timeline_terminal.py”. This will automatically
run the script at the terminal. To use this tool from here, you just need to answer all the
parameters that the script asks you. And after doing so it will start performing the timeline
automatically. The image below shows an example of how to use it:

@ ® A jordi@jordi-VirtualBox: ~/Documents/TIMELINE
p jordi@jordi-virtualBox:~/Documents/TIMELINES python Timeline_terminal.py
jordi@jordi-virtualBox:~/Escrip i$ 1s Welcome to the UPC forensics app. This is the Timeline tool.
image.dd lewis results_recover TFM Timeline_Results.csv
jordi@jordi-VirtualBox:~/Escriptori$ pwd
home/jordi/Escriptori Write the root folder path (ex. /root/docs):
jordi@jordi-virtualBox:~/Escriptori$ D /home/jordi/Escriptori/TFM

Write the destinetion path (ex. /root/results):
/home/jordi/Escriptori
jordi@jordi-virtualBox:~/Documents/TIMELINES [I

Image 37: Running the script from the terminal.

3.4. OCR

Optical Character Recognition (OCR), is one tool that is frequently used in digital
forensics. As its name says, this tool is in charge of reading the text of pictures or pdfs or
other type of documents to allow a search of them.

This is so important because normally, when there is a case required to analyze a lot of
information, the people in charge of the investigation can not afford the time of looking
through all the documents (also it is not totally legal to do so). So what is done in these
cases is to perform a mass search of certain key words through all the documents. The
problem is that this search can be performed if the documents are text documents, but
cannot read text that is inside images or pdf. This is the motivation why OCR is
commonly used in digital forensics.

There are several tools to perform an OCR, there are options for any operative system as
well as there are some that are free whereas some are paid to do so. In this project, we
have been working with several tools and testing them. The first one we looked at was
tesseract, a free tool that performs quite well the OCR, however the main problem is that
the user had to “prepare” the image before trying to perform the OCR. Another tools that
we have tested are ABBY and Adobe. These tools are prepared for the operative system
Windows whereas the first one is for Linux. Abby and Adobe perform much better the
OCR and also is not required to prepare the images to perform it. The main problem is
that are not free.

This tool has been divided into three parts to allow performing a mass OCR to a huge
directory of files without loosing its structure. The three parts are prepare (with replaces
white spaces in the name for “_s_” to avoid having problems with some of the commands

34

used), the second part is divide (some OCR tools do not allow converting more than one
image at the same time for example pdf of more than 1 page, so this part of the tool gets
all the pdf and divide them into pages, and all of them are saved into the same folder (the
name of the path is kept at the name of this new documents created replacing the “/” for
“ b_")) and the third part is the OCR.

The OCR included in this tool is tesseract, because it is free and because it is for Linux.
However, this tool is prepared for, if the user wants, the first steps can be performed
without doing the OCR and uses an external tool to perform it.

If you are interested in the code of the files to run this tool, in the appendix from 13 to 16
you can found all the codes of the scripts and the graphical interface to run this scripts.

ADMINISTRATOR GUIDE:

As all the other tools in this project, the operative system required is Linux. It can be just
installed in the computer or having a virtual machine with this operative system in case
the computer does not have a partition with Linux.

Apart from the operative system, this will have to have installed already some programs.
In the case of this tools, the requirements are the following: Python with its corresponding
libraries (os, time, logging, pyPdf, gi with Gtk version 3). Apart from that it is also required
to have some other tools installed: ImageMagic, Tesseract and pdfseparate. It is also
recommended to have glade installed. All this tools can be installed using the command
“sudo apt-get install xxxxxx” where xxxxxx is the name of the program required.

jordi@jordi-virtualBox:~/Escriptori$ sudo apt-get install python
[sudo] contrasenya per a jordi:
S'esta llegint 1la 1llista de paquets.. Fet

S'esta construint 1'arbre de dependéncies
S'esta llegint la informacié de 1'estat.. Fet

Image 38: Example of how to install Python.

Once all of this is ready, the tool has to be prepared in order to be used. First of all, it is
needed to get the compressed folder with all the scripts required to use the tool and unzip
it into a known location. This can be done manually just by the default program on the
operative system or to use the command “tar -xvf OCR.tar.gz”.

jordi@jordi-VirtualBox:~/Documents$ 1s

jordi@jordi-virtualBox:~/Documents$ tar -xvf OCR.tar.gz
OCR/OCR_terminal.py
OCR/OCR.desktop

OCR/ocr.glade

OCR/OCR_guti.py

OCR/
jordi@jordi-virtualBox:~/Documents$ [J

Image 39: Extract files from the compressed folder using the terminal.

Make sure to know the exact path to the location where it has been extracted the
documents. In case it is not known, using the terminal command “cd” to enter to the
proper folders until reaching the folder where the scripts have been extracted, and once
there use the command “pwd” to look for the current directory.

35

jordi@jordi-virtualBox:~$S 1s

Baixades Escriptori glade Masica Pablic testli.tiff
Documents examples.desktop Imatges Plantilles res.txt Videos
jordi@jordi-virtualBox:~$ cd Documents/
jordi@jordi-virtualBox:~/Documents$ 1s

OCR

jordi@jordi-virtualBox:~/Documents$ cd OCR/
jordi@jordi-virtualBox:~/Documents/OCRS 1s

OCR.desktop ocr.glade OCR_gui.py OCR_terminal.py
jordi@jordi-VirtualBox:~/Documents/0OCRS pwd

jordi@jordi-virtualBox:~/Documents/OCRS [}

Image 40: Look the full path to the directory of the scripts with the command
"owd".

This path it is necessary to make the script runnable from anywhere. To do so, it is
necessary a text editor or if it is preferred to read it from the terminal. Open a text editor
like gedit and once opened, oped the file called “OCR.desktop”. It is essential to do it that
way since this file cannot be opened by double-clicking on it (it is prepared to execute the
scripts when clicking on it).

© utilitzats recentment | ¢ @ jordi Documents = OCR

X Inici Nom -~ Mida Modificat

[Escriptori ocr.glade 7,2kB dc

<, Baixades - :
OCR_qui.py 5,4kB Ahir

[Documents OCR_terminal.py 2,1kB Ahir

@ Imatges

dd Musica

'@ Videos

{) Paperera

M sf TFM a

Codificacié de caracters: | Detectat automaticament v Tots els fitxers v

Cancel-la Obre

Image 41: Opening OCR.desktop from gedit.

Now, this document has to me modified using the proper path of the location of the
scripts. The lines that have to be replaced are the ones that start with “Exec=" and
“Path=", and the path that there is afterwards has to be replaced with the new location
obtained using “pwd”. It is important not to modify the name of the script at the end of the
line exec. Once done that just save the file with the same name.

36

[Desktop Entry]
Name=0CR

Exec= OCR_gui.py
Path=/home/jordi/Es¢riptori/TFM/Forensics_Scripts/Scripts_with_GUI/OCR/
Terminal=false
Type=Application

[Desktop Entry]
Name=0CR
Exec=/home/jordi/Do¥uments/OCR/OCR _qui.py
Path=
Terminal=false
Type=Application

[Desktop Entry]
Name=0CR
Exec=/home/jordi/Documgnts/OCR/OCR_gui.py
Path=/home/jordi/Documéhts/OCR/|
Terminal=false

Type=Application

Image 42: Modify the document "OCR.desktop" with the new path.

Once all of this is done, just move or copy the file “OCR.desktop” to anywhere in order to
execute the scripts with the GUI (Graphical User Interface). Take into account that if this
is moved to the account of another user, make sure it have the rights to execute scripts,
otherwise it will not work. Consider as well that the icon of this file won’t show the entire
name, just “OCR”.

USER GUIDE

This tool can be used in two different formats: the first one is with the GUI and can be run
just by doubleclicking into the icon “OCR”. And the second one is a version that does not
need GUI and is completely run using just a terminal.

Using the tool with the GUI:

To run this tool it is really easy and intuitive. First of all make double click on the icon of
the OCR will open the main window of the tool (see the picture below).

4 1 Carpetade l'usuari Documents | OCR)

@ Inici
[l Escriptori @J
<, Baixades
[@ Documents ocr.glade OCR OCR_qui.py
A1 Imatges
. @) ® ® @ OCR tool
dd Mdsica \
- Videos OCR TOOL
{© Paperera OCR_terminal.py Folder:| Choose
M sF TFM a PREPARE select folder Ffirst
DIVIDE do prepare first

+ Altres ubicacions

piced OCR do divide first

‘ «OCR» seleccionat (131 bytes)

Image 43: Double click to "OCR" to run the script woth the GUI.

37

As it can be observed, the window that appears has 4 options, these options have to be
done in the correct order, otherwise the program may have problems. First of all select
the folder that contains the directory to analyze. It can be just typed into the text entry or
just clicking into the button “choose” will open another window to select the directory. If it
has been used the second option the name will be written there automatically.

) Select a folder

© utilitzats recentment | ¢ X jordi = [Mm Escriptori) cz
@ Inici Nom - Mida Modificat
W Escriptori | & lewis 20 b

i, Baixades -

; ix

N TFM 20abr
[@ Documents

@A Imatges

dd Musica

'@ Videos

M sf TFM a

[OCR

+ Altres ubicacions

Cancel-la Select

Image 44: Window to choose the path to the folder.

OCR tool

OCR TOOL

Folder:| /home/jordi/Escriptori/testing_folder | Choose

PREPARE READY!
DIVIDE do prepare first
OCR do divide first

Image 45: The text entry is filled automatically when clicking "Select”.

Once this is done it is important not to modify this path while performing the other
operations, since doing so may crash the program. Once this is done, as can be observe
at the image, the option prepare is ready. What does this option is to replace all the white
spaces in the names of the folders by “ s _". It is necessary to do so to perform the other
actions. Just by clicking to the button in will automatically do so.

38

e OCR TOOL

Folder:| /home/jordi/Escriptori/testing_folder | Choose
recover_ s ok s_

version.pdf PREPARE DONE!
DIVIDE READY!
OCR do divide first

Image 46: Preparing the folder names by clicking on "PREPARE".

As it can be seen in the picture, all the names with spaces have been modified. Now it
comes another step. Getting all the pdf files, divide them and put them in the same folder
to make them ready to pass an OCR. Clicking the button “DIVIDE” automatically does
this.

All of these pages will be saved into a new folder that will be created called “all_pdf_text”.

The names of this files will contain the path of the original document into its name
replacing the “/” for “_b” in order to be able to connect this results to the original ones.

testing_folder = all_pdf text »

Escriptori

4 1Y Carpetade l'usuari

@ i : [
[Escriptori \ g ‘
<, Baixades
R =

ocuments 00!
bo t = OCR tool
@ Imatges _b_home bjordi_ _b_home_b_jordi_ b ho OCR TOOL

o b_Escriptori_b_ b__Escriptori_b_ b_Es
dd Musica testing_folder_b_... testing_folder_b_... testincFolder: /home/jordi/Escriptori/testing_folder | Choose
@ Videos =1 . PREPARE DONE!
{) Paperera ’ = ‘ = DIVIDE DONE!
m sfTEM a [’ OCR READY!

+ Altres ubicacions ’ ‘
_b_home_b_jordi_ _b_home_b_jordi_ _b_home_b_jordi_

b_Escriptori_b_ b_Escriptori_b_ b_Escriptori_b_
testina folder b ... testina folder b ... testina folder b ...

Image 47: Dividing the pdf files into pages and saving the results into
"all_pdf_text" by clicking on "DIVIDE".

Now there is just one last step: performing the OCR. If at this point the user prefers to use
another program to perform the OCR, just do it but conserving the name of the files
exactly as it is (in order to be able to use the search tool).

If that is not the case, the user can also use the OCR tool provided here, “tesseract”.
Clicking on the last button “OCR” will do 2 things. First what it will do is to convert the pdf
pages into images “tiff’ in order to enhance the quality of the OCR, and to allow using
tesseract since it does not work with pdf files. The second thing it does is the OCR. The
results are saved into the “all_pdf_text” folder and all the temporary files (pdf and tiff) are
deleted, so the folder will only contain the .txt files.

This last action may last longer than the others. The time of all this operations will mainly
depend basically in the amount of files that the user wants to analyze.

39

4 1 Carpetade l'usuari

Escriptori | testing_folder = all_pdf_text »

@ Inici
[m Escriptori
<, Baixades
[Documents _b_home b_jordi_ _b_home_b_jordi_ _b_HRSKSEEENeIS AL
b_Escriptori_b_ b_Escriptori_b_ b_t
@ Imatges testing_folder b_... testing folder b_... testir OCR TOOL
dd Msica Folder: /home/jordi/Escriptori/testing_folder | Choose
‘8| Videos PREPARE DONE!
@ Paperera DIVIDE DONE!
& sf_TFM = _b_home_b_jordi_ _b_home_b_jordi_ bt OCR DONE!
b_Escriptori_b_ b_Escriptori_b_ b_Escriprorip—
+ Altres ubicacions testing_folder b_... testing_folder b_... testing_folder_b_

hola s cassola_b_
rec ks_
ver .Ext

Image 48: Performing the OCR.

