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Abstract This paper investigates the spatial behavior of the solutions of
the Laplace equation on a semi-infinite cylinder when dynamical nonlinear
boundary conditions are imposed on the lateral side of the cylinder. We prove
a Phragmén-Lindelöf alternative for the solutions. To be precise, we see that
the solutions increase in an exponential way or they decay as a polynomial.
To give a complete description of the decay in this last case we also obtain an
upper bound for the amplitude term by means of the boundary conditions. In
the last section we sketch how to generalize the results for the case of a system
of two elliptic equations related with the heat conduction in mixtures.
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1. Introduction

Spatial stability of solutions for the equilibrium equations in elasticity is related with
Saint-Venant’s principle. It is a relevant aspect when one studies the deformations
of a cylinder. For this reason, the study of the spatial stability is a topic which
has deserved a big interest in the recent years and many scientists have direct their
point of view to this topic. With the time, several people draw their attention to
dynamical elastic problems or dynamical thermal problems and they try to extend
the spatial decay results to the new situations.

In fact, these studies have exceed the interest from the thermomechanical point
of view and spatial behavior of solutions for different types of partial differential
equations and/or systems are currently studying. It is worth noting that the math-
ematical framework where such results are considered is the Phragmén-Lindelöf
principle which propose an increase/decay alternative for the solutions.

The spatial behavior of elliptic [3], parabolic [6, 8], hyperbolic [1, 4, 9] equations
and/or combinations of them [12] have been obtained in the last years. However,
there are many aspects yet which need to be studied and clarified. In this note we
want to pay attention to the case of the Laplace equation with nonlinear dynamical
boundary conditions. That is, when we assume that a certain nonlinear ordinary
dynamical differential equation is satisfied at the lateral boundary of the cylinder
where the Laplace equation is satisfied. It is worth noting that, as far as the authors
know, there are no results in the literature on spatial behavior of solutions when such
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kind of boundary conditions are assumed. We will obtain a Phragmén-Lindelöf type
alternative for the solutions of the problem. In fact, we will see that the solutions
either blow-up in an exponential type when the large variable becomes unbounded,
or they decay as a polynomial when the large variable is increasing. It is appropriate
to recall several results when nonlinear boundary conditions are imposed (see the
papers by Horgan etc [7] and Leseduarte etc [11]). In our approach we try to follow
a similar way in order to obtain our results. However, our results only apply when
the nonlinear term is super-linear, but not in the sub-linear case.

The plan of the paper is the following. In the next section we propose the
problem we will work. A Phragmén-Lindelöf alternative is obtained in Section
3. When the solutions decay, our estimate is impractical if we do not have some
information on the amplitude term. In Section 4 we obtain an upper bound for
the amplitude term for the case when the solutions decay. In the last section we
propose an extension of the results for the case when we consider a system of two
linear elliptic equations that are related with the heat conduction in mixtures.

2. Preliminaries

This paper is concerned with investigating the spatial asymptotic behavior of the
solutions of the Laplace equation with nonlinear dynamic boundary conditions.
Therefore, we consider a semi-infinite cylinder R = [0,∞) ×D, where D is a two-
dimensional bounded domain smooth enough to apply the divergence theorem.

We consider a problem related with the Laplace equation

∆u = 0 on R× (0, t). (2.1)

To define the boundary conditions, we suppose that ∂D = Ω1∪Ω2, where Ω1∩Ω2 = ∅
and such that the measure of Ω2 is positive. On Ω1, we impose that

∂u

∂n
+ f1(u) = 0 on [0,∞)× Ω1 × (0, t); (2.2)

on Ω2 we suppose that

∂u

∂n
+ s(u)ut + f2(u) = 0 on [0,∞)× Ω2 × (0, t); (2.3)

and on the finite end of the cylinder we impose that

u(0, x2, x3, τ) = g(x2, x3, τ) on {0} ×D × (0, t). (2.4)

From now on, we assume that
f1(u)u ≥ 0, (2.5)

for every u and that there exists a positive constant C such that

f2(u)u+ ωS1(u) ≥ C|u|2p, (2.6)

where p ≥ 1, ω is a strictly positive constant large enough and

S1(u) =

∫ u

0

ηs(η) dη ≥ 0. (2.7)
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As we impose dynamic boundary conditions on Ω2, we need to assume initial con-
ditions on Ω2. We suppose that

u = 0 on [0,∞)× Ω2 × {0}. (2.8)

