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Abstract 20 

Current aquaculture practices have a detrimental impact on the environment, 21 

in particular due to the release of high concentration of nitrogen and 22 

phosphorus that can induce eutrophication. This study investigates and 23 

compares the capacity of three microalgae species Tetraselmis suecica, 24 

Isochrysis galbana and Dunaliella tertiolecta, in the bioremediation of grey 25 

mullet Mugil cephalus wastewater. 26 

The experiment was conducted in batch conditions for 7 days using 27 

completely mixed bubble column photobioreactors. After two days, T. 28 

suecica and D. tertiolecta were able to remove more than 90% of Dissolved 29 

Inorganic Nitrogen (DIN) and Dissolved Inorganic Phosphorous (DIP), 30 

whereas I. galbana removed only 32% and 79% of DIN and DIP, 31 

respectively. A higher biomass yield resulted for T. suecica (0.60 ± 0.03 32 

g/L, mean ± SE). 33 

This study confirms the potential to employ T. suecica in an Integrated 34 

Multi Trophic Aquaculture system for bioremediation of wastewater and 35 

identifies D. tertiolecta as another valid candidate species. Moreover, these 36 

species can growth in unsterilized culture media, and this reduces energy 37 

consumption, costs and efforts. 38 

 39 

Keywords: phytoremediation, biotreatment, bioreactors, wastewater, algae. 40 
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1.1 Introduction 42 

Aquaculture is one of the fastest-growing food producing sectors in the 43 

world, providing almost about 50% of all fish for human consumption; 44 

within 2030, this share is projected to rise to 62% (FAO, 2014). On the 45 

other hand, aquaculture represents one of the major contributors to the 46 

increasing levels of dissolved and particulate nutrients in the aquatic 47 

ecosystems (Lamprianidou et al., 2015). A high nutrient loading into the 48 

aquatic environment, in particular nitrogen and phosphorus may cause 49 

eutrophication, oxygen depletion and siltation (Burford et al., 2003). 50 

With the aim to reduce the impacts of traditional aquaculture, several 51 

Countries around the world are developing Integrated Multi-Trophic 52 

Aquaculture (IMTA) systems, which re-uses the wastewaters for the growth 53 

of micro and macroalgae. Indeed, aquaculture wastewater provides nutrients 54 

(ammonia, nitrite, nitrate, dissolved organic nitrogen and phosphate) 55 

(Converti et al., 2006; Soletto et al., 2005; Abe et al., 2002) which can be 56 

used for the production of microalgae. The uptake of dissolved nutrients by 57 

microalgae is considered as the main way to remove nitrogen in aquaculture 58 

wastewaters (Attasat et al., 2013; Sirakov et al., 2013). 59 

Previous studies showed that it is possible to remove nutrients from 60 

wastewater (fishes and shrimp production plants) employing microalgae and 61 

macroalgae as key elements in biological treatments (Gao et al., 2016; 62 

Michels et al., 2014; Sirakov and Velichkova, 2014; Bartoli et al., 2005; 63 

Borges et al., 2005; Lefebvre et al., 2004; Hussenot et al., 1998; Lefebvre et 64 

al., 1996; Hammouda et al., 1995; Shpigel et al., 1993).  65 
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This phycoremediation is an eco-friendly method that offers the advantage 66 

to be a low-cost way to nutrient removal (Mulbry et al., 2008). In addition, 67 

the biomass produced through bioremediation could have multi-purpose 68 

uses including fuels, fertilizers, fine chemicals production and feed in 69 

aquaculture (Mulbry et al., 2006; Vilchez et al., 1997). 70 

One of the most common microalgae species employed in aquaculture 71 

bioremediation wastewater is Tetraselmis spp. (Michels et al., 2014; Sirakov 72 

and Velichkova, 2014; Borges et al., 2005). A recent study Michels et al., 73 

(2014) showed for the first time that it is possible to use Tetraselmis suecica 74 

for the nutrient assimilation of fishfarm wastewater throughout its 75 

cultivation in controlled photobioreactors. 76 

The aim of this study is to evaluate and compare the capability of T. 77 

suecica, Isochrysis galbana and Dunaliella tertiolecta, widely used in 78 

aquaculture as feed for rotifers (Mason 1963), echinoderms (Brundu et al., 79 

2016a, 2016b; Paredes et al., 2015; De La Uz et al., 2013; Azad et al., 2011; 80 

Miller and Emlet 1999; Zamora and Stotz 1994;), filter feeders (Nevejan et 81 

al., 2003; Carboni et al., 2016) and fin fishes (Fabregas et al., 1986), for the 82 

