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Abstract. A Volume of Fluid (VOF) technique has been developed and coupled
with an incompressible Euler/Navier Stokes solver operating on adaptive, unstructured
grids to simulate the interactions of extreme waves and three-dimensional structures.
The present implementation follows the classic VOF implementation for the liquid-gas
system, considering only the liquid phase. Extrapolation algorithms to obtain velocities
and pressure in the gas region near the free surface have been implemented. The VOF
technique is validated against the classic dam-break problem, as well as series of 2-D
sloshing experiments and results from SPH calculations. These and a series of other
examples demonstrate that the present CFD method is capable of simulating violent free
surface flows with strong nonlinear behaviour.

1 INTRODUCTION

High sea states, waves breaking near shores and moving ships, the interaction of extreme
waves with floating structures, green water on deck and sloshing (e.g. in LNG tankers)
are but a few examples of flows with violent free surface motion. Many of these flows
have a profound impact on marine engineering.

The computation of highly nonlinear free surface flows is difficult because neither the
shape nor the position of the interface between air and water is known a priori; on
the contrary, it often involves unsteady fragmentation and merging processes. There
are basically two approaches to compute flows with free surface: interface-tracking
and interface-capturing methods. The former computes the liquid flow only, using a
numerical grid that adapts itself to the shape and position of the free surface. The free
surface is represented and tracked explicitly either by marking it with special marker
points, or by attaching it to a mesh surface. Various surface fitting methods for attaching
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the interface to a mesh surface were developed during the past decades using the finite
element method. In the interface tracking methods, the free surface is treated as a
boundary of the computational domain, where the kinematic and dynamic boundary
conditions are applied. These methods can not be used if the interface topology changes
significantly, as is contemplated here for overturning or breaking waves. The second
possible approach is given by the so-called interface-capturing methods. These consider
both fluids as a single effective fluid with variable properties; the interface is captured as
a region of sudden change in fluid properties. The main problem of complex free surface
flows is that the density p jumps by three orders of magnitude between the gaseous and
liquid phase. Moreover, this surface can move, bend and reconnect in arbitrary ways.
The difficulties that can arise if one treats either the complete system or just the liquid
phase can be illustrated on two small examples. The first one considers hydrostatic flow,
where the exact solution is v =0,p = —g-(x—x(), where x( denotes the position of the
free surface (see Figure 1). Unless the free surface coincides with the faces of elements,
there is no way for typical finite element shape functions to capture the discontinuity in
the gradient of the pressure. This implies that one has to either increase the number of
Gauss-points [Cod02] or modify (e.g. enrich) the shape function space [Cop05]. Using
the standard linear element procedure leads to spurious velocity jumps at the interface,
as any small pressure gradient that ‘pollutes over’ from the water to the air region will
accelerate the air considerably. This in turn will lead to loss of divergence, causing more
spurious pressures. The whole cycle may, in fact, lead to a complete divergence of the
solution.
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Figures 1,2: Hydrostatic Pressure Distribution and Communicating Tubes

Faced with this dilemma, most flows with free surfaces have been solved neglecting
the air. The shortcomings of this approach can be illustrated in the second example,
sketched in Figure 2. A tube is filled with a column of fluid which is interrupted by
a pocket of air. Neglecting the air would never allow the higher column to push the
lower column up. In the present case, we have followed this approach, fully aware of
the limitations.

The remainder of the paper is organized as follows: Section 2 summarizes the basic
elements of the present incompressible flow solver; Sections 3,4 describe the temporal



Rainald Lohner, Chi Yang and Eugenio Onate.

and spatial discretization; Section 5 describes the volume of fluid extensions; some
examples are shown in Section 6; finally, some conclusions are given in Section 7.

2 BASIC ELEMENTS OF THE SOLVER

In order to fix the notation, the equations describing incompressible, Newtonian flows
in an arbitrary Lagrangian Eulerian (ALE) frame are written as

pvt+ pveVv +Vp =VuVv +pg , (1)

V-v=0 . (2)

Here p denotes the density, v the velocity vector, p the pressure, u the viscosity and
g the gravity vector. The advective velocity if given by v, = v — w, where w is
the mesh velocity. We remark that both the gaseous and liquid phases are considered
incompressible, thus Eqn.(2). The liquid-gas interface is described by a scalar equation
of the form:

By+vy VO=0 . (3)

For the classic VOF technique, ® represents the total density of the material in

a cell/element or control volume (see [Nic75, Hir81, Sca99, Che99, Fek99, Bia04,

Hui04]). For pseudo-concentration techniques, ® represents the percentage of liquid

in a cell/element or control volume. For the level set approach ® represents the signed

distance to the interface [Enr03].

