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 21 

Abstract: 22 

 23 

The relationship between Eurasian snow cover extent (SCE) and Northern 24 

Hemisphere atmospheric circulation is studied in reanalysis during 1979-2014 and in 25 

CMIP5 preindustrial control runs. In observations, dipolar SCE anomalies in November, 26 

with negative anomalies over eastern Europe and positive anomalies over eastern 27 

Siberia, are followed by a negative phase of the Arctic Oscillation (AO) one and two 28 

months later. In models, this effect is largely underestimated, but four models simulate 29 

such relationship. In observations and these models, the SCE influence is primarily due 30 

to the eastern Siberian pole, which is itself driven by the Scandinavian pattern (SCA), 31 

with a large anticyclonic anomaly over the Urals. The SCA pattern is also responsible for 32 

a link between Eurasian SCE anomalies and sea ice concentration (SIC) anomalies in the 33 

Barents-Kara Sea. 34 

Increasing SCE over Siberia leads to a local cooling of the lower troposphere, and 35 

is associated with warm conditions over the eastern Arctic. This is followed by a polar 36 

vortex weakening in December and January, which has an AO-like signature. In 37 

observations, the association between November SCE and the winter AO is amplified by 38 

SIC anomalies in the Barents-Kara Sea, where large diabatic heating of the lower 39 

troposphere occurs, but results suggest that the SCE is the main driver of the AO. 40 

Conversely, the sea ice anomalies have little influence in most models, which is 41 

consistent with the different SCA variability, the colder mean state, and the 42 

underestimation of troposphere-stratosphere coupling simulated in these models.  43 

  44 
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 45 

1. Introduction 46 

The role of Arctic conditions in the mid-latitude winter climate is under debate, 47 

especially for the North Atlantic sector (Overland et al. 2015). In this region, the 48 

atmosphere has a dominant short-timescale chaotic intrinsic variability and is mainly 49 

unpredictable. However, several studies suggest that the variability of Arctic sea ice 50 

extent (Yamamoto et al. 2006; Francis et al. 2009; Honda et al 2009; Wu and Zhang 51 

2010; Frankignoul et al. 2014; Garcia-Serrano et al. 2015, Koenigk et al. 2016, King et al. 52 

2016) and Eurasian snow cover extent (SCE, e.g. Cohen and Entekhabi 1999, Cohen et al. 53 

2007, Cohen and Jones 2011) have some influence onto the atmosphere during winter. 54 

Such influence may account for an improvement in skill of long-range prediction due to 55 

continental snow (Jeong et al., 2013, Orsolini et al., 2013) and sea ice (Scaife et al. 2014) 56 

initialization and improved physics (Riddle et al. 2013) in current forecast systems.  57 

Continental snow cover affects the atmosphere via changes in surface albedo 58 

(Cohen 1994). A larger snow cover increases the surface albedo and reflects shortwave 59 

radiation away from the surface (Gong et al. 2004, Jeong et al., 2013). A snowpack also 60 

insulates the atmosphere from the soil surface. In winter at high latitude, these two 61 

effects explain that snow enhances the diabatic cooling at the surface and in the 62 

atmospheric boundary layer (Fletcher et al. 2007; Dutra et al. 2011), which locally 63 

increases the sea level pressure (SLP). A larger SCE over Eurasia has been reported to 64 

intensify and expand the Siberian high (Jeong et al., 2011; Orsolini et al., 2013). This 65 

modifies the land/sea contrast and the stationary wave pattern, and may lead to 66 

enhanced upward planetary wave propagation, thus weakening and warming the polar 67 

vortex in the stratosphere (Saito et al., 2001, Cohen et al. 2007, Orsolini et al., 2016).  A 68 

weak polar vortex can persist for several weeks and influence the underlying 69 
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troposphere by downward propagation of circulation anomalies. The influence of the 70 

Eurasian snow cover has received most attention in autumn, as it shows a statistically 71 

significant relation with the following winter Arctic Oscillation (AO) and North Atlantic 72 

Oscillation (NAO), from December to March (Cohen et al., 2007; Déry and Brown, 2007; 73 

