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Abstract 

This master thesis presents the process of designing and implementing a 
CNN-based architecture for image recognition included in a larger project in 
the field of fashion recommendation with deep learning. Concretely, the 
presented network aims to perform localization and segmentation tasks. 
Therefore, an accurate analysis of the most well-known localization and 
segmentation networks in the state of the art has been performed. Afterwards, 
a multi-task network performing RoI pixel-wise segmentation has been 
created. This proposal solves the detected weaknesses of the pre-existing 
networks in the field of application, i.e. fashion recommendation. These 
weaknesses are basically related with the lack of a fine-grained quality of the 
segmentation and problems with computational efficiency. When it comes to 
improve the details of the segmentation, this network proposes to work pixel-
wise, i.e. performing a classification task for each of the pixels of the image. 
Thus, the network is more suitable to detect all the details presented in the 
analysed images. However, a pixel-wise task requires working in pixel 
resolution, which implies that the number of operations to perform is usually 
large. To reduce the total number of operations to perform in the network and 
increase the computational efficiency, this pixel-wise segmentation is only 
done in the meaningful regions of the image (Regions of Interest), which are 
also computed in the network (RoI masks). Then, after a study of the more 
recent deep learning libraries, the network has been successfully 
implemented. Finally, to prove the correct operation of the design, a set of 
experiments have been satisfactorily conducted. In this sense, it must be noted 
that the evaluation of the results obtained during testing phase with respect to 
the most well-known architectures is out of the scope of this thesis as the 
experimental conditions, especially in terms of dataset, have not been suitable 
for doing so. Nevertheless, the proposed network is totally prepared to 
perform this evaluation in the future, when the required experimental 
conditions are available. 
 
Keywords: CNN, Co-CNN, segmentation, localization, RoI, masking, RoI 
masking, multi-task network, pixel resolution, overfitting 
 



Abstract 

Denna examensarbete presenterar processen för att designa och 
implementera en CNN-baserad arkitektur för bildigenkänning som ingår i ett 
större projekt inom moderekommendation med djup inlärning. Konkret, det 
presenterade nätverket syftar till att utföra lokaliserings- och 
segmenteringsuppgifter. Därför har en noggrann analys av de mest kända 
lokaliserings- och segmenteringsnätena utförts inom den senaste tekniken. 
Därefter har ett multi-task-nätverk som utför RoI pixel-wise segmentering 
skapats. Detta förslag löser de upptäckta svagheterna hos de befintliga näten 
inom tillämpningsområdet, dvs modeanbefaling. Dessa svagheter är i grund 
och botten relaterade till bristen på en finkornad kvalitet på segmenteringen 
och problem med beräkningseffektivitet. När det gäller att förbättra detaljerna 
i segmenteringen, föreslår detta nätverk att arbeta pixelvis, dvs att utföra en 
klassificeringsuppgift för var och en av bildpunkterna i bilden. Nätverket är 
sålunda lämpligare att detektera alla detaljer som presenteras i de analyserade 
bilderna. En pixelvis uppgift kräver dock att man arbetar med 
pixelupplösning, vilket innebär att antalet operationer som ska utföras är 
vanligtvis stor. För att minska det totala antalet operationer som ska utföras i 
nätverket och öka beräkningseffektiviteten görs denna pixelvisa segmentering 
endast i de meningsfulla regionerna i bilden (intressanta regioner), som också 
beräknas i nätverket (RoI-masker) . Sedan, efter en studie av de senaste 
djuplärningsbiblioteken, har nätverket framgångsrikt implementerats. 
Slutligen, för att bevisa korrekt funktion av konstruktionen, har en 
uppsättning experiment genomförts på ett tillfredsställande sätt. I detta 
avseende måste det noteras att utvärderingen av de resultat som uppnåtts 
under testfasen i förhållande till de mest kända arkitekturerna ligger utanför 
denna avhandling, eftersom de experimentella förhållandena, särskilt vad 
gäller dataset, inte har varit lämpliga För att göra det. Ändå är det föreslagna 
nätverket helt beredd att utföra denna utvärdering i framtiden när de 
nödvändiga försöksvillkoren är tillgängliga. 
 
Nyckelord: CNN, Co-CNN, segmentering, lokalisering, RoI, maskering, RoI-
maskering, flera uppgiftsnätverk, pixelupplösning, övermontering 
 



Resum 
 
En aquest treball de fi de màster es presenta el disseny i la implementació 
d’una arquitectura pel reconeixement d’imatges fent ús de CNN. Aquesta 
xarxa es troba inclosa en un projecte de major envergadura en el camp de la 
recomanació de moda. En concret, la xarxa presentada en aquest document 
s’encarrega de realitzar les tasques de localització i segmentació. Després d’un 
estudi a consciència de les xarxes més conegudes de l’estat de l’art, s’ha 
dissenyat una xarxa multi-tasca encarregada de realitzar una segmentació a 
resolució de píxel de les regions d’interès de la imatge, les quals han sigut 
prèviament calculades i emmascarades. Aquesta proposta soluciona les 
mancances detectades en les xarxes ja existents pel que fa a la tasca de 
recomanació de moda. Aquestes mancances es basen en la obtenció d’una 
segmentació sense prou nivell de detalls i en una rellevant complexitat 
computacional. Pel que fa a la qualitat de la segmentació, aquesta tesi proposa 
treballar en resolució de píxel, classificant tots els píxels de la imatge de forma 
individual, per tal de poder adaptar-se a tots els detalls que puguin aparèixer a 
la imatge analitzada. No obstant, treballar píxel a píxel implica la realització 
d’una gran quantitat d’operacions. Per reduir-les, proposem fer la 
segmentació píxel a píxel només a les regions d’interès de la imatge. A 
continuació, després d’un estudi detallat de les llibreries de deep learnign més 
destacades, el disseny ha sigut implementat. Finalment s’han dut a terme una 
sèrie d’experiments per provar el correcte funcionament del disseny. En 
aquest sentit és important destacar que aquesta tesi no té com a objectiu 
avaluar el disseny respecte d’altres xarxes ja existents. La raó és que les 
condicions d’experimentació, sobretot pel que fa a la base de dades, no són 
adequades per aquesta tasca. No obstant, la xarxa està perfectament 
preparada per fer aquesta avaluació un cop les condicions d’experimentació 
així ho permetin.   
 
 
 
Paraules clau: CNN, segmentació, localització, RoI, emmascarar, filtratge 
de RoIs, xarxa multi-tasca, resolució de píxel, overfitting 
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1 Introduction  

Artificial Intelligence (AI) is revolutionizing how science is done. The point is 
that these systems, referred as neural networks, with a minimal amount of 
human contribution are progressively learning how to learn on their own: 
from large training datasets, they can find patterns to be applied for several 
tasks [1]. Among these tasks, image recognition is one of the most challenging 
and interesting to develop. In image recognition, tasks as varied as 
classification, localization, detection or segmentation are applied in a wide 
range of fields: from medical applications to the fashion industry.  
 
The work presented in this thesis aims to present the design, implementation 
and a preliminary evaluation of an image recognition network using deep 
learning [2]. This thesis is part of the PhD work done by Shatha Jaradat in the 
field of fashion recommendation. Concretely, the presented architecture 
performs the image recognition tasks of the network presented in [3], paper 
that summarizes the project of Shatha in fashion recommendation.  
 

1.1 Background 

 
To fulfill the requirements of the work presented in [3], the deep learning 
network created in this thesis has to be able to perform both a localization and 
segmentation task. Localization consists in locating where in the image an 
object is set and segmentation consists in detect and classify the regions that 
form the analysed image. In that regard, papers of how these techniques are 
performed using both deep and non-deep learning algorithms have been 
studied. This thesis includes a summary of the deep algorithms used to 
perform these tasks (see section 4). 
 
Convolutional Neural Networks (CNN) [4] are the typical image recognition 
networks applied when using deep learning. Consequently, in the design 
presented in this thesis, CNNs are implemented. Details about the 
implementation and operation of CNNs are presented in section 2. To 
understand the operation of CNNs and its implementation using deep 
learning libraries, the author of this thesis has followed the Stanford 
University course in CNN [5] and several deep learning libraries tutorials in 
Tensorflow [6] and Keras [7].   
 

1.2 Problem 

 
The architecture presented in [3] is a challenging and ambitious network that 
requires a powerful image recognition module able to perform a segmentation 
task in the most possible optimized way considering the integration of this 
module with the rest of the architecture. This thesis presents both the design 
and the implementation of said image recognition network. Consequently, this 



2 
 
 
 
 

work aims to give answer to two different points: which is the best way to 
design an image recognition network suitable for [3] and, once it is 
implemented, evaluate if the quality of the results is as good as expected. 
 

1.3 Purpose 

 
This master thesis presents the most relevant part of the work performed 
during the realization of the project: it starts with an accurate analysis of the 
techniques and papers related with the subject of study, continues with an 
illustration of the network design and an explanation of its more relevant 
components, shows how the implementation of the design has been carried 
out and finally discusses the results obtained when testing on the resulting 
architecture. 
 

1.4 Goal 

 
The main objective of this master thesis is to perform an accurate analysis of 
the state of the art of the current deep learning algorithms for image 
recognition (e.g. localization, detection and segmentation) so as to come up 
with a new architecture design that fulfills the requirements to be integrated 
in [3] better than the pre-existing options of the state of the art. Furthermore, 
once the design is completed, the network has to be implemented and tested. 
Nevertheless, it is not an objective of this thesis neither to evaluate it nor 
compare with the most well-known architectures in the state-of-the-art, as the 
available resources do not allow to perform an accurate evaluation. 

1.4.1 Benefits, Ethics and Sustainability 

 
AI is going to be applied continuously in the everyday life of an average 
person. In the case of image recognition, a network like the one presented in 
this thesis is going to be suitable, just to give some examples, for medical 
applications (e.g. looking for some patterns that might reveal a disease in an 
x-ray image), surveillance (e.g. detecting from images the person that matches 
a certain description) or, like in [3], fashion recommendation. Nevertheless, 
as AI works with huge amount of data, it is going to certainly expose 
information from a great amount of people. Therefore, it is necessary to 
ensure that their privacy is always preserved.  
 

1.5 Methodology / Methods 

 
Both qualitative and quantitative research methodologies have been applied in 
this project. This corresponds to the fact that this work has consisted in two 
main tasks: network design and network implementation. In terms of network 
design, a qualitative research method has been applied: there is a lot of 
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literature to review so as to understand the methodologies applied depending 
on the task. On the other hand, in terms of network implementation, a 
quantitative methodology focus on obtaining results is performed. The phases 
of the project can be described in the following steps: 
 

- Detailed literature study about deep learning, focusing specially on how 
CNNs work. 

- Read and study of papers related with the field of research: localization 
and segmentation using deep and non-deep learning algorithms. 

- Taking ideas from the previous background, design an image 
recognition network ready to be integrated in the architecture 
presented in [3]. 

- Learn how to work in a deep learning programming environment: 
Python and deep-learning libraries. 

- Conscious study of the implementation in code of the already existing 
architectures which are used in our new image recognition network. 

- Dataset and server selection according to the available resources. 
- Implementation of the design. 
- Experimentation to prove the correct implementation of the network. 

 

1.6 Delimitations  

 
The most important delimitations of this work have been due to the time and 
some resources limitations. Concerning the time, it is a clear limiting factor 
taking into account that the objective is the creation, from scratch, of an image 
recognition networks that ideally should be prepared to give good results. On 
the other hand, in terms of resources, to ensure that a deep learning algorithm 
works correctly, a large dataset is indispensable. This requirement highlights 
the necessity of having a powerful server able to handle the large amount of 
data available in the dataset. Unfortunately, a large dataset suitable for the 
task was not available within the time of this thesis and there were limitations 
in the selected server’s capabilities. In the case of the dataset, a large and 
suitable dataset is being gathered in another master thesis performed in 
parallel with this one. However, it has suffered from an important delay and 
has not been possible to use it for this work. Finally, regarding the server, after 
dealing with a lot of issues, the selected one has not fulfilled the capacity 
expectations. Thus, as the resources have not been optimal, it is not 
performed an evaluation of the worthiness of the design based on the results 
obtained in the test phase.  
 

1.7 Outline (Disposition) 

 
This report is organized as follows. Section 2 provides a background study 
focused on CNNs and the image recognition tasks to be performed in the 
network: localization and segmentation. Section 3 includes a summary of the 
most important papers and techniques from the state of the art that have been 
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studied to come up with a new design. Section 4 presents the details related 
with the design of the network, explains its integration in [3] and compares it 
to the networks of the state of the art. Section 5 includes the implementation 
details of the network. Section 6 presents the evaluation of the architecture 
after testing phase and, finally, section 7 gives the conclusion and expected 
feature work. 
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2 Theoretic Background: Transition to Deep Learning 

This master thesis presents the design of the image recognition architecture of 
the proposal made in [3]. In it, fashion images are analysed in order to 
perform a recommendation task, e.g. brand/style recommendation. 
Consequently, an important analysis of the techniques and possibilities in the 
image recognition field has been carried out, focusing specifically in the 
methods offered by the traditional computer vision models and the ones 
where deep learning is applied. 
 
When it comes to analysing the content of an image, the traditional computer 
vision and image processing algorithms have provided pioneering solutions 
with excellent results. Tasks such as object detection, localization and 
segmentation have been widely used for a great amount of purposes, covering 
a wide range of applications: from surveillance and biometrics to videogames 
and leisure activities. Recently, the application of deep learning for computer 
vision tasks has changed the scenario: while in traditional computer vision 
methods feature extraction is required as a pre-processing step before feeding 
the non-deep machine learning or equivalent decision algorithm, no pre-
processing has to be done in deep learning, as the features are extracted inside 
the network. This is a relevant change because the feature extraction process 
is not learnable in the traditional machine learning architectures for computer 
vision and even less in an image processing technique where any machine 
learning algorithm is applied [8]. On the other hand, the utilization of deep 
learning for these tasks allow them to be trainable end-to-end, i.e. to learn 
also how to perform the feature extraction.  
 
In this work, the image recognition network is going to be implemented using 
deep learning techniques; concretely, Convolutional Neural Networks (CNN) 
[4]. It has been selected instead of the traditional machine learning algorithms 
for computer vision because of the arguments of the previous paragraph: the 
possibility of performing an end-to-end training without pre-processing steps. 
 
In the following sections, an introduction of how CNN work and a summary of 
the image processing techniques that have been considered for these task, i.e. 
object detection, localization and segmentation, are going to be presented.  
 

2.1 Convolutional Neural Networks (CNN) 

 
Convolutional Neural Networks (CNN or ConvNets) are a specific type of 
artificial neural networks that have revolutionized object and speech 
recognition [4][8]. They are designed to use minimal amounts of pre-
processing and have a wide application in image and video recognition, and 
natural language processing. CNNs were inspired by the organization of 
animals’ visual cortex, which has small regions of cells (known as receptive 
fields) that are sensitive to specific regions of the visual field. In an experiment 
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made by Hubel and Wiesel in 1962 [9], they showed that some individual 
neuronal cells in the brain responded or fired only in the presence of edges of 
a certain orientation, and others respond to other types of stimuli. They found 
that all these neurons were organized in a hierarchical architecture and that 
together, they were able to produce visual perception. In the same way, the 
low-level features (such as edges and curves) are identified in the first layers 
of CNNs, then building up to more abstract concepts through a series of 
layers. The name of these networks (convolutional) is related to the fact that 
the response of a neuron to a stimulus within its receptive field can be 
approximated by the mathematical convolution operation [10]. 
 

 
 

Figure 1: Example of a CNN architecture for object classification. Source: [11] 

 
A simplified description of the mechanism that CNN uses in the first CONV 
layer is given as follows: given an input image as the one in Figure 1, it is 
analysed region by region. It is done with different filters that are applied to 
small windows (receptive field) of the image. Then, the whole image is 
analysed by moving the filter along all the positions; operating in each 
location with all the values inside the filter dimensions, i.e. the receptive field. 
Depending on the values of the filters they are going to be more suitable for 
extracting different type of features. For example, they can be adapted to the 
shape of a curve with a certain orientation. We can think of it as a search 
operation, we look where in the image there is this curve for example. Each 
filter will result in one of the activation maps. So, in the first CONV layer, we 
can get many activation maps resulting from straight edges, curves and other 
types of filters. Applying convolution in multiple layers, will result in 
identifying the high-level features of the object in a hierarchical style. At the 
end, it is going to be able to classify the objects in the image.  
 

2.1.1 CNN Architecture: Main Operations 

 
CNNs are built up with a basic structure based on the combination of four 
different types of layers, as presented in the following scheme:  
 

Input  [ [CONV  ReLU] * N  POOL] * M  [FC  ReLU] * K  FC 
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Where N, M and K are integer values typically between 1 and 3 [8]. These 
values are set depending on the needs of the network, allowing the creation of 
deeper networks for those tasks where a more complex structure is required. 
On the other hand, Input, CONV, ReLU [18], POOL and FC are the different 
type of layers and important elements that appear in a typical CNN 
architecture. All of them, together with its main operations, are going to be 
presented in the following sections. 
 

2.1.1.1 Input 

 
CNNs take images as input. Images are represented by an array of pixel values 
with three dimensions (height, width, and the RGB values (colour channels)). 
For example, an image with height = 480, width = 480 will be presented as a 
480 × 480 × 3 tensor. Each of the points in the image take a value between 0 
and 255 which describes the pixel intensity at that position. 
 

2.1.1.2 Convolutional Layer 

 
Also known as CONV layers, this type of layer is always the first layer in a 
CNN. In CONV layers, filters (kernels) that stride across all the areas in the 
input image are applied. The area that the filter covers is the receptive field. 
The dimensions of the filter are height ×width × depth. Where the depth is the 
same as the input of the layer. As the filter strides (convolves) over the input 
image, it multiplies (element-wise multiplication) the values in the filter with 
the original pixel values of the image. This process is repeated for every 
location in the input volume. The filter is moved by a certain number of units, 
which is defined by the stride parameter. The result is a feature or activation 
map. The more filters, the greater depth of the activation map, and the more 
information about the input image.  
 
 
 
 
 
 
 
 
 
 
Figure 2: A visualisation of the process of applying a filter and moving it in the whole image. 

Source:  [12] 

 
As mentioned before, the low-level features are usually detected in the first 
layers, but in order to detect whether the image is a type of object, the network 
needs to recognize higher-level features. This is achieved by providing the 
output (activation maps) of a certain layer as an input to another 
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convolutional layer. Thus, the input will be a description of the locations in the 
original image for where certain low-level features appear. By applying a set of 
filters on top of that, the output will be activations that represent higher-level 
features. As we go deeper in the network, we get activation maps that 
represent more and more complex features. 
 