removal of dissolved inorganic nutrients (nitrogen and phosphorous) of 83 

wastewater aquaculture. We evaluate the biomass yield of these species in 84 

controlled bubble column annular photobioreactors, by using untreated 85 

mullet wastewater as culture medium. Contrarily to previous studies that 86 

sterilized the wastewater before its use for bioremediation to eliminate 87 

zooplankton, bacteria and suspended solids (Michels et al., 2014), we 88 

avoided the use of expensive pre-treatment procedures as filtration and 89 
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sterilization, aiming to reduce the costs of seawater treatment and simulate 90 

more real operation conditions of a wastewater treatment system. 91 

 92 

2.1 Materials and methods   93 

2.1.1 Aquaculture wastewater  94 

Aquaculture wastewater was provided by an experimental fish hatchery 95 

located in the International Marine Centre - IMC Foundation (Oristano, 96 

Sardinia, Italy). Juveniles of grey mullet Mugil cephalus (Linnaeus, 1758) 97 

were obtained in laboratory and reared in a recirculating aquaculture system 98 

(RAS) consisting of 4 tanks of 2000 L volume. In this system, the tanks 99 

were linked in a single biological (trickling filter) and cartridge mechanical 100 

filter (10 µm) and supplied with UV lamp (UVPE5, 80 W) and protein 101 

skimmer (Panaque). Temperature was maintained at 23 ± 2 °C (mean ± SE) 102 

with a chiller (TECO TR60, 0.91 Kw) and natural photoperiod (14/10 L/D) 103 

was adopted (Figure 1). 104 

Natural seawater (NSW) at 37.0 ± 1.0 ppt salinity was previously micro-105 

filtered (0.5 µm) and UV lamp sterilized. Juveniles of 0.35 ± 0.43 g body 106 

weight (BW) were fed at 3% BW per day with the commercial formulated 107 

feed for sea fish supplied by Skretting SpA (PERLA LARVA) composed of 108 

62% crude protein, 11% crude oils and fats, 9% crude ash, 0.8% crude fiber 109 

and 1.2% crude phosphorus. Fishes were stocked at an average density of 110 

0.5 g body weight/L. 111 

Tanks were monitored daily for checking mortality; the uneaten food and 112 

faeces were siphoned out twice a week for maintaining good water quality. 113 

A 30% water exchange was weekly performed, and a part of this 30% was 114 
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employed as wastewater in our experiment. Wastewater was taken at the 115 

inlet of the tank, after UV lamp. 116 

 117 

2.1.2 Microalgae culture 118 

The microalgae species were provided by the Agency for Agricultural 119 

Research in Sardinia (AGRIS) and sourced from the Culture Collection for 120 

Algae and Protozoa (CCAP: Oban, Scotland). Pre-culture inocula were 121 

permanently kept in Erlenmeyer flasks in Pyrex glass with total capacity of 122 

2 L, closed with cotton and covered with gauze and aluminum foil. NSW 123 

was autoclaved at 121 °C for 30 min and enriched with Guillard F/2 124 

medium (Guillard 1975; Guillard and Ryther 1962). Cultures were exposed 125 

to a constant illumination (155 μmol/s/m2) provided by 4 fluorescent lamps 126 

(OSRAM type Natura). Continuous aeration 3 L/min was supplied by 127 

peristaltic pump (ECOH Air Pump) and temperature was maintained at 23 128 

°C by air conditioning. 129 

 130 

2.1.3 Experimental design 131 

Nutrient uptake and biomass production of T. suecica, I. galbana and D. 132 

tertiolecta were evaluated during seven days in batch conditions using two 133 

completely mixed bubble column photobioreactors of 6 L; five runs were 134 

done for a total of three replicates per treatment.  135 

Lighting system was composed by four neon daylight lamp (four fluorescent 136 

lamps type cool daylight, OSRAM Lumilux FQ 24W/865), with light 137 
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intensity of 100 μmol/s/m2. This system was monitored with a 138 

Programmable Logic Controller (PLC) that it is a device that performs 139 

discrete or continuous control logic in process plant or factory environments 140 