Using the tool with the Terminal:

Running this tool from the terminal is quite simple if you are used to work with the
terminal. What you first need to do is to locate the folder where the scripts are located as
it can be seen in the picture below:

M S @ jordi@jordi-VirtualBox: ~/Documents/OCR

jordi@jordi-virtualBox:~$ 1s

Baixades Escriptori glade Masica Public testl.tiff
Documents examples.desktop Imatges Plantilles res.txt Videos
jordi@jordi-virtualBox:~$ cd Documents/

jordi@jordi-virtualBox:~/Documents$ 1s

OCR

jordi@jordi-vVirtualBox:~/Documents$S cd OCR/
jordi@jordi-virtualBox:~/Documents/OCRS 1s
OCR.desktop ocr.glade OCR_gui.py OCR_terminal.py

Image 49: Locate the folder with the scripts.

Once there just type the command “python OCR_terminal.py”. This will automatically run
the script at the terminal. To use this tool from here, you just need to answer all the
parameters that the script asks you. And after doing so it will start performing the timeline
automatically. The image below shows an example of how to use it:

40

jordigjordi-VirtualBox:~/Docunents /OCRS python OCR_terminal.py
elcome to the UPC forensics app. This is the Massive OCR tool.

rite the directory path (ex. Jroot/docs):
home/jordi/Escriptori/testing_folder

ype an order (options: PREPARE, DIVIDE, OCR, EXIT):
PREPARATION DONE!

ype an order (options: PREPARE, DIVIDE, OCR, EXIT):
DIVIDE

DIVISION DONE!

Type an order (options: PREPARE, DIVIDE, OCR, EXIT):
Source OCR Engine v3.04.01 with Leptonica

esseract Open Source OCR Engine v3.04.01 with Leptonica
age 1
esseract Open Source OCR Engine v3.04.01 with Leptonica

esseract Open Source OCR Englne v3.04.01 with Leptonica
age 1

esseract Open Source OCR Engilne v3.04.01 with Leptonica
age 1

esseract Open Source OCR Engine v3.04.01 with Leptonica
Page 1

Detected 128 diacritics

esseract Open Source OCR Englne v3.04.01 with Leptonica

esseract Open Source OCR Engine v3.04.01 with Leptonica
age 1

Detected 184 dlacritics

esseract Open Source OCR Engine .04, with Leptonica

Tesseract Open Source OCR Engine .04, Leptonica
Page 1
Tesseract Open Source OCR Engine 048, Leptonica
Page 1
Tesseract Open Source OCR Engine . . Leptonica
Page 1
Tesseract Open Source OCR Engine .04, Leptonica
Page 1
Tesseract Open Source OCR Engine .04, Leptonica
Page 1
Tesseract Open Source OCR Engine 04, Leptonica

Type an order (options: PREPARE, DIVIDE, OCR, EXIT):
EXIT

Goodbye

jordigjordi-VirtualBox:~/Documents /OCRS l

Image 50: Running the script from the terminal.

Take into account that running the script from the terminal will allow the user to perform
just one action as well, but in this case it can skip some steps or modify the order. It is
strongly recommended not to do so unless the user really knows what it is doing since it
may have some problems with it.

41

3.5. eDiscovery

Once all the operations of the forensics have been performed, it remains the last step,
which consists on analyzing the results in order to get the evidences of the case. This
action is called eDiscovery and consists on searching key-words among all the
documents that are being investigated, in order to find those ones of our interest.

In our case, we have created a GUI (graphical user interface) in order to make simpler
this task. In the case of this tool we have not created an script to use the program from
the terminal since the use of the GUI is to avoid exactly so (since if there are a lot of files
it may be difficult to work with them from a terminal).

This script is really simple, as input it is required to select the directory of documents .txt
to analyze. and just type a word to search. This script will automatically check all the
content of the txt files and will show up a list with some information about each document
which contains the word: the name of the document, the path and the page number
where the word has been encountered.

It is really important when using this tool that the names of the txt files in the folder is the
one obtained by our other tool (the OCR tool). This tool is prepared to analyze. the output
of the other tool, if the name of the documents do not contain the path to the original file,
the program may crash.

Once the search has been performed there are some options to do with the current
results before starting another search. This options are 3: open the txt file, open the
original pdf file and save the list with the results into a .csv document.

At the start of the tool it will ask which search tool to you want to use: “grep” or “gawk”.
This are the Linux commands used to perform the analysis. Each one with its own
advantages and drawbacks explained below.

If you are interested in the code of this tool check the appendix files from 17 to 22. There
you will be able to find all the scripts used to run the tool as well as the graphical
interface.

ADMINISTRATOR GUIDE:

In order to use this tool, as well as all the tools in this project, the operative system of the
computer must be Linux. If the computer that the user is going to use has another
operative system, it will have to use a virtual machine with a Linux. system installed in
order to run this tool.

This tool apart from the operative system also requires other programs to be installed:
Python with its corresponding libraries (subprocess, os, tempfile, ntpathos, time, logging
and gi with Gtk version 3). To use the “gawk” tool it has to be installed as well. It is also
recommended to have glade. All this tools can be installed using the command “sudo apt-
get install xxxxxx” where xxxxxx is the name of the program required.

jordi@jordi-virtualBox:~/Escriptori$ sudo apt-get install python
[sudo] contrasenya per a jordi:
S'esta llegint la llista de paquets.. Fet

S'esta construint 1'arbre de dependéncies
S'esta llegint la informacidé de 1'estat.. Fet

Image 51: Example of how to install Python.

42

Once the computer has all the requirements installed, it is ready to prepare the tool for
working. First of all, it is needed to get the compressed folder with all the scripts required
to use the tool and unzip it into a known location. This can be done manually just by the
default program on the operative system or to use the command “tar -xvf
EDISCOVERY .tar.gz”.

jordi@jordi-virtualBox:~/Documents$ 1s

jordi@jordi-virtualBox:~/Documents$ tar -xvf EDISCOVERY.tar.gz
EDISCOVERY/addvante logo.png
EDISCOVERY/Search.py
EDISCOVERY/logo_petit.png
EDISCOVERY/time_grep.log
EDISCOVERY/eDiscovery.png
EDISCOVERY/eDiscovery.desktop
EDISCOVERY/Search.glade
EDISCOVERY/icone AddVANTE. jpg
EDISCOVERY/logo AddVANTE.png
EDISCOVERY/time_gawk. log
EDISCOVERY/eDiscovery_petit.png
EDISCOVERY/Grep_eDiscovery.py
EDISCOVERY/mini.png

EDISCOVERY/
EDISCOVERY/eDiscovery.glade
EDISCOVERY/Gawk_eDiscovery.py
jordi@jordi-virtualBox:~/Documents$ [

Image 52: Extract files from the compressed folder using the terminal.

You have to know the exact location where the scripts have been unzipped. If you do not
know it, you can use the terminal command “cd” to enter to the proper folders until
reaching the folder where the scripts have been extracted, and once there use the
command “pwd” to look for the current directory.

jordi@jordi-virtualBox:~$ 1s

Baixades Escriptori glade Masica Public testl.tiff
Documents examples.desktop Imatges Plantilles res.txt Videos
jordi@jordi-virtualBox:~$ cd Documents/
jordi@jordi-VirtualBox:~/Documents$ 1s

DISCOVERY

jordi@jordi-virtualBox:~/Documents$ cd EDISCOVERY/
jordi@jordi-VirtualBox:~/Documents/EDISCOVERYS s

addvante_logo.png eDiscovery.png logo_AddVANTE.png Search.py
eDiscovery.desktop Gawk_eDiscovery.py 1logo_petit.png time_gawk.log
eDiscovery.glade Grep_eDiscovery.py mini.png time_grep.log
eDiscovery_petit.png 1icone_AddVANTE.jpg Search.glade
jordi@jordi-VirtualBox:~/Documents/EDISCOVERYS pwd

jordi@jordi-virtualBox:~/Documents/EDISCOVERYS [}

Image 53: Look the full path to the directory of the scripts with the command
"pW n

The path to the location of the scripts is required to make the script runnable from any
location with the file “.desktop”. To make it ready just open the file “eDiscovery.desktop”
with a text editor. First start the text editor and open the document from there, since if you
try to open it by clicking on it it will just try to run the script.

Once you have the document opened it has to me modified using the proper path of the
location of the scripts. The lines that have to be replaced are the ones that start with

43

“‘Exec=" and “Path=", and the path that there is afterwards has to be replaced with the
new location obtained using “pwd”. It is important not to modify the name of the script at
the end of the line exec. Once done that just save the file with the same name.

[Desktop Entry]

Name=eDiscovery

Exec= Grep_eDiscovery.py
Path=/home/jordi/Epcriptori/TFM/Forensics_Scripts/Scripts_with_GUI/EDISCOVERY/
Terminal=fa

Type=Application

[Desktop Entry]

Name=eDiscovery

Exec=/home/jordi/D6cuments /EDISCOVERY/Grep eDiscovery.py

Path

Terminal=f [

Type=Application

[Desktop Entry]

Name=eDiscovery

Exec=/home/jordi/Documgnts /EDISCOVERY/Grep_eDiscovery.py
Path=/home/jordi/Documénts /EDISCOVERY/

Terminal=f

Type=Application

Image 54: Modify the document "eDiscovery.desktop” with the location of the
script.

Once all of this is done, just move or copy the file “eDiscovery.desktop” to anywhere in
order to execute the scripts with the GUI (Graphical User Interface). Take into account
that if this is moved to the account of another user, make sure it have the rights to
execute scripts, otherwise it will not work. Consider as well that the icon of this file won'’t
show the entire name, just “eDiscovery”.

USER GUIDE

To run this tool it is really simple. In order to start using the tool just make double click on
the icon of the “eDiscovery” and this will start the tool (see the picture below). It can also
be run if you are in the terminal at the folder with the scripts by typing the bash command
“python search.py”.

4 1Y Carpetadel'usuari Documents EDISCOVERY)

4 Inici
[Escriptori
<, Baixades =
AddVANTE ™ \&
ocuments addvante_logo.png eDiscovery eDiscovery.glade

hbo t dd [Di Di lad
[Imatges ,1
dd Mdsica

rY-Yo
»m Videos SEARCH tool
{ Paperera eC SEARCH ry.
M sf TFM a GREP search Choose

GAWK search Choose
+ Altres ubicacions

==) AdAvANTE ‘ «eDiscovery» seleccionat (151 bytes)

Image 55: Running the search tool with the GUI just clicking on "eDiscovery" icon.

The two options that appear are the 2 tools to perform the search. The first one “grep” is
faster and more efficient, however it just accept one single word, so if the user wants to
search more words will have to use the search several times. The second option “gawk” it
is much slower but allows the user to perform logical searches so more than one word
can be searched at the same time. The proper way of writing the words if the user wants

44

to use the logical search is the following: (/word1/ && /word2/) to perform a logical AND
search with the 2 words and (/word1/ || /word2) to perform the search with a logical OR.
More than one logical operator can be used but be careful to maintain the proper
nomenclature.

Once selected the search tool, both tools look and work exactly the same way. The main
window of the tool can be seen in the picture below:

Scripts_with_GUI EDISCOVERY !

@ Inici
[Escriptori

¥ Baixades Addvante eDiscovery

[Documents * 1
@ e . AddVANTE " (&
dd Msica 6

Select directory with OCR results:

/home/addvante/Desktop/OCRMassiu Choose Directory
@ Paperera eDis¢ Insert word to search (regular exp):

»m Videos

Filter
M sf TFM
- Results:

+ Altres ubicacions OPEN PDF OPEN TXT SAVE CSV

Add File Directory Num.Page

Image 56: Main window of the search tool once the search command has been
selected.

As mentioned before, first of all the program requires to select an input folder with the txt
files that the user wants to analyze. Remember to take into account that the names of
those files must contain the path of the original file in the name (this is the folder that the
OCR tool provides as its output).

To select this directory, it can be done in two ways: one simply type the path into the
entry text (be careful of not miss-spelling the path if you use it like this) or the other is just
clicking the button select, which will open another window to select the directory, and will
fill the field automatically once the user clicks in the button “Select”.