It is worth giving examples where conditions (2.5)–(2.7) hold. We can take, for
instance, f1(u) = a1(1−cosu)u−1, where a1 ≥ 0; f2(u) = a2(1−cosu)u−1−b2|u|ku,
where a2 ≥ 0, b2 ≥ 0 and k ≥ 0 and s(u) = s1|u|k, with s1 > 0. In this case we
have that f1(u)u = a1(1− cosu) ≥ 0 and (2.5) holds. Moreover,

S1(u) =
s1

k + 2
|u|k+2

and condition (2.7) holds. Regard to the condition (2.6), if we take C̄ > 0 and

ω =
(k + 2)b2

s1
+ C̄,

we have

f2(u)u+ ωS1(u) = a2(1− cosu)− b2|u|k+2 +

[
(k + 2)b2

s1
+ C̄

]
s1

k + 2
|u|k+2

= a2(1− cosu) +
s1C̄

k + 2
|u|k+2 ≥ C|u|k+2 ≥ C|u|2p,

where C =
s1C̄

k + 2
and p =

k + 2

2
. So, (2.6) holds.

In this paper we will use the following notation:

D(z) = {z} ×D; Ω1(z) = {z} × Ω1; Ω2(z) = {z} × Ω2;

R(z) = {xxx ∈ R, x1 ≥ z}; Ω∗i (z) = {xxx ∈ [0,∞)× Ωi, x1 ≥ z}.

In the analysis we will need to use the generalized Poincaré inequality. We recall
that there exists a positive constant C1 such that (see [2], p. 281)∫

D

|u|2 da ≤ C1

[∫
D

|∇u|2 da+

∣∣∣∣∫
Ω2

u dl

∣∣∣∣2
]
, (2.9)

for every smooth function u and for a two dimensional domain D. It is worth noting
that the precise value of the constant C1 depends on the domain D and the subset
of the boundary Ω2.

3. Spatial Estimates

In this section we obtain an alternative of the Phragmén-Lindelöf type for the
solutions of the problem determined by (2.1)–(2.4) and (2.8). From now on, we
consider ω a positive constant such that condition (2.6) is satisfied. We define the
function

Φ(z, t) = −
∫ t

0

∫
D(z)

exp(−ωτ)uu,1 da dτ. (3.1)
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We note that for z ≥ z0, Φ(z, t) may be expressed as

Φ(z, t)− Φ(z0, t) =−
∫ t

0

∫ z

z0

∫
D

exp(−ωτ)|∇u|2 dx dτ

−
∫ t

0

∫ z

z0

∫
Ω1

exp(−ωτ)f1(u)u da dτ

−
∫ t

0

∫ z

z0

∫
Ω2

exp(−ωτ) [f2(u)u+ ωS1(u)] da dτ

−
∫ z

z0

∫
Ω2

exp(−ωt)S1(u) da.

(3.2)

We note that in case that
lim
z→∞

Φ(z, t) = 0, (3.3)

then the relation (3.2) implies that

Φ(z, t) =

∫ t

0

∫
R(z)

exp(−ωτ)|∇u|2 dx dτ +

∫ t

0

∫
Ω∗

1(z)

exp(−ωτ)f1(u)u da dτ

+

∫ t

0

∫
Ω∗

2(z)

exp(−ωτ) [f2(u)u+ ωS1(u)] da dτ

+

∫
Ω∗

2(z)

exp(−ωt)S1(u) da.

(3.4)

From (3.2) we also see that

∂Φ

∂z
=−

∫ t

0

∫
D(z)

exp(−ωτ)|∇u|2 da dτ −
∫ t

0

∫
Ω1(z)

exp(−ωτ)f1(u)u dl dτ

−
∫ t

0

∫
Ω2(z)

exp(−ωτ) [f2(u)u+ ωS1(u)] dl dτ

− exp(−ωt)
∫

Ω2(z)

S1(u) dl.

(3.5)

In view of the Schwarz inequality, from (3.1) we find

|Φ(z, t)| ≤

(∫ t

0

∫
D(z)

exp(−ωτ)u2 da dτ

)1/2

×

(∫ t

0

∫
D(z)

exp(−ωτ)u2
,1 da dτ

)1/2

.