Allen and Zender, 2010; Cohen et al., 2012).  74 

Sea ice concentration (SIC) changes may also influence the atmosphere. The most 75 

reported influence concerns SIC in the Barents-Kara Sea, where SIC in autumn has a 76 

statistically significant influence on the following winter NAO (Petoukov and Semenov, 77 

2010; Kim et al., 2014; Garcia-Serrano et al., 2015; King et al., 2016). Sea ice insulates 78 

the ocean from the atmosphere, so that a sea ice loss increases the heat flux from the 79 

ocean to the atmosphere. The resulting diabatic heating is large, but localized near the 80 

sea ice edge (e.g. Magnusdottir et al. 2004; Deser et al. 2004, 2007). This leads to 81 

changes in the tropospheric eddies and the planetary wave pattern, which may alter the 82 

polar vortex (e.g. Nakamura et al. 2015, 2016). The modified polar vortex may then 83 

influence the troposphere by downward propagation in the following weeks or months, 84 

with important impact during periods of polar vortex breakdown, such as in February 85 

(Jaiser et al. 2016).   86 

The influence of SIC thus shares a large similarity with that of the Eurasia SCE 87 

during fall (October and November), as both may involve a stratospheric pathway. 88 

Furthermore, continental SCE and Arctic SIC are linked, as a reduced Arctic sea-ice 89 

extent leads to a moistening of the atmospheric boundary layer, which increases the 90 

moisture flux into eastern Siberia, increasing snowfall, as suggested by Cohen et al. 91 

(2014a) and found by Wegmann et al. (2015) using a Lagrangian analysis.  The sea ice 92 

and snow cover are also connected by the influence of Ural Blocking, which has been 93 

reported to cause warm Arctic–cold Eurasia anomalies in winter (Luo et al., 2016). The 94 
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two surface influences are, therefore, connected, and their interaction might amplify the 95 

atmospheric response found by separately considering snow cover and sea ice (Cohen et 96 

al. 2014a). However, only a few studies have investigated the links between the SCE and 97 

sea ice. The relative effect on the atmosphere of the Arctic sea ice and Eurasian snow 98 

cover is largely unknown. In addition, the influence of tropical SST variability needs to 99 

be clarified, as the tropical teleconnections may both influence the snow cover over 100 

Eurasia and modify the atmospheric circulation (Fasullo, 2004), leading to a possible 101 

confusion between cause and effect.  102 

As the observational record is mostly limited to the recent decades, climate 103 

models can be used to investigate the impact of SIC and SCE variability with a much 104 

larger sampling, even if the stratospheric polar vortex is too stable in models, which may 105 

inhibit the troposphere-stratosphere coupling (Furtado et al., 2015). The aim of this 106 

study is to investigate the influence of autumnal Eurasian snow cover variability in 107 

observations and climate models, and the links with that of the sea ice cover. We find 108 

that snow cover anomalies in November have a dominant influence on the atmospheric 109 

circulation in observations and several models. The SCE anomalies are found to be 110 

associated with SIC anomalies over the Barents-Kara Sea, as both are modulated by the 111 

Scandinavian pattern, which is the dominant mode of atmospheric variability in 112 

November.  113 

The next section describes the methodology. The analysis of the snow cover and 114 

its links with the atmosphere is discussed in Section 3. The processes linking the snow 115 

cover to the atmosphere are investigated in Section 4. Finally, the last section contains 116 

the discussion and conclusions. 117 

 118 

 119 
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2. Data and methods 120 

a. Observations 121 

Monthly sea ice cover is downloaded from the NOAA/National Snow and Ice Data 122 

Center (Comiso, 2012). Weekly Northern Hemisphere continental snow cover is 123 

retrieved from the NOAA/Rutgers University Global Snow Laboratory, and aggregated 124 

into monthly data. Both products are based on passive microwave measurements 125 

(SSM/I) and extend from 1979 to 2014. The sea-level pressure (SLP), geopotential 126 

height, air temperature, and heat flux (accumulated from 24h forecasts) are from the 127 