45

O ® @ select afolder

© utilitzats recentment | ¢ & jordi [Escriptori = testing_folder » ()

ar Inici Nom -~ Mida Modificat

[Escriptori i all_pdf_text dl

. E i hola_s_cassola dl

~ Baixades i
s patata 3 mai

[Documents

[Imatges

dd Musica

'm Videos

M s TFM a

@ EDISCOVERY

+ Altres ubicacions

Cancel-la Select

Image 57: Window to choose the path to the folder containing the txt files to
analyze.

Py

= () Addvante eDiscovery

AddVANTE * @~

Select directory with OCRresults:
/home/jordi/Escriptori/testing_folder/all_pdf_text Choose Directory
Insert word to search (regular exp):

Filter
Results:

OPEN PDF OPEN TXT SAVE CsV

File Directory Num.Page

Developed by ISG-UPC

Image 58: The text entry is filled automatically when clicking "Select".

Once this is done, it can start to search which txt documents (and its associated pdf file
before performing the OCR) contain certain key word. To do so it is really simple, just
type the word you want to search into the field where it says “Insert the word to search
(regular exp)” and press the button “Filter”. This may take some time if there are lots of
documents to analyze.

—

Addvante eDiscovery

AddVANTE ' (&~

Select directory with OCR results:

/home/jordi/Escriptori/testing_folder/all_pdf text Choose Directory

Inseckaward to search (reqular exp):

(computer) ———> Filter

Image 59: Typing the word to search (in this example "computer") and pressing
the filter button to start the search.

46

Once the search is done, the results will appear in a list below, where some information
of them can be found: the name of the original document, the path to the original
document and the number of the page where the word has been found.

Py

=) Addvante eDiscovery

AddVANTE * (@~

Select directory with OCRresults:

/home/jordi/Escriptori/testing_folder/all_pdf_text Choose Directory
Insert word to search (regular exp):
computer Filter
11 results:

OPEN PDF OPEN TXT SAVE CSV
File Directory Num. Page
Intro_s_duction /home/jordi/Escriptori/testing_folder/patata/hola 1
Intro_s_duction /home/jordi/Escriptori/testing_folder/patata/hola 1
Intro_s_duction /home/jordi/Escriptori/testing_folder/patata/hola 1
Intro_s_duction /home/jordi/Escriptori/testing_folder/patata/hola 1
timeline /home/jordi/Escriptori/testing_folder/patata/Cass_s_Hola 1
timeline /home/jordi/Escriptori/testing_folder/patata/Cass_s_Hola 1
timeline /home/jordi/Escriptori/testing_folder/patata/Cass_s_Hola 1
recover_s_ok_s_version /home/jordi/Escriptori/testing_folder/hola_s_cassola 1
recover_s_ok_s_version /home/jordi/Escriptori/testing_folder/hola_s_cassola 1
recover_s_ok_s_version /home/jordi/Escriptori/testing_folder/hola_s_cassola 1

Developed by ISG-UPC

Image 60: Results shown after the search has finished.

As mentioned before, once the results are shown there are some options to do with them:
clicking the button “open txt” will open with the default text editor the document where the
word has been found, pressing the “open pdf’ button will open the original pdf file and
pressing the button “save csv’ will create a document called “results_[the word
searched]” and it will be saved at the folder containing the scripts. This document will
contain the same information that is shown on the program.

© It: ter.csv - LibreOffice Cal + @
results_computer.csv - LibreOffice Calc TE ‘ ~

H-0-B- D8R XxXDa-i

Liberationsans | v/ (10 v B 7 U Ty - W =N 1 $ % 0 » choose Direc
A1 v fx T = [ile = Filter
A B c [b [E F [
WFie [Directory. Num. Page B
Intro_s_duction 1
I 1 l L
ider 1
t i ting_folder 1 I
Ihome/jordi/Escriptoriftesting_folder/patata/Cass_s_Hola 1
Ihome/jordi/Escriptoriftesting_folder/patata/Cass_s_Hola 1
1

& | results_computer

Full 1de 1 Per defecte T Suma=0 - o + | 100%

buERys python crep < AGAVANTE
Gtk-Message: GtkDiald —
SET: Searchings . /home/jordi/Documents

43 Msica

1

1
(AddVANTE AddVANTE
Grep_eDiscovery.py: - 8
20 without calling g JEREIN |cone_A_ddVANTE. logo_A:dVANTE. logo_petit.png

ow the size to alloc e

ﬁaving {@ Paperera
M sfTFM a
+ Altres ubicacions AJdVANTE " \ &

mini.png results_computer.
csv

«results_computer.csv» seleccionat (825 bytes)

Image 61: Document with the results saved.

47

4. Results

In this part of the project we will evaluate the proper performance of each of the tools. To
do so, we have decided to compute the time that each of the tools requires to analyze
1GB of information. We will compute the time of both using the GUI and using the
terminal version.

Binary Copy |Timeline |File Carving OCR

GUI ~489s ~7s ~17s Prepare ~0s
Divide ~157s
OCR ~427

Terminal ~473s ~7s ~17s Prepare ~0s
Divide ~147s
OCR ~424s

Table 1: Time required for the tools to analyse 1GB of information.

As it can be observed, the difference between the time obtained using the script with the
GUI is quite similar to the time obtained using the terminal. The main advantage of the
first one is that it can be used by anybody without knowledge of digital forensic analysis.
The advantage of the second one is that it can be run in background in the terminal while
doing other things.

The eDiscovery tool has not been included in this table since it does not have the option
of running it from the terminal. In this tool we have compared the two different ways if
searching: using the Linux command “grep” or “gawk”. The time results are in the table
below:

Grep ~0.07s

Gawk ~0.65s

Table 2: Grep and gawk time searching into 100 documents.

As it can be observed, using gawk instead of grep make the search 10 times slower. The
advantage in using gawk instead of grep is that, as it has been mentioned during the
project, it allows the user to perform logical searches with more than one word, whereas
using grep it only allows to enter one single word.

48

5. Budget

In this point of the Master Thesis we are going to talk about the economic budget
required to do this project taking into account the hours required to design and program
all of the tools. We will talk as well of the economical cost of preparing the tool once all
the scripts have been done and also the cost of the use of the tools.

First of all, lets see the costs of creating the tools. As it has been seen, there are 5 tools.
In order to simplify the costs of designing and programming the tools, we will consider
that the time needed in order to create each of the tools is 1 month. To get a brief idea of
the cost that this might suppose we will consider that the salary of the
telecommunications engineer is around 2000€/month. If we compute the cost of the
creation of the tools this is: 5 tools * 1 tool/month * 2000€/month = 10000€. Since all of
the tools use free software, there are no additional costs on this point.

Now lets talk about the installation cost. This part can also be done by another engineer
but the time required to install the tools into a computer is really low since the procedure
is really simple. This installation time is around 1-2 hours per computer. Assuming that
the salary of this engineer may be between 15-20€/hour, we will neglect this cost taking
into account the difference order of magnitude of this cost and the others of the project.

To end with the economical analysis, lets see the cost of operating this tools. In this point
we will compute 2 costs in order to see the differences between the cost of a current
forensic case and the cost using the tools by a person that is not a forensic specialist.
The salary that a digital forensic specialist may earn is about 3000€/month whereas a
normal employee may earn 1500€/moth. Taking that into account, if we consider that the
required time to analyze the artifacts is “the same”, in 7 months the money required to
create the tool will be recovered.

In the table below, it can be observed the economic calculations that has been done to
have a more clear sight of the amounts we are talking about:

Employees Time Salary TOTAL

Design and 1 5 month 2000€/month 10000€
programming cost

Installation cost 1 1-2 hours 15€/hour ~30€

Use cost 1 | e 1500€/month | 1500€/month

Table 3: Cost of the project.

Month working 5 6 7 8

49

This tool usr 7500€ 9000€ 10500€ 12000€
Specialist 15000€ 18000€ 21000€ 24000€
Difference 7500€ 9000€ 10500€ 12000€

Table 4: Cost of the use of the tool.

So taking into consideration the results obtained from here, if the intention is that this tool

will be used for more than 7 month, it will be economically viable.

IMPORTANT: these economical calculations have been done in order to prove the
economic viability of the system. However, the aim of this project is not to replace the
forensics specialist by people without knowledge plus this tool, but is to provide the
possibility for places where there are no forensic specialist to perform investigations in a

proper way.

50

6. Conclusions and future development

To end with this project, first of all lets make a brief summary of all the contents that have
been commented on this project. We have started explaining what is digital forensics and
the current tools that nowadays are being used to perform the analysis. Apart from that,
we have take a look into the different operations that have to be done when performing a
forensic analysis. These tools that have been studied in this project are the binary copy,
the timeline, the file carving, the OCR and the eDiscovery.

We have seen also the economic impact of implementing this tool. However, as it has
already been commented, the aim of this project was to create some scripts with a GUI
that will make the process easy in places where there are no digital forensic specialists.

Since all the tools that have been analyzed now, they all have its script with its
corresponding GUI (which is friendly enough in order to be used by a non-specialist
person that may need to perform the analysis), we can say that the first part of the project
has been accomplished.

One of the results that has been observed is that this process is quite slow when the user
is required to analyze or work with really huge amount of information and documents.
These tools are prepared specially for this cases (since in a case that there is really few
documents to analyze it could be done manually), however due to the really big amount
of data that this tools may have to process, it can turn to be too slow.

Talking about the time required to perform these analysis, one recommendation if one
day this project is continued could be to allow an option to allow the run in background of
the terminal the script. This can be done easily with the Linux command “nohup”. Actually
that is the reason that there is a script to run the tools from the terminal without GUI. This
has been tested with this script and its really useful since the user can have a server
performing the analysis in background while doing other things. The main problem with
this is that the parameters like paths to the folder will have to be from the initial point in
the script so it will be less flexible when having to operate with them.

Another recommendation that would be interesting to be done when continuing this
project is to make more efficient the scripts. This scripts have been done in a simple way
in order to be easy to use for the user, with the GUI, but it has not been taken much into
account if this is the most efficient way of performing the actions. This may not save
much time in small analyses but it will be noticed when working with really big amount of
documents.

If we focus in specific scripts, some of them could also be enhanced such as the OCR,
since now only converts pdf but with the same command it is possible to convert pictures
so it may be another important thing to do when continuing the project. Apart from that,
as it has been seen in the state of the art, there are some tools such as hash filter or tools
for multimedia file analysis that has not been implemented and that could be interesting
to be implemented in a future.

The second part of the project was to create a full platform into a virtual machine as it
was proposed by Jordi Blanco in his project. As it was mentioned in the point 1.5 of this
project (deviations from the initial plan), this part has not been done. All of those tools can

51

be used anyway without this platform, however creating it will make much more easy to
operate with the tools as well as reducing the time needed from the administrator to
prepare the tools.

Implementing that platform is one of the main important things to do when continuing the
project. There are to reasons for it. The first one is that it will be much more easy to have
all the files related to a certain case located, it could be done a full integrated tool with all
the other tools integrated to it, and it will be much easier to investigate after having been
analyzed. The second reason is that it would allow to put all the results on the folder
according to its case and this folder will be related to the folder with the documents being
investigated. This does not seem much important but it could allow creating scripts that
just selecting the case, it could be run any of the tools in background since it will know the
location of the documents and will not have to be entered by the user.

As Jordi Blanco suggested on his project, all of this tools could be integrated in the same
platform. This platform could be a virtual machine with the Linux OS and could allow to
use all these scripts that has been created in this project in order to create the platform as
explained before in this point. Then this may solve the problem of remote digital forensics
since distributing a virtual machine image is easy and will make the digital forensics
accessible at any part of the world.

52

Bibliography

A thorough reference list such as that shown in the following examples: Conference
paper [1], journal paper [2], book [3], standard-1 [4], standard-2 [5], online reference [6],
patent [7], M.S. thesis [8] and Ph.D. dissertation [9].

[1]

[2]

[3]
[4]
[3]
[6]

[7]

J. Blanco, “Analisis de alternativas, desarrollo y puesta en marcha de una plataforma
para analisis forense digital remoto”, Final Project, ETSETB, 2016.

Brian Carrier. “Open Source Digital Forensics Tools: The Legal Argument”. Stake inc,
2002.