(3.6)

We have that∫ t

0

∫
D(z)

exp(−ωτ)u2 da dτ ≤
∫ t

0

∫
D(z)

u2 da dτ

≤C1

∫ t

0

∫
D(z)

u,αu,α da+

∣∣∣∣∣
∫

Ω2(z)

u dl

∣∣∣∣∣
2
 dτ

≤C1

∫ t

0

[∫
D(z)

u,αu,α da+M1

∫
Ω2(z)

u2 dl

]
dτ,

(3.7)
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where
M1 =

[
measure (Ω2)

]1/2
,

and Greek sub-indices are restricted to two and three.
From (3.6) and (3.7), it follows that

|Φ(z, t)| ≤C1/2
1

[∫ t

0

∫
D(z)

u,αu,α da dτ +M1

∫ t

0

∫
Ω2(z)

u2 dl dτ

]1/2

×

[∫ t

0

∫
D(z)

exp(−ωτ)u2
,1 da dτ

]1/2

.

(3.8)

But ∫ t

0

∫
Ω2(z)

|u|2 dl dτ ≤M2

(∫ t

0

∫
Ω2(z)

|u|2p dl dτ

)1/p

, (3.9)

where p ≥ 1 and

M2 =
[
t measure (Ω2)

]p/(p−1)
.

We obtain that(∫ t

0

∫
Ω2(z)

|u|2 dl dτ

)1/2

≤ exp(ωt)1/(2p)M
1/2
2

(∫ t

0

∫
Ω2(z)

exp(−ωτ)|u|2p dl dτ

)1/(2p)

≤M3

(∫ t

0

∫
Ω2(z)

exp(−ωτ) [f2(u)u+ ωS1(u)] dl dτ

)1/(2p)

,

(3.10)

where
M3 = C−1/(2p) exp(ωt)1/(2p)M

1/2
2 .

It then follows

Φ(z, t) ≤

2M4

(∫ t

0

∫
D(z)

exp(−ωτ)u,αu,α da dτ

)1/2

+M5

(∫ t

0

∫
Ω2(z)

exp(−ωτ) [f2(u)u+ ωS1(u)] dl dτ

)1/(2p)


×

[∫ t

0

∫
D(z)

exp(−ωτ)u2
,1 da dτ

]1/2

,

(3.11)

where

M4 =
1

2
C

1/2
1 exp(ωt), M5 = C

1/2
1 M1M3.

After some standard manipulations we arrive at (see [7], p. 128)

|Φ(z, t)| ≤M4

[
−∂Φ

∂z

]
+M6

[
−∂Φ

∂z

](p+1)/(2p)

, (3.12)
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where
M6 = p1/2(p+ 1)−(p+1)/(2p)M5.

Consequences of the estimate (3.12) have been studied by Horgan etc (see [7, p134]).
It can be proved that either there exists a positive constant Q1 (see [7, p135]) such
that

− Φ(z, t) ≥ Ĉ1Q1 exp

(
z − z0

Ĉ1

)
, z ≥ z0, (3.13)

where

Ĉ1 = M4 +M6(2− β)β−1σ̂2, β =
2p

p+ 1

and σ̂2 is an arbitrary positive constant, or the decay estimate (see [7, p136])

Φ(z, t) ≤Ĉ2

{[
2Ĉ3(p+ 1)

]−1

(p− 1)
[
z + Q̂(0)

]}−(p+1)/(p−1)

+ Ĉ3

{[
2Ĉ3(p+ 1)

]−1

(p− 1)
[
z + Q̂(0)

]}−2(p+1)/(p−1)
(3.14)

holds, where

Ĉ2 = M4(2− β)σ̂
−(β−1)/(2−β)
1 +M6, Ĉ3 = M4(β − 1)σ̂1

and σ̂1 is an arbitrary positive constant and

Q̂(0) =2Ĉ3(p+ 1)


[

Φ(0, t)Ĉ−1
3 +

Ĉ2
2

4Ĉ2
3

]1/2

− Ĉ2

2Ĉ3


−(p−1)/(p+1)

− Ĉ3(p+ 1)


[

Φ(0, t)Ĉ−1
3 +

Ĉ2
2

4Ĉ2
3

]1/2

− Ĉ2

2Ĉ3


2/(p+1)

.