ERA-Interim reanalysis (Dee et al., 2011).  128 

A quadratic trend is removed from all variable before the analysis to remove the 129 

effect of the global warming. This also removes the multi-decadal variability and lower 130 

frequencies, and the large Arctic sea ice decrease from 2005 onward (e.g. Close et al. 131 

2015).   132 

 133 

b. Models 134 

Monthly SLP, snow cover, geopotential, SIC, SST and heat fluxes anomalies are 135 

downloaded from the CMIP5 archive for 12 coupled ocean atmosphere models (Table 1) 136 

using the preindustrial multi-centennial control simulations with constant external 137 

forcing. All model fields are interpolated onto a common 2.5°x2.5° horizontal grid. A 138 

quadratic trend was removed from all outputs to remove the possible influence of model 139 

drift. 140 

 141 

c. Maximum covariance analysis 142 

 Maximum covariance analysis (MCA) is used to estimate the main modes of area-143 

weighted covariability between the atmosphere and the underlying snow cover. We use 144 
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snow cover anomalies over northern Eurasia (40°N-65°N;0°E-180°E). The SLP 145 

anomalies in the Northern Hemisphere (20°N-90°N) are chosen to represent the 146 

tropospheric circulation. The MCA decomposes the covariance matrix of the two fields 147 

using singular value decomposition (Bretherton et al., 1992). Each mode of covariability 148 

is characterized by two times series and associated spatial patterns. Here, the MCA time 149 

series are standardized (divided by their standard deviation). The spatial patterns are 150 

illustrated by the homogeneous covariance map for the field that leads (regression on 151 

the same field time series) and the heterogeneous covariance map for the field that lags 152 

(regression on the MCA time series of the other field), which preserves orthogonality 153 

(Czaja and Frankignoul, 2002). The MCA modes are characterized by their normalized 154 

squared covariance (NSC, i. e. the squared singular value divided by the variance of both 155 

fields), the correlation (R) between the MCA time series, and the squared covariance 156 

fraction (SCF, i. e. the ratio of covariance explained). In order to evaluate the robustness 157 

of the MCA modes, we repeated the MCAs using 100 random permutations of three-158 

years blocks for the SLP field. The number of NSC and R that exceed the observed values 159 

gives the levels of significance for NSC and R. 160 

The mode of covariability between the snow cover and the atmosphere are 161 

expected to reflect the influence of atmospheric perturbations on the SCE when the two 162 

fields are in phase or, because of snow cover persistence, when the atmosphere leads. 163 

When the snow cover leads the atmosphere by one month or more, a significant MCA 164 

mode could indicate an influence of the snow cover (or concomitant boundary forcing) 165 

on the atmosphere, as the extratropical atmosphere has an intrinsic persistence of at 166 

most 10 days (Vautard, 1990). However, the El Niño Southern Oscillation (ENSO) has 167 

persistent remote teleconnections that may give rise to persistent MCA modes not solely 168 

linked to local boundary forcing. Hence, we (largely) remove these teleconnections from 169 
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both snow and atmospheric data by multivariate regression when (and only when) the 170 

snow cover field leads the atmosphere, assuming that they lag the tropical Pacific SST by 171 

two months in the atmosphere, while they vary with lag for the snow in order to get 172 

unbiased estimates (see Frankignoul et al., 2011).  The tropical SST variability is 173 

represented by the first three empirical orthogonal functions (EOFs) of the monthly 174 

tropical Indo-Pacific SST. The regressions are performed separately for each season, to 175 

account for the seasonal changes of the ENSO teleconnection, and separately for positive 176 

and negative values of the Principal Components (PCs), to account for the asymmetry 177 

(see supplemental material text for details). We verified that similar MCA results are 178 

obtained by assuming a one-month lag for the ENSO teleconnections, or even without 179 

removing the ENSO signal (see Table S1).  180 

 181 

d. Rotated empirical orthogonal function 182 

 The main patterns of Northern Hemisphere (20°N - 90°N) SLP variability are 183 

given by rotated empirical orthogonal function (REOF) analysis, using the first 15 EOFs 184 

in the rotation, which accounts for 95% of the variance. To preserve orthogonality of the 185 