As the network deepens, the filters start having larger effective receptive 
fields. This does not mean that the actual receptive field is increased, strictly 
the receptive field could be the same. The difference is that, due to the 
downsampling experienced in a CNN (explained later in this section), with the 
same values, they span the equivalent of larger regions of the original input 
(the image). This is essential in classification tasks as the analysis of larger 
regions of the input allow to obtain the required global information. The 
network learns how to adjust its filter values or weights through optimization 
algorithms, typically using Stochastic Gradient Descent (SGD) [13] with 
backpropagation [14]. The training process has four main steps: forward pass, 
loss function, backward pass and weight update. At the beginning, the filter 
values are randomized. During forward pass, we take an input image and pass 
it through the whole network. Since all the weights (filter values) are 
randomized in the first round, the output will not give any relevant preference 
to any particular class (in image classification tasks for example). The 
objective after computing the loss function is to get the weights adjusted to 
minimize the loss. To achieve this, we take the derivative of the loss with 
respect to the weights. The backward pass is done through the network, which 
helps in determining which weights contributed the most to the loss and 
finding ways to adjust them and decrease the loss. The weights get updated so 
that they change in the negative direction of the gradient according to a 
learning rate. The learning rate is a hyperparameter chosen by the 
programmer which remains fixed when using SGD [13]. Higher learning rate 
means bigger steps taken for weight updates and thus it may take less time for 
the model to converge on an optimal set of weights. However, high learning 
rates could result in non-precise and too large jumps, being even unable to 
reach the minimum. On the other hand, smaller learning rates ensure not to 
go by the minimum but need a lot of time to converge. Usually it is better to 
set higher values in the beginning of training when the optimum is still far and 
decreasing it when the network is more tuned. This highlights the need of 
using dynamic learning rates instead of fixing them, like in SGD [13]. This is 
the reason why there are methods that compute them dynamically such as 
Adagrad, RMSprop or Adam [15][16]. The process of training is repeated for a 
fixed number of epochs. Once the parameter updates are finished, the network 
should be trained well enough so that the weights of the layers are turned 
correctly. With more training data for the network, the more training 
iterations we can have, and the more weight updates and better network 
tuning.   
 
The parameters that change the behaviour in CONV layers are the stride and 
padding. The stride controls the amount by which the filter shifts.  For 
example, if the stride is 1, the filter convolves around the input volume by 
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shifting one unit at a time. It should be set in a way that ensures that the 
output is an integer not a fraction. In Figure 3, the difference between 
applying a 3 × 3 filter with stride = 1 and stride = 2 is shown, demonstrating 
that if the stride increases the output dimensions shrink.  
 

 

 
 

Figure 3: Illustration of the difference between applying a 3 × 3 filter with stride = 1 and 
stride = 2. Source: [12] 

 
As we keep applying CONV layers, the size of the output decreases faster. 
However, the dimensionality reduction is performed exclusively in the edge 
values of the feature map. This happens because to apply a convolution, the 
entire receptive field of the filter must fit inside the map, which is not possible 
for the positions in the edge. Consequently, it is preferable to force the output 
to maintain the size of the input. The available tool to ensure that the 
dimensions are kept is padding. It consists in applying a set of zero values 
around the feature map as shown in Figure 4: 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 4: The resulted matrix after applying zero padding of 2 to a 32×32×3. Source: [12] 
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The way of selecting the padding to maintain the input dimensions depends 
on the receptive field of the applied filters. Assuming a stride = 1, the formula 
for the padding that prevent the dimensions from being reduced is the 
following: 
 

Zero padding = 
(𝐹−1)

2
 

 
Where F is the receptive field (spatial dimensions) of the filters applied. 
 
In general terms, the formula for calculating the output size for any CONV 
layer is as follows: 

 

O = 
(𝐼 − 𝐹 + 2𝑃)

𝑆
 + 1 

 
Where O is the output height/length, I is the input height/length, F is the filter 
size (receptive field), P is the padding and S is the stride [8]. 
 
For example, in the figure below, the result of applying a 5 ×5 ×3 (F=5) filter 
with stride = 1 (S=1) and without padding (P=0) on a 32 × 32 × 3 (I=0) is 
visualized in the second part of the figure, which has the dimensions 28 × 28 
× 1 (O=0). As it can be seen the absence of padding provokes a reduction of 
dimensionality. The depth of the output (output channels) depends on the 
number of filters applied. For example, if two filters were applied, the 
activation maps would be 28 × 28 × 2.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: The matrix that results after applying the filter on the input image Source: [17]  

 

2.1.1.3 Activation Function 
 

It is a convention to apply a non-linear layer (activation layer) after CONV 
layers, to introduce a non-linearity in the network. There are several reasons 
to introduce these non-linearities. On the one hand, they are a good way to 
simulate the biological functionality of a neuron: when the input impulse is 
strong enough, the neuron activates; otherwise, it does not do anything [4][8]. 
Moreover, non-linearities are necessary for analysing non-linear patterns. In 
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fact, the operations performed in a neural network are basically linear (dot 
products), reason why they are suitable for linear patterns. On the contrary, 
its linearity complicates the analysis of non-linear functions. Activation 
functions introduce a non-linear behaviour to the network, making also 
possible the analysis of non-linear patterns. In the origins of CNNs, non-linear 
functions such as tanh, sigmoid were used but researchers found that ReLU 
(Rectified Linear Unit) [18] layers work better because the network is able to 
train faster without making a significant difference to the accuracy. They also 
help in avoiding the vanishing gradient problem. The vanishing gradient 
problem occurs in sigmoid and tanh units, where the gradient essentially 
becomes zero after a certain amount of training and it stops all learning in that 
section of the network. As shown in Figure 6, it happens because sigmoid and 
tanh saturate in 1. This provokes that, in saturation zones, the gradient for the 
activations is almost 0, making the learning process very slow or, eventually, 
terminating it. 
 

 
 

Figure 6: (a) Sigmoid activation function. (b) tanh activation function. Source: [19] 

 
Applying ReLU [18], function f(x) = max(0, x), avoids said problem. As shown 
in Figure 7, no saturation occurs in the positive domain. Nevertheless, note 
that all the presented activation functions saturate in the negative domain. 
This is not a problem; this part is reserved for those values which should not 
be activated. Therefore, it is convenient that no learning process starts from 
these values, as they do not fulfil the criteria to be considered in the process.  
 

 
 

Figure 7: ReLU activation function. Source: [19] 
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2.1.1.4 Pooling Layer 

 
As previously described in section 2.1.1.2 (padding), maintaining the input 
dimensions when performing the convolution was appropriated to retain the 
information present in the edges (otherwise lost). Nevertheless, after some 
CONV - ReLU layers, downsampling should be applied. As stated, CNNs have 
images as inputs. The reason is that if FC layers were used, the number of 
operations to perform would be huge, as the input values in an image are very 
big (in part due to the three dimensionalities of RGB channels). When going 
through pooling layers, the dimensionality of the input is reduced, making it 
more suitable for the final FC layers of the CNN as less operations are 
required. Among the different options for pooling, i.e. average pooling, L2-
norm pooling and max pooling, the most popular one is max pooling [8]. Like 
in Convolutional Layers, max pooling analyses the input by regions, 
determined by the receptive field and stride parameters. The difference is that, 
instead of filtering the input, it takes the maximum values for each of the 
analysed sub-regions. This region analysis allows not only to perform a 
dimensionality reduction but also to ensure that the obtained values have 
local-information awareness, which is especially important for image 
recognition. This happens because, when taking the maximum value of a 
concrete region, it is ensured that the dimensionality reduced output consists 
of local representative values of the original input. Figure 8 presents an 
example of applying max pooling with a 2 × 2 filter and stride of 2. 
 

 
Figure 8: Example of applying max pooling with a 2× 2 filter and stride of 2. Source: [12] 

 
Finally, the mathematical expression that relates the dimensionality reduction 
with the selected receptive field and strive parameters is the following: 
 

O = 
(𝐼 − 𝐹 )

𝑆
 + 1 

 
Where I and O refer to the input and output dimension, respectively; F, to the 
receptive field (kernel size) and S to the stride [8]. 
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2.1.1.5 Fully Connected Layers 

 
Fully connected layers (FC layers) are added at the end of the network, where 
they take as input the output of a CONV/ReLU/Pool previous layer. The 
objective of this type of layers in image classification tasks is to determine the 
features that correlate the most to a particular class, and produces an N 
dimensional vector where N is the number of classes that the program has to 
choose from. For example, if the program is predicting that some image 
represents a person, then it will have high values in the activation maps that 
represent high level features like hands, face, arms, etc. Examples of classifiers 
that can be used in final layers is the Softmax function [20] which performs 
logistic regression to regularize outputs to values between zero and one.  
 

2.2 Image Recognition: Image detection and localization 

 
The detection and localization of the elements that appear in an image has 
been always a useful and challenging technique in image processing. 
Computer vision techniques as the SIFT feature descriptor [21] have been 
widely used to perform these tasks. In a way that stands out for its 
simplification: detecting an object can be as easy as matching it with a SIFT 
reference [21]. Figure 9 illustrates the differences between object 
classification, detection, localization and segmentation. 
 

 

  
Figure 9: (a) Object classification - the task of classifying that the picture is a dog. (b) Object 
localization - decides the bounding box of where the object is located. (c) Object detection - 
involves the localization of multiple objects that don’t have to be from the same class. (e) 
Object segmentation - decides the class label and decides an outline of the object. Source: 
[22]  

 
Localization and detection are referred usually equivalently. In principle, in 
localization only one instance is located, but in practical terms it can be also 
used in the case where more than one element is located in the image. 
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Concretely, it is a process where a single object bounding box should be 
predicted for each of the instances in the image. The basic concepts that are 
needed to perform localization are described in the subsections below. More 
details about localization using deep learning methods are provided in section 
3. 
 

2.2.1.1 Object Proposal 

 
Object proposals are regions of an image that are supposed to contain an 
object. Nevertheless, they are not an accurate region. These proposals are 
typically refined by localization methods (section 3.1). Sometimes they are 
also referred as RoIs, Region Proposals, Bounding-Box or simply boxes [23]. 
Each of them is described using 4 real-valued numbers: 
 

1) X coordinate from the centre of the box. 
2) Y coordinate from the centre of the box. 
3) Width of the box. 
4) Height of the box. 

 

2.2.1.2 Bounding-Box Regression 

 
Bounding-box regression is the process that aims to improve the accuracy of 
an Object Proposal. As its name indicates, it modifies the bounds of a box 
(characterized using centre, width and height) so as to adjust it to its ideal 
version, i.e. ground truth box. Inside the architecture of a CNN, bounding-box 
Regression is, in terms of localization, the equivalent learning process that 
takes place for classification, i.e. after introducing an input to the network, the 
given results are improved by fine-tuning the weights that describe said 
network according to a loss function focused in the concrete task (in this case, 
reducing the difference between the proposed box and the ground-truth box) 
[23].  
 

2.3 Image Recognition: Segmentation 

 
Segmentation consists in taking an image and split it in a set of labelled 
regions. The number of regions could be either selected by the user or 
automatically generated. Segmentation is sometimes referred as a pixel 
classification and this is what differentiates if from localization and object 
detection tasks: it is more precise. In effect, all the pixels of a segmented 
region will belong to the same object category. This is not the case of 
localization, where the proposed boxes detect the target object but also 
background elements. This process has been historically performed with 
different image processing methods: from Region Merging to Region Growing 
[25]. Nowadays, Deep Learning algorithms are used for this task with an 
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impressive performance (section 3.2). Figure 10 visualizes an example of the 
segmentation process. 
 

 
Figure 10: Visual example of image segmentation. Source: [24]  

 
Obviously, a challenging task as segmentation, has to deal with a lot of issues. 
Among all of them Over-segmentation is highlighted, as it can easily ruin the 
performance of the system or enhance it. 
 

2.3.1.1 Over-Segmentation 

 
Over-segmentation happens when in a segmentation process more regions 
than the ones desired are segmented. This could result either in a 
segmentation with a higher level of detail than the expected (e.g. imagine that 
we want to segment a vest but we don’t want to segment also its pockets, over-
segmentation would be to obtain these pockets as a separate region) or the 
appearance of useless regions that do not have a clear meaning (which in the 
end could be considered as noisy regions) [25]. 
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3  Study and analysis of the related work 

This section presents major examples of the state of the art of using CNNs in 
image analysis. Concretely, technical papers related to the architectures 
designed to perform localization and segmentation tasks have been the ones 
that have been studied more conscientiously, as an essential previous step for 
designing our network. 
 

3.1 CNN for Localization 

This section presents in detail three major works in object localization in 
computer vision that apply deep CNNs in their architectures: R-CNN [26], 
Fast R-CNN [23], and Faster R-CNN [27]. R-CNN [26] (2014) with more than 
2000 citations, is considered one of the most impactful advancements in 
localization tasks in computer vision. Fast R-CNN [23] (2015) and Faster R-
CNN (2015) [27] were proposed to make the R-CNN model [26] faster and 
better suited for modern object localization and detection tasks. Other related 
concepts that are necessary to describe the papers are explained in detail as 
well. The process of localization can be split into two general components: the 
Region Proposal step and the classification step. Fast R-CNN [23] presents a 
new technique to perform object detection and localization in an image. 
Previous methods like R-CNN [26] or SPPnet [28]  present several drawbacks: 
R-CNN [26] is very slow and SPPnet [28] layers are fixed. Fast R-CNN [23] 
solves both problems with a single-stage training algorithm that jointly learn 
how to classify Object Proposals and refine its spatial location. Fast R-CNN 
[23] outperforms R-CNN [26] in terms of time but, in its measures, it does not 
take into account the time required to perform the computation of the Object 
Proposals. Faster R-CNN [27] includes in the Fast R-CNN [23] architecture a 
“small internal network”, RPN.  RPN has the purpose of computing the Object 
Proposals; thus, the object proposals are created in the same network, which 
allows to control the overall time to perform the entire task. 

3.1.1 R-CNN  

 
Region-Based Convolutional Neural Network (R-CNN) [26] is a method that 
aims to perform both object classification and localization using CNN. This 
method requires as input the region of an image associated to an Object 
Proposal. To train the network for both task, R-CNN applies a multi-stage 
learning approach, which means that the whole system is not optimized at the 
same time: each task is trained individually, in different stages, i.e. there is not 
a joint loss function. The different steps applied in the multi-stage learning of 
R-CNN [26] are the following: 

 
1) Train a CNN via log loss function (softmax classifier [20]). In this stage, 

the typical classification task is performed. 
2) The final feature map (i.e. the output given by the last CONV layer) 

from the previous step is given to a set of SVM classifiers [20] that are 

https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1504.08083
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going to perform as object detectors. Therefore, the structure is the 
same as in step 1 but replacing the softmax classifier by these SVM 
object detectors [20]. This is the first step necessary to perform the 
localization task. 

3) Train the SVMs [20] classifiers for object localization. 
4) Finally, the localization task is refined with Bounding-Box regression. 

 
Despite providing a good performance, this method presents several 
drawbacks: it is computationally expensive and quite slow. This happens 
because this algorithm is individually applied for each of the Object Proposals, 
which results in a great amount of computations that are not performed in 
parallel but sequentially (one per each Object Proposal). In order to solve this 
problem several methods were created, such SPPnets [28] or Fast R-CNN [23] 
[26].  
 

 
 

Figure 11: Summary of the operation of R-CNN. Source: [26]  

 

3.1.2 SPPnet  

 
Spatial Pyramid Pooling networks (SPPnets) [28] were introduced so as to 
accelerate the R-CNN algorithm [26].  In contrast to R-CNN [26], this method 
accepts as an input an entire image instead of the region associated to a 
concrete Object Proposal. The most characteristic element of a SPPnet [28] is 
the use of a SPP layer after a typical CNN architecture. This SPP layer is used 
as the last pooling layer of said CNN and, due to its characteristics, helps to 
focus only on the features related to the studied Object Proposal. In terms of 
learning, as in the case of R-CNN [26], this technique uses a multi-stage 
training approach. Its algorithm can be summarised as follows: 

 
1) Feature extraction: this is the main difference with R-CNN [26]. As 

aforementioned, in this case the feature map obtained by the CONV 
layers has been computed with the entire image (in the case of R-CNN 
[26] is only the feature map of the Object Proposal region). Then, in 
order to use only the features related to the desired Object Proposal, it 
is projected in the feature map. Finally, a feature vector associated to 
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these regions is created by means of SPP. This process is hold in the 
SPP layer, i.e. the last Pooling layer from the CNN. 

2) Fine-tuning a CNN (that includes the SPP layer as its last Pooling layer) 
using a log-loss function (softmax classifier [20]). 

3) The feature vector obtained in the previous step is given to a set of SVM 
classifiers [20] that perform as object detectors. 

4) Finally, Bounding-Box regressors are learnt. 
 

The strength of this method when comparing it to R-CNN [26] is the fact that 
it performs shared computation, i.e. the feature map is created for the entire 
image and not for each of the Object Proposals. This accelerates a lot both the 
testing and training time, as the feature extraction with this method (SPP) is 
faster. Nevertheless, it is not an ideal solution: due to the fact that it performs 
a multi-stage training, each of the steps presented in the algorithm are going 
to be trained separately (not joint training of classification and detection 
tasks). The problem appears in the training of the CNN: the CONV layers that 
are set before the SPP layer cannot be modified in the training step, which 
means that, in practical terms, they are fixed. The reason why this happens is 
because the Object Proposal is usually too large (it can include almost the 
whole image), making inefficient the backpropagation through this layer, 
which has a negative impact in the global performance of this method [28].  
 

3.1.2.1 SPP layer 

 
Spatial Pyramid Pooling layer (SPP) is a pooling layer used to extract features 
in SPPnet [28]. Usually, it is applied after the last CONV layer of a CNN 
architecture, to perform the typical pooling task that has to be performed in a 
CNN [28]. Nevertheless, the pooling algorithm is not applied to the whole 
image but to the regions that are wanted to be analysed (Object Proposals) Its 
algorithm can be summarised as follows: 

 
1) To represent an Object Proposal, max pooling (with a concrete output 

size) is applied to the region of the feature map that we want to analyse. 
This process could be understood as applying max pooling to the 
projection of the analysed Object Proposal into the feature map. 

2) The “pyramid” is the feature vector obtained after concatenating the 
results from step 1 for a set of different output sizes. 
 

3.1.3 Fast R-CNN 

 
Fast Region-Based Convolutional Neural Network, (Fast R-CNN) [23] solves 
the drawbacks of both R-CNN [26] and SPPnet [28], i.e. the slowness and 
fixed CONV layers, respectively. In this case, both the entire image and the 
Object Proposals are used as inputs. As in the previous techniques, this 
method not only performs an object detection task but also computes a 
classification of the detected object. However, as opposed to the other 
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methods, it does it in a single-stage training. In order to do so, said method 
presents a special architecture which is characterized by the following 
elements: 

 
1) Given an entire input image, it is fed into a set of CONV layers are 

applied, giving as a result a feature map from the entire image. 
2) The introduced Object Proposals are projected into the feature map. 
3) From each of these projections, a set of features is extracted from the 

feature map by means of a RoI Pooling Layer. 
4) A set of FC layers are fed with the feature vector obtained in the 

previous step. 
5) The output has two sibling output layers: one that is going to perform a 

classification task using a softmax classifier [20] (i.e. a linear classifier 
with a softmax loss function) and another one that is going to perform 
Bounding-Box regression (i.e. process to obtain four real-valued 
numbers that describe the Bounding-Box associated to each of the 
possible categories).  