We note that estimate (3.14) implies that (3.3) holds and then the function Φ(z, t)
is determined by (3.4).

Our results can be summarize by means of the following theorem.

Theorem 3.1. Let u(xxx, t) be a solution of the problem determined by (2.1)–( 2.4)
and (2.8). Then either the function∫ t

0

∫ z

0

∫
D

|∇u|2dx dτ +

∫ t

0

∫ z

0

∫
Ω1

f1(u)u da dτ

+

∫ t

0

∫ z

0

∫
Ω2

[f2(u)u+ ωS1(u)] da dτ +

∫ z

0

∫
Ω2

S1(u) da

becomes unbounded in an exponential way when z tends to infinite, or the function∫ t

0

∫
R(z)

|∇u|2dx dτ +

∫ t

0

∫
Ω∗

1(z)

f1(u)u da dτ

+

∫ t

0

∫
Ω∗

2(z)

[f2(u)u+ ωS1(u)] da dτ +

∫
Ω∗

2(z)

S1(u) da

decays at least as fast as z−(p+1)/(p−1) when z tends to infinite.
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In the particular case that p = 1, we can improve the estimates. From the
estimate (3.12), we see that

|Φ(z, t)| ≤ (M4 +M6)

(
−∂Φ

∂z

)
. (3.15)

It is well known that this inequality implies an alternative of the type (see [3]):
The function Φ(z, t) satisfies the estimate

− Φ(z, t) ≥ Q∗1 exp

(
z − z0

M4 +M6

)
, z ≥ z0, (3.16)

where Q∗1 is a positive constant, or the decay estimate

Φ(z, t) ≤ Φ(0, t) exp

(
− z

M4 +M6

)
, z ≥ 0 (3.17)

is satisfied. We note that estimates (3.16) and (3.17) give an alternative of expo-
nential type.

4. The amplitude term

To make clear the estimates obtained in the previous section, we require a bound
for Φ(0, t) in terms of the boundary conditions at the end x3 = 0. Otherwise, the
decay estimate obtained at (3.14) would be impractical because the dependence of
the amplitude on the data would not be explicit. To make calculations easier, we
assume in this section that Ω1 = ∅ and that f2(u) = 0. Furthermore, we impose
that

mS1(u) ≥ |S2(u)|p1 , m > 0, p1 > 1, (4.1)

where

S2(u) =

∫ u

0

s(η) dη. (4.2)

It is worth giving an example where condition (4.1) holds. The case when s(u) =
s1|u|k, with s1 > 0 and k ≥ 0 always satisfies the required condition. In fact, in
this case we have that

|S2(u)| = s1

k + 1
|u|k+1.

If we take

p1 =
k + 2

k + 1
> 1 and m =

sp1−1
1 (k + 2)

(k + 1)p1
> 0,

we get

m
s1

k + 2
|u|k+2 ≥

(
s1

k + 1

)p1
|u|(k+1)p1

and condition (4.1) holds.
We note that

Φ(0, t) =

∫ t

0

∫
R

exp(−ωτ)|∇u|2 dx dτ + ω

∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)S1(u) da dτ

+ exp(−ωt)
∫

Ω∗
2(0)

S1(u) da = −
∫ t

0

∫
D(0)

exp(−ωτ)gu,1 da dτ,

(4.3)
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where g(x2, x3, t) was considered at (2.4).
We now define

h(x1, x2, x3, s) = g(x2, x3, s) exp(−bx1), (4.4)

where b is an arbitrary positive constant. We have that

Φ(0, t) =

∫ t

0

∫
R

exp(−ωτ)h,iu,i dx dτ +

∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)hS(u)uτ da dτ

=

∫ t

0

∫
R

exp(−ωτ)h,iu,i dx dτ + ω

∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)hS2(u) da dτ

−
∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)hsS2(u) da dτ + exp(−ωt)
∫

Ω∗
2(0)

hS2(u) da.