PCs, we scaled the EOFs by the square root of its eigenvalue before performing the 186 

varimax rotation (Kaiser 1958). The rotated PCs are standardized, and the REOF 187 

patterns are given by regression on these time series. 188 

 189 

e. Regression analysis 190 

 We used both univariate and multivariate least squares regression. We remove 191 

the tropical teleconnections from all data before the regression analysis, following the 192 

same methodology as the MCA (see section 2.c). The level of statistical significance is 193 

tested with 100 permutations of the atmospheric fields in 3-yr blocks to take serial 194 
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autocorrelation into account. The number regression slopes that exceeds the observed 195 

value in the permuted time series provides the p-value. 196 

 197 

3. The links between Eurasian snow cover and the atmosphere 198 

a. Detection of the snow cover influence  199 

The normalized squared covariance (NSC) of the first MCA mode provides an 200 

estimate of the dominant covariability between the SCE and SLP anomalies. It is shown 201 

as a function of lag and season for the observations in Fig. 1. The largest NSC are mostly 202 

obtained when the atmosphere is in phase with the SCE or leads it by one month 203 

(negative lag), reflecting that the atmosphere controls the formation of snow cover 204 

anomalies. The largest covariability occurs for SLP in March at lag 0 and for SLP in 205 

February when it leads by one month. This is consistent with the occurrence of the 206 

largest interannual snow anomalies in March, and the largest atmospheric variability in 207 

February. 208 

At positive lag, the snow cover leads the atmosphere, which may reflect the SCE 209 

forcing of atmospheric anomalies. The most significant links are found between 210 

November snow cover and SLP in December (lag 1) and January (lag 2), as well as 211 

between February snow cover and SLP in March (lag 1), as the NSC and R are both 212 

significant at the 5% level (Fig. 1). The covariability is weaker when October SCE leads 213 

the atmosphere, whether by 1, 2 or 3 months (p-values are 10%, 28%, 40% for NSC and 214 

13%, 38%, 20% for R). Our results thus contrast with the commonly argued impact of 215 

October Eurasian snow cover on winter SLP (Saito and Cohen, 2003), as further 216 

discussed in Appendix. A significant covariance (p-value<10%) is also found for SLP in 217 

August and September, when the SCE leads by one month. 218 
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The influence of November SCE onto the atmosphere in December and January is 219 

the main focus of this paper, and it is discussed below. The late winter snow influence 220 

found in March has been reported in several studies (Barnett et al., 1989; Saito and 221 

Cohen, 2003; Zhang et al., 2004; Peings and Douville, 2010; Peings et al. 2011); it is not 222 

investigated here, as the processes are different from the fall influence studied here. 223 

Similarly, the covariability in late summer is not discussed here; it shows a reduction of 224 

snow cover in south-western Norway preceding anticyclonic conditions over the North 225 

Atlantic (not shown), and might be due to concomitant North Atlantic SST forcing 226 

(Gastineau and Frankignoul, 2015).  227 

The same analysis has been performed with the CMIP5 models, and a significant 228 

covariability between SCE and SLP anomalies is found in several cases. The results are 229 

summarized in Fig. 2, which shows the level of statistical significance of the NSC and R 230 

for the first MCA mode (left panel).  The similarity with the observational data is given 231 

by the spatial pattern correlation of the homogeneous SCE and heterogeneous SLP 232 

covariance maps between each model and the observation (right panel). When using 233 

November SCE anomalies and December SLP (black symbols in Fig. 2), there are four 234 

models out of 12 (CanESM2, MPI-ESM-LR, GISS-E-R and CESM1) suggesting an impact of 235 

the November SCE anomalies that is reasonably similar to that observed (spatial 236 

correlation between 0.2 and 0.9).  These four models show a first MCA mode that is 10% 237 

significant for NSC and R, except for MPI-ESM-LR, which is only 12% significant for R. 238 