Since over a decade [Loh90, Mar92 ; Ram96, Loh99] the numerical schemes chosen to

solve the incompressible Navier-Stokes equations given by Eqns.(1,2) have been based

on the following criteria:

- Spatial discretization using unstructured grids (in order to allow for arbitrary
geometries and adaptive refinement);

- Spatial approximation of unknowns with simple finite elements (in order to have
a simple input/output and code structure);

- Temporal approximation using implicit integration of viscous terms and
pressure (the interesting scales are the ones associated with advection);

- Temporal approximation using explicit integration of advective terms;

- Low-storage, iterative solvers for the resulting systems of equations (in order to
solve large 3-D problems); and

- Steady results that are independent from the timestep chosen (in order to have

confidence in convergence studies).
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3 TEMPORAL DISCRETIZATION

For most of the applications listed above, the important physical phenomena propagate
with the advective timescales. We will therefore assume that the advective terms
require an explicit time integration. Diffusive phenomena typically occur at a much
faster rate, and can/should therefore be integrated implicitly. Given that the pressure
establishes itself immediately through the pressure-Poisson equation, an implicit
integration of pressure is also required. The hyperbolic character of the advection
operator and the elliptic character of the pressure-Poisson equation have led to a number
of so-called projection schemes. The key idea is to predict first a velocity field from the
current flow variables without taking the divergence constraint into account. In a second
step, the divergence constraint is enforced by solving a pressure-Poisson equation. The
velocity increment can therefore be separated into an advective-diffusive and pressure
increment:

VI =y L AVE 4+ AVP = v AVP (4)

For an explicit (forward Euler) integration of the advective terms, with implicit
integration of the viscous terms, one complete timestep is given by:

- Advective-Diffusive Prediction: v'* — v*

[é - GV;N} (V¥ =v") + v UV + Vp" = Vv + pg (5)

- Pressure Correction: p" — p"*1

v.vitl=o0 ; (6)
Vn—|—1 — v +1

n+l _  ny _

v p')=0; (7)
which results in

1 V.-v*
il v/ n+l _ . ny _ . 8
v p (p p") A (8)

- Velocity Correction: v* — v7t!
At

Vi o vt Syt ) (9
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At steady state, v = v = v+l and the residuals of the pressure correction vanish,

implying that the result does not depend on the timestep At. 6 denotes the implicitness-
factor for the viscous terms (6 = 1: 1st order, fully implicit, § = 0.5: 2nd order, Crank-
Nicholson). One can replace the one-step explicit advective-diffusive predictor by a
multistage Runge-Kutta scheme [L6h04], allowing for higher accuracy in the advection-
dominated regions and larger timesteps without a noticeable increment in CPU cost.
A Ek-step, time-accurate Runge-Kutta scheme or order k for the advective parts may be
written as:

pvi = pv" + iy At (—pvf{l Vvl - wpt 4 V/NVFI) ; i=1Lk—1; (10

{é - ev,N] (Vi =v") +pvi b wvET 4 vt = vpvvh Tl (11)

Here, the o are the standard Runge-Kutta coefficients o = 1/(k+1—1). As compared
to the original scheme given by Eqn.(5), the kK — 1 stages of Eqn.(10) may be seen
as a predictor (or replacement) of v" by vF~1. The original right-hand side has not
been modified, so that at steady-state v'* = Vi1 preserving the requirement that the
steady-state be independent of the timestep At. The factor v denotes the local ratio
of the stability limit for explicit timestepping for the viscous terms versus the timestep
chosen. Given that the advective and viscous timestep limits are proportional to:

Atazﬂ ; Atvzp—h2 ) (12)
v Iz
we immediately obtain
2—2 ~ # ~ Reyj, (13)
or, in its final form:
v =min(1l, Rep,) . (14)

In regions away from boundary layers, this factor is O(1), implying that a high-
order Runge-Kutta scheme is recovered. Conversely, for regions where Re; = O(0),
the scheme reverts back to the original one (Eqn.(5)). Projection schemes of this
kind (explicit advection with a variety of schemes, implicit diffusion, pressure-Poisson
equation for either the pressure or pressure increments) have been widely used in
conjunction with spatial discretizations based on finite differences [Kim85, Bel89, Bel92,
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Ale96], finite volumes [Kal96], and finite elements [Gre82, Don82, Gre90, L5h90, Mar92,
Ram96, L6h99, Tak01, Eat01, Kar01, Cod01, Li02, Kar02, L6h04, Cam04].