(4.5)

We see that

Φ(0, t)

≤
[∫ t

0

∫
R

exp(−ωτ)h,ih,idx dτ

]1/2 [∫ t

0

∫
R

exp(−ωτ)u,iu,idx dτ

]1/2

+ ω

[∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)hq1 da dτ

]1/q1 [∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)|S2(u)|p1 da dτ

]1/p1

+

[∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)hq1τ da dτ

]1/q1 [∫ t

0

∫
Ω∗

2(0)

exp(−ωτ)|S2(u)|p1 da dτ

]1/p1

+ exp(−ωt)

[∫
Ω∗

2(0)

hq1da

]1/q1 [∫
Ω∗

2(0)

|S2(u)|p1da

]1/p1

, (4.6)

where q−1
1 + p−1

1 = 1.
Using the arithmetic-geometric mean inequality and Young’s inequality, we find

that

Φ(0, t) ≤1

2

∫ t

0

∫
R

exp(−ωτ)u,iu,i dx dτ +
1

2

∫ t

0

∫
R

exp(−ωτ)h,ih,i dx dτ

+
1

2

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)S1(u) da dτ

+

(
4m

p1

)q1/p1 ωq1
p1

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1 da dτ

+

(
4m

p1

)q1/p1 1

p1

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1τ da dτ

+
1

2
exp(−ω1t)

∫
Ω∗

1(0)

S1(u) da

+

(
2m

p1

)q1/p1 1

p1

∫
Ω∗

1(0)

exp(−ωt)hq1 da. (4.7)
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We obtain that

Φ(0, t) ≤
∫ t

0

∫
R

exp(−ωτ)h,ih,idx dτ

+ 2

(
4m

p1

)q1/p1 ωq1
p1

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1 da dτ

+ 2

(
4m

p1

)q1/p1 1

p1

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1τ da dτ

+ 2

(
2m

p1

)q1/p1 1

p1
exp(−ω1t)

∫
Ω∗

1(0)

hq1 da. (4.8)

We have

h,1(x1, x2, x3, τ) = −bg(x2, x3, τ) exp(−bx1), (4.9)

h,α(x1, x2, x3, τ) = g,α(x2, x3, τ) exp(−bx1), (4.10)

hτ (x1, x2, x3, τ) = gτ (x2, x3, τ) exp(−bx1). (4.11)

Therefore,∫ t

0

∫
R

exp(−ωτ)h,ih,i dx dτ =

∫ t

0

∫
D(0)

exp(−ωτ)

(
g,αg,α

2b
+
b

2
g2

)
da dτ, (4.12)

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1da dτ =

∫ t

0

∫
∂D(0)

exp(−ωτ)
gq1

q1b
dl dτ, (4.13)

∫ t

0

∫
Ω∗

1(0)

exp(−ωτ)hq1τ da dτ =

∫ t

0

∫
∂D(0)

exp(−ωτ)
gq1τ
q1b

dl dτ (4.14)

and ∫
Ω∗

1(0)

hq1da =

∫
∂D(0)

gq1

q1b
dl. (4.15)

We then obtain

Φ(0, t) ≤
∫ t

0

∫
D(0)

exp(−ωτ)

(
g,αg,α

2b
+
b

2
g2

)
da dτ

+ 2

(
4m

p1

)q1/p1 ωq1

p1q1b

∫ t

0

∫
∂D(0)

exp(−ωτ)|g|q1dl dτ

+ 2

(
4m

p1

)q1/p1 1

p1q1b

∫ t

0

∫
∂D(0)

exp(−ωτ)|g,τ |q1dl dτ

+ 2

(
2m

p1

)q1/p1 1

p1q1b
exp(−ωt)

∫
∂D(0)

|g|q1dl.

(4.16)

We can optimize the right hand side of (4.16) with respect to b, but it does seem
an easy task.
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5. Extension to the system