Among these four models, only CESM1 is a low-top model, while the others are high top 239 

models with lid height above 45km (Seviour et al., 2016). 240 

The SCE influence seems to be less persistent in models, as the first MCA mode 241 

with November SCE is only significant at lag 2 (SLP in January) in CESM1 (red symbols 242 

in Fig. 2). When using October SCE and November SLP (blue symbols in Fig. 2), there are 243 
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only two models out of 12 suggesting an impact of the October snow cover anomalies 244 

(CSIRO-Mk3-6 and CCSM4). When using October SCE and December (January) SLP, only 245 

one model, FGOALS-g2 (IPSL-CM5A-LR), provides a potential impact. We conclude that 246 

consistent with observations, more CMIP5 models suggest an impact of November SCE 247 

than October SCE. Next, we will discuss the spatial patterns corresponding to these 248 

modes of covariability. 249 

 250 

b. Spatial pattern of the November snow cover influence  251 

The covariance maps for November SCE and December SLP are shown in Fig. 3. In 252 

observations, the first MCA mode shows dipolar snow cover anomalies (Fig. 3a, colors), 253 

with a pole over eastern Europe and an opposite polarity over south-eastern Siberia, 254 

Northern Mongolia, and Northern China. Both poles are located at the margin of the 255 

snow-covered surface in November (see Fig. S1). This SCE dipole precedes SLP 256 

anomalies (black contours) broadly projecting on a negative phase of the AO, with a 257 

large signature over the North Atlantic. The covariance maps at lag 2 (Fig. 3b, November 258 

SCE / January SLP) are almost identical, but the SLP anomalies are weaker, especially 259 

over Western Europe. Note that the covariance maps at lag 3 (November SCE / February 260 

SLP) are also similar, although the significance level for NSC and R are 1% and 27%, 261 

respectively.  262 

The MCA patterns in the four CMIP5 models (CanESM2, MPI-ESM-LR, GISS-E-R, 263 

CESM1) identified previously are broadly similar to the observed ones (Fig. 3c-f), with a 264 

positive snow cover anomaly in southern Siberia and a negative one over eastern 265 

Europe preceding a negative AO-like pattern by one month. However, the amplitudes 266 

are smaller than in observations (note the different color and contour interval in Fig. 3). 267 

Furthermore, the snow cover anomalies are slightly shifted, as the November SCE 268 
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climatology shows less snow over Eurasia, especially over Europe (Fig. S1). In the 269 

following, we only consider this subset of four models, as illustrated by the averaged 270 

covariance map (Fig. 3g).  271 

To take into account the different sampling in models (≥ 500 yr) and 272 

observations (36 yr), we performed similar MCA analysis on separate 36-yr segments 273 

from each of the four model simulations. These 36-yr segments are selected using a shift 274 

of 6 years between two consecutive ones, so that for instance a 1000-yr run results in 275 

160 36-yr segments. The mean NSC and R for the first MCA mode in these segments are 276 

larger than the ones computed from the entire run (compare Fig. 3h and values on top of 277 

Fig. 3c-f), but still smaller than in observations, with the 95% percentile of their 278 

distributions lower than the observed value. Therefore, it is very likely that the models 279 

do underestimate the snow influence.  280 

 281 

c. Origin of the snow cover dipolar variability in November  282 

To determine the origin of the dipolar snow cover anomalies, November SLP and 283 

2m air temperature anomalies are regressed onto the (standardized) MCA time series of 284 

November SCE, referred to as MCA-snow (Fig. 4). For the CMIP5 models, we only 285 

consider the four models (CanESM2, MPI-ESM, GISS-E2-R and CESM-BGC) that are 286 

consistent with observations and show the multi-model average of the regression 287 

patterns, while the number of models with a regression of the same sign documents 288 

their robustness, and provides a measure of inter-model spread.  289 

The SLP anomalies associated with the snow dipole in both observations (Fig. 4a) 290 

and models (Fig. 4b) are characterized by a large anticyclonic anomaly over the Urals 291 

and a depression over Europe. The SLP pattern shares some similarity with the Eurasian 292 

pattern type 1 (Barnston and Livezey, 1987), the Scandinavian pattern (Bueh and 293 
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Nakamura 2007), the Russian pattern (Smoliak and Wallace, 2015) or the anomalies in 294 