One complete timestep is then comprised of the following substeps:
- Predict velocity (advective-diffusive predictor, Eqns.(5,10,11);

- Extrapolate the pressure (imposition of boundary conditions);

- Update the pressure (Eqn.(8));

- Correct the velocity field (Eqn.(9));

- Extrapolate the velocity field; and

- Update the scalar interface indicator.

4 SPATIAL DISCRETIZATION

As stated before, we desire a spatial discretization with unstructured grids in order to:
- Approximate arbitrary domains, and

- Perform adaptive refinement in a straightforward manner, i.e. without changes to
the solver.

From a numerical point of view, the difficulties in solving Eqns.(1-3) are the usual
ones. First-order derivatives are problematic (overshoots, oscillations, instabilities),
while second-order derivatives can be discretized by a straightforward Galerkin
approximation. We will first treat the advection operator and then proceed to the
divergence operator. Given that for tetrahedral grids solvers based on edge data
structures incur a much lower indirect addressing and CPU overhead than those based
on element data structures [L6h01], only these will be considered.

4.1 The Advection Operator

It is well known that a straightforward Galerkin approximation of the advection terms
will lead to an unstable scheme (recall that on a 1-D mesh of elements with constant
size, the Galerkin approximation is simply a central difference scheme). Three ways have
emerged to modify (or stabilize) the Galerkin discretization of the advection terms:

- Integration along characteristics [Huf84], [Gre85];

- Taylor-Galerkin (or streamline diffusion) [Kel80], [Bro82]; [Don82], and

- Edge-based upwinding [L6h99].

Of these, we only consider the third option here. The Galerkin approximation for the
advection terms yields a right-hand side (RHS) of the form:

Ti = Dijfij = D”(fl + fj) , (15)

where the f; are the ‘fluxes along edges’

f; = SFF | S¢ =55 DY=\did (16)
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k k
Fij=fi+f fi=(S7of)vi . £ =(Svh)v; (17)
and the edge-coefficients are based on the shape-functions N* as follows:
1 o .
= 3 (VI — NN a0 (19
A consistent numerical flux is given by
iy 1
Fij = fi+ £ — [09)(vi = vj) 07 = 287 (of +05) (19)

As with all other edge-based upwind fluxes, this first-order scheme can be improved
by reducing the difference v; — v; through (limited) extrapolation to the edge center
[L6h01]. The same scheme is used for the transport equation that describes the
propagation of the VOF fraction, pseudo-concentration or distance to the free surface
given by Eqn.(3).

4.2 The Divergence Operator

A persistent difficulty with incompressible flow solvers has been the derivation of a
stable scheme for the divergence constraint (2). The stability criterion for the divergence
constraint is also known as the Ladyzenskaya-Babuska-Brezzi or LBB condition [Gun87].
The classic way to satisfy the LBB condition has been to use different functional spaces
for the velocity and pressure discretization [For79]. Typically, the velocity space has
to be richer, containing more degrees of freedom than the pressure space. Elements
belonging to this class are the pl/pl+bubble mini-element [Sou87], the pl/iso-pl
element [Tho81], and the pl/p2 element [Tay73]. An alternative way to satisfy the
LBB condition is through the use of artificial viscosities [L6h90], ‘stabilization’ [Fra89],
[Tez90], [Fra92] or a ‘consistent numerical flux’ (more elegant terms for the same thing).
The equivalency of these approaches has been repeatedly demonstrated (e.g., [Sou87],
[L6h90], [Loh01]). The approach taken here is based on consistent numerical fluxes,
as it fits naturally into the edge-based framework. For the divergence constraint, the
Galerkin approximation along edge i, j is given by

Fij=f+f , =570, ;=570 . (20)
A consistent numerical flux may be constructed by adding pressure terms of the form:
Fij =i+ 85— [\ (pi —pj) (21)

where the eigenvalue A/ is given by the ratio of the characteristic advective timestep of
the edge At and the characteristic advective length of the edge [:
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AtV
i

AT = (22)

Higher order schemes can be derived by reconstruction and limiting, or by substituting
the first-order differences of the pressure with third-order differences:

Fij = ti + £ = [A|(pi = pj + 5 (Vpi + Vpj)) - (23)

This results in a stable, low-diffusion, fourth-order damping for the divergence
constraint.