In this section we sketch how to extend the Phragmén-Lindelöf alternative to the
case of a system of equations. In place of the equation (2.1) we will consider the
system

k11∆u1 + k12∆u2 − α(u1 − u2) = 0

k21∆u1 + k22∆u2 − α(u1 − u2) = 0
(5.1)

where we asume that the matrix k11 k12

k21 k22

 (5.2)

is positive definite and that α is a positive constant.
It is worth recalling that this system determines the temperatures in a mixture

of isotropic and homogeneous heat conducting materials (see [5, 10, 13]). To define
the boundary conditions, we assume that

u1 − u2 = 0 on (0,∞)× ∂D × (0, t) (5.3)

together with
qini + f∗1 (u1, u2) = 0 on [0,∞)× Ω1 × (0, t) (5.4)

and on Ω2 we assume that

qini+m1(u1, u2)u1,t+m2(u1, u2)u2,t+f
∗
2 (u1, u2) = 0 on [0,∞)×Ω2×(0, t), (5.5)

where

qi = q
(1)
i + q

(2)
i , q

(1)
i = k11u1,i + k12u2,i, q

(2)
i = k21u1,i + k22u2,i (5.6)

and
f∗1 (u, u)u ≥ 0, f∗2 (u, u)u+ ωM1(u) ≥ C|u|2p, (5.7)

with

M1 =

∫ u

0

η
[
m1(η, η) +m2(η, η)

]
dη ≥ 0

and C a positive constant. In this situation, the analysis starts by considering the
function

Φ(z, t) =−
∫ t

0

∫
D(z)

exp(−ωτ)
[

(k11u1,1 + k12u2,1)u1

+ (k21u1,2 + k22u2,2)u2

]
da dτ.

(5.8)

We note that, for z ≥ z0,

Φ(z, t)− Φ(z0, t) =−
∫ t

0

∫ z

z0

∫
D

exp(−ωτ)
[
k11|∇u1|2 + (k12 + k21)∇u1∇u2

+ k22|∇u2|2 + α(u1 − u2)2
]
dx dτ

−
∫ t

0

∫ z

z0

∫
Ω1

exp(−ωτ)f∗1 (u, u)u da dτ

−
∫ t

0

∫ z

z0

∫
Ω2

exp(−ωτ) [f∗2 (u, u)u+ ωM1(u)] da dτ

−
∫ z

z0

∫
Ω2

exp(−ωt)M1(u) da.

(5.9)
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It is worth noting that

∂Φ

∂z
=−

∫ t

0

∫
D(z)

exp(−ωτ)
[
k11|∇u1|2 + (k12 + k21)∇u1∇u2

+ k22|∇u2|2 + α(u1 − u2)2
]
da dτ

−
∫ t

0

∫
Ω1(z)

exp(−ωτ)f∗1 (u, u)u dl dτ

−
∫ t

0

∫
Ω2(z)

exp(−ωτ)
[
f∗2 (u, u)u+ ωM1(u)

]
dl dτ

−
∫

Ω2(z)

exp(−ωt)M1(u) dl.

(5.10)

An analysis similar to the one proposed at Section 3 allows us to obtain the inequal-
ity

|Φ(z, t)| ≤M∗4
[
−∂Φ

∂z

]
+M∗6

[
−∂Φ

∂z

](p+1)/(2p)

, (5.11)

where M∗4 and M∗6 are calculable positive constants depending on the parameters
of the problem and the time. This estimate allows us to get an alternative of the
type (3.13) and (3.14). Therefore, we can obtain a similar result to the Theorem
3.1. To be precise, we can prove that either the function∫ t

0

∫
R(z)

exp(−ωτ)
[
k11|∇u1|2 + (k12 + k21)∇u1∇u2

+ k22|∇u2|2 + α(u1 − u2)2
]
dx dτ +

∫ t

0

∫
Ω∗

1(z)

exp(−ωτ)f∗1 (u, u)u da dτ

+

∫ t

0

∫
Ω∗

2(z)

exp(−ωτ) [f∗2 (u, u)u+ ωM1(u)] da dτ +

∫
Ω∗

2(z)

exp(−ωt)M1(u) da

decays as a polynomial, or the function∫ t

0

∫ z

z0

∫
D

exp(−ωτ)
[
k11|∇u1|2 + (k12 + k21)∇u1∇u2

+ k22|∇u2|2 + α(u1 − u2)2
]
dx dτ +

∫ t

0

∫ z

z0

∫
Ω1

exp(−ωτ)f∗1 (u, u)u da dτ

+

∫ t

0

∫ z

z0

∫
Ω2

exp(−ωτ) [f∗2 (u, u)u+ ωM1(u)] da dτ +

∫ z

z0

∫
Ω2

exp(−ωt)M1(u) da

increases in an exponential way.
Estimates for the amplitude term can be obtained in a similar way as in Section 4.
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