 
Analysing the architecture above, it is easy to describe it as a modification of a 
regular CNN. Effectively, the major changes that should be performed are 
allowing the acceptance of two different inputs, replacing the last pooling 
layer of the CNN by a RoI Pooling Layer and finally creating these two sibling 
output layers, introducing the part associated to localization (as the 
classification task is generally performed in a CNN). To sum up, this method 
outperforms the previous ones and accelerate them as it uses a global feature 
map (which is not the case of R-CNN [26]) and also because it is compatible 
with an end-to-end backpropagation (which is not the case when using SPPnet 
[28]). Concerning backpropagation, the Object Proposals which are used in 
Fast R-CNN [23] are purposely smaller in order to avoid the problems that 
SPPnet [28] presents. Moreover, it performs the targeted tasks in a single-
stage training. In that sense, both classification and localization task are 
jointly learnt due to the use of a multi-task loss function, which contrasts with 
the multiple loss functions (one for each task) that are used in the other 
methods (remember that both  R-CNN [26] and SPPnet [28] apply a multiple-
stage training: the different elements are trained separately: CNN for 
classification and SVMs and Bounding-Box regressors for localization) [23].  
 

 
Figure 12: Fast R-CNN architecture. Source: [23]  
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3.1.3.1 RoI Pooling Layer 

 
Region of Interest Pooling layer. To begin with, it has to be clarified that, in 
this context, an RoI is nothing but an Object Proposal. The idea of this layer 
consists in applying a Max-Pooling to the RoI of an image so as to convert the 
features inside said RoI in a new feature map of dimensions H x W 
(parameters to be defined by the programmer). Its process can be summarised 
in the following way: 
 

1) Given am RoI window of size h x w, it is divided in a grid of size H x W. 
Hence, the cells of said grid are going to be of size h / H x w / W  

2) Perform a conventional Max-Pooling. 

 

This is an essential layer in Fast R-CNN [23]. As stated, this network accepts 
different Object Proposals as its input. Obviously, these proposals can have 
different sizes, which is a problem because of the usage of FC layers: each 
neuron of this type of layers connect to each input value; therefore, if the 
dimensions of the input change, the layer should also change, which is not 
possible. RoI Pooling Layer establishes a uniform size to solve this 
compatibility problems [23].  
 

3.1.4 Faster R-CNN 

 
In all the techniques explained until the moment, the Object Proposals are 
supposed to be inputs with an unclear/non-defined generation. Faster R-CNN 
[27] adds to the Fast R-CNN [23] architecture a module in charge of the 
generation of this Object Proposals: RPN. The optimal integration of both 
modules inside the global network is based on shared computation (otherwise 
the network would not be as fast as it should). Consequently, there are a set of 
CONV layers which are going to be common for both the Fast R-CNN [23] and 
the RPN modules. 

 
Shared computation is the key improvement in Faster R-CNN [27]. In this 
approach, the shared CONV layers are going to be trained jointly for both RPN 
and Fast R-CNN [23] modules. Nevertheless, RPN and Fast R-CNN [23] also 
have their own specific layers (with its specific weights) that should be also 
trained. In a precise and optimal way, RPN should be taken into consideration 
in the optimization of the specific module of Fast R-CNN [23], as it affects its 
results. In practical terms, this provokes difficulties in the formulation of the 
loss function, due to the non-differentiability of RoI Pooling Layer. This is 
solved using RoI Warping Layer [31]. However, it is also common to apply a 
non-optimal solution where the training is shared for the CONV layers but not 
for the specific layers of each module, providing an approximate solution [27].  
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3.1.4.1 RPN 

 
Region Proposal Networks (RPNs) are the internal modules introduced in a 
CNN so as to generate the Object Proposals which are going to be used in a 
localization task using the Fast R-CNN [23] algorithm. The introduction of 
said module to feed a Fast R-CNN [23] is what characterizes the Faster R-
CNN [27] networks. RPNs are implemented as fully convolutional networks, 
i.e. using only CONV layers, with the following architecture: 
 

1) A n x n CONV layer. This CONV layer can be understood as a n x n 
spatial map applied to the last shared Feature Map. Its objective is the 
typical of a CONV layer, i.e. performing a mapping into a lower-
dimensionality feature map (downsampling). 

2) The output from the n x n CONV layer feeds two sibling 1 x 1 CONV 
layers, which are going to perform two different tasks: box-regression 
and box-classification. 

 
The process described above is not directly based on the values of the feature 
map but into a set of reference boxes (whose given name is anchor) applied in 
said feature map. When applying the sliding window, i.e. the n x n CONV 
layer, k anchors of different size and aspect ratio are proposed for each 
position. Then, for each of these anchors, its shape is adjusted (Bounding-Box 
regression task) and two objectness scores, i.e. the probability that such 
anchor contains an actual object or not, are computed. This way, as we have k 
anchors per each of the sliding window positions, the number of outputs in 
the box-regression layer and the box-classification layer are 4k (centre, width 
and weight for each of the k anchors) and 2k (probability of containing and 
object or not), respectively. The use of anchors provokes that the Region 
Proposal does not depend in the resolution of the feature map but of 4 
parameters that define them (see Section 2.2.1.1). Whichever it is the spatial 
resolution of the analysed feature map, anchors are going to be centred in a 
concrete region and different shapes and sizes are going to be studied by 
changing the width and height parameters. This is especially interesting for 
those tasks were a pixel resolution is needed, as it provides a pixel-accuracy 
result without having to change the feature map. 
 
When it comes to training, backpropagation with SGD is performed [13][14]. 
Although it could be possible to have an optimization for the loss function of 
all anchors, this would have negative consequences: a biasing toward the 
negative anchors, i.e. the ones which don’t contain objects. In order to avoid 
such an issue, only a mini-batch of anchors are used, selecting them so as to 
have a 1:1 ratio between positive and negative anchors. Concerning the loss 
function, a common function that takes into account both the classification 
and regression task is used. Therefore, a single-stage training takes places 
[27].  
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Figure 13: Left: RPN architecture, with anchors of different size and scale. Right: Results 
obtained with Faster R-CNN. Source: [27]  

 

3.2 CNN for Segmentation  

 
In this section, we describe the latest CNN architectures that were designed 
for segmentation. In FCN architecture [29], the main objective is adapting a 
regular classification CNN to add a segmentation functionality. To begin with, 
the FC layers from CNN architecture are replaced by CONV layers generating 
a fully convolutional network. Then, the obtained score map is upsampled by 
means of Fractional-Stride Convolution, which eventually (with the use of 
Skip Connections) allow to obtain a quality segmentation. On the other hand, 
in Hypercolumns for segmentation architecture [30], the feature map outputs 
from different layers are stored in a vector, which allows to take advantage of 
both semantic and local information. In MNC [31], a method that performs an 
instance-aware semantic segmentation is presented. This means that not only 
a segmentation between foreground and background is performed but also the 
different instances from the foreground can be obtained (possible with 
Hypercolumns [30] but not with FCN [29]). This method subdivides the 
segmentation task into three subtasks which are related by means of multi-
task network cascade trainable in a single-step framework, i.e. with a multi-
task loss function. Finally, Human Parsing [32] presents a network able to 
segment an image pixel-wise, i.e. pixel by pixel individually. 
 

3.2.1 FCN 

 
FCN [29] for Segmentation paper presents a fully convolutional network for 
Segmentation. As its name indicates, it is a CNN network that only presents 
CONV layers (obviously, this does not mean that it does not present Pooling 
Layers or activation functions). In order to obtain this architecture, the typical 
FC layers present in a CNN have to be converted into CONV layers.  
 
The main difference given by the use of a FCN [29] instead of a Regular CNN, 
is that CNNs produce a nonlinear function, while with a FCN [29] a “Deep 
Filter” is applied, i.e. a nonlinear filter that operates on an input of any size 
and produces an output of the same or resampled dimensions. The point is 
that using FC layers destroys the spatial information: from the entire image, a 
score vector is generated. Therefore, the output obtained gives a global 
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information but throw away spatial coordinates. This is good for classification, 
but depending on the task, e.g. segmentation, the spatial information is 
absolutely necessary. On the contrary, CONV layers, preserve this spatial 
information. To begin with, it does not work with the entire input but with 
some of its regions. Moreover, the parameters used in a convolution operation 
allow, somehow, to find out the dimensions of the original region from which 
the convolution has been computed. It can be said that the knowledge of the 
convolution parameters provides a path with the way back to the original 
dimensions. Going back to the original size is an essential task when 
performing a pixel-resolution operation as segmentation is, especially because 
CONV layers downsample the dimensions of the input. The technique 
presented in FCN [29] to upsample the dimensions to the original size and 
solve this issue is “Fractional-Stride Convolution”. 
 

 
Figure 14: FCN architecture. Source: [29] 

 
The power of the FCN [29] architecture is that it only goes back to the original 
dimensions but without going back to the original values of the image. It is not 
a deconvolution but an upsampling technique. In a CNN, usually the 
downsampling is performed by the pooling layers while the CONV layers have 
their values set to maintain the input dimensions. Consequently, to perform 
the upsampling, Fractional-Stride Convolution will have to be applied as many 
times as pooling layers have been performed. In each iteration of the 
Fractional-Stride Convolution algorithm, the dimensions are upsampled to 
the dimensions presented before the application of the equivalent pooling 
layer. Then, the values which are set in the equivalent regions are the obtained 
scores (from the classification task). In the end, an output with the 
dimensions of the input image is going to be obtained. Nevertheless, in this 
case, each location of the image presents a category score instead of a pixel 
value. Once category scores have been obtained in each location, the 
segmentation process is finished. 
 
The problem with the explained approach is that segmentation is performed 
in an upsampling process, using the final scores from the classification task. 
This information contains a lot of semantic information but a lack of spatial 
information, which in a segmentation task is very useful. A common way to 
deal with this problem is fusing the information from different layers to take 
advantage from both spatial and semantic information [29].  
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3.2.1.1 Fractional-Stride Convolution 

 
Fractional-Stride Convolution is a technique that is used in Segmentation by 
means of FCN [29]. Its purpose is performing an upsampling of the output 
values. It is known that one of the properties of the convolution is resampling 
the size of its input images: depending on the values given to the parameters 
of the operation (i.e. receptive field, stride and padding) the dimensions 
change in a way or another [10]. Concretely, the parameter that usually affects 
the most to this resampling property is Stride. Usually, the stride takes real 
integer values, which provokes the downsampling of the original dimensions 
of the input (see section 2.1.1.2). Nevertheless, in this technique the stride is 
going to be a fraction, which will cause the opposite effect: instead of 
downsampling the input it is going to be upsampled. 
 
In practical terms, fractional-strides cannot be applied: it is just a theoretical 
concept. In fact, its operation is not strictly a convolution [10], i.e. dot product 
between the input and the weights from the filter is not going to be performed. 
To understand this operation, it is necessary to consider the context in which 
it is applied: Segmentation by means of a FCN [29]. The use of FCN [29] 
instead of a Regular CNN implies that the output is not a vector but a score 
map. This means that the obtained results present spatial coordinates (as 
stated in FCN [29] for Segmentation). The way to take advantage of this 
spatial information is using, for each of the maps, the convolutional 
parameters applied to obtain them: the score values in each of the input maps 
are going to be copied to the equivalent region where the real convolution was 
applied to create this value. Thus, the spatial dimensions presented before the 
application of the real convolution are recovered but with score values instead 
of the original features [29].  
 

3.2.2 Hypercolumns for Segmentation 

 
The final layers of Regular CNNs, i.e. FC layers, are very classification-
oriented and get rid of the spatial information: by definition, a FC layer takes 
the entire input dimensions and computes a single output. Thus, the entire 
input has been generalized in exchange of losing spatial information. Usually, 
generalizing data means that discriminative-semantic information useful for 
classification tasks is going to be obtained.  However, for Segmentation 
purposes, only with semantic information it is not enough to obtain good 
results: spatial information should be added. This type of information is 
usually present in the early and intermediate layers of a CNN. The reason why 
this occurs is diverse. Firstly, the intermediate layers are CONV layers, which 
preserve the spatial information better than FC layers. Moreover, the 
downsampling performed in these layers is lower than in deeper layers and 
therefore there is less spatial generalization. In [30], Hypercolumn 
representation is presented to take advantage of the total information 
distributed over the whole architecture of the CNN, i.e. semantic information 
in the final layers and spatial information in the intermediate layers. 
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The way Hypercolumn representation takes advantage of the information 
distributed all over the architecture is by storing in a vector the output of each 
layer of the CNN in a concrete location. It is important to note that the 
Hypercolumn is not a global but a local vector: for each point of the original 
image a Hypercolumn is going to be created. This is useful in a segmentation 
task as it is necessary to perform a pixel classification: it is not enough to 
perform a global classification but a local one. Therefore, Hypercolumn 
vectors at each point perform as pixel descriptors to allow a local classification 
task. 
 
The task of Segmentation (pixel classification) using Hypercolumns [30] 
needs a pre-processing step: the introduced data should be the resulting from 
applying first an “Object detection system” (e.g. Faster R-CNN [27]). Hence, 
the segmentation is going to be applied to the Bounding-Boxes predicted by 
these systems. This bounding box segmentation is in principle applied as a 
binary segmentation, i.e. with only two possible labels for the regions: 
foreground (when the pixel/location belongs to an object) or background. 
However, as the inputs are separated Bounding-Boxes, with this binary 
segmentation is enough to perform an instance-aware segmentation.  For 
example, in the case where the introduced image contains two cats, as they 
would be detected separately by the Faster R-CNN [27], the architecture 
would be able to segment them as separate instances. Finally, it is important 
to note that the label of the instances couldn’t be provided by the system, 
which only classifies between foreground and background: the label is given 
by the detection system. 
 
Once the qualitative idea has been explained, an accurate analysis of the 
Hypercolumn architecture is presented. To begin with, the Hypercolumn for 
each position must be constructed. In this process features from each of the 
studied locations are going to be taken from the different layers of the CNN 
(which ensures that the information spread all over the architecture 
considered). The problem appears in the fact that, due to the process of 
downsampling that takes place in the CONV layers, the feature maps of 
different layers will not present the same dimensions. This causes that 
matching a point of the Bounding-Box with its equivalent in the feature map is 
not trivial. To solve such an issue, a bilinear interpolation is performed to 
resize the feature map to the desired dimensions, easing the matching. In the 
end, this is nothing but a way to perform the required upsampling to adapt a 
Classification CNN to the particularities of Segmentation task (a different 
strategy is proposed in FCN [29], see Fractional-Stride Convolution). Finally, 
the Hypercolumn vector is built up by concatenating the features from the 
selected layers. 
 
When it comes to the segmentation itself, as it has been stated, segmenting is 
nothing but performing a pixel classification. However, in the feature map it is 
difficult to have information on where exactly from the Bounding-Box the 
values have been generated. These are the reasons why location-specific 
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classifiers are proposed in this method, i.e. classifiers for each location. 
Nevertheless, applying a classifier per each location results in several 
problems: over-fitting (very few training data), high computational cost and 
smoothness between similar pixels (in terms of location). To solve this the 
solution applied consists in interpolating it into a grid of classifiers. When 
doing so, the system will have to deal with only  K x K classifiers instead of as 
many classifiers as locations in the image. These  K x K classifiers are going to 
be applied to each of the locations of the feature map. Then, using bilinear 
interpolation, all its associated scores are going to be combined with an 
interpolation coefficient that does take into account the position. 
Consequently, the local classification is going to be performed as a position-
dependent interpolation of all the 𝐾2 classifiers. The procedure of pixel 
classification is then quite simple and can be related to a CNN: 
 

1) At each location of the analysed feature maps the 𝐾2  classifiers are 
applied.  

2) The classification is performed by means of a 1 𝑥 1convolution: each 
classifier is going to be a different filter of the CONV layer applied to 
the same feature vectors. This works this way because of the Parameter 
Sharing imposed to CONV layers: outputs from the same depth slice 
have to be generated by the same filter. Consequently, the output of a 
CONV layer will present in each of its depth slices the score value at 
each location evaluated by a concrete classifier among the 𝐾2(obtaining 
this way  𝐾2depth slices per CONV layer). 

3) Upsampling (for matching the feature map value with the original pixel 
of the Bounding-Box). 

4) The score maps are added. This is an element-wise dimensional sum: 
for each layer, 𝐾2score maps are going to be obtained (one for each 
classifier). The sum is only going to be performed between score maps 
from the same dimension, i.e. summing score maps obtained with the 
same classifier. 

5) An activation function (e.g. sigmoid [19]) is applied. 
6) Classifier interpolation takes place. 
7) Finally, the system is trained using a segmentation-oriented loss 

function. All this process is compatible with Backpropagation [14]. 
 

The process describe above is nothing but a technique for fusing features from 
different layers: this is a recurrent task in all the applications that aim to 
perform a pixel segmentation. 
 
The presented architecture shares a lot of characteristics with a CNN: CONV 
layers, activation functions and training by means of the optimization of a loss 
function [30]. Therefore, the design of the Hypercolumns for segmentation 
[30] can be represented as a CNN, as it is shown in the following figure: 
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Figure 15: Segmentation of an image by means of Hypercolumns. Source: [30] 

 

3.2.3 MNC for Segmentation 

 
Multi-task Network Cascades (MNC) [31] for Segmentation performs an 
Instance-Aware segmentation. This means that the segmentation applied does 
not only separate the foreground from the background but also is able to 
differentiate among a certain amount of foreground classes even in the same 
category (e.g. segment two different cats with different labels). This is also 
possible using Hypercolumns  [30], but it does it using separate CNNs (one 
for segmentation and another for pre-processing the inputs), while MNC [31] 
provides a framework in which it is performed without external modules. On 
the other hand, FCN [29] methods are not able to distinguish different 
instances from the same category. Therefore, this is a method that provides an 
advantage with respect to the others that have been analysed until the 
moment. 

 
In order to perform the segmentation, the method used in MNC [31] divides 
the task into three different subtasks. The reason why this is done is because it 
is expected that performing individually three easier subtasks will result in a 
less difficult global segmentation task. Moreover, the CNN is supposed to 
work better in this scenario. The three tasks applied in this method are 
“Differentiating instances”, “Estimating Masks” and “Categorizing objects”. 
MNC [31] relates these tasks in a way that each of the posterior stages is 
dependent of the earlier ones, which in the end results in a Causal Cascade. 
Said scenario is shown in the following figure:  
 
 

 
 

Figure 16: Left: Multi Task Network. Right: Multi-Task Network Cascade. Source: [31] 
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In the analysed application, i.e. instance-aware semantic segmentation, tasks 
1, 2 and 3 from Figure 16 correspond to “Proposing box-level instances”, 
“Regressing mask-level instances” and “Categorization of each instance”, 
respectively. Each of these models are going to be trainable with its own loss 
function. However, they are trained end-to-end in a “single-step/single-stage 
framework”, which means that a multi-task loss function, i.e. a unified loss 
function for the entire network, is used. Nevertheless, due to the causality 
between stages of the architectures, i.e. the input of posterior stages are 
outputs of earlier stages, this process is not trivial. Before analysing in detail 
the architecture and objectives of the stages, an accurate scheme of the design 
is presented in Figure 17: 
 

 
 

Figure 17: MNC Architecture for an instance-aware semantic segmentation. Source: [31] 

 
From Figure 16 and  Figure 17, it can be stated that one of the keypoints of 
these methods is the shared computation applied in the execution of all the 
tasks: a set of shared convolutional layers produce a set of convolutional 
features (shared features component in Figure 16) that are going to be the 
inputs of some/all of the stages. This shared computation is essential for the 
feasibility of the system because it improves it in terms of computational cost 
and time. 
 