Ural Blocking conditions (Luo et al., 2016). A similar pattern was also reported to result 295 

from the October SCE response (Cohen et al., 2014b). We will refer to this atmospheric 296 

patterns as the Scandinavian pattern (SCA) in the following. Figure 4 illustrates that 297 

warm (cold) air temperature anomalies are associated with negative (positive) SCE 298 

anomalies, consistent with the warm (cold) advection by the anomalous atmospheric 299 

circulation, as in the Greenland, Barents and Kara Seas that are affected by warm 300 

advection from the Norwegian Sea.  301 

In observations, a dipolar SCE pattern similar to that in Fig. 3a and a SCA-like SLP 302 

pattern is also obtained as first MCA mode of simultaneous SLP and SCE anomalies in 303 

November, with 42.1% of squared covariance fraction (SCF), as shown in (Fig. 5a), while 304 

an AO influence onto the snow cover is only obtained as mode 3 (SCF = 11.6%). This is 305 

consistent with the first REOF of November SLP, which corresponds to the SCA (Fig. 6a). 306 

In December, however, the simultaneous covariability between SLP and SCE is 307 

dominated by the AO (SCF=55.1%, Fig. 5b), which decreases the advection from the 308 

relatively warm ocean toward the cooler Eurasian Continent. It also shifts southward 309 

the precipitation associated with the Atlantic stormtrack (Hurrell, 1995), which 310 

increases the SCE over Europe. We also see negative SCE anomalies east of the Caspian 311 

Sea associated with warm advection from the Mediterranean region.   312 

On the other hand, the MCA suggests that, in most of the four models, the AO 313 

already has the largest impact on snow cover in November (Fig. 5c), with a much larger 314 

impact downstream of Europe, as shown by the positive anomalies over Eastern Siberia. 315 

Only CESM1 simulates the SCA pattern and its dipolar snow cover signature as first MCA 316 

mode (not shown). In fact, the first REOF of November SLP is also A0-like in all models 317 

(Fig. 6b). To establish its robustness, we have used as above distinct 36-yr chunks from 318 
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each control simulation, to reproduce the observed sampling. The SCA and AO are 319 

identified using the largest spatial pattern correlation with the observed SCA (November 320 

REOF1) and AO (November REOF3), respectively. The AO variance fraction is 321 

systematically larger than observed (Fig. 6c, yellow), while the SCA one is smaller (Fig. 322 

6c, red). This is consistent with the larger role of the SCA in the observation, when 323 

compared to model simulations, and it can be explained by either natural atmospheric 324 

variability or model biases. Indeed, CMIP5 models use relatively coarse horizontal 325 

resolutions, and are known to underestimate winter blocking episodes (Dawson et al, 326 

2012), leading to an overestimation of the NAO regimes (Cattiaux et al., 2013). 327 

 328 

4. Processes of the November snow cover influence 329 

a. Role of Siberian snow cover 330 

The relative importance of the two poles of the November SCE dipole can be 331 

analyzed using two indices: the mean SCE anomalies over eastern Europe (20°E-58°E, 332 

48°N-60°N) and over eastern Siberia (70°E-140°E, 43°N-56°N). A bivariate regression of 333 

SLP anomalies in December on these two indices shows significant SLP anomalies in the 334 

observations (Figs. 7a and 7b), with negative SLP anomalies off Western Europe and 335 

positive anomalies over the polar cap. However, the eastern Siberia pole has the largest 336 

and most significant influence on SLP, and its impact is more AO-like. In the four models 337 

(Figs. 7c and 7d), Siberian SCE anomalies also have a larger AO-like influence on SLP, 338 

while European SCE is linked to a weak SLP dipole between Greenland and Scandinavia. 339 

Therefore, the most robust signal seems to be linked to the Siberian SCE influence, 340 

which is consistent with the reported influence of October snow cover (Saito and Cohen, 341 

2003).  342 

 343 
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b. Associated surface changes 344 

The influence of surface conditions is evaluated using SCE and SIC regressions 345 

onto MCA-snow in Fig. 8. The November SCE anomalies (Fig. 8c,d) are preceded in 346 