5 VOLUME OF FLUID EXTENSIONS

The extension of a solver for the incompressible Navier-Stokes equations to handle free
surface flows via the VOF or level set techniques requires a series of extensions which are
the subject of the present section. Before going on, we remark that both the VOF and
the level set (LS) approach were implemented as part of this effort. Experience indicates
that both work well. For VOF, it is important to have a monotonicity preserving scheme
for ¥. For LS, it is important to balance the cost and accuracy loss of reinitializations vis
a vis propagation. Given that the advection solvers used are all monotonicity preserving,
and that the VOF option is less CPU-demanding than LS, only the VOF technique is
considered in the following.

5.1 Extrapolation of the Pressure

The pressure in the gas region needs to be extrapolated properly in order to obtain the
proper velocities in the region of the free surface. This extrapolation is performed using
a three step procedure. In the first step, the pressures for all point in the gas region
are set to (constant) values, either the atmospheric pressure or, in the case of bubbles,
the pressure of the particular bubble. In a second step, the gradient of the pressure for
the points in the liquid that are close to the liquid-gas interface are extrapolated from
the points inside the liquid region (see Figure 3). This step is required as the pressure
gradient for these points can not be computed properly from the data given. Using this
information (i.e. pressure and gradient of pressure), the pressure for the points in the
gas that are close to the liquid-gas interface are computed.
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Figures 3,4: Extrapolation of the Pressure and Velocity

5.2 Extrapolation of the Velocity

The velocity in the gas region needs to be extrapolated properly in order to propagate
accurately the free surface. This extrapolation is started by initializing all velocities in
the gas region to v = 0. Then, for each subsequent layer of points in the gas region where
velocities have not been extrapolated (unknown values), an average of the velocities of
the surrounding points with known values is taken (see Figure 4).

5.3 Imposition of Constant Mass

Experience indicates that the amount of liquid mass (as measured by the region where
the VOF indicator is larger than a cut-off value) does not remain constant for typical
runs. The reasons for this loss or gain of mass are manifold: loss of steepeness in
the interface region, inexact divergence of the velocity field, boundary velocities, etc.
This lack of exact conservation of liquid mass has been reported repeatedly in the
literature [Sus00, Enr03]. The recourse taken here is the classic one: add/remove mass
in the interface region in order to obtain an exact conservation of mass. At the end of
every timestep, the total amount of fluid mass is compared to the expected value. The
expected value is determined from the mass at the previous timestep, plus the mass-flux
across all boundaries during the timestep. The differences in expected and actual mass
are typically very small, so that quick convergence is achieved by simply adding and
removing mass appropriately. The amount of mass taken/added is made proportional
to the absolute value of the normal velocity of the interface:

Vo

V- Nz (24)

Un =
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In this way the regions with no movement of the interface remain unaffected by the
changes made to the interface in order to impose strict conservation of mass.

5.4 Deactivation of Air Region

Given that the air region is not treated /updated, any CPU spent on it may be considered
wasted. Most of the work is spent in loops over the edges (upwind solvers, limiters,
gradients, etc.). Given that edges have to be grouped in order to avoid memory
contention/ allow vectorization when forming right-hand sides [L6h93, Loh98], this
opens a natural way of avoiding unnecessary work: form relatively small edge-groups
that still allow for efficient vectorization, and deactivate groups instead of individual
edges [Loh01]. In this way, the basic loops over edges do not require any changes. The
if-test whether an edge group is active or deactive occurs outside the inner loops over
edges, leaving them unaffected. On scalar processors, edges-groups as small as negrp=8
are used. Furthermore, if points and edges are grouped together in such a way that
proximity in memory mirrors spatial proximity, most of the edges in air will not incur
any CPU penalty.