Maybe the most challenging part of this method is the ability of performing an 
end-to-end training. As stated before, this training has to be performed in a 
single-stage framework, which means that a unified loss function is used. This 
global loss function is generated by summing the individual loss functions 
from every task. The problem arises in the relation of causality that exists 
between the different stages of the network. It provokes that the stages have a 
dependency with the others and, therefore, the optimization of a stage should 
consider also the previous stages with which it is connected. This problem is 
also faced in Faster R-CNN [27], where the loss function associated to the Fast 
R-CNN [23] module has to take into account both the shared convolutional 
parameters of the network and the Object Proposals generated by the RPN. In 
this case, the problem is that finding a differentiable loss function depending 
on both terms (Bounding-Boxes and convolutional features) is not 
mathematically trivial. Therefore, approximate methods, which do not take 
into account the optimization of the Fast R-CNN [23] detector in terms of the 
Object Proposal, were proposed (are suboptimal methods). In MNC [31], 
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although experiencing exactly the same situation as in Faster R-CNN [27] (in 
this case the loss function of the Masking-Instances task is also going to 
depend on both the convolutional features and the Object Proposals), a way to 
perform a joint learning is proposed. It consists in splitting the RoI Pooling 
Layer in two different stages: RoI warping layer [31] and max-pooling layer. 
The point is that RoI warping layer [31] provides a differentiable expression in 
terms of both the convolutional features and the Object Proposal boxes. Then, 
the problem is solved as max pooling layer is always differentiable [31].  
 
Considering all this information, a detailed description of the stages is going 
to be performed in the following sections.  
 

3.2.3.1 Stage 1: Regressing Box-Level instances 

 

This stage is an RPN. As it can be seen in Figure 17 above, it takes the shared 
convolutional features as an input and from them its main purpose is 
computing “Object Proposals”. Said proposals are going to be regressed, via 
backpropagation [14], according to a specific loss function for this task [31].  
 

3.2.3.2 Stage 2: Regressing Mask-Level instances 

 

The objective of this stage is performing a binary segmentation (foreground 
vs. background) of the Object Proposals generated by the first stage, which 
means that between stages 1 and 2 there is a causality relation. When 
analysing the architecture of this stage, it is important to note that not only 
takes as an input the Object Proposals of the previous task but also it takes the 
shared convolutional features. Actually, the existing relation between tasks 1 
and 2 remembers a lot to a localization technique already explained: Faster R-
CNN [27]. In fact, it these tasks were isolated from the third task, the 
architecture would be exactly the same as Faster R-CNN [27] except from the 
output (because obviously, the objective in this case is performing a 
segmentation and not a localization). In this sense, we can see how the shared 
convolutional features and the Object Proposals generated by the RPN (stage 
1) are going to be applied in a RoI Pooling Layer (as in Faster R-CNN [27]). 
The changes appear in the output layers: instead of two sibling output layers 
to perform the regression of the Bounding-Boxes and their classification, a set 
of two FC layers are going to be applied to perform this mask-level 
segmentation. Said task is going to be optimized by means of the application 
of Backpropagation into a loss function for this task, which will depend of 
both the convolutional features and the Object Proposals [31].  
 

3.2.3.3 Stage 3: Categorizing instances 

 
In this final stage, the inputs that are going to be used are the mask-level 
instances, i.e. the results of the second stage, and the partial results obtained 
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after applying the RoI Pooling Layer (which are not the results, as they have 
not gone through the final FC layers). In the previous task, the segmentation 
that has been performed, i.e. masking, only discriminates between foreground 
and background instances. However, the objective of this networks is 
performing an instance-aware semantic segmentation, which means that the 
foreground instances have to be categorized, including the possibility of 
distinguishing different instances from the same category. Concerning the way 
this categorization is performed, it is interesting to know the reason why the 
results of the second task are called “masking-instances”. Actually, it is related 
with the way they are used in this third stage: RoI projected convolutional 
features are masked (filtered) by this masking instances. As a result, only the 
feature values that belong to the foreground instances are preserved: this 
result assumes that the foreground instances, shown in white in Figure 17, 
take a value of 1 while the background instances are set to 0. Finally, a set of 
final FC layers will be applied to perform the categorization of these 
foreground instances. Again, this task is going to be optimized via 
Backpropagation [14] and a specific loss function for this task, which is going 
to be computed not only in function of the Convolutional Features but also of 
the Bounding-Boxes and Masks [31].  
 

3.2.4 Human Parsing with Contextualized CNN for Segmentation 

 
Among the studied segmentation architectures, none of them allow to perform 
a detailed pixel-resolution segmentation (i.e. assigning a label to each pixel) 
while precisely considering the context of the image. On the one hand, despite 
both Hypercolumns  for Segmentation [30] and FCN for Segmentation [29]  
perform a pixel-resolution segmentation and consider the context of the 
global image, they do it only with the typical way of compensating the lack of 
spatial information in the deeper layers: fusing the content of the feature 
maps from CONV layers with different resolution, i.e. early and deep layers. 
Nevertheless, in these approaches, the fusion of layers is usually done in a 
final step, just before the generation of the final score map, which is 
improvable. Moreover, in FCN [29], where the process starts from a 
classification network, the output is usually too coarse and suboptimal for 
fine-grained segmentation purposes, as required in [3]. On the other hand, 
MNC [31] presents a multi-task network with segmentation as its final output. 
However, this is an instance segmentation performed directly by classifying an 
entire mask: a label is assigned to each mask. This is the reason why the level 
of segmentation details and resolution obtained by this method does not 
compare to a pixel-wise task. To solve these problems, Contextualized CNN 
(Co-CNN) are proposed. 
 
Human Parsing with Co-CNN for Segmentation [32], aims to capture the 
context of the analysed from three different perspectives: Cross-Layer 
Context, Global Image-Level Context and Local Super-Pixel Context. Figure 18 
shows the architecture proposed in this approach, including the Co-CNN: 
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Figure 18: Human Parsing with Co-CNN for Segmentation Architecture. Source: [32] 

 
In Figure 18 it can be appreciated how the different contexts applies by Co-
CNN appear in the architecture. Firstly, to perform the Cross-Layer Context, a 
local-to-global-to-local hierarchical structure is introduced (in blue in Figure 
18). With it, the problem related with the lack of spatial information in the 
deeper layers is handled: after upsampling the feature maps of the final layers 
into the earlier layer resolution, the information of both layers is encoded. 
Thus, the obtained feature map contains both spatial and semantic 
information. Secondly, with the Global Image-Level Context, the objective is 
ensuring the coherence between the pixel-wise predictions of the 
segmentation with the global context of the image. This information is 
generated by an auxiliary inner network (in green in Figure 18). Then, the 
global context is applied in the main structure in two different ways: 
concatenated with the feature maps in the upsampling process and with an 
element-wise summation just before the final prediction. Finally, Local Super-
Pixel Context is applied by means of Within-Super-Pixel-Smoothing and 
Cross-Super-Pixel-Smoothing (in red in Figure 18). In this case, the goal is 
maintaining the consistency of the obtained feature map with the actual 
boundaries and labels of the super-pixels [32].  
 
All the different tasks performed by the Co-CNN and its architecture are going 
to be explained in detail in the following sub-sections: 
 

3.2.4.1 Cross-Layer Context: Local-to-global-to-local hierarchy 

 
To apply the context analysis, a hierarchical local-to-global-to-local structure 
is required. Analysing Figure 18, it can be appreciated how it starts at the 
same moment that the input is introduced to the Co-CNN. From that moment, 
the typical structure of a CNN, with a set of CONV layers, begins. This part 
corresponds to the local-to-global section of the structure: from the regions 
analysed by the CONV layers (local analysis), a generalization is performed, 
increasing the semantic information present in the feature maps (global 
information). This gain in terms of semantic information is obtained by means 
of a set of pooling layers, which reduce the resolution of the feature map by 
generalizing its content. In this paper, at each pooling layer, the stride is set to 
2, halving the resolution and generating the required structural or global 
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information. Nevertheless, this process vanishes the spatial/local information 
present in the feature map. These attributes would be suitable for a 
classification task; however, in the context of a pixel-resolution segmentation, 
it present two main drawbacks: to begin with, it is impossible to perform a 
pixel-resolution task without having a pixel resolution and secondly, because 
both semantic and spatial information are required to obtain a good 
performance. 
 
To solve these problems, the global-to-local structure is introduced. In it, new 
feature maps are created by the cross-layer aggregation (i.e. element-wise 
summation) of early fine layers (local information) and upsampled deep layers 
(global information). When it comes to the upsampling of deep layers, it must 
be noted that this is not a direct process from their current to pixel resolution. 
Instead, it is done progressively, upsampling only to the immediately higher 
resolution at each step. This way cross-layer aggregation can take place as 
many times as the number of available resolutions, enriching the feature 
values with the spatial or local information from all the earlier layers. In 
technical terms, this is possible because the upsampling is performed with a 
factor 2 interpolation, which is equivalent to progressively undoing the 
downsampling performed by the max pooling layers until the resulting feature 
map presents the original image-resolution [32].  
 

3.2.4.2 Global Image-Level Context 

 
As stated, the objective of Global Image-Level Context is ensuring the 
coherence between the pixel predictions and the global context of the image. 
This section aims to present the architecture of the auxiliary inner network 
that performs this task (in green in Figure 18) and its integration with the 
main structure. 
 
Firstly, it must be noted that the auxiliary network is implemented with CONV 
layers acting as FC layers. The consequence is that the input must be always of 
the same size, reason why the intermediate layer with spatial resolution of 18 x 
12 is always used. From it, a vector with the probability scores for each class is 
obtained. It must be noted that, due to the usage of FC layers, these 
probability scores are the typical from a classification task, providing global or 
semantic information of the image. Note that this is a case where a multi-label 
ground truth is required. This happens because if, for example, an analysed 
image contains a woman wearing a hat and a dress, the labels from both 
garments should be included to allow them to be predicted. Then, these global 
image-level label predictions are used in two different ways: concatenating 
them with the intermediate layers (see “image label concatenation” in Figure 
18) and with an element-wise summation with the generated label confidence 
maps (see “element-wise summation” in Figure 18).  
 
Concatenating the global image-level label prediction with the intermediate 
layers is done to enrich the feature values with semantic context. This is 
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necessary because the semantic information is gained specially in the final 
layers of a classification architecture, which are usually FC. In this case, due to 
the need of performing the upsampling process for the pixel segmentation, 
these final layers are not FC anymore. Therefore, it could happen that the 
available semantic information is not strong enough. The concatenation of the 
global image-level label predictions with the available feature maps ensures 
that this issue does not appear. In technical terms, the concatenation is simply 
done by increasing the number of output channels of the feature map of the 
intermediate layers: from the global image-level label predictions, a 
probability map with C, i.e. the number of categories, output channels is 
created. Each of these output channels contain in each of their locations the 
predicted probability of the associated class (i.e. per each channel all the 
positions have the same prediction score), which ensures that the global 
context is applied to all the pixels of the image. Then, these C additional maps 
are concatenated to the maps of the intermediate layer. Thus, if this layer was 
the m-th convolutional layer with dimensions ℎ𝑚 𝑥 𝑤𝑚 𝑥 𝑑𝑚 , after the 
concatenation with the generated probability maps, the obtained dimensions 
would be   ℎ𝑚 𝑥 𝑤𝑚 𝑥 (𝑑𝑚 + 𝐶).  
 
In the element-wise summation with the predicted confidence maps, the 
global image-level label predictions act as a correction factor of the pixel-level 
predictions required for the segmentation task. Thus, the coherence of the 
pixel prediction with the global context of the image is ensured. Applying this 
correction factor is required because in the pixel-resolution classification of 
the segmentation task, each of the pixel-resolution feature values are 
processed individually, without considering the context in which they appear 
in the final map. In principle, the feature values from which the predictions 
are generated contain enough local and global information to get rid of this 
final context. However, sometimes with these information is not sufficient and 
some outliers appear in the prediction. When the element-wise summation is 
performed, to the category of the outliers is going to be added a very small 
value (because the global image-level label prediction for this class is going to 
be a small value) while to the correct class is going to be added a large value 
(as the prediction for the correct class will have a larger score). Consequently, 
the dominant category may change and the wrong prediction is going to be 
corrected [32].  
 

3.2.4.3 Local Super-Pixel Context 

 
This is the final stage of the Co-CNN presented in this paper. In it, there take 
place two different tasks to adjust the segmentation results obtained by the 
rest of the architecture: Within-Super-Pixel-Smoothing and Cross-Super-Pixel 
Neighbourhood Voting. 
 
After the segmentation is computed, C confidence maps (one per each 
category) are obtained. Then Within-Super-Pixel-Smoothing algorithm 
performs a process of Over-segmentation of the image [33], setting to 500 the 
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number of segments to obtain. These segments are going to be referred as 
super-pixels. Then, per each of the C confidence maps, they smooth each of 
their prediction values, i.e. one per location, by averaging them with the 
prediction score of all the pixels within the super-pixel that covers the 
analysed location. 
 
After that, the similarity between different super-pixels is taken into account 
with the Cross-Super-Pixel Neighbourhood Voting. In it, from the smoothed 
predictions of each super-pixel, a feature descriptor is created [21]. Once the 
features from each super-pixel has been computed, the similarity between 
them is calculated. Finally, the super-pixels which are more similar will have a 
higher neighbourhood voting, which implies that its values are going to be 
adjusted considering also the values from the super-pixels with which it 
shares similar features [32].    
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4 Architecture Design 

In section 3 techniques for image recognition with and without deep learning 
are analysed. Nevertheless, only deep learning techniques are implemented in 
this thesis. In particular, two basic techniques have been studied for the 
recognition task: localization and segmentation. So, the question is: among 
them, which is the technique to implement in our design? There is not a 
unique answer, but segmentation has been selected. The reason is that, due to 
the aim of the project where this thesis is included [3], i.e. fashion images 
analysis, segmentation can provide more detailed information in some specific 
situations. Actually, localization provides a limited classification, very general. 
It is required to have a very specifically garment-oriented localization of the 
items in the image to perform an accurate classification. For example, if in the 
image appears a person with an open jacket, we are interested in recognizing 
both the jacket and the garments below it. In the case of using localization, 
very specific ground truth Bounding-Boxes would be required. On the other 
hand, segmentation does not present this problem as it would detect the 
jacket and the other garments as separate segments.  Nevertheless, 
localization is still going to be useful in our work as a pre-processing step to 
perform the segmentation. 

 
Several proposals have been studied concerning the usage of CNNs to perform 
a segmentation task: using FCN (Fully Convolutional Networks) [29], 
Hypercolumns [30], MNCs (Multi-task Network Cascades) [31] and Human 
Parsing with Co-CNN techniques [32]. Among them, it is not easy to select 
only one option: some of them offer the benefits of working with a pixel 
resolution and aggregating information from different CONV layers (i.e. FCN 
[29], Hypercolumns  [30] and Human Parsing [32] techniques), while others 
focus on the efficient detection and classification of more than one instance in 
the input image (MNC [31]). Both approaches are deeply interesting for the 
objectives presented in [3] and this is the reason why our prototype approach 
aims to merge said advantages. Concretely, our proposal will consist in 
merging and enhancing the MNC [31] and Human Parsing [32] techniques.  
In the case of Human Parsing [32], it has been selected among the techniques 
that perform the pixel-resolution segmentation (FCN [29], Hypercolumns 
[30]), because it is the only approach that uses a Contextualized CNN (Co-
CNN), which provides a better integration of the context of the image to 
enhance the quality of the segmentation (see sections 3.2.4.1, 3.2.4.2 and 
3.2.4.3). 
 
 
 

 

 

 
Figure 19: Left: MNC architecture. Right: Human Parsing Segmentation Architecture. 

Sources: [31], [32]  
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4.1 Image Recognition Network 

 
As previously stated, the approach followed in this work is based on merging 
the concepts of MNC [31] and Human Parsing [32] in a unique architecture. 
In particular, MNC [31] has been the inspiration for the internal structure of 
the architecture, creating a network of networks connected cascade-wise. 
Thus, the design performs multiple tasks (localization and masking) used as 
learnable pre-processing steps for the final objective: deep pixel-wise 
segmentation in a Human Parsing [32] fashion, i.e. with a Co-CNN. 
Depending on the purpose of each of the stages of the network, they could be 
separated into two generic tasks: preparation for the segmentation (pre-
processing module) and the segmentation itself (segmentation module). 
Please, note that said modules are not physically separated in the network, the 
separation is only done in terms of the objective of the tasks performed in 
them. 

 
To sum up, with this architecture the goal is obtaining a multi-task network, 
based on MNC [31], which performs a pixel-wise classification following the 
methodology of the Co-CNN presented in Human Parsing [32]. However, 
rather than simply merging both architectures, the objective is doing it in a 
more optimal way: reducing the total number of required operations. To fulfil 
this objective, several changes have been introduced to both architectures; not 
only to make them compatible, but also to adapt the model to the actual needs 
of the studied task and enhance its performance. Figure 20  shows a schematic 
of the proposed network. Its modules and the changes introduced from MNC 
[31] and Human Parsing [32] are going to be analysed in the following 
sections. 
 
 

 
Figure 20: The proposed network consists of two main modules that perform the different 
tasks of the network following the multi-task network style presented in [31]. These modules 
are the Pre-processing and segmentation modules. In the figure, the Pre-processing module 
appears inside a grey rectangle, where the process of mask generation is performed. The 
segmentation module appears at the right, with an upsampling and pixel-wise prediction 
process. This module modifies the particularities from the Co-CNN presented in Human 
Parsing [32]: Cross-Layer Context  (represented with blue arrows) and Global Image-Level 
Context (represented with green arrows). Both modules are feed with a Shared Convolutional 
Module: the well-known VGG-16 architecture [34]. For simplicity, the content of the VGG-16 
module [34] and some convolutional layers present in the segmentation module are omitted. 
To analyse in detail the layers inside each module see Section 5. Finally, to facilitate the 
analysis of the figure, a larger version of the presented image is included in Appendix A. 
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4.1.1 Pre-processing module 

 
As in MNC [31], the proposed architecture is a multi-task network that 
consists of three different stages: localization, masking and segmentation. 
Among them, the first two stages are the ones that are part of the pre-
processing module. In these stages, despite performing the same tasks than in 
MNC [31] , only the first module, i.e. RPN, is maintained. In fact, in MNC [31] 
the localization task is nothing but the RPN, which is clearly improvable. In 
our approach, it is enhanced in the second stage as it is an active part of the 
mask creation, which is completely reformulated in this work.  
 