October (Fig. 8a,b) and followed in December (Fig. 8e, f) by similar, but smaller, 347 

anomalies over eastern Siberia, which is consistent with the snow cover persistence 348 

over that region (Déry and Brown, 2007), and reflected in the large correlation (around 349 

0.5) between October and November SCE (see Fig. S1). European SCE anomalies are also 350 

present from October in the models, but not in observations. A significant retreat of the 351 

sea ice edge in the Barents Sea is also found for both models and observations in 352 

October and November, which is also visible in December in the models.   353 

The surface heat flux in lead and lag conditions can be used to discuss the 354 

processes leading to the atmospheric circulation response. The heat flux preceding the 355 

SCE is dominated by the atmospheric forcing of the snow cover, as for SST anomalies, 356 

while the heat flux lagging the SCE should primarily reflect the heat flux directly forced 357 

by the SCE (the thermodynamical component), although it could be strongly affected by 358 

the surface heat flux intrinsically associated with the atmospheric response (hereafter 359 

the dynamical heat flux component); at lag 0, both effects play a role and may even 360 

cancel (Frankignoul et al. 1998). Since the surface heat flux responds rapidly to the 361 

surface conditions (simultaneously on monthly timescale), one can use in-phase 362 

relations to estimate the (thermodynamical) heat flux driven by the SCE anomalies, if 363 

the (larger) dynamical component is removed. To do so, we first calculate the heat flux 364 

by adding surface radiative and turbulent fluxes. A standardized atmospheric index, 365 

referred to as ATM, was computed by projecting the November SLP anomalies over 366 

30°N-90°N 80°W-180°E onto the SCA-like patterns shown in Fig. 4. The dynamical heat 367 

flux component corresponding to one standard deviation of the MCA-snow index is 368 
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obtained by regressing the heat flux anomalies onto ATM, multiplied by the correlation 369 

between ATM and MCA-snow (shown in Fig. S2). The total heat flux anomaly associated 370 

with the SCE pattern in Fig. 3a is given by the regression of the heat flux onto MCA-snow 371 

(shown in Fig. S3), while the difference of the two (Figs. 9a and 9b) is an estimate of the 372 

thermodynamical effect. Figs. 9c-d illustrate such thermodynamical component of the 373 

heat flux integrated over three boxes (see purple boxes in Fig. 9a-b) located over Siberia, 374 

Europe, and the Barents and Kara Seas. The location of the boxes was adjusted to 375 

capture the snow and sea-ice influences in models and observations. 376 

In November, the heat flux changes induced by the snow cover are downward 377 

over a wide latitudinal band in central Siberia from lake Balkhash to Sakhalin Island in 378 

ERA-Interim and models (Fig. 9a-b), although the results are noisy in ERA-Interim. This 379 

is consistent with a net cooling effect of positive snow cover anomalies, as the larger 380 

surface albedo leads to more reflected shortwave radiation, and as the surface may be 381 

more insulated from the warmer soil if the snow depth also increases (Orsolini et al., 382 

2016). The cooler surface temperature results in a dominant reduction of longwave 383 

radiation and sensible heat flux. However, the turbulent fluxes have a larger 384 

contribution in models, while the longwave and shortwave components dominate in 385 

observations (Fig. 9c and 9d). Conversely, the heat flux anomalies are upward in ERA-386 

Interim over eastern Europe and Scandinavia where the SCE decreases, while in models, 387 

there is almost no net heating effect. Interestingly, over the Barents-Kara Seas, the heat 388 

flux is mainly upward over open-water in the Nordic Seas, which suggests a large 389 

heating of the atmosphere where the sea ice has retreated in November. This is 390 

consistent with an active influence of SIC anomalies onto the lower troposphere. 391 

However, while the total heat flux release over the Barents-Kara Seas is dominant in 392 

ERA-Interim, it is smaller and less robust in models. The same analysis applied to the 393 
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December heat flux provides comparable results over Europe and Siberia (see Fig. S4), 394 

but the heating over the Barents-Kara Seas is larger in models, while a net cooling is 395 

obtained in observations. This is because the sea-ice anomalies persist in December in 396 

models (see Fig. 8f), while they vanish in ERA-Interim (Fig. 8e).  397 

In summary, the diabatic forcing of SCE anomalies is consistent in models and 398 