“Python-Forensics”, 2017. [Online] Available: http://python-forensics.org/

Brian Carrier. “Autopsy”, 2017. [Online] Available: https://www.sleuthkit.org/autopsy/

“EnCase”. [Online] Available: https://www.guidancesoftware.com/es/encase-forensic

GitHub, “tesseract-ocr”, 2017. [Online] Available: https://github.com/tesseract-
ocr/tesseract/wiki

CGSecurity, “PhotoRec”, 2016. [Online] Available:
http://www.cgsecurity.org/wiki/PhotoRec Data Carving

53

Appendices

Appendix 1. Binary copy python code to work from the terminal

#!/usr/bin/env python
import os, logging, time

logging.basicConfig (filename="'time binarycopy terminal.log', level=loggi
ng.DEBUG, format="'% (asctime)s % (message)s')

print "Welcome to the UPC forensics app. This 1is the Binary Copy
tool.\n"

devname=raw_input ("\nEnter the device name (sdbl):\n")

destroute=raw_input ("\nWrite the destinetion route
(/home/jordi/escriptori) :\n")

startTime = time.time ()
#Create hash original device.

commandline="sudo md5sum /dev/"+devname+" >
"+destroute+"/hashoriginal.txt"

os.system (commandline)

#Create binary copy.

commandline="sudo dd if=/dev/"+devname+" of="+destroute+"/image.dd"
os.system (commandline)

#Create hash binary copy.

commandline="sudo md5sum "+destroute+"/image.dd >
"+destroute+"/hashcopy.txt"

os.system (commandline)

endTime = time.time ()
duration = endTime - startTime
logging.info ('Timeline Duration: ' + str(duration) + ' seconds')

Appendix 2. Binary copy python code to work with the GUI

#!/usr/bin/env python

import logging, time, sys, os, stat, time, hashlib, argparse, csv, gi
gi.require version ("Gtk","3.0")

from gi.repository import Gtk

from gi.repository import Gdk

class binary copy () :

54

def init (self):
self.builder=Gtk.Builder ()
self.builder.add from file("Binary Copy.glade")
self.win=self.builder.get object ("binary copy window")
self.win.connect ("delete-event",Gtk.main quit)
self.win.set title("Binary Copy tool")
self.win.set resizable(True)
self.win.set default size (400,50)
self.win.move (400,200)
copyButton = self.builder.get object ("but copy")
copyButton.connect ("clicked", self.do copy)
button res = self.builder.get object ("but results")

button res.connect ("clicked",self.get result)

def run(self) :
self.win.show all()

Gtk.main ()

def get result (self, widget):

self.open dialog=Gtk.FileChooserDialog ("Select a
folder",None, Gtk.FileChooserAction.SELECT FOLDER, (Gtk.STOCK CANCEL,
Gtk.ResponseType.CANCEL, "Select", Gtk.ResponseType.OK))

self.open dialog.set default size(800,400)

self.TYPE="Results"

self.open dialog.connect ("response",self.open dir dialog)
self.open dialog.show ()

self.win.hide ()

def do copy(self, widget):

logging.basicConfig (filename="'time binarycopy gui.log',6 level=logging.DE
BUG, format="% (asctime)s % (message)s')

startTime = time.time ()

result path = self.builder.get object ("text results")
destroute=result path.get text ()

dev = self.builder.get object ("text dev")

devname=dev.get text ()

55

md5orcmd="sudo md5sum /dev/"+devname+" >
"+destroute+"/hashoriginal.txt"

os.system (md5orcmd)

ddcmd="sudo dd if=/dev/"+devname+"
of="+destroute+"/image.dd"

os.system (ddcmd)

md5cpcmd="sudo md5sum "+destroute+"/image.dd >
"+destroute+"/hashcopy.txt"

os.system (md5cpcmd)

endTime = time.time ()

duration = endTime - startTime

logging.info ('Binary Copy Terminal Duration: ! +
str (duration) + ' seconds')

def open dir dialog(self,dialog, response id):
open_dialog=dialog

if response id==Gtk.ResponseType.OK:

self.directory=open dialog.get uri().replace("file://","")
self.open dialog.hide ()
self.win.show ()
self.win.move (400,200)

result path =
self.builder.get object ("text results")

result path.set text(self.directory)

elif response id==Gtk.ResponseType.CANCEL:
self.open dialog.hide ()
self.win.show ()

self.win.move (400,200)

print "Welcome to the UPC forensics app. This 1is the Binary Copy
tool.\n"

binary copy script=binary copy ()

binary copy script.run/()

Appendix 3. Binary copy GUI glade code

<?xml version="1.0" encoding="UTF-8"?>

56

<!-- Generated with glade 3.20.0 -->
<interface>
<requires lib="gtk+" version="3.12"/>
<object class="GtkWindow" id="binary copy window">
<property name="can focus">False</property>
<child>
<object class="GtkBox" id="box1l">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="orientation">vertical</property>
<child>
<object class="GtkLabel" id="T">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="label" translatable="yes">BINARY
COPY</property>

<attributes>

<attribute name="font-desc" value="Abyssinica SIL Bold
lO"/>

<attribute name="weight" value="ultraheavy"/>
<attribute name="scale" value="3"/>
</attributes>
</object>
<packing>
<property name="expand">True</property>
<property name="fill">True</property>
<property name="position">0</property>
</packing>
</child>
<child>
<object class="GtkGrid">
<property name="visible">True</property>
<property name="can focus">False</property>
<child>
<object class="GtkLabel" id="labell">
<property name="visible">True</property>

<property name="can focus">False</property>

57

<property name="label"
translatable="yes">DEVICE</property>

</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">0</property>
</packing>
</child>
<child>
<object class="GtkEntry" id="text dev">
<property name="visible">True</property>
<property name="can focus">True</property>
<property name="hexpand">True</property>

<property name="text"
translatable="yes">sdbl</property>

<property name="placeholder text"
translatable="yes">sdbl</property>

</object>
<packing>
<property name="left attach">1</property>
<property name="top attach">0</property>
</packing>
</child>
</object>
<packing>
<property name="expand">False</property>
<property name="fill">True</property>
<property name="position">1</property>
</packing>
</child>
<child>
<object class="GtkGrid" id="gridl">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="row spacing">1</property>
<property name="column spacing">4</property>

<child>

58

<object class="GtkLabel" id="label2">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="label" translatable="yes">Results
Directory</property>

</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">0</property>
</packing>
</child>
<child>
<object class="GtkEntry" id="text results">
<property name="visible">True</property>
<property name="can focus">True</property>
<property name="hexpand">True</property>
</object>
<packing>
<property name="left attach">1</property>
<property name="top attach">0</property>
</packing>
</child>
<child>
<object class="GtkButton" id="but results">

<property name="1label"
translatable="yes">Choose</property>

<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
</object>
<packing>
<property name="left attach">2</property>
<property name="top attach">0</property>
</packing>
</child>
</object>

<packing>

59

<property name="expand">False</property>
<property name="fill">True</property>
<property name="position">2</property>
</packing>
</child>
<child>
<object class="GtkButton" id="but copy">

<property name="1label" translatable="yes">MAKE
COPY</property>

<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
</object>
<packing>
<property name="expand">False</property>
<property name="fill">True</property>
<property name="position">3</property>
</packing>
</child>
</object>
</child>
</object>

</interface>

BINARY

Appendix 4. Binary copy desktop code

[Desktop Entry]

Name=Binary Copy

RY COPY/Binary Copy gui.py

RY COPY/
Terminal=true

Type=Application

Exec=/home/jordi/Escriptori/TFM/Forensics Scripts/Scripts with GUI/BINA

Path=/home/jordi/Escriptori/TFM/Forensics Scripts/Scripts with GUI/BINA

Appendix 5. File carving python code to work from the terminal

#!/usr/bin/env python

60

import os, logging, time

logging.basicConfig(filename="'time recover terminal.log',6 level=logging.
DEBUG, format="% (asctime)s % (message)s')

print "Welcome to the UPC forensics app. This is the Recovery Files
tool.\n"

filename=raw_ input ("\nWrite the name of the file (ex. image.dd) :\n")
fileroute=raw_input ("\nWrite the file route (ex. /root/docs):\n")

destroute=raw_input ("\nWrite the destinetion route (ex.
/root/results) :\n")

#RECOVER FILES.
startTime = time.time ()

commandline="photorec /debug /log /d "+destroute+"/Recovered Files /cmd
"tfileroutet+"/"+filename+"
partition none,options,mode ext2, fileopt,everything,enable,search"

os.system (commandline) ;

endTime = time.time ()
duration = endTime - startTime
logging.info ('Duration: ' + str(duration) + ' seconds')

Appendix 6. File carving python code to work with the GUI

#!/usr/bin/env python

import os, gi, time, logging
gi.require version ("Gtk","3.0")
from gi.repository import Gtk

from gi.repository import Gdk

class recover files():
TYPE=""
def init (self):
self.builder=Gtk.Builder ()
self.builder.add from file("recover.glade")
self.win=self.builder.get object ("Recover window")
self.win.connect ("delete-event",Gtk.main quit)

self.win.set title("Recover tool")

self.win.set resizable(True)

61

self.win.set default size (400,50)

self.win.move (400,200)

filtButton = self.builder.get object ("but recover")

filtButton.connect ("clicked", self.do recover)

button dir
self.builder.get object ("but choose image")

button dir.connect ("clicked",self.get image)

button res
self.builder.get object ("but choose results")

button res.connect ("clicked",self.get result)

def run(self) :
self.win.show all()

Gtk.main ()

def get image(self, widget) :

self.open dialog=Gtk.FileChooserDialog ("Select
image", None, Gtk.FileChooserAction.OPEN, (Gtk.STOCK CANCEL,
Gtk.ResponseType.CANCEL, "Select", Gtk.ResponseType.OK))

self.open dialog.set default size(800,400)

self.TYPE="IM"

self.open dialog.connect ("response",self.open dir dialog)
self.open dialog.show ()

self.win.hide ()

def get result (self, widget):

self.open dialog=Gtk.FileChooserDialog ("Select

folder",None, Gtk.FileChooserAction.SELECT FOLDER, (Gtk.STOCK CANCEL,

Gtk.ResponseType.CANCEL, "Select", Gtk.ResponseType.OK))
self.open dialog.set default size(800,400)

self.TYPE="RES"

self.open dialog.connect ("response",self.open dir dialog)
self.open dialog.show ()

self.win.hide ()

def do recover (self, widget):

an

62

logging.basicConfig (filename="'time recover gui.log',6 level=logging.DEBUG

o)

, format="'% (asctime)s % (message)s')
startTime = time.time ()

result path =
self.builder.get object ("entry result path")

txt result path=result path.get text()

image path =
self.builder.get object ("entry image path")

txt image path=image path.get text ()

commandline="photorec /debug /log /d
"+txt result path+"/Recovered Files /cmd "+txt image path+"
partition none,options,mode ext2, fileopt,everything,enable,search"

os.system (commandline)

endTime = time.time ()
duration = endTime - startTime
logging.info ('Duration: ' + str(duration) + ' seconds')

def open dir dialog(self,dialog, response_ id) :
open_dialog=dialog

if response id==Gtk.ResponseType.OK:

self.directory=open dialog.get uri().replace("file://","")
self.open dialog.hide ()
self.win.show ()
self.win.move (400,200)
if self.TYPE=="RES":

result path =
self.builder.get object ("entry result path")

result path.set text(self.directory)
elif self.TYPE=="IM":

image path =
self.builder.get object ("entry image path")

image path.set text (self.directory)
elif response id==Gtk.ResponseType.CANCEL:
self.open dialog.hide ()
self.win.show ()

self.win.move (400,200)

print "Welcome to the UPC forensics app. This is the Recovery Files
tool.\n"

63

recover script=recover files()

recover script.run()

Appendix 7. File carving GUI glade code

<?xml version="1.0" encoding="UTF-8"?2>
<!-- Generated with glade 3.18.3 -->
<interface>
<requires lib="gtk+" version="3.12"/>
<object class="GtkWindow" id="Recover window">
<property name="can focus">False</property>
<child>
<object class="GtkBox">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="orientation">vertical</property>
<child>
<object class="GtkLabel">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="label" translatable="yes">RECOVER
TOOL</property>

<attributes>

<attribute name="font-desc" value="Abyssinica SIL Bold
lO"/>

<attribute name="weight" value="ultraheavy"/>
<attribute name="scale" value="3"/>
</attributes>
</object>
<packing>
<property name="expand">False</property>
<property name="fill">True</property>
<property name="position">0</property>
</packing>
</child>

<child>

<object class="GtkGrid">

64

<property name="visible">True</property>
<property name="can focus">False</property>
<child>
<object class="GtkLabel">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="label" translatable="yes">Image
directory:</property>

</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">0</property>
</packing>
</child>
<child>
<object class="GtkLabel">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="label" translatable="yes">Recover
results:</property>

</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">1</property>
</packing>
</child>
<child>
<object class="GtkEntry" id="entry image path">
<property name="visible">True</property>
<property name="can focus">True</property>
<property name="hexpand">True</property>
</object>
<packing>
<property name="left attach">1</property>
<property name="top attach">0</property>
</packing>