4.1.1.1 Mask creation: Faster R-CNN masking (RoI masking) 

 
In this module, the main objective is the creation of a mask to separate the 
interesting regions of the images (RoI) from the useless ones (background). 
This is, in fact, also the purpose of the second stage (see section 3.2.3.2) of 
MNC [31]; however, the process of creation of the masks is one of the main 
differences that have been introduced in this work. As explained in section 3, 
in MNC [31] the masks are represented as an 𝑚2 vector that is regressed to be 
adjusted to the ground truth mask. However, the problem arises in the fact 
that the quality of the segmentation in MNC [31] directly depends on the 
quality of the mask. In fact, note that masking is a binary segmentation (with 
regions that belong to foreground or background). In the case of MNC [31], 
the masks aim to do a detailed segmentation of the shapes of the foreground 
elements (see section 3.2.3.2), which is not an easy task: if it fails, the 
segmentation is going to be incorrect as the third stage simply labels the 
foreground masks. The reason why the quality of these masks is in doubt is 
because they are generated simulating a pixel-wise task but without 
performing it, as they are computed by the regression of m2  learnable 
parameters [31]. The problem is that these masks aim to adapt to the shape of 
the foreground elements, which requires great precision. Nevertheless, 
without an actual pixel-wise methodology, said accuracy is difficult to be 
obtained; getting instead only an approximation, which would lead to a 
deterioration of the quality of the segmentation. Moreover, its application in 
code is difficult, large and computationally consuming, which also justifies the 
decision of not using it. Its possible implementation is going to be discussed in 
future improvements (section 7), as it is beyond the aim of this master thesis.  

 
The solution that has been applied for the masking task has been the usage of 
an architecture already explained: Faster R-CNN [27]. The original MNC [31], 
takes advantage of an RPN (Stage 1) for localization purposes. This type of 
networks is introduced in the Faster R-CNN paper [27] as a pre-processing 
step from which the actual localization is performed; however, it is not 
enhanced with the classification/regression architecture that completes a 
Faster R-CNN [27], i.e. the Fast R-CNN [23] structure; instead, it directly 
computes the masks from it (Stage 2). In our approach, the Faster R-CNN [27] 
is completely implemented. This way, in an MNC fashion [31], the first stage 
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continues to be an RPN but the second stage (Stage 2) is replaced by the 
second module of Faster R-CNN [27]. Then, from the Bounding-Box 
regression results a mask is generated by setting the pass-band inside the 
resulting boxes. In this manner, the elements outside the predicted RoIs are 
going to be filtered (background), focusing the analysis only for the detected 
meaningful regions (foreground elements, i.e. objects). Figure 21 shows a 
closer version of Figure 20, focusing on the Pre-processing module explained 
in this paragraph: 
 

 
 
Figure 21: Schematic of the pre-processing module with its integration with the rest of the 
architecture. Note how the process of masking includes the inclusion of the Faster R-CNN 
[27] module to compute the Bounding-Boxes results (object detection), from which the masks 
are generated. In the case of the image, the mask is the black and white rectangle inside the 
module: the meaningful region (that includes the woman) is the white rectangle (in filters the 
passband is represented with 1’s, which in grayscale is the colour white) while the background 
is represented in black (0 in grayscale value). Then the masks are fed into the segmentation 
module to finish the network. A larger version of the figure can be found in Appendix B. 
 

From the analysis of Figure 21 it could be appreciated how, effectively, the 
mask is generated from the Bounding-Box output of Faster R-CNN [27], 
reason why it is referred as RoI mask. Nevertheless, not only the Bounding-
Box output is used in the final architecture but also the classification one. In 
this case, the classification scores are going to be used in the reinterpretation 
of Image-Level Label Prediction (see section 3.2.4.2). In the figure above it is 
represented by the green arrow that goes from the classification scores to the 
Pixel-wise segmentation module, which is represented as a black box as it is 
going to be presented in the following section. 

 

4.1.2 Pixel-wise Segmentation 

 
The third and final stage of this multi-task network is the segmentation 
module (see section 3.2.3.3). As previously stated, it is going to be performed 
following the technique applied in Human Parsing [32], based in a pixel-by-
pixel classification with a Co-CNN. This approach replaces the one used in the 
third stage (Stage 3) of MNC [31], which performs the segmentation as single 
categorization of the instances given by its second stage (see section 3.2.3.2). 
To sum up, the segmentation concept is changed from a mask classification 
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into a pixel classification. In the context where the network is integrated [3], 
the usage of a pixel classification is convenient as it provides a more accurate 
way of analysing the image: in the fashion world analysis and concretely in 
fashion recommenders, it is necessary to track the details of the garments, as 
it may make the difference between different clothes. Working in pixel-
resolution allow the segmentation to be as fine-grained as possible, making it 
a suitable technique for this work. 
 
The Human Parsing paper [32] does not implement any kind of methods for 
determining where is it useful to perform the segmentation task: it is done 
directly, by a process of classification of the entire number of pixels of the 
input image. Therefore, a reasonable question could appear: why is it 
necessary to use a multi-task network if by using single-task network the same 
results could be obtained? The answer is very clear: efficiency. With the 
proposed network, once the RoIs are available, the segmentation algorithm is 
applied only for these regions, which implies that the number of operations to 
be performed is considerably reduced: from performing a pixel classification 
of the entire image to applying it only for the meaningful regions. Moreover, 
the results from the Pre-processing module are useful in the integration with 
[3], see section 4.2. Figure 22 shows a closer version of the segmentation 
architecture in Figure 20. The characteristics of this module are presented in 
the following sub-sections:  
 

 
 
Figure 22: Schematic of the Pixel-wise Segmentation module with its integration with the 
rest of the architecture. In this module, the feature map is upsampled to a pixel-wise 
resolution from which the segmentation is performed. In the upsampling process, a Co-CNN 
is applied so as to take into account both the local and global context of the image. In Cross-
Layer Context  (represented in blue arrows in the image), the equivalent resolution maps 
obtained in the Shared Convolutional Module (early layers) and in the upsampling process 
(intermediate layers) are summed, ensuring the presence of both semantic (from the 
intermediate layers) and local information (from the early layers). In Global RoI-Level 
Context  (green arrow), the scores obtained in Faster R-CNN masking module are converted 
into a confidence map (green maps in the figure) in the CMap Generator and then are 
concatenated to the actual maps in order to provide global context to them. Finally, these 
confidence maps are applied as a correction factor of the final predictions (green sum 
symbol). A larger version of the figure can be found in Appendix B. 
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4.1.2.1 Cross-Layer Context 

 
Applying Human Parsing with Co-CNN for Segmentation [32] to the MNC 
[31] strategy implies working in a pixel resolution; otherwise, it is impossible 
to perform a pixelwise classification. Nevertheless, in a CNN-based 
architecture, the spatial resolution of the feature maps is reduced as the 
architecture is deepen. This is the reason why an upsampling is needed: to go 
back to the original image resolution. However, this cannot be done directly. If 
so, the obtained feature values would have a lot of semantic information but a 
lack of spatial/local information, which is essential to perform a pixel 
resolution task as segmentation is. All these problems are addressed using the 
Cross-Layer Context from the Co-CNN presented in [32]. In our work, the 
application of said method remains conceptually the same as in the paper, 
although some implementation changes are required (see section 5.2.2). In 
Figure 22, Cross-Layer Context is represented with the blue arrows going from 
the Shared Convolutional Module to the upsampling process. 
 

4.1.2.2 From Global Image-Level Context to Global RoI-Level Context 

 
Together with Cross-Layer Context, Global Image-Level Context is the main 
structure present in the Co-CNN introduced in Human Parsing paper [32]. As 
explained in section 3.2.4, its main purpose is ensuring the coherence between 
the pixel predictions, i.e. pixel segmentation, and the global image. This 
increases the quality of the segmentation as the introduction of a global 
context diminishes the effect of possible outliers. In fact, the presence of 
outliers is quite common in a pixel-wise classification, as the locations are 
analysed individually, forgetting their context. For example, the case where 
the analysed image contains a skirt. When performing a pixel classification, 
the feature values from a skirt and a dress may be quite similar; therefore, it is 
likely to obtain the category “dress” as the dominant score in some positions. 
The introduction of the global context information, i.e. the global label “skirt”, 
would act as a correction factor, preventing the system from performing an 
incorrect classification in the analysed position. This task is performed in an 
inner module represented as the green structure in Figure 22. 
 
An important difference with respect to Human Parsing [32] is that, in this 
work, the internal auxiliary network in charge of the Global Image-Level 
Context (in green in Figure 18) is no longer used. On the contrary, said task is 
performed using the predictions already computed by the classification 
module of the Faster R-CNN [27] architecture, which conforms the pre-
processing module of our network, i.e. first and second stages of our multi-
task network (see sections 3.2.3.2 and 3.2.3.3). This way, it is possible to take 
advantage from the classification results of Faster R-CNN [27], that would be 
otherwise wasted, while supressing the Global Image-Level Context prediction 
architecture created by [32]. The utilization of the classification results for this 
task can be appreciated in Figure 21, where it is represented as the green 
arrow that goes from the classification scores to the pixel-wise segmentation 
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module. In the end, this new architecture implies a reduction of the operations 
done for this task, increasing the efficiency, which was the objective. In 
addition, not only the number of layers and operations are reduced but also 
the network will be now compatible with images from different sizes, as the 
entire network is performed with Convolutional layers, obtaining a fully 
convolutional network. This is not the case in [32], where the introduction of 
FC layers in the network used for Global Image-Level Context requires a 
unified size for the inputs. 
 
Switching from Global Image-Level Context is not only positive in terms of 
efficiency but also in performance. In fact, the original Global Image-Level 
Context network computes a general score for the global image. Nevertheless, 
if more than one instance appears in the input image this approach is not 
optimal. For example, if in a fashion analysis the input image contains two 
different models wearing different clothes, the global scores would not be 
accurate neither for one model nor the other, as the scores for the garments 
that a model is wearing would be faded with the scores of the garments of the 
other model. This is the reason why Global RoI-Level Context is introduced. 
This technique consists in applying individualized confidence values for each 
of the instances that appear in the image. This is possible to be done due to the 
usage of the scores obtained from Faster R-CNN [27] instead of Human 
Parsing’s [32] proposal: while Human Parsing [32] performs the global 
predictions, our approach computes the confidence values for each of the 
detected RoIs. 
 

4.1.2.3 Suppression of the Local Super-Pixel Context 

 
The previous sections present the adaptation to the needs of our work of the 
main tasks performed by the Co-CNN in [32]. Nevertheless, there is a last 
contextual task that is not going to be applied: Local Super-Pixel Context  
(represented by the red layers in Figure 18). In it, a set of algorithms are 
applied to finetune the segmentation results obtained by the rest of the 
architecture. The main reason why it has not been implemented in this work is 
because this part of the network requires an external module, which does not 
fulfill our requirements as it does not apply neural networks.  Actually, one of 
the objectives is having a unique architecture, without external modules. 
Moreover, the introduction of these module would prevent the architecture 
from being trainable end-to-end, i.e. Deep Learning, as the results given by 
these external modules are not learnable. Finally, while it is true that the 
introduction of the Local Super-Pixel Context enhances the performance of 
the segmentation task by taking advantage from detailed local information, 
the characteristics of our architecture compensate its effect. Concretely, with 
the usage of RoI masks and Global RoI-Level Context, the local analysis is 
already performed and without the necessity of using non-end-to-end external 
modules.  
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4.1.3 Shared Convolutional Module 

 
In this work, the final modules of MNC [31] and Human Parsing [32] have 
been an inspiration for the creation of the pre-processing and segmentation 
modules. Nevertheless, in both cases, before the application of this final 
modules, there is a set of Convolutional Layers with the responsibility of 
dealing with the input data and generating the feature maps from which the 
described tasks are performed. There are several famous CNN architectures 
that could be interesting options for the implementation of this Convolutional 
module: VGG Net [34], Google LeNet [35], Resnet [36], etc. In this work, the 
Convolutional Layers of VGG16 have been implemented (represented as the 
cube present in Figure 20, Figure 21 and Figure 22). The reason is that this is 
the network typically used for MNCs and, moreover, it has available a pre-
trained model, which can be useful for the application of a transfer learning 
technique [56]. Finally, in our approach, due to the implementation of a 
multi-task network cascade, the feature maps obtained from this 
convolutional module are going to be used for the different stages of the 
network, providing shared computation to increase the efficiency of the 
network. It can be visualized in Figure 20, where there are arrows going from 
VGG-16 [34] (cube) t0 both pre-processing and segmentation modules. 
Hence, this is going to be a shared convolutional module.  
 

4.1.4 Integration between modules 

 
Despite the multiple modifications that have been introduced, the integration 
of the different modules presented in this section does not present relevant 
differences from the way it is performed in MNC [31].  However, there is a 
relevant conceptual change that has to be introduced: the suppression of the 
RoI Pooling Layer in the beginning of the segmentation of MNC [31]. As 
stated, the MNC’s concept of segmentation [31] differs a lot from ours. In this 
work, a process of upsampling is needed to return to the original dimensions 
of the images because otherwise a pixel-segmentation would be impossible. 
Introducing a RoI Pooling Layer in this context is useless; to begin with, 
because it would be a pooling that would be created specifically to be 
destroyed in the following layer via upsampling and finally because it 
processes the different RoIs separately, losing the compactness provided by 
the mask. For more details of how the network is finally connected and 
implemented see section 5.  
 

4.2 Integration with the rest of the architecture 

 
The presented architecture has been designed considering that it is going to be 
part of the bigger project presented in [3]. In it, the network is set in a 
recommendation environment: from a real-world image posted in a social 
network, e.g. Instagram [57], the clothes that appear in it are recognised and 
matched with similar garments from different online shops, e.g. Zalando [58]. 
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However, in an Instagram [57] post the information not only appears in the 
image but also in the text, reason why it is also a goal of [3] to analyse the 
information in it. Moreover, the results obtained from these tasks are also 
used to enhance the image recognition performance, i.e. segmentation. 
 
Despite the goals presented in [3] are beyond the scope of this thesis, the 
current network is going to perform its recognition task. Consequently, our 
design has to be prepared to support its extension of functionalities.  In the 
following sections, some considerations for the integration of the current 
design with the tasks performed in [3] are explained. 
 

4.2.1 Integration with image retrieval 

 
For the integration with image retrieval, a set of previous requirements have 
to be bore in mind: to begin with, the image retrieval between Zalando’s [58] 
and Instagram’s [57] datasets has to help us in the segmentation task; 
therefore, where to apply its contribution in the current networks has to be 
studied. Moreover, an Instagram [57] image could contain instances of 
garments from different images from Zalando [58]; thus, the system should be 
prepared to perform a one-to-many process.  
 

4.2.1.1 Image retrieval: a one-to-many process 

 
The main difference between an Instagram [57] image and a Zalando [58] 
image is that they belong to the real-world domain and the online-shopping 
domain respectively. In a real-world image, the image will contain, usually, a 
human wearing its upper and lower clothing. Nevertheless, in an online-
shopping dataset, a lot of images do only contain a unique clothing item. The 
consequence is that performing a matching by comparing the default images 
from both domains would be inaccurate: the real-world ones, with its several 
items, would be related to only one instance from the online-shopping 
domain. Therefore; either the upper clothes, the lower or both of them are 
going to be incorrectly matched: e.g. an image of a man wearing a jersey and 
jeans could be matched only with one jeans, making the retrieval partially 
incorrect. So as to avoid such an issue, the process of matching should be 
performed not into the entire image but only into clothing instances. Is in this 
point where the inclusion in the design of a MNC-based architecture [31] 
results particularly useful. In effect, the first stage of said architecture is an 
RPN, which proposes Region Proposals where later the rest of the tasks are 
performed (see section 3.2.3.1). The strategy will consist in training this RPN 
in order that the obtained Region Proposals correspond to the upper and 
lower clothing parts of a person. This way, the one-to-many issue is solved and 
the retrieval design is fitted in the segmentation architecture, sharing all the 
process until the RPN and getting its own layers for the matching task (e.g. 
similarity function). 
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4.2.1.2 Integration with the Segmentation task 

 
The idea of image retrieval in this context will provide different useful results. 
On the one hand, the image retrieval task itself is very interesting as it is 
always interesting to find the equivalent shopping model of a garment present 
in the real-world. On the other hand, the information obtained after the 
retrieval, i.e. the labels from the ideal domain match, are going to be used as a 
correction factor for the pixel-wise classifiers. The idea is that the information 
obtained after the matching could give a general context to the pixel decision. 
This is useful because sometimes when working in a pixel resolution the 
results obtained could be outliers with no relation with its neighbourhood 
labels. The presence of this factor of correction is applied by summing said 
factor in each pixel prediction, preventing this way the proliferation of 
incorrect spurious results. This process is performed in a similar fashion than 
the Global Image-Level Context from [32]. Finally, with this contribution to 
the segmentation task, the image retrieval task not only takes advantage from 
the segmentation architecture but also contributes to the segmentation task 
itself. To sum up, the presence of RPN for both tasks and the influence of 
image retrieval in segmentation makes the process more efficient and 
physically integrates both tasks in a unique architecture. 
 

4.2.2 Integration with Text Processing 

 
Usually an Instagram [57] image is posted with a description and a set of 
hashtags that can be useful for the identification of the elements that appear 
in the image. Taking advantage from said elements could be also very 
interesting. As in the case of the information obtained after the image-
retrieval, the information provided is global context information. Therefore, 
the proposal is to apply it again as a corrector factor to the pixel-wise 
predictions for each position. 
 

4.3 RoI pixel segmentation vs. existing architectures 

 
Once the architecture of this work has been presented, it is time to compare it 
with the architectures studied in the state of the art in order to evaluate its 
actual worthiness. Concretely, the objective of this section is not performing a 
technical comparison with the architectures that have been used as an 
inspiration, which has been already done in the previous sections, but doing it 
in terms of application: why is it necessary to create a new architecture when 
there are existing architectures to perform it? The analysis is going to focus in 
the architectures that have inspired this work: MNC [31] and Human Parsing 
[32]. 
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4.3.1  Comparison with MNC 

 
In the case of MNC [31], the proposed architecture clearly extends its 
functionalities. Basically, in MNC [31] a detailed garment segmentation as the 
one presented in [3] would be impossible to achieve. The reason is that the 
segmentation is performed as a mask classification, i.e. assigning a label to the 
foreground elements obtained after the masking process. Consequently, it can 
only segment the foreground elements given by the mask. For example, if an 
image of a model is introduced to the system, the segmentation with MNC [31] 
would segment the whole person but not the garments that is wearing, as 
expected in [3]. On the contrary, our design performs a pixel-wise 
segmentation, allowing to detect every detail of the analysed region.  
 