5.5 Treatement of Bubbles

The treatment of bubbles follows the classic assumption that the timescales associated
with speed of sound in the bubble are much faster than the timescales of the surrounding
fluid. This implies that at each instance the pressure in the bubble is (spatially)
constant. As long as the bubble is not in contact with the atmospheric air (see Figure 5),
the pressure can be obtained from the isentropic relation:

Po _ (&)7 7 (25)

Pvo Pb0

where py, pp denote the pressure and density in the bubble and pyg, ppg the reference
values (e.g. those at the beginning of the simulation). The gas in the bubble is marked
by solving a scalar advection equation of the form given by Eqn.(3):

bt +ve - Vb=0 . (26)
At the beginning of every timestep the total volume occupied by gas is added. From

this volume the density is inferred, and the pressure is computed from Eqn.(25).

10
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Air

Bubble

Figure 5: Bubble in Water

At the end of every timestep, a check is performed to see if the bubble has reached
contact with the air. Should this be the case, the pressure in the bubble is set to
atmospheric pressure. One then typically observes a rather quick collapse of the bubble.

6 EXAMPLES

6.1 Breaking Dam Problem: This is a classic test case for free surface flows. The problem
definition is shown in Figure 6a.

3.5

p=0.9982
u=0.01 g=(0,-1,0)
7.0

10.0

14.0
Figure 6a: Breaking Dam: Problem Definition

This case was run on a coarse mesh with nelem=16,562 elements, a fine mesh with
nelem=135,869 and an adaptively refined mesh (where the coarse mesh was the base mesh)
with approximately nelem=30,000 elements. The refinement indicator for the latter was
the free surface, and the mesh was adapted every 5 time steps.

11
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Figure 6b: Breaking Dam: Discretization for the Coarse Mesh
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Figure 6¢: Breaking Dam: Horizontal Displacement

Figure 6b shows the discretization for the coarse mesh, and Figures 6d-g the development
of the flowfield and the free surface until the column of water hits the right wall. Note
the mesh adaptation in time. The results obtained for the horizontal location of the
free surface along the bottom wall are compared to the experimental values of Martin
and Moyse [Mar52], as well as the numerical results obtained by Hansbo [Han92], Kélke
[K6105] and Walhorn [Wal02] in Figure 6¢c. The dimensionless time and displacement

are given by 7 = t1/2g/a and § = x/a, where a is the initial with of the water column.

12
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As one can see, the agreement is very good, even for the coarse mesh. The difference
between the adaptively refined mesh and the fine mesh was almost indistinguishable,
and therefore only the resuls for the fine mesh are shown in the graph.

Time=0.000000e-+00 Time=1.000000e-+00

Time=2.000000e-+00 Time=3.000000e-+00

Figures 6d-g: Breaking Dam: Flowfield at Different Times

6.2 3D Dam-Break Wave Interacting with a Circular Cylinder The previous example
validated the accuracy of the numerical model for studing dam breaking. This example
considers a three-dimensional dam-break wave interacting with a circular cylinder. The
tank is 20 m long, 5 m wide, and 10 m high. The volume of water initially contained
behind a thin gate is 4 m x 5 m x 7 m. The circular cylinder, which has a radius
r = 1 m and height h = 5 m, is placed in the middle of the tank. The problem definition
is shown in Figure 7a. The entire tank is selected as the computational domain with

13
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nelem=1,315,224 elements. Figure 7c shows a sequence of snapshots of the free surface
wave elevation, and Figure 7b the time history of the horizontal force acting on the

cylinder.
10m
am 2.5m
1 5m

20m

4m

10m

m
5m

Figure 7a: 3D Dam-Break Wave With Circular Cylinder: Problem Definition

80000 - . . .

' cylinder 1 ——
60000 r 1

40000 [

20000 r

x-force
o

-20000

-40000 r

-60000 r .

- 80000 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

time

Figure 7b: Wave Impact Force on Cylinder

14
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Time=4.096600e-01 Time=1.801100¢+00

Time=4.203000¢-+00 Time=5.401800e-+00

Time=_8.404100¢+00 Time=9.200500¢+00

Time=1.100200¢+01 Time=3.340500¢+01

Figure 7c: Free Surface Wave Elevation

15
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6.3 Sloshing of a 2D Tank due to Sway Excitation: This example considers the sloshing

of a partially filled 2D tank. The main tank dimensions are L = H = 1m , with tank
width B = 0.1m. The problem definition is shown in Figure 8a.