</child>

65

<child>

<object class="GtkEntry" id="entry result path">

<property
<property
</object>
<packing>
<property
<property
</packing>
</child>

<child>

name="visible">True</property>

name="can focus">True</property>

name="1left attach">1</property>

name="top_ attach">1</property>

<object class="GtkButton" id="but choose image">

<property

name="label"

translatable="yes">Choose</property>

<property
<property
<property
</object>
<packing>
<property
<property
</packing>
</child>

<child>

name="visible">True</property>
name="can focus">True</property>

name="receives default">True</property>

name="1left attach">2</property>

name="top_ attach">0</property>

<object class="GtkButton" id="but choose results">

<property

name="label"

translatable="yes">Choose</property>

<property
<property
<property
</object>
<packing>
<property
<property
</packing>
</child>

</object>

name="visible">True</property>
name="can focus">True</property>

name="receives default">True</property>

name="1left attach">2</property>

name="top_ attach">1</property>

66

<packing>
<property name="expand">False</property>
<property name="fill">True</property>
<property name="position">1</property>
</packing>
</child>
<child>
<object class="GtkButton" id="but recover">

<property name="1label"
translatable="yes">RECOVER</property>

<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
</object>
<packing>
<property name="expand">False</property>
<property name="fill">True</property>
<property name="position">2</property>
</packing>
</child>
</object>
</child>
</object>

</interface>

Appendix 8. File carving desktop code

[Desktop Entry]
Name=Recover

Exec=/home/jordi/Escriptori/TFM/Forensics Scripts/Scripts with GUI/RECO
VER/Recover gui.py

Path=/home/jordi/Escriptori/TFM/Forensics_Scripts/Scripts with GUI/RECO
VER/

Terminal=false

Type=Application

67

Appendix 9. Timeline python code to work from the terminal

#!/usr/bin/env python

import logging, time, sys, os, stat, time, hashlib, argparse, csv

def WalkPath (rootPath, reportPath):

processCount = 0
errorCount = 0
reportPath = os.path.join(reportPath, "Timeline Results.csv")

oCVS = CSVWriter (reportPath)
if rootPath.endswith('\\') or rootPath.endswith('/"):

rootPath

rootPath
else:
rootPath = rootPath+'/'
for root, dirs, files in os.walk (rootPath) :

for file in files:

fname os.path.join (root, file)
result = getInfo(fname, file, oCVS)
if result is True:

processCount += 1
else:

errorCount += 1

oCVS.writerClose ()

return (processCount)

def getInfo(theFile, simpleName, o result) :
if os.path.exists (theFile):
if not os.path.islink(theFile):
if os.path.isfile(theFile):
try:
f = open(theFile, 'rb')
except IOError:

logging.warning ('Open Failed: '
+ theFile)

return
else:
try:

theFileStats =

68

os.stat (theFile)

(mode, ino, dev, nlink,
uid, gid, size, atime, mtime, ctime) = os.stat (theFile)

rd = f.read()

except IOError:

f.close()

logging.warning ('File
Access Error: ' + theFile)

return

else:

fileSize = str(size)

modifiedTime =
time.ctime (mtime)

accessTime =
time.ctime (atime)

createdTime =
time.ctime (ctime)

ownerID = str(uid)

groupID = str(gid)

fileMode = bin (mode)

resultList =
[simpleName, theFile, fileSize, modifiedTime, accessTime, createdTime,
ownerID, grouplD, str (mode)]

o result.writeCSVRow (resultList)

else:

+ ', Skipped NOT a File' + ']'")

else:

return True

logging.warning ('[' + repr(simpleName)
return False
logging.warning (' [' + repr (simpleName) + ',

Sklpped Link NOT a File' + NI

return False

else:

logging.warning ('[

NOT exist' + '1'")

return False

class CSVWriter:

+ repr (simpleName) + ', Path does

69

def init (self, fileName) :
try:

if (sys.version info > (3, 0)):

self.csvFile = open (fileName,
'w',newline="\r\n")
else:
self.csvFile = open(fileName, 'w')
tempList = ['File', 'Path', 'Size', 'Modified
Time', 'Access Time', 'Created Time', 'Owner', 'Group', 'Mode']
outStr = ",".join (tempList)

self.csvFile.write (outStr)
self.csvFile.write ("\n")
except:
logging.error ('CSV File Open Failure')
quit ()
def writeCSVRow (self, outList):
outStr = ",".join (outList)
self.csvFile.write (outStr)
self.csvFile.write ("\n")
def writerClose (self):

self.csvFile.close()

logging.basicConfig (filename="time timeline terminal.log',6 level=logging
.DEBUG, format="% (asctime)s % (message)s')

print "Welcome to the UPC forensics app. This is the Timeline tool.\n"
rootPath=raw input ("\nWrite the root folder path (ex. /root/docs) :\n")

reportPath=raw input ("\nWrite the destinetion path (ex.
/root/results) :\n")

startTime = time.time ()

filesProcessed = WalkPath (rootPath, reportPath)

endTime = time.time ()
duration = endTime - startTime
logging.info ('Timeline Duration: ' + str(duration) + ' seconds')

Appendix 10. Timeline python code to work with the GUI

#!/usr/bin/env python

70

import logging, time, sys, os, stat, time, hashlib, argparse, csv,
gi.require version ("Gtk","3.0")
from gi.repository import Gtk

from gi.repository import Gdk

class timeline () :

TYPE=""

def init (self):
self.builder=Gtk.Builder ()
self.builder.add from file("Timeline.glade")
self.win=self.builder.get object ("timeline window")
self.win.connect ("delete-event",Gtk.main quit)
self.win.set title("Timeline tool")
self.win.set resizable (True)
self.win.set default size (400,50)
self.win.move (400,200)
filtButton = self.builder.get object ("but analyse")
filtButton.connect ("clicked", self.do analyse)
button dir = self.builder.get object ("but folder")
button dir.connect ("clicked",self.get folder)
button res = self.builder.get object ("but results")

button res.connect ("clicked",self.get result)

def run (self) :
self.win.show all()

Gtk.main ()

def get folder (self, widget):

self.open dialog=Gtk.FileChooserDialog ("Select
folder",None, Gtk.FileChooserAction.SELECT FOLDER, (Gtk.STOCK CANCEL,
Gtk.ResponseType.CANCEL, "Select", Gtk.ResponseType.OK))

self.open dialog.set default size(800,400)

self.TYPE="Path"

self.open dialog.connect ("response",self.open dir dialog)
self.open dialog.show ()

self.win.hide ()

gi

71

def get result (self, widget):

self.open dialog=Gtk.FileChooserDialog ("Select a
folder",None, Gtk.FileChooserAction.SELECT FOLDER, (Gtk.STOCK CANCEL,
Gtk.ResponseType.CANCEL, "Select", Gtk.ResponseType.OK))

self.open dialog.set default size(800,400)

self.TYPE="Results"

self.open dialog.connect ("response",self.open dir dialog)
self.open dialog.show ()

self.win.hide ()

def do analyse(self, widget):

logging.basicConfig (filename="time timeline gui.log',6 level=logging.DEBU
G, format="'% (asctime)s % (message)s')

startTime = time.time ()

result path = self.builder.get object ("text results")
txt result path=result path.get text()

folder path = self.builder.get object ("text folder")

txt folder path=folder path.get text()

filesProcessed = self.WalkPath (txt folder path,
txt result path)

endTime = time.time ()

duration = endTime - startTime

logging.info ('Duration: ' + str(duration) + ' seconds')

def open dir dialog(self,dialog, response id) :
open_dialog=dialog

if response id==Gtk.ResponseType.OK:

self.directory=open dialog.get uri().replace("file://","")
self.open dialog.hide ()
self.win.show ()
self.win.move (400,200)
if self.TYPE=="Path":

folder path =
self.builder.get object ("text folder")

folder path.set text (self.directory)

72

elif self.TYPE=="Results":

result path =
self.builder.get object ("text results")

result path.set text(self.directory)
elif response id==Gtk.ResponseType.CANCEL:
self.open dialog.hide ()
self.win.show ()

self.win.move (400,200)

def WalkPath(self, rootPath, reportPath):
processCount = 0
errorCount = 0

reportPath = os.path.join (reportPath,
"Timeline Results.csv")

oCVS = CSVWriter (reportPath)
if rootPath.endswith('\\') or rootPath.endswith('/"):

rootPath rootPath

else:
rootPath = rootPath+'/'
for root, dirs, files in os.walk (rootPath) :
for file in files:
fname = os.path.join(root, file)

result = self.getInfo (fname, file,
oCVS)

if result is True:
processCount += 1
else:
errorCount += 1
oCVS.writerClose ()

return (processCount)

def getInfo(self, theFile, simpleName, o result) :
if os.path.exists (theFile):
if not os.path.islink(theFile):
if os.path.isfile(theFile):
try:

f = open(theFile, 'rb')

73

except IOError:

logging.warning ('Open

Failed: ' + theFile)
return
else:
try:
theFileStats =
os.stat (theFile)
(mode, ino,
dev, nlink, uid, gid, size, atime, mtime, ctime) = os.stat(theFile)
rd = f.read()
except IOError:
f.close()
logging.warning ('File Access Error: ' + theFile)
return
else:
fileSize =
str(size)
modifiedTime =
time.ctime (mtime)
accessTime =
time.ctime (atime)
createdTime =
time.ctime (ctime)
ownerID =
str (uid)
grouplID =
str (gid)
fileMode =
bin (mode)
resultList =

[simpleName, theFile, fileSize, modifiedTime, accessTime, createdTime,
ownerID, grouplD, str (mode)]

o result.writeCSVRow (resultList)
return True
else:

logging.warning (' [' +
repr (simpleName) + ', Skipped NOT a File' + ']")

return False

74

else:

logging.warning ('[' + repr(simpleName)
+ ', Skipped Link NOT a File' + ']"'")
return False
else:
logging.warning (' [' + repr (simpleName) + ',

Path does NOT exist' + ']")

return False

class CSVWriter:
def init (self, fileName) :
try:

if (sys.version info > (3, 0)):

self.csvFile = open (fileName,
'w',newline="\r\n")
else:
self.csvFile = open(fileName, 'w')
templList = ['File', 'Path', 'Size', 'Modified
Time', 'Access Time', 'Created Time', 'Owner', 'Group', 'Mode']
outStr = ",".join (tempList)

self.csvFile.write (outStr)
self.csvFile.write ("\n")
except:
logging.error ('CSV File Open Failure')
quit ()
def writeCSVRow (self, outList):
outStr = ",".join (outList)
self.csvFile.write (outStr)
self.csvFile.write ("\n")
def writerClose (self):

self.csvFile.close()

print "Welcome to the UPC forensics app. This is the Timeline tool.\n"
timeline script=timeline ()

timeline script.run()

75

Appendix 11. Timeline GUI glade code

<?xml version="1.0" encoding="UTF-8"?2>
<!-- Generated with glade 3.18.3 -->
<interface>
<requires lib="gtk+" version="3.12"/>
<object class="GtkWindow" id="timeline window">
<property name="can focus">False</property>
<child>
<object class="GtkBox" id="box1l">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="orientation">vertical</property>
<child>
<object class="GtkLabel" id="T">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="1label"
translatable="yes">TIMELINE</property>

<attributes>

<attribute name="font-desc" value="Abyssinica SIL Bold
lO"/>

<attribute name="weight" value="ultraheavy"/>
<attribute name="scale" value="3"/>
</attributes>
</object>
<packing>
<property name="expand">True</property>
<property name="fill">True</property>
<property name="position">0</property>
</packing>
</child>
<child>
<object class="GtkGrid" id="gridl">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="row spacing">1</property>

<property name="column spacing">4</property>

76

<child>

<object class="GtkEntry" id="text folder">

<property
<property
<property
</object>
<packing>
<property
<property
</packing>
</child>

<child>

name="visible">True</property>
name="can focus">True</property>

name="hexpand">True</property>

name="1left attach">1</property>

name="top_ attach">0</property>

<object class="GtkEntry" id="text results">

<property
<property
<property
</object>
<packing>
<property
<property
</packing>
</child>

<child>

name="visible">True</property>
name="can focus">True</property>

name="hexpand">True</property>

name="1left attach">1</property>

name="top_ attach">1</property>

<object class="GtkButton" id="but folder">

<property

name="label"

translatable="yes">Choose</property>

<property
<property
<property
</object>
<packing>
<property
<property
</packing>
</child>

<child>

name="visible">True</property>
name="can focus">True</property>

name="receives default">True</property>

name="1left attach">2</property>

name="top_ attach">0</property>

<object class="GtkButton" id="but results">

77

<property

name="label"

translatable="yes">Choose</property>

<property
<property
<property
</object>
<packing>
<property
<property
</packing>
</child>