4.3.2 Comparison with Human Parsing 

 
There are multiple reasons that makes the new architecture more suitable for 
our project than directly applying the Human Parsing [32] approach. It could 
be summarised in the following terms: integration with the rest of the 
architecture and computational efficiency. To begin with, when it comes to the 
integration with the rest of the architecture (see section 4.2), the MNC [31] 
base provides an inner RPN  architecture that is going to be very useful for the 
image retrieval task (see section 4.2.1.1). Moreover, in terms of computational 
efficiency is where the real gain is obtained. Firstly, the number of operations 
that have to be performed for both upsampling and pixel-wise classification 
are going to be considerably reduced. The reason why this happens is because 
the Human Parsing [32] approach upsamples and classifies the whole pixels of 
the image, while our methods only perform said task in the computed RoI 
masks. Moreover, the training of the segmentation module is supposed to be 
faster. This happens because the pixels outside the RoI are not 
backpropagated [14]: they are going to be background for sure, reason why 
backpropagation does not take place (see section 5.2.2.1). Nevertheless, it 
could be argued that the extra stages of our architecture with respect to 
Human Parsing [32], i.e. localization and mask creation, suppose an extra 
number of operations that compensate the ones which are saved when 
applying a RoI segmentation instead of the analysis of the whole image. But it 
is not strictly true: to begin with, the Global Image-Level Context network 
used in Human Parsing [32] is substituted by the results given by the second 
stage of our approach (see section 4.1.2.2), which supposes the elimination of 
some layers. Moreover, the remaining extra stage, i.e. RPN, is essential for the 
integration with [3]. Consequently, the extra stages introduced in our 
approach substitute parts of Human Parsing paper [32], extend its 
functionalities and reduce the number of actual segmentation operations, 
focusing only in meaningful regions of the image, i.e. RoIs. Moreover, the 
suppression of the auxiliary network responsible of performing the Global 
Image-Level Context in the Co-CNN of Human Parsing [32], eliminates the 
usage of effective FC layers, making the architecture compatible with images 
of different sizes, which is an attractive functionality. Finally, the decision of 
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getting rid of Local Super-Pixel Context, allows to perform an end-to-end 
training as opposed to Human Parsing [32]. 
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5 Implementation 

This section explains how the design presented in section 4 has been 
implemented in our work. The implementation has been done in the Deep 
Learning library Caffe [38] in a Python programming environment [39]. This 
section does not present code itself but explains some considerations that 
have been applied during the elaboration of the code to be consistent with the 
proposed design. 
 

5.1 Training Input: PASCAL VOC 2012 Dataset 

 
The original idea was using our own Dataset for the implementation. In fact, it 
would have been the optimal solution as the required annotations for a full 
development of our architecture would have been available. Nevertheless, the 
creation of a Dataset is beyond the aim of this thesis. Therefore, the research 
for an available Dataset that fulfils our needs has been part of this work. 
Finally, the selected Dataset has been PASCAL VOC 2012 [40]. It presents 
Bounding-Box annotations which are useful for the localization and mask 
creation task presented in this work (section 4.1.1.1). Most importantly, this 
dataset presents also pixel-wise segmentation ground truths, which is basic to 
perform the segmentation task. However, it presents a couple of problems in 
that sense. Firstly, PASCAL VOC 2012 [40] has a total of 17125 images, from 
which only 2913 (divided in training and validation set) have pixel-wise 
segmentation ground truth [40]. This may result in a problem, as the images 
available for training are only 1464 [40], which increases the probability of 
presenting overfitting [54]. Moreover, the aim of this project is doing a pixel-
resolution segmentation to detect fine-grained details of the image. 
Nevertheless, it is not going to effectively happen because, despite presenting 
a pixel-wise ground truth, the segmentations are presented instance by 
instance. This is a problem if the objective is performing a detailed fashion 
analysis like in this project [3]. In fact, with this dataset would be impossible 
to achieve it, as it does not present enough categories for fashion detection. 
For example, in the case where the analysed instance is a person, the ground 
truth label for all its pixels is going to be assigned to the label “person” in 
PASCAL VOC 2012 [40] (see the figure above), disabling the possibility of 
capturing details related with the garments. 
 

 
 
 
 
 
 
 
 
 
 

Figure 23: Example of a ground truth label in PASCAL VOC 2012. Each colour is a different 
class label. Source: [40] 
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5.1.1 Ground Truth Mapping 

 
In Figure 24 the ground truth label for a PASCAL VOC 2012 [40] image is 
presented. In it, the different classes are represented with different colours. 
Nevertheless, an RGB colour is a 3D vector and therefore a 3D label. This kind 
of labels are not the ones expected by a softmax classifier [20], which usually 
uses a single index that identifies the category. Therefore, there is the need of 
performing a mapping from the RGB ground truth to a 1D ground truth of 
greyscale values. For example, the labels of a person (in pink in Figure 23) are 
mapped to a greyscale value. The gain is that from a colour represented with 3 
values (R, G and B components) we have mapped it into a single value suitable 
with Softmax. Figure 24 shows the resulting mapping. Note that the new 
category colours look quite similar. This happens because the greyscale values 
are selected with consecutive values. Thus, the indexing is easier and better 
for the system but it is more difficult to perceive the differences for the human 
eye. As a convention, the black label (greyscale value equal to 0) is reserved for 
the background category. 
 

 
 

Figure 24: Result of a ground truth label after performing the greyscale mapping. 

 
There are existing algorithms that already perform this task; among them, we 
have used the one presented in [59]. The only major change to introduce is 
selecting our own data instead of the one used by default.  
 

5.1.2 Problems with the dataset: lack of some box annotations 

 
PASCAL VOC 2012 [40] provides Bounding-Box annotations of their images. 
This information is essential to perform the localization task present in the 
architecture presented in this work (section 4.1.1). Nonetheless, some images 
either don’t present this information or have it damaged. Consequently, when 
executing a corrupted image in training phase, an error occurs. Unfortunately, 
it has been impossible to detect the conflictive images rather than during 
execution. The consequence is that, despite having found out a way to solve 
this problem, it takes a lot of time to detect and correct the presence of these 
problematic images. For example, the program can be successfully training for 
5 hours until an error occurs due to the lack of box information in the current 
image. Then, the conflictive image can be erased from the ones used in 
training and the process can be started again. However, after this time, there 
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can be another conflictive image that stops the process again. Therefore, it 
could take hundreds of hours to train on the entire dataset. 
 
In the work done for this thesis 4 corrupted images have been detected and 
erased from the trainset. Nevertheless, there are still more conflictive images 
to be replaced, process which requires more time than the available for the 
realization of this work. The final consequence of this problem is that the 
dataset available to perform the Pixel-wise Segmentation, which was already 
very limited (i.e. 1464 images [40]), has been finally reduced to 225, which 
obviously implies an important decrease of the potential performance of the 
network, as shown in section 6. 
 

5.2 Architecture Implementation 

 
After carefully describing the architecture design in section 4, the most 
relevant details of its implementation are explained in this section. Table 1 
briefly reminds the network configuration presented in Figure 20: 
 

 
 
 
 
 
 
 
 
 

Table 1: Architecture Overview 

 
In this thesis, the implementation work has been focused mainly in the Pixel-
wise Segmentation. Nonetheless, some changes have been also introduced in 
the Shared Convolutional Module. Finally, when it comes to the Faster R-CNN 
Module [27], its code has been directly implemented from [41]. In the 
following subsections details from the implemented modules are presented. 
 

5.2.1 Shared Convolutional Layers 

 
As stated in section 4.1.3, VGG-16 [34] is selected as the Shared Convolutional 
Layer module. In column D of Table 2 the VGG structure that has been 
implemented is shown. Nevertheless, due to that we only use VGG-16 [34] as 
our Shared Convolutional Layer module, only the first thirteen layers, i.e. the 
convolutional layers, are implemented. 
 

Architecture Overview 

Input: RGB image 

Shared Convolutional Layers 

Faster R-CNN 

Pixel-wise Segmentation Module 
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Table 2: Architecture of each of the VGG architectures. The selected in this work, VGG-16, 

appear in column D. Source: [34] 

 
VGG-16 [34] is a well-known CNN architecture that has been widely used in 
works like MNC [31] or Human Parsing [32]. Its main drawback is that it is a 
huge network, with a lot of layers. For instance, VGG-16 presents 138 million 
of parameters [34]. Nevertheless, the weights trained using ImageNet [42] are 
available on-line. This is very useful for applying a Transfer Learning 
technique [56], which consists in applying to a network available weights from 
a pretrained model, typically trained using ImageNet [42] dataset, and then 
fine-tune its values to adapt to the desired dataset in each case. The use of 
Transfer Learning [56] saves a lot of time and reduces the computational 
costs. Theoretically, it is a technique which is suitable for a work like the one 
presented in this thesis. However, in practical terms, VGG-16 [34] is a huge 
CNN architecture which, despite applying Transfer Learning [56], gives 
trouble in terms of memory when running the execution in the server. 
Concretely, the problems arise when working with the larger layers from VGG-
16 [34], where 512 different filters are applied [34]. The implemented solution 
has consisted in applying a simpler and smaller architecture: AlexNet [37], 
presented in Table 3: 
 
 

component type 
kernel 

size/stride 
output 

channels 

Shared 
Convolutional 

Module 

Convolution 5 x 5 / 1 96 

Max Pooling 2 x 2 / 2 96 

LRN 
normalization 

- 96 

Convolution 5 x 5 / 1 256 
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Max Pooling 2 x 2 / 2 256 

LRN 
normalization 

- 256 

Convolution 3 x 3 / 1 384 

Convolution 3 x 3 / 1 384 

Convolution 3 x 3 / 1 256 

Max Pooling 2 x 2 / 2 256 

 
Table 3: AlexNet Configuration. Source: [37] 

 
The approach in Table 3 presents the classical AlexNet configuration [37]. 
However, in our approach, the padding parameter (see section 2.1.1.2) has 
been changed so as to ensure that the sizes of the input images are not 
changed in the Convolutional Layers but in Max Pooling layers. Concretely, in 
this case, padding is set to 1 and 2 when the receptive field is 3 and 5, 
respectively [8]. In addition, it must be noted that the output channels column 
refers to the depth dimension of the resulting feature maps in each layer, i.e. 
the number of filters applied in the Convolutional layers. In fact, this was the 
conflictive parameter when using the VGG-16 configuration [34]. However, 
switching to an AlexNet-based configuration [37] reduces the maximum value 
for this parameter from 512 to 384, which can be handled with the server used 
in this thesis [37]. On the other hand, the reason why in Table 3 the height and 
width are not specified is because it depends on the dimensions of the input 
image, which is variable in our design: due to the usage only of Convolutional 
Layers in the design (fully convolutional network), images from different sizes 
can be handled by this network. Moreover, as opposed to VGG-16 [34], 
AlexNet [37] includes batch normalization layers [43]. The use of this type of 
layers compensates an incorrect weight initialization, which is one of the main 
difficulties that could appear when training a neural network. In that sense, it 
is important to note that the Convolutional Layers have their weights 
initialized following a gaussian distribution [44] of mean 0 and a standard 
deviation of 0,01; which, in principle, is a good way to initialize the weights of 
the network [46]. Finally, note that for simplicity the ReLU activation 
functions  [18] after each Convolutional layer have not been included in the 
Table. 
 
The results presented in this thesis (section 6) are obtained with our modified 
version of AlexNet [37], which has an important consequence: Transfer 
Learning [56] is no longer a feasible option. The reason why this happens is 
because, after modifying the network, our required number of parameters 
differ from the weights from pre-trained AlexNet-based models [37] available 
on-line. Thus, the network has been trained from scratch, which increases the 
training time. Despite this problem, the impossibility of using the pretrained 
VGG-16 [34] due to server limitations has forced the implementation of this 
suboptimal solution.  
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5.2.2 Pixel-wise Segmentation Module 

 
This section introduces the implementation details related to the Pixel-wise 
Segmentation module described in section 4.1.2. Despite this module is based 
in the architecture described in [32], their implementation is not available 
neither on-line nor contacting with the authors. Consequently, it has been 
implemented from scratch in this thesis, including the creation of new layers 
and the selection of the required parameters in order to fulfill the changes 
introduced in our design with respect to the state of the art, i.e. Faster R-CNN 
or RoI masking, dimension changes in Cross-Layer Context and Global RoI-
Level Context. A summary of the layers used for each task and its more 
relevant parameters are presented in Table 4: 
 

 

component Type 
kernel 

size/stride 
output 

channels 

RoI masking  

Python: RoI 
mask data 

- 256 

Python: RoI 
masking 

- 256 

Global RoI-Level 
Context  

Python: RoI 
CMap Generator 

- 21 

Cross-Layer 
Context  

Deconvolution 4 x 4 / 2 256 

Convolution 5 x 5 / 1 256 

Crop - 256 

Element sum - 256 

Concatenation  277 

Convolution 5 x 5 / 1 256 

Deconvolution 4 x 4 / 2 256 

Convolution 3 x 3 / 1 256 

Crop - 256 

Element sum - 256 

Concatenation - 277 

Convolution 5 x 5 / 1 256 

Deconvolution 4 x 4 / 2 256 

Convolution 5 x 5 / 1 96 

Crop - 96 

Element sum - 96 

Concatenation - 117 

Convolution 5 x 5 / 1 96 
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Convolution 
(image) 

5 x 5 / 1 96 

Crop - 96 

Element sum - 96 

Convolution 3 x 3 / 1 256 

Prediction 

Python: RoI 
masking 

- 256 

Convolution 1 x 1 / 1 21 

Crop - 21 

Element sum - 21 

Convolution 1 x 1 / 1 21 

Python: RoI 
masking 

- 21 

Python: CMap 
Element sum  

- 21 

Ground Truth 
Masking 

Python: RoI 
masking 

- 1 

 
Table 4: Pixel-wise Segmentation Module Configuration. This table presents in detail the 

components presented in Figure 22 

 
In Table 4, there are 4 columns that describe the module configuration. To 
begin with, “component” specifies the global task performed by the stack of 
layers included in each of the blocks in the Table. Then, “type” specifies the 
type of Caffe layer which is used in each case. In the cases where the layer has 
been created specifically for the realization of our architecture, the type which 
appear in the Table is “Python”. Finally, “kernel size/stride” and “output 
channels” refer to typical parameters to be introduced in Convolutional layers. 
Like in Table 3, “output channels” refers to the depth dimension of the 
obtained feature maps in each of the layers. Again, the output width and 
height are not specified as they vary depending on the input image. This 
happens because the limitation in a CNN in terms of size is given by FC layers: 
while Convolutional Layers operate exactly in the same way with different 
input sizes, FC layers need always inputs of the same size. The suppression of 
FC layers in the design allow the network to be compatible with any input size, 
reason why width and height are not specified in the table. Finally, note that 
for simplicity the ReLU activation functions [18]  after each Convolutional 
Layer have not been included in the Table. 
 
The architecture presented in Table 4 corresponds to the training 
configuration. Concretely, the only thing that must be changed for the test is 
erasing the last component, i.e. Ground Truth Masking, as this is a layer that 
contains ground truth information (not possible in test environment). 
 
The type of layers used in each task is consistent with the elements described 
in sections 4.1 and 3.2.4. Note that, despite its name is not very clear, Caffe 
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Deconvolutional layers [45] are in charge of performing the upsampling task 
necessary to perform a Pixel-wise Segmentation. In that sense, it is important 
to ensure that the dimensional changes only take place in the upsampling 
layers. Hence, Convolutional layers are set to not modify the size of the input 
feature map, selecting the padding to maintain the dimensions, i.e. 1 and 2 
when the receptive field is 3 and 5 respectively [8]. On the other hand, its 
weights are filled following a gaussian distribution [44] with 0 mean and a 
standard deviation of 0,01. Thus, the problems related with initializing with 
zeros the weights are avoided [46]. In Global RoI-Level Context component, 
the created layer RoI CMap Generator implements the functions described in 
section 4.1.2.2: from the scores generated in the Faster R-CNN [27] module a 
confidence map is created per each RoI (represented as the green maps in 
Figure 20 and Figure 22). Furthermore, note how in the beginning of the 
prediction component, a RoI masking is performed again. This is done to 
ensure that during the process of upsampling, due to the convolutional layers 
(which depending on the parameters change the dimensions of the input, see 
section 2.1.1.2), the predictions are not also performed outside the region to be 
analysed, i.e. RoI. Finally, layers for performing Ground Truth Masking (see 
section 5.4.1.1), CMap Elementwise Sum (see section 5.2.2.1) and Crop (see 
section 5.3) are introduced to solve implementation issues which are going to 
be described in detail in the following sections. 

5.2.2.1 Prediction processing 

 
One of the advantages of our approach is that it only performs the prediction 
for the meaningful regions of the image, i.e. the previously detected RoI (see 
section 4.1.1.1). Precisely due to RoI masking, the background elements are 
not processed and are assumed to be directly background. Nevertheless, as it 
is shown in Table 4, in the final layer are obtained as many predictions maps 
as analysed categories (21, as it is the number of categories in PASCAL VOC 
2012 [40]). The process is easy to understand, as explained in section 2.1.1.2, 
the output of a CNN has as many channels as applied filters. In the final layer, 
the number of filters applied are just as much as the number of categories to 
analyse. Therefore, the obtained prediction maps have the width and height 
size of the image (remember that we aim to do a pixel-resolution 
classification) and as many channels as categories. This means that one of 
these category maps is the one related to background. The problem with 
background is that its regions are not analysed due to the RoI masking. 
However, the ground truth label does have background annotations, therefore 
it expects that in the positions where there is background its category map 
presents a score different from zero, which is not the case due to RoI masking. 
To solve this, in the background regions of the background category map a 
fixed confidence value is set. This value has been selected to be 20 as it is large 
enough to avoid the backpropagation (i.e. learning process) for these positions 
(where we have nothing to learn as we already know that they belong to the 
background). Sections 5.5 and 5.5.1 present this process using figures. 
 
 



55 
 
 
 
 

5.3 Size incompatibility during Upsampling 

 
During the Shared Convolutional Module, 3 Max-Pooling layers are 
introduced (see Table 3). These layers are responsible of downsampling the 
dimensions of the inputs of a CNN. The reduction of dimensionality allows to 
easily handle the initially huge dimension of input images and, moreover, 
provide the generalization required to perform a classification analysis. 
Nevertheless, as explained in sections 3.2.4.1 and 4.1.2.1, to perform a Pixel-
wise segmentation it is necessary to work with the original resolution of the 
image, which implies the necessity of upsampling the feature maps to the 
original image dimensions, and taking into account the context of the 
intermediate layers to enrich the feature maps with spatial/local information. 
This is performed by doing elementwise summation (see Table 4) between the 
upsampled feature map and the resolution equivalent intermediate layer 
feature map. Here is where the problem arises: if the two different feature 
maps do not present the same dimensions, the elementwise summation is not 
possible. Unfortunately, the presence of odd values for width and height 
provokes this dimension incompatibility. In the following sub-section, an 
example showing these difficulties is presented. 
 