(Figure 2). These controllers are hardware and software engineered 141 

microcomputers, used to provide industrial control operations (Netto et al., 142 

2013). Reactors were equipped with temperature and aeration regulation 143 

control system; temperature was maintained at 23 °C, aeration was ensured 144 

by a blower at flow rate of 3 L/min. On the contrary, pH was not controlled 145 

and resulted at 7.7 ± 0.2. Phytoplankton laboratory-culture methods and 146 

photobiorectors operation were adopted according to Saiu et al., (2016). 147 

Microalgae growth was measured as dry weight biomass (DW) (Clasceri et 148 

al. 1999). DW was measured once a day in 40 mL of water sample 149 

previously filtered through 0.45 μm Whatman fiber-glass. After filtration, 150 

filters were washed with 20 mL of deionized water to remove salts and dried 151 

in an oven at 105 °C until constant weight, following Saiu et al., (2016). The 152 

supernatant liquid fraction obtained after filtration was used for nitrate, 153 

nitrite, ammonia and phosphorous analysis. In order to monitor the 154 

microalgae nutrient uptake, nutrients were daily analysed by an automatic 155 

chemical analyzer µCHEM based on Loop Flow Analysis (Systea, Italy). 156 

Microalgae removal efficiencies of Dissolved Inorganic Nitrogen (DIN) and 157 

Dissolved Inorganic Phosphorous (DIP) were calculated according to the 158 

method used by Michels et al., (2014), as follow: 159 

N removal efficiency (%) = ((DIN influent - DIN effluent) / DIN influent) x 160 

100 161 
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P removal efficiency (%) = ((DIP influent - DIP effluent / DIP influent) x 162 

100 163 

DIN values were calculated as the sum of nitrite (NO2
-), nitrate (NO3

-) and 164 

ammonia (NH4
+), while DIP corresponded to the total dissolved phosphate 165 

(PO4
3-). 166 

 167 

2.1.4 Statistical analysis 168 

Data were analyzed by Statistica 6.1 StatSoft, Inc. (2004). Differences in the 169 

removal efficiences among phytoplankton species were analysed using 170 

analysis of variance (ANOVA). Shapiro Wilk’s W test was used to verify 171 

the normality of the data distribution and Levene's test was used to verify 172 

the homogeneity of variances. Biomass was analyzed using repeated-173 

measures ANOVA, with species as independent factor and days as repeated 174 

factor. Tukey's honestly-significant difference (HSD) test was used to 175 

evaluate all pair-wise treatment comparisons (p < 0.05). 176 

 177 

3.1 Results 178 

The nutrient concentration of the wastewater was regularly measured before 179 

each experiments (Table 1). It was possible to observe that the composition 180 

of wastewater was very similar in each experiment, being nitrate the N 181 

species with the higher concentration. 182 
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3.1.1 Nutrients removal efficiency  183 

At the end of the experiment a clearly higher DIN removal efficiency (p < 184 

0.001, two-way ANOVA) resulted for T. suecica (94.4 ± 1.0%, mean ± SE) 185 

and D. tertiolecta (95.4 ± 0.3%) in comparison with I. galbana (66.0 ± 186 

1.5%). There were not statistical differences between the three species in the 187 

removal of DIP at the end of the experiments (Table 2). 188 

T. suecica and D. tertiolecta showed a similar pattern of nutrient uptake 189 

(Figure 3 A, 3 C). Both species removed more than 90% of DIN and DIP 190 

after 2 and 1 day, respectively. On the contrary, I. galbana showed a slower 191 

nutrient uptake, lower than 35% and 80% removal for DIN and DIP, 192 

respectively, after 2 days (Figure 3 B). The nutrient uptake of DIN showed 193 

significant differences (p < 0.001) between I. galbana and the other two 194 

phytoplankton species (Repeated-measures ANOVA). 195 

 196 

3.1.2 Biomass yield  197 

Ciliate protozoan Paramecium spp. was observed in all cultures through the 198 

duration of the experiement, but we did not evaluate the abundance of this 199 

species. This was mainly due to lack of the wastewater pre-treatment 200 

procedures (i.e. filtration and sterilization). We found a significant 201 

difference in biomass yield among the three species (Repeated measures 202 

ANOVA, p < 0.001). T. suecica resulted in a higher DW (0.57 ± 0.02 g/L, 203 

mean ± SE) than I. galbana (0.12 ± 0.01 g/L) from 3 days up to the end of 204 

the experiment, 0.60 ± 0.03 g/L for T. suecica and 0.16 ± 0.02 g/L for I. 205 
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galbana. We found no difference between D. tertiolecta and the other two 206 

species (Figure 4). 207 

 208 

        4.1 Discussion 209 

In this study, we tested the capability of three microalgae species to remove 210 