Y
A A 50mm
i - -
Al
—
H=1m
— X
h=0.35m
L=1m

Figure 8a: 2D Tank: Problem Definition

Experimental data for this tank with a filling level h/L = 0.35 have been provided by

Olsen [Ols70], and reported in Faltisen [Fal74] and Olsen and Johnsen [Ols75], where
the tank was undergoing a sway motion, i.e., the tank oscillates horizontally with

VOF, T=1.2, AIL=0025 ——

F 10°/pgl%
g8 o 8

0 5 10 15 20 25 30 35 40

VOF, T=1.3, A/L=0.025 ——

F 10°/pgl%
°

0 5 10 15 20 25 30 35 40
uT

F, 10°/p g%

F 10°/pgl%

150

100

-100

-150

VOF, T=1.2, AIL=005 ——

150

10

15 20

25 30 35

40

100

-100

-150

VOF, T=1.3 A/L=0.05 ——

10

15 20
uT

25 30 35

Figure 8b: 2D Tank: Time History of Lateral Force F
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law Asin(27t/T). A wave gage was placed 0.05m from the right wall and the maximum
wave elevation relative to a tank-fixed coordinate system was recorded. In the numerical
simulations reported by Landrini et al. (2003) using the SPH method, the forced
oscillation amplitude increases smoothly in time and reaches its steady regime value
in 10 T. The simulation continues for another 30 T. and the maximum wave elevation
is recorded in last 10 periods of oscillation. We followed the same procedure as
Landrini et al. [Lan03] in our numerical simulation for 32 cases, which correspond
to 2 amplitudes (A = 0.025,0.05) and 16 periods, ranging from 7" = 1.0 — 1.8 seconds or
T/T; = 0.787—1.42, where T1 = 1.27 seconds. When h/L = 0.35 the primary resonances
of the first and the third modes occur at T'//T7 = 1.0 and T'/T1 = 0.55, respectively. The
secondary resonance of the second mode is at T'/T7 = 1.28 (see Landrini et al. 2003).
The present VOF results for the time history of the lateral force F, when T'=1.2,1.3
and A = 0.025,0.05 are shown in Figure 8b. The corresponding time history of the
wave elevation at the wave probe Al (see Figure 8a) are shown in Figure 8c. Some free
surface snapshots are shown in Figure 8d. The present VOF results for maximum wave
elevation ¢ at the wave probe A1l (see Figure 8a) are compared with the experimental
data and SPH results [Lan03] in Figure 8e for A/L = 0.025,0.05.

wave elevation ({ /L)

wave elevation ({ /L)

0.6

04

0.2

-02

-04

-06

0.6

0.4

0.2

-0.2

-04

-06

VOF, T=1.2, A/L=0.025 ——

s MMM

10 15 20 25
T

30 35 40

VOF, T=1.3, A/L=0.025 ——

10 15 20 25
uT

wave elevation ({ /L)

wave elevation ({ /L)

0.6

04

0.2

-02

-04

-06

0.6

0.4

0.2

-0.2

-04

-06

A

VOF, T=1.2, AIL=0.05 ——

[ 5 10 15 20
T

25

30 35 40

VOF, T=1.3, AIL=0.05 ——

0 5 10 15 20
uT

25

30 35 40

Figure 8c: 2D Tank: Time History of Wave Elevation (Probe Al)

The predicted lateral absolute values of maximum forces are compared with the
experimental data and SPH results [Lan03] in Figure 8f for A/L = 0.05 (there is no
force data available for A/L = 0.025). Figure 8g shows the comparison of predicted
lateral absolute values of maximum forces for A/L = 0.025,0.05. It can be seen from
Figures 8e-f that both maximum wave height and lateral absolute values of maximum
forces predicted by present VOF method agrees fairly well with the experimental data

17
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and SPH results, with a small phase shift among the three results. Figures 8b,c are
typical time history plots. It should be noted from these figures that even after a long
simulation time (40 periods), steady state results are not generally obtained. This is due
to very small damping in the system. Landrini et al. [Lan03] noted the same behavior
in their numerical simulations. As a result, the predicted maximum wave elevation and
the lateral absolute values of maximum forces plotted in Figure 8e are average maximum
values for the last few periods for the cases when the steady state is not reached.
Time=4.771200e+01 Time=4.790500e+01