<child>

<object class="GtkLabel"

<property
<property

<property
Directory</property>

</object>
<packing>
<property
<property
</packing>
</child>

<child>

<object class="GtkLabel"

<property
<property

<property
Directory</property>

</object>
<packing>
<property
<property
</packing>
</child>
</object>

<packing>

name="visible">True</property>
name="can focus">True</property>

name="receives default">True</property>

name="1left attach">2</property>

name="top_ attach">1</property>

id="labell">
name="visible">True</property>
name="can focus">False</property>

name="label" translatable="yes">Folder

name="1left attach">0</property>

name="top_ attach">0</property>

id="label2">
name="visible">True</property>
name="can focus">False</property>

name="label" translatable="yes">Results

name="1left attach">0</property>

name="top_ attach">1</property>

78

<property name="expand">False</property>
<property name="fill">True</property>
<property name="position">1</property>
</packing>
</child>
<child>
<object class="GtkButton" id="but analyse">

<property name="1label"
translatable="yes">ANALYSE</property>

<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
</object>
<packing>
<property name="expand">False</property>
<property name="fill">True</property>
<property name="position">2</property>
</packing>
</child>
</object>
</child>
</object>

</interface>

Appendix 12. Timeline desktop code

[Desktop Entry]
Name=Timeline

Exec=/home/jordi/Escriptori/TFM/Forensics_ Scripts/Scripts with GUI/TIME
LINE/Timeline gui.py

Path=/home/jordi/Escriptori/TFM/Forensics Scripts/Scripts with GUI/TIME
LINE/

Terminal=false

Type=Application

Appendix 13. OCR python code to work from the terminal

#!/usr/bin/env python

79

import os, time, logging, pyPdf

from pyPdf import PdfFileReader, PdfFileWriter

def check order (dir):

order=raw_input ("\nType an order (options: PREPARE, DIVIDE,
OCR, EXIT) :\n")

if order=="PREPARE":
startTime = time.time ()

replace space (dir)

endTime = time.time ()
duration = endTime - startTime
logging.info ('PREPARE Duration: ' + str(duration) + '

seconds')
print "\nPREPARATION DONE!\n"
check order (dir)
elif order=="DIVIDE":
startTime = time.time ()

divide (dir)

endTime = time.time ()
duration = endTime - startTime
logging.info ('DIVIDE Duration: ' + str(duration) + '

seconds')
print "\nDIVISION DONE!\n"
check order (dir)
elif order=="OCR":
startTime = time.time ()

ocr (dir+"/all pdf text/")

endTime = time.time ()
duration = endTime - startTime
logging.info ('OCR Duration: ! + str(duration) +

seconds"')
print "\nOCR DONE!\n"
check order (dir)
elif order=="EXIT":
print "Goodbye"
else:
print "\nERROR!\n"

check order (dir)

80

def replace space (dir) :
for root, dirs, files in os.walk(dir):
for dire in dirs:
if " " in dire:

os.rename (os.path.join (root,
os.path.join (root, dire.replace("™ "," s ")))

dire=dire.replace(" "," s ")
self.replace space (dir)
break
for file in files:
if " " in file:

os.rename (os.path.join (root,
os.path.join(root, file.replace("™ ", " s ")))

file=file.replace(" "," s ")

def divide (dir) :
cmd="mkdir "+dir+"/all pdf text"
os.system(cmd)
for root, dirs, files in os.walk(dir):
for file in files:

if file.endswith(".pdf"):

dire),

file),

fname = os.path.join(root, file)

py pdf file=PdfFileReader (open (fname, 'rb'))
if py pdf file.isEncrypted:
numpages=-1

else:

numpages=py_ pdf file.getNumPages ()
if numpages!=-1:

cvcmd="pdfseparate
"+dir+"/all pdf text/"+ (fname.replace("/"," b ")) +"-%d.pdf"

os.system(cvcmd)

def ocr (dir):

for root, dirs, files in os.walk(dir):

"+fname+"

81

for file in files:
if file.endswith(".pdf"):
fname=os.path.join (root, file)

cv_cmd="convert -monochrome -density
300 "+fname+" "+fname[:-3]+"tiff"

os.system(cv_cmd)

ocr _cmd="tesseract "+fname[:-3]+"tiff
"+fname|[:-4]

os.system(ocr_ cmd)

rmpdf cmd="rm "+fname

os.system (rmpdf cmd)

rmtiff cmd="rm "+fname[:-3]+"tiff"

os.system(rmtiff cmd)

logging.basicConfig (filename="'time ocr terminal.log',6 level=logging.DEBU
G, format="'% (asctime)s % (message)s')

print "Welcome to the UPC forensics app. This 1is the Massive OCR
tool.\n"

dir=raw_input ("\nWrite the directory path (ex. /root/docs) :\n")

check order (dir)

Appendix 14. OCR python code to work with the GUI

#!/usr/bin/env python

import os, gi, time, logging, pyPdf
gi.require version ("Gtk","3.0")
from gi.repository import Gtk

from gi.repository import Gdk

from pyPdf import PdfFileReader, PdfFileWriter

class ocr():
def init (self):
self.builder=Gtk.Builder ()
self.builder.add from file("ocr.glade")
self.win=self.builder.get object ("Ocr window")

self.win.connect ("delete-event",Gtk.main quit)

self.win.set title("OCR tool")

82

self.win.set resizable(True)
self.win.set default size (400,50)

self.win.move (400,200)

chooseButton = self.builder.get object ("but choose™)
chooseButton.connect ("clicked", self.get folder)
prepareButton = self.builder.get object ("but prepare")
prepareButton.connect ("clicked", self.do prepare)
divideButton = self.builder.get object ("but divide")
divideButton.connect ("clicked", self.do_divide)
ocrButton = self.builder.get object ("but ocr")

ocrButton.connect ("clicked", self.do ocr)

def run(self) :
self.win.show all()

Gtk.main ()

def get folder (self, widget):

self.open dialog=Gtk.FileChooserDialog ("Select
folder",None, Gtk.FileChooserAction.SELECT FOLDER, (Gtk.STOCK CANCEL,
Gtk.ResponseType.CANCEL, "Select", Gtk.ResponseType.OK))

self.open dialog.set default size(800,400)

self.open dialog.connect ("response",self.open dir dialog)
self.open dialog.show ()

self.win.hide ()

def open dir dialog(self,dialog, response id) :
open_dialog=dialog

if response id==Gtk.ResponseType.OK:

self.directory=open dialog.get uri().replace("file://","")
self.open dialog.hide ()
self.win.show ()
self.win.move (400,200)

folder path
self.builder.get object ("entry folder")

folder path.set text(self.directory)

text prepare

83

self.builder.get object ("text prepare")
text prepare.set text ("READY!")

text divide =
self.builder.get object ("text divide")

text divide.set text ("do prepare first")
text ocr = self.builder.get object ("text ocr")
text ocr.set text("do divide first")
elif response id==Gtk.ResponseType.CANCEL:
self.open dialog.hide ()
self.win.show ()

self.win.move (400,200)

def do prepare(self, widget):
text prepare = self.builder.get object ("text prepare")
state=text prepare.get text()

folder path = self.builder.get object ("entry folder")

if folder path.get text()=="":
state=""
else:

state="READY!"

if state=="READY!":
startTime = time.time ()

self.replace space (folder path.get text())

endTime = time.time ()

duration = endTime - startTime

logging.info ('PREPARE Duration: !
str (duration) + ' seconds')

text prepare.set text ("DONE!")

text divide
self.builder.get object ("text divide")

text divide.set text ("READY!")

else:

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error dialog.format secondary text ("Select
folder first.")

84

error dialog.run ()

error _dialog.destroy()

def do divide(self, widget) :
text divide = self.builder.get object ("text divide")
state=text divide.get text()
folder path = self.builder.get object ("entry folder")
dire=folder path.get text ()
if state=="READY!":
startTime = time.time ()

self.divide (dire)

endTime = time.time ()

duration = endTime - startTime

logging.info ('DIVIDE Duration: !
str (duration) + ' seconds')

text divide.set text ("DONE!")
text ocr = self.builder.get object ("text ocr")
text ocr.set text ("READY!")

else:

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR,Gtk.Buttons
Type.CANCEL, "ERROR")

error dialog.format secondary text ("Select
folder first.")

error dialog.run ()

error dialog.destroy()

def do ocr(self, widget) :
text ocr = self.builder.get object ("text ocr")
state=text ocr.get text()
folder path = self.builder.get object ("entry folder")
dire=folder path.get text ()
if state=="READY!":
startTime = time.time ()
self.ocr (dire+"/all pdf text/")
endTime = time.time ()

duration = endTime - startTime

85

logging.info ('OCR Duration: ' + str(duration) +
' seconds')

text ocr.set text ("DONE!")

else:

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error dialog.format secondary text ("Select a
folder first.")

error dialog.run ()

error _dialog.destroy()

def replace space(self, dir):
for root, dirs, files in os.walk(dir):
for dire in dirs:
if " " in dire:

os.rename (os.path.join (root,
dire), os.path.join(root, dire.replace("™ "," s ")))
dire=dire.replace(" "," s ")
self.replace space (dir)

break

for file in files:
if " " in file:
os.rename (os.path.join (root,
file), os.path.join(root, file.replace(" ", " s ")))

file=file.replace(" "," s ")

def divide(self, dir):
cmd="mkdir "+dir+"/all pdf text"
os.system(cmd)
for root, dirs, files in os.walk(dir):
for file in files:
if file.endswith(".pdf"):
fname = os.path.join (root,

file)

py pdf file=PdfFileReader (open (fname, 'rb'))
if py pdf file.isEncrypted:

numpages=-1

86

else:

numpages=py_ pdf file.getNumPages ()
if numpages!=-1:

cvcmd="pdfseparate
"+fname+" "+dir+"/all pdf text/"+ (fname.replace("/"," b ")) +"-%d.pdf"

os.system(cvcmd)

def ocr(self, dir):
for root, dirs, files in os.walk(dir):
for file in files:
if file.endswith(".pdf"):
fname=os.path.join (root, file)

cv_cmd="convert -monochrome -
density 300 "+fname+" "+fnamel[:-3]+"tiff"

os.system(cv_cmd)

ocr _cmd="tesseract "+fname[: -
3]+"tiff "+fnamel[:-4]

os.system(ocr_ cmd)
rmpdf cmd="rm "+fname
os.system (rmpdf cmd)

rmtiff cmd="rm "+fname | : -
3]+"tiff"

os.system(rmtiff cmd)

logging.basicConfig (filename="'time ocr gui.log',6 level=logging.DEBUG, for
mat='%(asctime)s % (message)s')

print "Welcome to the UPC forensics app. This 1is the Massive OCR
tool.\n"

ocr_script=ocr()

ocr_script.run()

Appendix 15. OCR GUI glade code

<?xml version="1.0" encoding="UTF-8"?>
<!-- Generated with glade 3.20.0 -->

<interface>

<requires lib="gtk+" version="3.12"/>

87

<object class="GtkWindow" id="Ocr window">
<property name="can focus">False</property>
<child>
<object class="GtkBox">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="margin left">1</property>
<property name="margin right">1</property>
<property name="margin top">1</property>
<property name="margin bottom">1</property>
<property name="orientation">vertical</property>
<child>
<object class="GtkLabel">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="1label" translatable="yes">0CR
TOOL</property>

<attributes>

<attribute name="font-desc" value="Abyssinica SIL Bold
lO"/>

<attribute name="weight" value="ultraheavy"/>
<attribute name="scale" value="3"/>
</attributes>
</object>
<packing>
<property name="expand">False</property>
<property name="fill">True</property>
<property name="position">0</property>
</packing>
</child>
<child>
<object class="GtkGrid">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="margin left">1</property>
<property name="margin right">1</property>

<child>

88

<object class="GtkLabel">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="1label"
translatable="yes">Folder:</property>

</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">0</property>
</packing>
</child>
<child>
<object class="GtkEntry" id="entry folder">
<property name="visible">True</property>
<property name="can focus">True</property>
<property name="hexpand">True</property>
</object>
<packing>
<property name="left attach">1</property>
<property name="top attach">0</property>
</packing>
</child>
<child>
<object class="GtkButton" id="but choose">

<property name="1label"
translatable="yes">Choose</property>

<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
</object>
<packing>
<property name="left attach">2</property>
<property name="top attach">0</property>
</packing>
</child>
</object>

<packing>

89

<property name="expand">False</property>
<property name="fill">True</property>
<property name="padding">1</property>
<property name="position">1</property>
</packing>
</child>
<child>
<object class="GtkGrid">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="margin left">2</property>
<property name="margin right">2</property>
<property name="margin top">1</property>
<property name="margin bottom">1</property>
<child>
<object class="GtkButton" id="but prepare">