5.3.1 Upsampling incompatibility example 

 
In this example section, it is going to be supposed that the input dimensions in 
the network is 331, i.e. an odd number. The downsampling process takes place 
in the Shared Convolutional Module; therefore, in this example, the Max-
Pooling parameters used in Table 3 are going to be applied. To begin with, the 
formula applied in Max-Pooling has to be reminded: 
 

O = 
(𝐼 − 𝐹 )

𝑆
 + 1 

 
Where I and O refer to the input and output dimension, respectively; F, to the 
receptive field (kernel size) and S to the stride [8]. 
 
In this case, I=331 and, following Table 3, F=S=2. Therefore: 
 

O = 
(331 − 2 )

2
 + 1 = 165.5 

 
Obviously, the dimensions that must be handled in the program have to be 
integer values. This is the reason why the Pooling built-in Caffe layer [47] 
applies the following formula: 
 

O = 𝑐𝑒𝑖𝑙 (
(𝐼 − 𝐹 )

𝑆
+ 1)  
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Where ceil is the built-in Python function that rounds a float value to its 
immediately higher integer value [48]. Consequently, in the studied example, 
the output dimension is the following one: 
 

O = 𝑐𝑒𝑖𝑙 (
(331 − 2 )

2
+ 1) = 166 

 
Following the entire architecture in Table 3 and the formula previously shown 
the dimension evolution for an input of size 331 would be the following: 
 

331  166  83  42 
 

Then, the Pixel-wise Segmentation Module starts and the dimensions are 
upsampled by a factor of 2 to go back to the original image resolution: 
 

42  84  168  336 
 

Analysing the previous evolution it is highlighted how the dimension for 
equivalent resolutions no longer matches. For example, it would be impossible 
to perform the required elementwise summation between the third resolution 
elements (i.e. the one obtained after two Max-Pooling layers) as the 
dimensions are 83 in the downsampling process and 84 after the upsampling 
one. This difference of size happens due to the rounding factor introduced by 
the built-in Python function “ceil” in the Pooling built-in Caffe Layer. 
Concretely, the presence of this rounding factor disables the possibility of 
going back to those dimensions whose actual value when being halved in the 
downsampling process is not an integer value. The solution for this problem is 
presented in the following section. 
 

5.3.2 Solving Upsampling incompatibility: Crop Layer 

 
To solve the problem presented in the previous section, the Crop built-in Caffe 
Layer [49] has been introduced in the architecture. Note how, in the Cross-
Layer Context component in Table 4, between each Deconvolutional and 
Elementwise summation layer, a Crop Layer has been introduced. This Layer 
ensures that, when applying Cross-Layer Context, the dimensions of the 
feature maps used in the Elementwise summation match. Consequently, after 
introducing the Crop Layers, the aforementioned dimension evolution goes as 
follows: 
 

331  166  83  42  84  Crop  83  166  332  Crop  331  
 

It can be seen how the application of two Crop Layers correct the incorrect 
upsampled values. Thus, the required dimensions to allow an elementwise 
summation to fulfil the Cross-Layer Context applied in the architecture are 
obtained. 
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5.4 Learning configuration: multi-task single-stage learning 

 
In section 4, where the design of the network is presented, the tasks 
performed by the network are explained. Concretely, it is explained that, 
despite being the main purpose of the network the computation of the pixel-
wise segmentation of the input image, there are other useful tasks that have to 
be performed to fulfill the final goal: the computation of RoI, which are later 
used as masks from which the segmentation takes place. Therefore, as this 
design performs more than one task, it can be referred as a multi-task 
network. These networks can be trained (end-to-end) in two different ways: 
single-stage or multi-stage training. The difference between these training 
methods is that in multi-stage training each of the tasks have their own loss 
function, which is optimized separately from the others, i.e. the training is 
done sequentially: optimizing first one task and then the others. For example, 
in the presented design, a multi-stage training would imply training first the 
Faster R-CNN [27] module to generate the RoI masks and, later, taking the 
trained values for this module performing the Segmentation Module training. 
On the other hand, in single-stage training, a unique loss function, also known 
as multi-task loss function, is used. Typically, a multi-task loss function is 
nothing but the summation of all the individual loss functions. With multi-
task loss functions, the training process for all the tasks is performed in 
parallel, at the same time (joint learning). Thus, in this work, it would not be 
necessary to train first the Faster R-CNN [27] module and then the Pixel-wise 
Segmentation module: it is done together in a single-step. This solution is the 
one selected for this work as it is more elegant, more compact and faster. 
Figure 25 shows how the single step training behaves: 
 

 
Figure 25: This figure shows a simplified version of the proposed architecture specifying its 
loss functions and how backprop goes through the different modules. 𝑳𝒎𝒂𝒔𝒌 refers to the loss 
function of the Faster R-CNN masking module and  𝑳𝒔𝒆𝒈 to the one of segmentation. Finally,  

𝑳𝑻 is the multi-task loss function. The derivative forms of the different losses are referred with 

an apostrophe, e.g. 𝑳𝒔𝒆𝒈
′  is the gradient of  𝑳𝒔𝒆𝒈 with respect to the weights in the segmentation 

module. 
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In this architecture, each module is only responsible of optimizing itself, i.e. 
the training process of the Segmentation Module does not contribute in the 
optimization of RoI masks generation in Faster R-CNN [27]. In practical 
terms, this consists in assuming the RoI masks as fixed inputs of data 
introduced to the Segmentation Module. The data given to a neural network, 
the Segmentation module in this case, cannot be changed during the learning 
process. In mathematical terms, this implies that the loss function of the 
Segmentation module is independent of the RoI generation, as the generated 
RoI masks are considered as invariable data. It is shown in Figure 25, where 
the two different modules backpropagate only the gradients of their individual 
loss functions. This happens because each module only differentiates with 
respect to their weights, which apply only in their individual loss function, 
reason why the other loss term disappears (as it is seen like a constant term 
with respect to the specific weights of each module).  In some cases, like in the 
loss function of Faster R-CNN [27], there can be found dependent loss 
functions in multi-task networks, i.e. the loss function depends not only on the 
weights of their task/module but also on the weights of another 
tasks/modules. The main reason why it is not applied in this work is because 
dependent loss functions have to be differentiable with respect to the all the 
dependent modules, which in Figure 25 would imply that 𝐿𝑠𝑒𝑔

′  was also 

backpropagated through the Pre-processing module. Unfortunately, in this 
work, the dependency between modules is given in RoI Masking (see Figure 
25). In it, the masks are generated in a thresholding process, i.e. ones inside 
the computed RoI and zeros outside, which is a non-continuous function and 
therefore non-differentiable [50]. Moreover, dependent loss functions are 
especially useful when the tasks performed in the different modules are 
related. For example, in the case of Faster R-CNN [27] the dependency is 
applied between the loss function of RPN and the one from the final 
Bounding-Box regressor, which precisely refines the values given by the RPN. 
Therefore, there is a clear connection between the tasks. On the contrary, in 
the design presented in this work, the tasks performed in Faster R-CNN [27] 
and in Segmentation module are totally independent: localizing objects and 
classifying pixels. This means that including the relation of dependency 
between their loss functions is not essential as it does not help significantly in 
the optimization of the RoI masks (because in a process of classification the 
operations to regress a RoI are not performed). In addition, the non-
dependency relation between modules should not affect the network in terms 
of its quality as Faster R-CNN [27] is the most well-known localization 
algorithm using CNNs, reason why, when correctly trained, provides excellent 
data that can perfectly be used as a fixed input in the Segmentation module. 
However, although it is not strictly necessary in this work, the inclusion of a 
dependent loss function between Segmentation and Faster R-CNN modules 
could be interesting and might be considered in Future Work as it makes the 
design more elegant and precise. On the other hand, due to the differentiation 
rule that establish that the derivative of the summation is the sum of 
derivatives, the weights that are common for both tasks, i.e. only the ones 
used in the Shared Convolutional Module, consider the gradients coming from 
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both individual loss functions [50] (see Figure 25). Thus, the training of both 
tasks is performed in parallel, taking advantage of the shared computation 
that the Shared Convolutional Module offers and performing a single-step 
training. 
 

5.4.1.1 Ground Truth Masking  

 
One of the main consequences of fixing the RoI masks as inputs to the 
Segmentation module is the necessity of ensuring that the loss of this module 
does not take into account the losses given by an incorrect mask generation: as 
the masks are considered fixed data the segmentation module cannot improve 
them. In this section, the solution implemented to solve this issue is 
presented. 
 
As it can be seen in Table 4, just before the start of the prediction step, there is 
the masking of the Ground Truth image. The mask which is used is exactly the 
same that has been previously applied to the feature maps. The reason why 
this is done is to ensure that we are only evaluating the predictions that have 
been done in the Segmentation module. As stated in section 4.1.2, in this 
module the operations are only performed in the precomputed RoIs. 
Therefore, the evaluation is also only performed at these regions.  
 
In practical terms, masking the ground truth implies assuming that the RoI 
masks generated (see section 4.1.1.1) in the architecture give perfect results, 
i.e. that all the filtered regions are background. In principle, it is not necessary 
true: if the masks are incorrectly generated it is possible that some foreground 
elements or parts of them get outside the RoI, which implies that they are 
going to be incorrectly masked. Nevertheless, it is one of the consequences of 
fixing the masks: they must be considered as correct data. Therefore, masking 
the ground truth supposes trusting in the RoI masks (even when they have 
been incorrectly generated). The consequence is that we would be optimizing 
the predictions in the analysed regions, even though they have been 
incorrectly generated. To sum up, the idea behind this is allowing the training 
only for the predictions that have been really computed in this module, i.e. the 
segmentation prediction of the elements inside the RoI; without caring, in this 
stage, about the quality of the generated RoI masks, as its generation is not 
responsibility of this module but of the Faster R-CNN masker, which is also 
conveniently trained.  
 
Note that Ground Truth Masking is especially useful in the beginning of 
training, when the masks are not still correctly generated. In that moment, the 
loss of the segmentation module would be really large independently of the 
actual operation of this module and making difficult the visualization of the 
actual problems of the module. On the other hand, when the network is 
trained, the RoI masks increase its accuracy making irrelevant its presence.  
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A visualization of the process of Ground Truth Masking and its consequences 
are shown in section 5.5.2. 
 

5.5 Visualization of the prediction process 

 
Let’s imagine the case where after the first RoI masking layer of the prediction 
component of Table 4, the feature map presents the following dimensions:  2 
×2 ×1 (hypothetical case to make a simple example). At this point, all the 
process described in 4.1 has been completed, obtaining a pixel-resolution map 
with values containing both semantic and local information. This feature map 
is represented in the following figure: 
 

29 0 

0 93 
 

Figure 26: Visualization process: feature map 

 
Note that the regions where the value is 0 are those that has been masked in 
the RoI masking process. In other words, in this concrete example, the RoI 
would be the pixels in the position (0,0) and (1,1) while the others are 
considered background and therefore masked (value to 0). All the maps 
presented in this section are going to present 0 values in the masked position, 
coherently with the operation of our design, which only works in the 
meaningful regions (see section 4.1). 
 
From this moment, the prediction process starts. In the context of 
segmentation, the prediction step consists in assigning to each pixel a 
category. In training step, it is necessary to have a ground truth image that is 
going to be the reference from which the accuracy of the predictions is 
evaluated. The following figures represent the original RGB ground truth 
image with three categories, i.e. C1 (blue), C2 (green) and Background (black), 
and how we map it into a greyscale representation with the process described 
in section 5.1.1.  
 
 
 

 

 
Figure 27: Visualization process: ground truth mapping 

C1 BG 

BG C2 

1 0 

0 2 
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Note that from RGB values we have switched to greyscale values, associating 
the labels to a single index: BG = 0, C1 = 1 and C2 = 2. 
 
Once the ground truth is available, the prediction process starts. Following the 
process explained in section 2.1.1.2; from the input map, as many confidences 
maps as the number of available categories are going to be predicted (as the 
number of filters is going to be the same as the number of categories to 
predict): 
 

 
 
 

 

 
 

 
Figure 28: Visualization process: prediction maps 

 
Note that, for simplicity and clarity, the prediction maps obtained for each of 
the categories are represented with the colours that have been used in the 
ground truth label example, i.e. black for Background, blue for C1 and green 
for C2. 
 
With the predictions scores computed, it is time to apply Softmax classifier 
with loss [20]. What a Softmax classifier does is simply converting the 
obtained scores into probabilities following this formula: 
 

𝑝𝑖,𝑗,𝑐 =
𝑒𝑠𝑖,𝑗,𝑐

∑ 𝑒𝑠𝑖,𝑗,𝑐′
𝑐′∈𝐶

 

 
Where 𝑝𝑖,𝑗,𝑐  is the probability of the pixel in the position (i, j) of being 

assigned the label of class C and 𝑠𝑖,𝑗,𝑐 is the score obtained in the prediction 

maps shown at Figure 28. Then, in training step, these probabilities are used 
to compute also the loss function. Typically, with Softmax classifier, it is 
applied a logarithmic loss function: 
 

𝐿𝑖,𝑗 = −𝑙𝑜𝑔 (
𝑒

𝑠𝑖,𝑗,𝑐𝑔𝑡

∑ 𝑒𝑠𝑖,𝑗,𝑐′
𝑐′∈𝐶

) 

This function is applied at each position (i, j). Note that in the numerator it is 
only used the score for the correct category, i.e. the score obtained in the 
prediction map of the ground truth category [20]. In the following figure a 
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0 93 
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calculation examples for two positions of the previous figures is going to be 
shown: 

Position (0, 0) 

Ground Truth:                 Prediction Maps: 

 

𝐿0,0 = −𝑙𝑜𝑔 (
𝑒76

𝑒4 + 𝑒76 + 𝑒22
) = 0 

 
Figure 29: Visualization process: position evaluation I 

 

From this example, it can be seen that the prediction in the position (0,0) is 
very good (the score for the correct category is higher enough than the scores 
for incorrect categories). Therefore, the loss is inexistent. When this happens, 
the system cannot learn anything from this position: the learning algorithm of 
a neural networks starts from the loss function, trying to minimize its values. 
When the value is 0 there is nothing to learn and the process does not start (it 
does not backpropagate, the gradient is going to be 0 or almost 0) [13][14]. 

Position (0, 1) 

Ground Truth:                 Prediction Maps: 

 

𝐿0,1 = −𝑙𝑜𝑔 (
𝑒0

𝑒0 + 𝑒0 + 𝑒0
) = 1.098 

 
Figure 30: Visualization process: position evaluation II 

This is the specific situation described in section 5.2.2.1. As explained, in this 
design only the meaningful regions are used for the prediction task. These 
meaningful regions are given by the RoI masks previously applied. In this 
case, the positions (0,1) and (1,0) are masked, which in practical terms means 

C1 BG 

BG C2 
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76 0 

0 12 

C1 BG 

BG C2 

4 0 

0 10 

22 0 

0 92 

76 0 

0 12 



63 
 
 
 
 

that they contain background. As we already know that these positions contain 
background, they do not take part of the prediction and consequently there 
are no scores obtained in these positions. However, the loss function is going 
to be applied and, due to the lack of scores in these positions, the loss is going 
to be different from 0. Which means that, eventually, a learning process with 
backpropagation would start from this point. This is something that is not 
desired in this design, as the classification for these background positions has 
been already done in the mask generation and it would be a waste of resources 
to start a process of learning again. The solution to solve this issue is 
presented in 5.2.2.1 and shown in the following section.  

 

5.5.1 Prediction processing: correcting the Background score 

As explained in 5.2.2.1, the proposed solution has consisted in applying a 
constant value to the masked positions of the Background category map. Thus, 
the required score for these positions is obtained. Concerning the value to 
apply, with a sufficiently large number, e.g. 20, is enough, as the rest of scores 
for the other category maps would remain to 0. It is shown in the following 
figure: 

Ground Truth:                 Prediction Maps: 

 

𝐿0,1 = −𝑙𝑜𝑔 (
𝑒20

𝑒20 + 𝑒0 + 𝑒0
) ≈ 0 

 
Figure 31: Visualization process: correcting the background 

Correcting the score the loss falls to 0, preventing the learning to start, which 
gives sense to the RoI prediction, reducing the number of prediction 
operations. 

 

5.5.2 Ground Truth Masking visualization 

 
In section 5.4.1.1 the process of Ground Truth Masking is shown. For 
explaining its importance, it is needed to focus on a particular case: when the 
RoI mask has been incorrectly computed. Typically, this happens in the 
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beginning of the process of training, when the obtained results, i.e. masks in 
this case, are still improvable: 
 
           Correct Mask:                    Predicted mask:               Ground Truth: 

 
 

 
Figure 32: Visualization process: incorrect mask generation 

 
The figure above shows how the predicted mask mismatches the label for the 
position (1,1,). This position is filtered considering that its label is Background 
when in reality it is C2.  
 
As stated, the process of Pixel-wise Segmentation consists in classifying the 
pixels inside the generated RoI mask, even if this has been incorrectly 
computed. On the other hand, the regions masked are directly considered 
background and do not go through the process of classification. In the ideal 
case where the RoI mask is correctly computed, this is not an issue but if the 
mask is incorrectly generated it gives problems. The following figure shows it: 

Ground Truth:                 Prediction Maps: 

 
 
 
 
 
 
 
 

 
Figure 33: Visualization process: prediction with incorrect mask and background not 

corrected 

 
After correcting the background scores as explained in 5.2.2.1 the obtained 
prediction maps are the following: 

Ground Truth:                 Prediction Maps: 

 
 
 
 
 
 
 
 

 
Figure 34: Visualization process: prediction with incorrect mask with background correction 
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Analysing the figures above, it is clear that the problem is given in the position 
(1,1) where the background presents the maximum score despite the fact that 
its real label its C2.  

Position (1, 1) 

Ground Truth:                 Prediction Maps: 

 

 

 

 

𝐿1,1 = −𝑙𝑜𝑔 (
𝑒0

𝑒20 + 𝑒0 + 𝑒0
) = 20 

 
Figure 35: Visualization process: evaluation with incorrect mask with background correction 

 
The consequence of the incorrect mask is clear: the loss value is huge. 
Nevertheless, this cannot be corrected, because we cannot correct a prediction 
that has not been generated in this stage: even if backpropagation takes place, 
the only way to solve this problem is by changing the RoI mask, which is not 
responsibility of this loss function (remember that RoI masks are fixed for the 
segmentation task. See section 5.4).  
 
Here is when the Ground Truth Masking takes place. After masking the 
ground truth, it looks like this: 
 

 C1 BG 

BG BG 

 
Figure 36: Visualization process: ground truth masked 

 

Ground Truth:                 Prediction Maps: 
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Figure 37: Visualization process: evaluation with ground truth masked 

 
Thus, the problem is partially solved: the loss function of the prediction step is 
not going to be in charge of a mistake which does not depend of its 
performance but of the RoI mask generation. However, in reality, the original 
mistake, i.e. the incorrect mask generation, still is going to take place. Ground 
Truth Masking simply fools the system to allow, exclusively, the evaluation of 
how the pixel-wise classification work but not how the RoI has been 
generated, as this task has its own loss function. This happens because the RoI 
masks are assumed as fixed in the segmentation process.  
 