nutrients dissolved in the wastewater of a hatchery pilot rearing system of 211 

M. cephalus. We found two out of three species, T. suecica and D. 212 

tertiolecta, able to remove more than 90% of the DIN and DIP after two 213 

days of treatment. Differently, the phytoplankton species I. galbana 214 

employed 7 days to remove 92% of DIN, while DIP were not completely 215 

removed at the end of the experiment (66%). 216 

This is the first time that the D. tertiolecta was used as aquaculture 217 

wastewater species, while previous studies obtained efficient results by 218 

using T. suecica. Michels et al., (2014) showed that with a biomass 219 

concentration of 0.5 g/L, T. suecica resulted in a removal efficiency of 220 

49.4% for N and 99.0% for P, after 15 days and using continuously operated 221 

tubular photobioreactor. Michels et al., (2014) obtained an higher N removal 222 

efficiency (95.7 ± 1.0%) after addition of extra orthophosphate to 223 

compensate the insufficient amount of DIP in the wastewater. Culturing T. 224 

suecica under batch condition, on the contrary, Borges et al., (2005) 225 

obtained a maximum P removal of only 52-63% at 8 days, even after 226 

nutrient (+N) ratio correction. 227 

The growth of microalgae is influenced by the culture medium composition 228 

and variables such as temperature, light intensity and pH (Molina et al. 229 
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1991). Moreover, it was previously observed that other factors are 230 

determinant for the growth of phytoplankton, as the N:P ratio. Once 231 

microalgae reaches the stationary phase, indeed, Molina et al. (1991) 232 

observed that the biomass concentration increases with the N:P ratio up to 233 

different levelling-off values, which depends upon temperature, with 234 

concentration remaining nearly constant for values beyond this point. At 25 235 

°C, the N:P levelling-off value registered by Molina et al. (1991) for 236 

Tetraselmis spp. (10) is lower than values registered in the wastewater used 237 

for this study, 18 for D. tertiolecta, 16.3 for I. galbana and 32 for T. 238 

suecica. 239 

In this study, the highest biomass yield (DW) was obtained with T. suecica, 240 

0.6 ± 0.06 g/L, while 0.38 ± 0.06 and 0.16 ± 0.04 g/L was recorded for D. 241 

tertiolecta and I. galbana, respectively, at the end of the experiment. We 242 

hypothesize that these differences were due to a diverse species-specific cell 243 

size; according to FAO (2004), indeed, T. suecica has the largest median 244 

cell volume (300 µm3), followed by D. tertiolecta (170 µm3) and I. galbana 245 

(40-50 µm3). 246 

I. galbana is not suitable for the nutrient removal of M. cephalus 247 

aquaculture wastewater. According with Borges et al., (2005) I. galbana 248 

resulted in a low biomass yield and removal efficiency of DIN and DIP. We 249 

hypothesize that the ciliate Paramecium spp. influenced negatively the 250 

growth of I. galbana, because this organism effectively feeds on other live 251 

microorganisms (Wichterman 1986). Paramecium spp. was observed also in 252 

the cultures of T. suecica and D. tertiolecta, but the presence of this 253 

protozoan did not seem to affect the growth of these phytoplankton species. 254 
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I. galbana is smaller than the other two species, therefore it could be a more 255 

easy prey for the zooplankton. Moreover, it has been previously reported a 256 

large spectrum of antimicrobial activity and antibiotic substances of the 257 

genus Tetraselmis spp. (Austin et al., 1992; Austin and Day 1990) and 258 

Dunaliella spp. (Chang et al., 1993), which could limit the negative effects 259 

of Paramecium spp. on the growth of cultures. When aquaculture 260 

wastewater is used as a nutrient source for algae, sterilization may be 261 

necessary to minimize the negative effects of bacteria and other organisms 262 

on the algae growth (Cai et al., 2013; Stein 1979). However, sterilization 263 

process increases the capital cost of the algae cultivation system, 264 

representing a negative point for an efficient phytoplankton bioremediation 265 

system at large scale. Microalgae production, indeed, must be a low cost 266 

system, easily installable and maintainable (Cai et al., 2013). Avoiding to 267 

pre-treat and sterilize the wastewater, as in our experiment, reflects in a 268 

reduction of management costs, as manual labour and energy. Moreover, it 269 

was demonstrated that microalgae cultures with protozoans such as 270 

Paramecium spp. represent suitable diets for fish fries (FAO 1980).   271 

During last decade, research efforts have been focused towards the 272 

development of more efficient, higher surface-to-volume ratio 273 

photobioreactors for microalgae cultivation (Tredici 2004; Rodolfi et al., 274 

2008). This is the first study that compared the ability of these three 275 

microalgae species in nutrient removal of aquaculture wastewater by using 276 

controlled bubble column annular photobioreactors. Gao et al., (2016) 277 

recently tested Chlorella vulgaris and Scenedesmus obliquus cultivated in 278 

shrimp Penaeus vannamei Boone wastewater, in batch conditions and by 279 

using photobioreactors. A better performance in the biomass production was 280 
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recorded for C. vulgaris (7.3 mg/L/day) in comparison with S. obliquus (6.2 281 