Time=4.966200e+01 Time=4.985500e-+01

Figure 8d: Snapshots of Free Surface Wave Elevation for 7' = 1.3 and A/L = 0.05
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Figures 9b-f: Sinking Tank: Flowfield at Different Times
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6.4 Sinking Tank: This test case is included to show the combination of the present
techniques with mesh movement and remeshing. The problem definition is given in
Figure 9a. The tank is assumed filled with air, and a hole opens up at the bottom
of one of the compartments. The mass of the tank was estimated by assuming that
when floating empty, half of the tank is outside the water. This yielded approximately
m = 15700 kg. The moment of inertia was estimated at ©, = 80000 kg m?2. The filling
of the tank, and the ensuing movement, can be seen from Figures 9b-f, which show the
free surface, velocity and mesh in the plane of symmetry as the calculation proceeds.
Note the deformation of the mesh during the run, as well as the effect of the (only
4) automatic global remeshings required to guarantee a proper mesh. The mesh had
approximately nelem=530,000 elements. The position and velocity of the center of mass
as a function of time, as well as the trajectory are summarized in Figures 9g,h.

0
_1 -
2+
2 0.5 a3t
S Of A 1 2 s 7
S \ 5 =
Q S 8 5r
o o
o -2 -15 > > 6 I
4 X_C -2 Tr
y_C
-8 I
V_X -
6 x -2.5
v_y 9L
-8 ! ! ! ! ! -3 10 L L L L L L
10 12 14 16 18 20 4.6 4.8 5 5.2 54 5.6 5.8 6
Time X-Position

Figures 9g-h: Sinking Tank: Trajectory of Center of Mass

Figure 10a: Bubble Collapse: Problem Definition
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Time=1.502300¢+00 R T LY Time=2004300¢4+00 "N

Figures 10b-g: Surface Mesh and Evolution of Bubble

6.5 Bubble Collapse Beneath Generic Ship: This example shows the use of the present
methodology to predict the effects of bubble collapse close to structures. The problem
definition is given in Figure 10a. The ship is a generic ferry. The reference values for the
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bubble, which was located at mid-ship and approximately 4 m from the hull, were set as
follows: volume Vg = 128 m3, density pg = 1.25 kg/m3, pressure pg = 1.0e + 8 N/m?,
polytropic coefficient: v = 1.4. The initial radius for the bubble was set to r = 2 m. The
mesh had approximately nelem=1,530,000 elements. Figures 10b-g show the evolution of
the flowfield. Note the change of shape for the bubble, first into a torus and subsequently
into a rather complex shape. The pressure recorded at midship on the hull is shown in
Figure 10h.

180000 — 90000
Pressure
160000 | 1 80000
140000 | ] 70000 -
g {60000 &
g 120000 | 1 p
Z {50000 F
o 100000 1 P
5 4 40000 &
A 7]
2 80000 | 1 2
£ {30000 2
£
60000 | 120000
40000 1 10000
20000 L~

L L L L L L L L L L 0
0 02040608 1 12141618 2 22
Time

Figure 10h: Pressure and Impulse Recorded at Midship on Hull

7 CONCLUSIONS AND OUTLOOK

A Volume of Fluid (VOF) technique has been developed and coupled with an

incompressible Euler/Navier Stokes solver operating on adaptive, unstructured grids

to simulate the interactions of extreme waves and three-dimensional structures. The

present implementation follows the classic VOF implementation for the liquid-gas

system, considering only the liquid phase. Extrapolation algorithms to obtain velocities

and pressure in the gas region near the free surface have been implemented. The VOF

technique was validated against the classic dam-break problem, as well as series of 2-

D sloshing experiments and results from SPH calculations. Other examples presented

include violent wave interaction with a column, a leaky tank filling with water and

sinking, and a bubble collapsing under a generic ship.

When taken together, these recent advances in CFD, which include:

- Accurate, fast incompressible Navier-Stokes solvers operating on adaptive,
unstructured grids;

- Robust Volume of Fluid (VOF) techniques for free surface flows;

- Deactivation techniques to speed up calculations; and

- Extensive parallelization of solvers
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have made it possible to simulate flows with violent free surface motion with a high

degree of accuracy, allowing decision-making based on them.

Like every human endeavour, numerical algorithms are subject to continuous

improvements. Present research is directed at the proper treatment of:

- Surface tension;

- Incoming and outgoing waves for 3-D VOF-based free surface flows;

- Free surface wall boundary conditions for RANS, NS cases (i.e. those cases where the
velocity v = 0); and

- Multiple bubble interaction (splitting, merging, etc.).
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