Summarizing, Ground Truth Masking prevents the architecture from 
considering the losses given by an incorrect mask generation not only in the 
loss function of the RoI mask generator but also in the Segmentation module, 
which is not responsible of these mistakes. As stated, this is particularly 
important in the beginning of training, when the generated masks are not still 
very accurate. Once the architecture is globally optimized, the generated RoI 
masks are better and Ground Truth Masking becomes irrelevant. 
 
 

5.6 Server selection 

 
The selection and preparation of the server has been a clear limitation factor 
in this project. To begin with, there were some difficulties in the configuration 
of the server that affected the time available for the implementation. In the 
end, an AWS [51] used. Nevertheless, the capacity of the contracted server 
does not fulfill the requirements of this project. Due to its lack of capacity, it 
has been necessary to introduce some changes to the original architecture. 
The most important one is the change from a VGG-16 architecture [34] to 
AlexNet [37], which clearly reduces the performance of the entire network, as 
AlexNet [37] is a much more simpler architecture than VGG-16 [34] (see 
section 5.2.1). Thus, with less layers and operations, the obtained feature 
maps after the Shared Convolutional Module are not accurate enough, 
reducing the quality of the generated RoI and, consequently, of the pixel-wise 
segmentation. In addition, the change to AlexNet [37] and the changes 
introduced to it (see Section) do not permit to use Transfer Learning [56], 
which was a convenient option for this project. On the other hand, some 
additional work has been necessary to be done with the dataset. Concretely, 
the images have been reshaped as their original dimensions were too big to be 
handled (out of memory error) by the contracted instance of the server. This, 
despite looking as a simple issue, has implied an important analysis of how 
image information is handled in [41] and its modification to adapt it to the 
server capacity, being necessary the creation of some additional functions 
during this process. Therefore, to sum up, the initial difficulties to find a 
server to work with and the limited capability of the selected instance delayed 
the execution of this project.  
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6 Results 

 
This section aims to present the results obtained for the segmentation task 
during the testing phase so as to prove that the proposed network has been 
successfully implemented and that it is ready for working. The reason why it 
has been decided to focus on the segmentation task despite being the 
presented network a multi-task architecture is because the rest of the tasks are 
implemented through a module, Faster R-CNN [27], which has been widely 
tested in the state-of-the-art, reason why there are no doubts of its correct 
implementation. Moreover, the evaluation metrics, testing conditions and 
finally an analysis of the results are also included in the following sections. 
Note that this section does not aim to evaluate the proposed network with 
respect to other well-known architectures, as it is beyond the scope of this 
thesis. 
 

6.1 Evaluation metrics 

In the evaluation, three basic metrics are going to be presented: accuracy, 
precision and recall. When it comes to accuracy, in this case it would be 
considered as simply the percentage of pixels which are correctly classified by 
the Pixel-wise Segmentation network. Precision, recall and F-1 score [52] are 
also going to be computed as they are going to provide a measure of the 
quality of the obtained results. 
 

6.2 Testing conditions 

 
As explained in section 5.1, the models are trained on PASCAL VOC 2012 [40] 
training set and evaluated on the evaluation set. Nevertheless, as shown in 
section 5.1.2, due to problems with the dataset the trainset has been reduced 
from 1464 to 225 images, which is an important reduction. Moreover, due to 
the fact that training images are selected randomly during the training, it has 
been not possible to monitor which images were the 225 which were not 
giving trouble. This is an important point, because due to this problem the 
train has been done only for 225 iterations, as it is impossible to complete an 
epoch in the actual dataset without obtaining errors. In the end, the trained 
model would be the equivalent of the one obtained after training for a single 
epoch a dataset with only 225 images. Concerning the testset, due to the 
limited capacity of the server, the images were too big (giving an out of 
memory error) and have been reshaped to smaller dimensions. 
 
The process of training is performed using an instance of an AWS server: [51] 
(see section 5.6). Using this server and the available sample of PASCAL VOC 
2012 [40] the network has been trained following the learning configuration 
presented in the following section.  
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6.2.1 Definition of the learning parameters 

 
In Caffe [38], the training parameters are defined in “solver.prototxt”. In this 
file, parameters related with the learning process are defined. One of the main 
elements to select is the optimizer. There are several options: SGD, Adagrad, 
Adam, etc. [15][16] Among them, SGD [13] has been applied. It has been 
selected as it was the optimizer used in [41]. In this work the base learning 
rate has been set to 0,001. However, fixing the learning rate is not optimal, as 
depending on the moment of training the learning rate should present higher 
or lower values [15][16]. To solve this issue, an exponential weight decay is 
applied (weight_decay = 0.0005). Thus, the original fixed learning rate is 
exponentially reduced: this way, in the beginning of the process, when there is 
still a lot of things to improve, the learning steps can be larger (less precise) 
and while the architecture gets trained, the steps are progressively reduced to 
be more accurate. Moreover, a momentum factor of 0,9 is also applied. 
Remember that this factor is applied to speed up the training algorithm in 
presence of saddle points, i.e. points where the gradient gets stuck, 
progressing really slowly. The inclusion of the momentum factor helps going 
through these points, which enhances the performance of the training 
[15][16]. Finally, the batch size during training includes only 1 image, 
performing an on-line training [13].  
 

6.3 Numerical results 

 
Taking into account the conditions presented in section 6.2, the results 
obtained after testing the trained model are summarized in Table 5: 
 

Avg. Accuracy  Avg. Precision Avg. Recall Avg. F-1 score 

25.09 47.62 15.09 22.93 

 
Table 5: Results obtained in % after evaluating the network 

 
Due to dataset and server limitations the results were not expected to be good 
and this is what can be appreciated in Table 5. The accuracy is only of 25% 
which represents a really low value. The average precision is also considerably 
improvable. Although its value might look better it must be noted that 
precision and recall always have to be evaluated together: precision only 
indicates the percentage of pixels classified with the same category that are 
correctly classified, while the recall specifies the percentage of actual pixels of 
a class that are correctly classified. In this case the recall is only of 15%, which 
reaffirms that the obtained results are far from optimal. In order to analyse 
both precision and recall together, there are metrics like F-1 score that 
combine both metrics, presenting again an improvable result of only 22.93%.  
 
Finally, it must be noted that an incorrect initialization that negatively 
impacted to the results has been corrected. In the beginning, the weights were 
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set to 0, which is not an advisable practice as it usually gives bad performance. 
After detecting said problem, the weights were initialized following a gaussian 
distribution [44] with 0 mean and a standard deviation of 0.01 (see section 
5.2.2) [46]. After these changes, the performance was enhanced. Moreover, 
the introduction of Ground Truth Masking also improves the performance of 
the system as it can be visualized in section 5.5.2. 
 
An accurate analysis of why the results are so bad is presented in the following 
section. 

6.3.1 Analysis of the results 

 
The low results obtained by the proposed design are responsibility of two 
main elements: the dataset and the limited capabilities of the selected server.  
 
Due to the characteristics of the task performed in this work, i.e. pixel-wise 
segmentation using Co-CNN, the architecture from the state of the art which 
is more suitable for a comparison is the one presented in [32]. A theoretical 
comparison between the networks is presented in section 4.3.2. 
Unfortunately, when it comes to the performance, it is no possible to do it in 
fair terms as the implementation of [32] is not available neither on-line nor 
contacting with the authors. Therefore, it is not possible to test this network 
with the same conditions used in our network. Anyway, and although it is not 
the aim of this thesis to compare our network with pre-existing architectures, 
it is interesting to have a look at their obtained results: 
 

Avg. Accuracy  Avg. Precision Avg. Recall Avg. F-1 score 

97.06 87.83 81.73 83.78 

 
Table 6: Human Parsing Results. Source: [32] 

 
It is clear that the results presented in Table 6 outperform the ones presented 
in Table 5. As stated, it would be unfair to compare them because the 
conditions used in both cases are totally different. Nonetheless, comparing the 
testing conditions is a graphical way to understand the results obtained by our 
network. The following sections analyse said conditions. 
 

6.3.1.1 Responsibility of the dataset in the results: overfitting 

 
The selected dataset (PASCAL VOC 2012 [40]) and its related problems (see 
section 5.1.2) are the main reasons why the results obtained are not as good as 
expected. PASCAL VOC 2012 [40] is a huge dataset, the problem is that 
among its 17125 images only 1464 are available in its trainset for the 
segmentation task [40]. This number is insufficient for training a deep 
learning based algorithm. Moreover, due to the issues explained in section 
5.1.2 the number of available images for training has been reduced to 225. 
Note that the problem described in section 5.1.2 is a default problem of 
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PASCAL VOC 2012 [40]. In fact, this is a common issue of this dataset and it 
is reported in the internet without other solution than manually erasing the 
conflictive images, which can take hundreds of hours as the only way to find a 
problematic image is during training, which implies that the code can be 
correctly executed for many hours until an image without information is 
introduced into the system. Moreover, this problem does not only affect in the 
number of images which can be used during the training but also to the 
number of iterations that can be done to this trainset. Usually, the entire 
trainset is trained several times or epochs. An epoch is simply the term that is 
used to refer to the training of the entire trainset [55]. Due to the problems 
described before, it is not possible to perform several iterations to our effective 
trainset. The reason is that it is not easy to know which images do not give 
mistakes as the system randomly selects the images used at each iteration. 
Consequently, the effective 225 images are a random subset of the trainset, 
which makes really difficult to localize them for training the network several 
iterations. In order to show the scarcity of data that supposes the use of this 
dataset Table 7 compares the number of images and iterations used in this 
work and the ones used in Human Parsing [32], which uses ARP [53] together 
with Chictopia10k, a dataset created by themselves [32]: 
 
 

Network Dataset 
Nº 

Images 
Nº 

Epochs 

Batch 
size 

Nº 
Iterations 

Ours PASCAL VOC 2012 225 1 1 225 

Human 
Parsing 

ARP+Chictopia10k 16000 90 12 120000 

 
Table 7: Comparison between our approach and Human Parsing results. Source: [32] 

 
In Table 7, it is shown in numbers the huge difference between a Dataset 
suitable for a deep learning algorithm and another one that it is not. Note that, 
even if it was possible to use the entire PASCAL VOC 2012 [40] trainset, i.e. 
1464 images [40], it would not be enough to obtain good results. However, 
without the problems that have reduced the dataset, the number of iterations 
could have been increased, which should result in better results. Once the 
analysis is done there are two questions that should be answered: firstly, if 
PASCAL VOC 2012 [40] is not a good for this task, why has it been the 
selected dataset? And secondly, why is it a problem to have a small dataset? 
 
The answer to the first question is quite simple: despite not being an optimal 
solution PASCAL VOC 2012 [40] is the only available dataset that contains 
Bounding-Box annotations (which are necessary for the creation of the RoI 
masks) and pixel-wise segmentation ground truth [40]. Nowadays, the 
creation of a dataset that fulfills all the requirements of this network looks like 
the best option to have a dataset hundred percent suitable for the whole 
performance of the presented network. 
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For the second question, the answer is one of the most important fears when 
training a deep learning network: overfitting [54]. In brief, overfitting is a 
phenome that can be appreciated when the results obtained by a network are 
good when evaluating on the trainset but, on the contrary, are very bad when 
they are evaluated in the testset. This happens because the network is too 
fitted to the data provided in the trainset to obtain a generalization good 
enough to correctly identify the patterns that appear in the testset. Among the 
multiple factors that can cause the appearance of overfitting highlights the 
lack of enough data or, in other words, the usage of a too small dataset, which 
is what happens in this work [54]. Focusing on the consequences that 
overfitting presents in the performance of the network, it must be noted that it 
will affect the two main modules of the architecture: mask generation and 
pixel-wise segmentation. Concerning the mask generation, overfitting causes 
that, in test phase, the obtained RoI masks are more adapted to the Bounding-
Boxes of the data used during the training than to its actual boxes. 
Unfortunately, the consequences of its incorrect generation are enormous as 
the segmentation module is exclusively applied in the generated masks. When 
it comes to the segmentation module, with such a small number of images in 
the dataset, in a worst-case scenario it could be even possible to try to segment 
an object whose class is not present in the trainset. Despite it might look like 
impossible, when analyzing the obtained results, there were some categories 
that prevail over the rest, i.e. when testing very different categories the 
obtained categories tend to be always pretty much the same ones, which could 
indicate that certain categories have been more represented than others in the 
225 train images. This hypothesis becomes feasible as the content and details 
of the 225 images that have been used for the training is not possible to be 
known due to its random selection. Finally, some parts of the network that 
have been introduced to enhance its performance could work the other way 
round when suffering from overfitting. For instance, it is the case of one of the 
most important parts of our Co-CNN: Image-Level Context (see sections 
3.2.4.2 and 4.1.2.2). Briefly, Image-Level Context takes into account the global 
context of the image to apply a correction factor to the pixel-wise 
segmentation predictions. For example, a pixel containing a denim texture 
could be either from a jacket or to a pair of jeans. The global context is useful 
to determine whether this pixel should contain the label of a jacket or jeans. 
However, with overfitting, this global context could be incorrect, which 
instead of being a correction factor becomes into a negative factor that worsen 
even more the incorrect prediction. 
 

6.3.1.2 Responsibility of the server in the results 

 
Although the use of an incorrect dataset and its consequences is the main 
reason why the obtained results are not as good as expected, the small 
capacity of the selected server is also a factor to take into account. In section 
5.6 the difficulties related with the server selection are explained. As already 
reported, the selected server has been the responsible of the change in the 
Shared Convolutional Module from a VGG-16 [34] to AlexNet [37]. This 
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change is really relevant in the performance of both the Faster R-CNN 
masking module (section 4.1.1.1) and segmentation module (see section 4.1.2). 
In fact, all the studied methods that perform a localization task using 
Bounding-Box regression, i.e. Fast R-CNN [23], Faster R-CNN [27] and MNC 
[31], use VGG-16 [34] as its Shared Convolutional module. The 
implementation of AlexNet [37] for this task could be insufficient, as it is a 
much smaller network: it consists of 5 convolutional layers instead of the 13 of 
VGG-16 [34] and, moreover, the number of filters applied is also smaller (see 
section 5.2.1) [37]. In addition, the application of AlexNet [37] has prevented 
the utilization of transfer learning [56]. As previously stated, this technique 
consists in applying the weights of a pretrained model (usually of a well-
known dataset available on-line) to the network, and then simply adjusting 
the value of this weights to the actual needs of the implemented architecture 
[56]. In the studied case, with so few data, the application of transfer learning 
[56] could have been a possible solution. Concretely, it could have been 
implemented in the Shared Convolutional Module and in the Faster R-CNN 
masking (section 4.1.1.1). Obviously, the segmentation would continue to be 
bad, but at least, its application would have ensured the correct generation of 
the RoI masks, increasing the general performance of the network. Another 
problem related with the scarce capacity of the server is the great amount of 
time that it is required to train the model from scratch: just to perform the 225 
iterations (Table 7) it takes between 4 and 5 hours of execution. Consequently, 
even if a better and larger dataset would have been available for this work, it 
would have been difficult to obtain really better results: with a slow server, not 
so many iterations could have been done in a reasonable time, i.e. in a 
maximum of a week. In fact, it is scary to think the great number of hours that 
would have been necessary with the current server to train, for example, the 
120000 iterations performed in Human Parsing [32] (see Table 7). In that 
sense, the impossibility of using transfer learning [56] also affects to the time 
requirements for the training because the network has to be trained from 
scratch, which takes much more time to converge than if simply some pre-
trained weights are applied and fine-tuned later (transfer learning [56]). For 
all these reasons, the application of a more powerful server is indispensable: it 
would offer the resources to go back to VGG-16 [34] instead of AlexNet [37] 
and would also offer the required capacity to fully implement a better dataset. 
 

6.3.1.3 Responsibility of the design in the results 

 
As explained in Section 4, Human Parsing architecture [32], whose results are 
shown in Table 6, has been an inspiration for the design presented in this 
thesis. For more details, Section 4.3.2 focus only on the changes that have 
been introduced in the new network with respect to Human Parsing  [32]. In 
summary, these changes have consisted in applying to the new architecture 
functionalities to increase its efficiency, i.e. RoI masking, and enhancing its 
performance, i.e. Global RoI-Level Context, taking into account the 
integration of the new design with the global architecture where it is going to 
be applied, which is presented in [3]. Nevertheless, the changes introduced 
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with respect to Human Parsing [32]  does not change the way that predictions 
are done: pixel-wise segmentation using Co-CNN. In fact, the modifications 
introduced do not change the architecture enough to justify the great 
difference in terms of performance shown in Table 5 and Table 6: the main 
responsible are the incorrect dataset and server implemented. Furthermore, 
during the implementation and testing process, multiple little changes have 
been introduced in the implementation of the design to ensure its correct 
operation: Sections 5.2.2.1, 5.4.1.1 and 5.3 are just some of the most relevant 
examples. Anyway, even in the unlikely case that the presented design could 
worsen the original Human Parsing architecture [32], it will be impossible to 
figure it out until better conditions in terms of both dataset and server are 
available for experimentation: with the current configuration overfitting is, for 
sure, the maximum responsible of the results obtained. 
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7 Conclusions and future work 

This project proposes a RoI deep pixel-wise segmentation CNN to be 
integrated in the work presented in [3], fulfilling all its requirements. The 
network has been designed after an accurate study of the state-of-the-art 
networks in the field of localization and segmentation by means of CNN. The 
design includes technical solutions for the problems detected during the study 
of these pre-existing networks, i.e. lack of fine-grained accuracy (solved with 
pixel-wise segmentation) and improvable computational efficiency (solved 
with the application of RoI masks). Then, the network has been successfully 
implemented in the well-known deep learning library Caffe. Finally, a set of 
experiments were conducted to prove that the network is ready to work and 
correctly implemented. Concerning the results obtained by the proposed 
design, it is not the scope of this thesis to evaluate them with respect to the 
networks existing in the field of application, as the experimental conditions 
are not good enough for testing a deep learning algorithm. The results 
presented in this thesis prove that the current conditions are not adequate and 
that the network is ready to work once the required conditions are available.  
 
The future work has to be clearly focused on using an adequate dataset and 
server to perform a really useful evaluation of the network. In that sense, it 
would be particularly interesting to have available a dataset specifically 
designed to fulfill the requirements of the studied task, i.e. detailed pixel-wise 
segmentation ground truth and multi-label Bounding-Box. In addition, the 
utilization of a more powerful server, should ensure the utilization of VGG-16 
[34] instead of AlexNet [37] in the Shared Convolutional module. Fortunately, 
the re-evaluation of the network with the new dataset should not be a large 
process as the implementation works perfectly. Moreover, the network should 
be included to the global architecture of [3] to see the final performance of the 
system. Finally, after the new evaluation of the results, it should be studied if 
some details from the architecture should be changed to enhance the 
performance. In that regard, it could be interesting to study the possibility of 
applying foreground masks instead of RoI masks, following the style of the 
masks presented in [31] or even the possibility of replacing the masking step 
by a reversible RoI warping algorithm [31]. Both approaches would allow not 
to consider the generated masks as fixed inputs to the Segmentation Module. 
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