mg/L/day).  282 

 283 

        5.1 Conclusion 284 

This study confirmes the potential of T. suecica in the assimilation of 285 

nutrients dissolved in aquaculture wastewater and in the production of 286 

biomass. D. tertiolecta also resulted suitable for bioremediation, removing 287 

more than 90% of dissolved inorganic nitrogen and phosphorous. 288 

Differently from I. galbana, T. suecica and D. tertiolecta are able to grow 289 

well in no sterilized culture media contaminated with bacteria and 290 

zooplankton (Paramecium spp.), reflecting in the potential to reduce manual 291 

labour and energy costs for pre-treatment of culture medium in a 292 

phytoplankton bioremediation system. 293 

T. suecica and D. tertiolecta are valid candidate for the employement in 294 

IMTA systems. They can be cultivated for bioremediation of finfish or 295 

shrimp wastewater and biomass produced can be re-used as live-feed for 296 

hatchery-grown of herbivorous and filter feeders (Alsull and Omar 2012; 297 

Michels et al., 2014). Nevertheless, further studies will be needed to assess 298 

the biochemical composition of these phytoplankton species cultivated in 299 

aquaculture wastewater and to evaluate their effects as live-feed.  300 

 301 
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 509 
 510 
 511 
 512 
Table 1. Nutrients dissolved in the Mugil cephalus wastewater. Values are expressed as mean ± 513 
SE (n= 3). 514 

  Tetraselmis suecica Dunaliella tertiolecta Isochrysis galbana 

NO3- -N (mg/L) 4.1 ± 0.4 4.2 ± 0.1 4.2 ± 0.4 

NO2- -N (mg/L) 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 

NH4+ -N (mg/L) 0.3 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 

PO43- -P (mg/L) 0.3 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 
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Table 2. Influent and effluent DIN and DIP values (mg/L) and removal efficiency (%) of 552 
Tetraselmis suecica, Dunaliella tertiolecta and Isochrysis galbana. Values are expressed as mean 553 
± SE (n= 3). Superscripts indicate significant differences among species. 554 
 555 

 
Tetraselmis suecica Dunaliella tertiolecta Isochrysis galbana 

DIN Influent (mg/L) 4.5 ± 0.5 4.6 ± 0.1 4.6 ± 0.5 

DIN Effluent (mg/L) 0.3 ± 0.1 0.2 ± 0.1 1.6 ± 0.1 

DIN % 94.4 ± 1.0 a 95.4 ± 0.3 a 66.0 ± 1.5 b 

DIP Influent (mg/L) 0.3 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 

DIP Effluent (mg/L) 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 

DIP % 96.0 ± 2.5 91.2 ± 2.3 91.9 ± 4.0 
 556 
 557 
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Figure 1: Recirculating aquaculture system (RAS) for rearing of juvenile grey 588 
mullets Mugil cephalus, consisting of four circular fiberglass tanks with 2000 589 
L volume (V1, V2, V3 and V4). The system was equipped with biological (BF) 590 
and mechanical filter (MF), protein skimmer (PS), chiller (C) and UV lamp 591 
(UV). Dotted arrow = seawater outlet; continuous arrow = seawater intake. 592 

Figure 2:  Bubble column annular photobioreactors of 6 L volume (R1 and 593 
R2) used for the growth of phytoplankton, supplied with LIGHT, 594 
Programmable Logic Controller (PLC), gentle aeration (AIR), probes for 595 
temperature (T) and pH (pH). 596 
Figure 3: Nutrient uptake (%) of Dissolved Inorganic Nitrogen (DIN) and 597 
Dissolved Inorganic Phosphorous (DIP) for Tetraselmis suecica (A), Isochrysis 598 
galbana (B) and Dunaliella tertiolecta (C), during 7 days. Values are expressed 599 
as mean ± SE (n= 3). 600 

Figure 4: Microalgal growth curves as DW (g/L) of Tetraselmis suecica, 601 
Isochrysis galbana and Dunaliella tertiolecta, during 7 days. Values are 602 
expressed as mean ± SE (n= 3). Superscripts indicate significant differences 603 
among species. 604 
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