<property name="1label"
translatable="yes">PREPARE</property>

<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
<property name="hexpand">True</property>
</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">0</property>
</packing>
</child>
<child>
<object class="GtkButton" id="but divide">

<property name="1label"
translatable="yes">DIVIDE</property>

<property name="visible">True</property>

<property name="can focus">True</property>

<property name="receives default">True</property>
</object>

<packing>

90

<property name="left attach">0</property>

<property name="top attach">1</property>

</packing>

</ch

<chi

ild>

1d>

<object class="GtkButton" id="but ocr">

translatable="yes">0OCR</property>

</

<p

<property

<property
<property
<property
object>
acking>
<property

<property

</packing>

</ch

<chi

ild>

1d>

name="label"

name="visible">True</property>

name="can focus">True</property>

name="1left attach">0</property>

name="top_ attach">2</property>

<object class="GtkLabel" id="text prepare">

first</property>
</

<p

<property
<property

<property

object>
acking>
<property

<property

</packing>

</ch

<chi

ild>

1d>

name="label"

name="visible">True</property>

name="can focus">False</property>

name="receives default">True</property>

translatable="yes">select folder

name="1left attach">1</property>

name="top_ attach">0</property>

<object class="GtkLabel" id="text divide">

first</property>
</

<p

<property name="visible">True</property>

<property name="can focus">False</property>

<property

object>

acking>

name="label"

translatable="yes">do

prepare

91

<property name="left attach">1</property>
<property name="top attach">1</property>
</packing>
</child>
<child>
<object class="GtkLabel" id="text ocr">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="label" translatable="yes">do divide
first</property>

</object>
<packing>
<property name="left attach">1</property>
<property name="top attach">2</property>
</packing>
</child>
</object>
<packing>
<property name="expand">False</property>
<property name="fill">True</property>
<property name="padding">2</property>
<property name="position">2</property>
</packing>
</child>
</object>
</child>
</object>

</interface>

Appendix 16. OCR desktop code

[Desktop Entry]
Name=0CR

Exec=/home/jordi/Escriptori/TFM/Forensics Scripts/Scripts with GUI/OCR/
OCR _gui.py

Path=/home/jordi/Escriptori/TFM/Forensics_Scripts/Scripts with GUI/OCR/

Terminal=false

92

Type=Application

Appendix 17. eDiscovery starting window python code

#!/usr/bin/env python

import logging, time, sys, os, stat, time, hashlib, argparse, csv,
gi.require version ("Gtk","3.0")

from gi.repository import Gtk

from gi.repository import Gdk

class search():
def init (self):

self.builder=Gtk.Builder ()
self.builder.add from file("Search.glade")
self.win=self.builder.get object ("search window")
self.win.connect ("delete-event",Gtk.main quit)
self.win.set title("SEARCH tool")
self.win.set resizable(True)
self.win.set default size (400,50)
self.win.move (400,200)
grepButton = self.builder.get object ("but grep")
grepButton.connect ("clicked", self.run grep)
gawkButton = self.builder.get object ("but gawk")

gawkButton.connect ("clicked", self.run gawk)

def run (self) :
self.win.show all()

Gtk.main ()

def run grep(self, widget):
dire=os.path.realpath(file)
dire=dire[:-9]
cmd="python "+dire+"Grep eDiscovery.py"

os.system(cmd)

def run gawk (self, widget):

gi

93

dire=os.path.realpath(_ file)
dire=dire[:-9]
cmd="python "+dire+"Gawk eDiscovery.py"

os.system(cmd)

print "Welcome to the UPC forensics app. This is the Search tool.\n"
search script=search/()

search script.run()

Appendix 18. eDiscovery grep python code

#!/usr/bin/env python
import subprocess, os, tempfile, ntpath, time, logging, gi, csv
gi.require version ("Gtk","3.0")

from gi.repository import Gtk

class search words() :

directory=""

word f=""

num_ results=0

results=Gtk.TextBuffer ()

columns=["File", "Directory"]

def init (self):
self.builder=Gtk.Builder ()
self.builder.add from file("eDiscovery.glade")
self.win=self.builder.get object ("main window")
self.win.connect ("delete-event",Gtk.main quit)
self.win.set title("Addvante eDiscovery")
self.win.set resizable(True)
self.win.set default size (800,500)

self.win.move (400,200)

#make the filter button work by default when you press enter
filtButton = self.builder.get object ("filter but")

filtButton.connect ("clicked", self.do filter)

word text = self.builder.get object ("filter text")
word text.connect ("activate", self.do filter)

word text.grab focus without selecting()

button dir = self.builder.get object ("choosedir but")

button dir.connect ("clicked",self.get dir)

button filt = self.builder.get object ("pdf but")

button filt.connect ("clicked",self.open pdf)

button filt = self.builder.get object ("txt but")

button filt.connect ("clicked",self.open txt)

button csv = self.builder.get object ("csv_but")

button csv.connect ("clicked",self.save csv)

def run(self) :
self.win.show all()

Gtk.main ()

def get dir(self, widget):

self.open dialog=Gtk.FileChooserDialog ("Select
folder",None, Gtk.FileChooserAction.SELECT FOLDER, (Gtk.STOCK CANCEL,
Gtk.ResponseType.CANCEL, "Select", Gtk.ResponseType.OK))

self.open dialog.set default size(800,400)
self.open dialog.connect ("response",self.open dir dialog)
self.open dialog.show ()

self.win.hide ()

def do filter(self, widget) :
results list=self.builder.get object ("results list")
info=self.builder.get object ("results label")
info.set text("Searching... Please wait.")
print "SET: Searching..."
results list.clear ()
word text=self.builder.get object ("filter text")

dire=self.builder.get object ("choosedir text")

self.word f=word text.get text()
self.directory=dire.get text ()

if self.word f=="":

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error _dialog.format secondary text ("MISSING WORD. Insert a
word please.")

error dialog.run ()
error dialog.destroy ()

elif self.directory=="":

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error dialog.format secondary text ("MISSING DIRECTORY.
Insert a directory please.")

error dialog.run()

error dialog.destroy ()
else:

startTime = time.time ()

scmd="grep -r "+self.directory+" -e "+self.word f+" -i"

proc=subprocess.Popen (scmd, shell=True, stdout=subprocess.PIPE)
x=0
for line in proc.stdout.readlines():
x=x+1
self.prepare (line)

if x==0:

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error dialog.format secondary text ("Not found any file
matching this word in this folder.")

error dialog.run ()
error dialog.destroy ()
info.set text ("0 results:")
else:
self.num results=x
info.set text(str(self.num results)+" results:")

endTime = time.time ()

96

duration = endTime - startTime

logging.info ('Grep Duration: ! + str (duration) +

seconds')

def open dir dialog(self,dialog,response_ id) :

open_dialog=dialog

if response id==Gtk.ResponseType.OK:
self.directory=open dialog.get uri().replace("file://","")
self.open dialog.hide ()
self.win.show ()
self.win.move (400,200)
dir text = self.builder.get object ("choosedir text")
dir text.set text (self.directory)

elif response id==Gtk.ResponseType.CANCEL:
self.open dialog.hide ()
self.win.show ()

self.win.move (400,200)

def prepare(self, line):
line=line.rstrip ()
results list=self.builder.get object ("results list")
info=self.builder.get object ("results label")
Bname=line.index (" b ")
Lname= (line.index (".txt")) +4
txtname=line [Bname:Lname]
line=txtname.replace(" b ","/")
#line=line.replace(" s "," ")
N=line.index (".pdf")
line=line[:N]
[dir x,file x]=ntpath.split (line)
nTemp = txtname.split ('.pdf-")

page x = nTemp[1]

page x = page x[:-4]

results list.append((file x,dir x, page x, txtname))

def open pdf (self,widget) :

results tree=self.builder.get object ("results tree")

97

(model, iter)=results tree.get selection () .get selected()

if iter is None:

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error _dialog.format secondary text ("NOT SELECTED. Select a
file to open.")

error dialog.run()

error dialog.destroy ()
else:

print "0O: "+model[iter] [0]

print "1: "+model[iter][1]

print "2: "+model[iter] [2]

print "3: "+model[iter] [3]

auxIt=model[iter] [3]

nTemp = auxIt.split('.pdf-")

nMod = nTemp/[1]

nMod = nMod[:-4]

#nIt=auxIt.index (".pdf-") +4

#nFi=auxIt.index (".txt")-1

#page x=auxIt[nIt:nFi]

pdfcmd="evince "+ (model[iter] [1]) .replace (" ", "M\
")+"/"+ (model[iter] [0]) .replace (" ","\\ ")+".pdf --page-label="+nMod

print pdfcmd

os.system(pdfcmd)

def open txt (self,widget):
results tree=self.builder.get object ("results tree")
(model, iter)=results tree.get selection () .get selected()

if iter is None:

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error_dialog.format secondary text ("NOT SELECTED. Select a
file to open.")

error dialog.run()
error dialog.destroy ()
else:

print model[iter] [0]

98

print model[iter] [1]
print model[iter] [2]

print model[iter] [3]

direct=self.directory+"/"+model [iter] [3]

os.system ("xdg-open "+direct)

def save csv(self,widget):

print "Saving"

results tree=self.builder.get object ("results list")

aux=os.path.realpath(file)
aux=aux/[:-18]

print aux

with open (aux+"results "+self.word f+".csv","wb")

csv_out=csv.writer (out)

csv_out.writerow (["File", "Directory", "Num. Page"])

for row in results tree:

Print values of all columns

csv_out.writerow (row[:-1])

as out:

logging.basicConfig (filename="'time grep.log', level=logging.DEBUG, format

='%(asctime)s % (message)s')
search script=search words|()

search script.run/()

Appendix 19. eDiscovery gawk python code

#!/usr/bin/env python

import subprocess, logging, time, os,
string, sys, csv

gi.require version ("Gtk","3.0")
from gi.repository import Gtk

from gi.repository import Gdk

class search words() :
directory=""
word f=""

num_ results=0

tempfile,

ntpath,

gi,

glob,

99

results=Gtk.TextBuffer ()

columns=["File", "Directory"]

def init (self):
self.builder=Gtk.Builder ()
self.builder.add from file("eDiscovery.glade")
self.win=self.builder.get object ("main window")
self.win.connect ("delete-event",Gtk.main quit)
self.win.set title("Addvante eDiscovery")
self.win.set resizable(True)
self.win.set default size (800,500)

self.win.move (400,200)

#make the filter button work by default when you press enter
filtButton = self.builder.get object ("filter but")

filtButton.connect ("clicked", self.do filter)

word text = self.builder.get object ("filter text")
word text.connect ("activate", self.do filter)

word text.grab focus without selecting()

button dir = self.builder.get object ("choosedir but")

button dir.connect ("clicked",self.get dir)

button filt = self.builder.get object ("pdf but")

button filt.connect ("clicked", self.open pdf)

button filt = self.builder.get object ("txt but")

button filt.connect ("clicked",self.open txt)

button csv = self.builder.get object ("csv_but")

button csv.connect ("clicked",self.save csv)

def run (self) :
self.win.show all()

Gtk.main ()

100

def get dir(self, widget):

self.open dialog=Gtk.FileChooserDialog ("Select a
folder",None, Gtk.FileChooserAction.SELECT FOLDER, (Gtk.STOCK CANCEL,
Gtk.ResponseType.CANCEL, "Select", Gtk.ResponseType.OK))

self.open dialog.set default size(800,400)

self.open dialog.set current folder ("/home/addvante/Desktop/")
self.open dialog.connect ("response",self.open dir dialog)
self.open dialog.show ()

self.win.hide ()

def do filter(self, widget) :
results list=self.builder.get object ("results list")
info=self.builder.get object ("results label")
info.set text("Searching... Please wait.")
print "SET: Searching..."
results list.clear ()
word text=self.builder.get object ("filter text")
dire=self.builder.get object ("choosedir text")
self.word f=word text.get text()
self.directory=dire.get text ()

if self.word f=="":

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error_dialog.format secondary text ("MISSING WORD. Insert a
word please.")

error dialog.run()
error dialog.destroy ()

elif self.directory=="":

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error dialog.format secondary text ("MISSING DIRECTORY.
Insert a directory please.")

error dialog.run ()

error dialog.destroy ()
else:

startTime = time.time ()

os.chdir(self.directory)

101

entrada = self.word f
x=0

for file in glob.glob ("*.txt"):

match = 0
proc = nn
cmd="gawk '" + entrada + "' IGNORECASE=1 "+file+""

proc=subprocess.Popen (cmd, shell=True, stdout=subprocess.PIPE)
for line in proc.stdout.readlines():
if line != "":
x=x+1
if (match == 0):
match = 1
self.prepare (file)
print "OK ALL"
print x

if x==0:

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error dialog.format secondary text ("Not found any file
matching this word in this folder.")

error dialog.run ()

error dialog.destroy ()

info.set text ("0 results:")
else:

self.num results=x

info.set text(str(self.num results)+" results:")

endTime = time.time ()
duration = endTime - startTime
logging.info ('Gawk Duration: ! + str (duration) + '

seconds"')

def open dir dialog(self,dialog,response_ id) :
open_dialog=dialog
if response id==Gtk.ResponseType.OK:
self.directory=open dialog.get uri().replace("file://","")

self.open dialog.hide ()

102

self.win.show ()
self.win.move (400,200)
dir text = self.builder.get object ("choosedir text")
dir text.set text (self.directory)
elif response id==Gtk.ResponseType.CANCEL:
self.open dialog.hide ()
self.win.show ()

self.win.move (400,200)

def prepare(self, line):
line=line.rstrip()
results list=self.builder.get object ("results list")
info=self.builder.get object ("results label")
Bname=line.index (" b ")
Lname= (line.index (".txt")) +4
txtname=line [Bname:Lname]
line=txtname.replace(" b ","/")
#line=line.replace(" s "," ")
N=line.index (".pdf")
line=line[:N]
[dir x,file x]=ntpath.split (line)
nTemp = txtname.split('.pdf-")

page x = nTemp[1]

page x page x[:-4]

results list.append((file x,dir x, page x, txtname))

def open pdf (self,widget) :
results tree=self.builder.get object ("results tree")
(model, iter)=results tree.get selection () .get selected()

if iter is None:

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error_dialog.format secondary text ("NOT SELECTED. Select a
file to open.")

error dialog.run ()

103

error dialog.destroy ()
else:

print model[iter] [0]

print model[iter] [1]

print model[iter] [2]

print model[iter] [3]

auxIt=model[iter] [3]

nTemp = auxIt.split('.pdf-")

nMod = nTemp/[1]

nMod = nMod[:-4]

#nIt=auxIt.index (".pdf-") +4

#nFi=auxIt.index (".txt")-1

#page x=auxIt[nIt:nFi]

pdfcmd="evince "+ (model[iter] [1]) .replace (" ", "M\
")+"/"+ (model[iter] [0]) .replace (" ","\\ ")+".pdf --page-label="+nMod

print pdfcmd

os.system(pdfcmd)

def open txt (self,widget):
results tree=self.builder.get object ("results tree")
(model, iter)=results tree.get selection () .get selected()

if iter is None:

error dialog=Gtk.MessageDialog (None, 0,Gtk.MessageType.ERROR, Gtk.Buttons
Type.CANCEL, "ERROR")

error_dialog.format secondary text ("NOT SELECTED. Select a
file to open.")

error dialog.run()
error dialog.destroy ()
else:
print model[iter] [0]
print model[iter] [1]
print model[iter] [2]
print model[iter] [3]
direct=self.directory+"/"+model [iter] [3]

os.system ("xdg-open "+direct)

def save csv(self,widget):

104

print "Saving"

results tree=self.builder.get object ("results list")

aux=os.path.realpath(file)

aux=aux/[:-18]

print aux

with open (aux+"results "+self.word f+".csv","wb") as out:
csv_out=csv.writer (out)
csv_out.writerow (["File", "Directory", "Num. Page"])
for row in results tree:
Print values of all columns

csv_out.writerow (row[:-1])

logging.basicConfig (filename="'time gawk.log',6 level=logging.DEBUG, format
='%(asctime)s % (message)s')

search script=search words()

search script.run()

Appendix 20. eDiscvery starting window glade code

<?xml version="1.0" encoding="UTF-8"?2>
<!-- Generated with glade 3.20.0 -->
<interface>
<requires lib="gtk+" version="3.12"/>
<object class="GtkWindow" id="search window">
<property name="can focus">False</property>
<child>
<object class="GtkBox" id="box1l">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="orientation">vertical</property>
<child>
<object class="GtkLabel" id="T">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="label" translatable="yes">SEARCH</property>
<attributes>

<attribute name="font-desc" value="Abyssinica SIL Bold

105

10"/>
<attribute name="weight" value="ultraheavy"/>
<attribute name="scale" value="3"/>
</attributes>
</object>
<packing>
<property name="expand">True</property>
<property name="fill">True</property>
<property name="position">0</property>
</packing>
</child>
<child>
<object class="GtkGrid" id="gridl">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="row spacing">1</property>
<property name="column spacing">4</property>
<child>
<object class="GtkButton" id="but grep">

<property name="1label"
translatable="yes">Choose</property>

<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
<property name="hexpand">True</property>
</object>
<packing>
<property name="left attach">1</property>
<property name="top attach">0</property>
</packing>
</child>
<child>
<object class="GtkButton" id="but gawk">

<property name="1label"
translatable="yes">Choose</property>

<property name="visible">True</property>

<property name="can focus">True</property>

106

<property name="receives default">True</property>
<property name="hexpand">True</property>
</object>
<packing>
<property name="left attach">1</property>
<property name="top attach">1</property>
</packing>
</child>
<child>
<object class="GtkLabel" id="labell">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="1label" translatable="yes">GREP
search</property>

</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">0</property>
</packing>
</child>
<child>
<object class="GtkLabel" id="label2">
<property name="visible">True</property>
<property name="can focus">False</property>

<property name="label" translatable="yes">GAWK
search</property>

</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">1</property>
</packing>
</child>
</object>
<packing>
<property name="expand">False</property>
<property name="fill">True</property>

<property name="position">1</property>

107

</packing>
</child>
</object>
</child>
</object>

</interface>

Appendix 21. eDiscovery operating window glade code

<?xml version="1.0" encoding="UTF-8"?2>
<!-- Generated with glade 3.20.0 -->
<interface>
<requires lib="gtk+" version="3.20"/>
<object class="GtkListStore" id="results list">
<columns>
<!-- column-name File -->
<column type="gchararray"/>
<!-- column-name Directory -->
<column type="gchararray"/>
<!-- column-name num_page -->
<column type="gchararray"/>
<!-- column-name txt name -->
<column type="gchararray"/>
</columns>
</object>
<object class="GtkWindow" id="main window">
<property name="can focus">False</property>
<property name="icon">icone AddVANTE.jpg</property>
<child>
<object class="GtkGrid">
<property name="visible">True</property>
<property name="can focus">False</property>
<child>
<object class="GtkLabel">

<property name="visible">True</property>

<property name="can focus">False</property>

108

<property name="hexpand">True</property>

<property name="label" translatable="yes">Select directory
with OCR results:</property>

<property name="xalign">0.019999999552965164</property>
</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">1</property>
</packing>
</child>
<child>
<object class="GtkGrid">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="column spacing">5</property>
<child>
<object class="GtkButton" id="choosedir but">

<property name="label" translatable="yes">Choose
Directory</property>

<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
<property name="margin left">5</property>
<property name="margin right">6</property>
</object>
<packing>
<property name="left attach">1</property>
<property name="top attach">0</property>
</packing>
</child>
<child>
<object class="GtkEntry" id="choosedir text">
<property name="visible">True</property>
<property name="can focus">True</property>
<property name="margin left">5</property>
<property name="margin right">5</property>

<property name="hexpand">True</property>

109

<property name="text"

translatable="yes">/home/addvante/Desktop/OCRMassiu</property>
</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">0</property>
</packing>
</child>
</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">2</property>
</packing>
</child>
<child>
<object class="GtkLabel">
<property name="visible">True</property>

<property name="can focus">False</property>

<property name="label" translatable="yes">Insert word to
search (regular exp) :</property>
<property name="xalign">0.019999999552965164</property>
</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">3</property>
</packing>
</child>
<child>
<object class="GtkLabel" id="results label">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="1label"

translatable="yes">Results:</property>
<property name="xalign">0.019999999552965164</property>
</object>
<packing>

<property name="left attach">0</property>

110

Filter

<property name="top attach">5</property>
</packing>
</child>
<child>
<object class="GtkGrid">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="column spacing">5</property>
<child>

<object class="GtkButton" id="filter but">

<property name="label" translatable="yes">
</property>
<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
<property name="margin left">5</property>
<property name="margin right">5</property>
</object>
<packing>
<property name="left attach">1</property>
<property name="top attach">0</property>
</packing>
</child>
<child>

<object class="GtkEntry" id="filter text">

<property name="visible">True</property>
<property name="can focus">True</property>
<property name="margin left">5</property>
<property name="margin right">5</property>
<property name="hexpand">True</property>
</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">0</property>
</packing>
</child>
</object>

111

<packing>
<property name="left attach">0</property>
<property name="top attach">4</property>
</packing>
</child>
<child>
<object class="GtkGrid">
<property name="visible">True</property>
<property name="can focus">False</property>
<property name="column spacing">2</property>
<property name="column homogeneous">True</property>
<child>

<object class="GtkButton" id="pdf but">

<property name="1label" translatable="yes">0OPEN
PDF</property>
<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
<property name="margin left">5</property>
<property name="margin right">5</property>
</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">0</property>
</packing>
</child>
<child>

<object class="GtkButton" id="txt but">

<property name="1label" translatable="yes">0OPEN
TXT</property>
<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
<property name="margin left">5</property>
<property name="margin right">5</property>
</object>
<packing>

112

<property name="left attach">1</property>
<property name="top attach">0</property>
</packing>
</child>
<child>

<object class="GtkButton" id="csv_but">

<property name="label" translatable="yes">SAVE
CSV</property>
<property name="visible">True</property>
<property name="can focus">True</property>
<property name="receives default">True</property>
<property name="margin left">5</property>
<property name="margin right">5</property>
</object>
<packing>
<property name="left attach">2</property>
<property name="top attach">0</property>
</packing>
</child>
</object>
<packing>

<property name="left attach">0</property>
<property name="top attach">6</property>
</packing>
</child>
<child>
<object class="GtkScrolledWindow" id="results view">
<property name="visible">True</property>
<property name="can focus">True</property>
<property name="margin left">5</property>
<property name="margin right">5</property>
<property name="margin top">3</property>
<property name="vexpand">True</property>
<property name="shadow type">in</property>
<child>
<object class="GtkTreeView" id="results tree">

<property name="visible">True</property>

113

<property name="can focus">True</property>
<property name="model">results list</property>
<child internal-child="selection">
<object class="GtkTreeSelection"/>
</child>
<child>
<object class="GtkTreeViewColumn" id="file column">
<property name="title">File</property>
<child>

<object class="GtkCellRendererText"
id="cellrenderertext0"/>

<attributes>
<attribute name="text">0</attribute>
</attributes>
</child>
</object>
</child>
<child>

<object class="GtkTreeViewColumn"
id="directory column">

<property name="title">Directory</property>
<child>

<object class="GtkCellRendererText"
id="cellrenderertextl"/>

<attributes>
<attribute name="text">1</attribute>
</attributes>
</child>
</object>
</child>
<child>
<object class="GtkTreeViewColumn" id="page num">
<property name="title">Num. Page</property>
<child>

<object class="GtkCellRendererText"
id="cellrenderertext2"/>

<attributes>

<attribute name="text">2</attribute>

114

</attributes>
</child>
</object>
</child>
</object>
</child>
</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">7</property>
</packing>
</child>
<child>

<object class="GtkImage">

<property name="visible">True</property>
<property name="can focus">False</property>
<property name="margin top">6</property>
<property name="margin bottom">6</property>
<property name="pixbuf">mini.png</property>
</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">0</property>
</packing>
</child>
<child>

<object class="GtkLabel">

UPC</property>

<property name="visible">True</property>

<property name="can focus">False</property>
<property name="halign">end</property>

<property name="margin left">2</property>

<property name="margin right">2</property>
<property name="margin top">2</property>

<property name="margin bottom">2</property>
<property name="label" translatable="yes">Developed
<attributes>

by ISG-

115

g"/>
</attributes>
</object>
<packing>
<property name="left attach">0</property>
<property name="top attach">8</property>
</packing>
</child>
</object>
</child>
</object>

</interface>

<attribute name="font-desc" value="<Enter

Valueé>

Appendix 22. eDiscvery desktop code

[Desktop Entry]

Name=eDiscovery

COVERY/Search.py

COVERY/
Terminal=false

Type=Application

Exec=/home/jordi/Escriptori/TFM/Forensics Scripts/Scripts with GUI/EDIS

Path=/home/jordi/Escriptori/TFM/Forensics Scripts/Scripts with GUI/EDIS

116

Glossary

A list of all acronyms and what they stand for.

GUI Graphical User Interface
OCR Optical Character Recognition
OS Operative System

117