ERA-Interim, with cooling when the SCE increases. However, the diabatic heating from 399 

the SIC anomalies over the Barents-Kara Seas is larger, but it is also less robust than the 400 

one associated with SCE. As the surface heat flux anomalies are not assimilated in ERA-401 

Interim and largely depend on the model physics, these results might be model 402 

dependent.  403 

 404 

c. Troposphere-stratosphere coupling  405 

We calculated the regressions of the SLP (Fig. 10), zonal-mean temperature and 406 

geopotential height (Fig. 11) onto November MCA-snow, from October to January. In 407 

observations, the November SCE anomalies are preceded in October by a small 408 

anticyclone centered over the northern coast of Siberia (Fig. 10a), as in Cohen et al. 409 

(2002). In November, one month later, the SCA pattern (Fig. 10c) is visible, with cold 410 

tropospheric anomalies over Eurasia between 40°N and 60°N, above the positive SCE 411 

anomalies, and warm tropospheric anomalies at 78°N, at the location of the Barents-412 

Kara Seas (Fig. 4). The zonal mean anomalies are largely barotropic below 300-hPa, 413 

which illustrates the main role of the tropospheric eddies in settling the SCA pattern. 414 

The anomalous anticyclone over Eurasia has been interpreted as a response to October 415 

Siberian snow cover, the snow-induced cooling acting to reinforce and expand westward 416 

the Siberian High (Cohen et al., 2007; Jeong et al., 2011; Orsolini et al., 2013). However, it 417 

can also be interpreted as a result of the stationary Rossby wave induced by the 418 
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anomalous turbulent heat flux from the sea ice retreat in the Barents-Kara Seas (e.g. 419 

Honda et al. 2009; Garcia-Serrano et al. 2015), or as internal atmospheric variability 420 

since simultaneous relations primarily show the SCE forcing by the SCA.  In the lower 421 

stratosphere, there is a warming over the polar cap (75°N-90°N, between 300-hPa and 422 

100-hPa) and positive geopotential height anomalies above (Fig. 11a) that depicts a 423 

weakening of the polar vortex. In December, one month later, a barotropic negative 424 

NAO/AO pattern appears in the Euro-Atlantic region (Fig. 10e), while the polar vortex is 425 

further weakened, with stratospheric temperature anomalies above 100 hPa that are 426 

only significant between 40°N and 65°N (Fig. 11c). The regressions are similar in 427 

January, with the SLP anomalies projecting on the AO (Fig. 10g), and stronger zonal-428 

mean geopotential height and temperature anomalies (Fig. 11e).  429 

In the CMIP5 models, the atmospheric anomalies in October (Fig. 10b), which 430 

precedes by one month the SCE anomalies, show alternating trough and ridges from the 431 

North Atlantic to south-eastern Asia, with anticyclonic anomalies over the Urals and a 432 

depression over Northern Europe, clearly indicative of a stationary wave and already 433 

reminiscent of the SCA pattern. In November, the anomalies are more complex and 434 

larger, with a dominant anticyclonic circulation over the Urals extending into the Arctic 435 

(Fig. 10d), so that the Siberian High is clearly intensified and shifted westward, while the 436 

SLP response is AO-like in December and, to a lesser extent, in January. The temperature 437 

anomalies show a large warming in the lower troposphere north of 70°N (Fig. 11b, d) 438 

from November to December, and display an important warming in the polar 439 

stratosphere that persists into January only in the lowermost stratosphere at 200-hPa. 440 

The warm anomalies are rather baroclinic in the polar troposphere, which is consistent 441 

the influence of Arctic SIC reduction noted in Cattiaux and Cassou (2013). In November 442 

and December, there are also cold temperature anomalies below 400-hPa south of the 443 
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positive SCE anomalies, likely associated with the cold temperature found over Siberia 444 

where the snow cover increases (Fig. 10b,d). In models, both the tropospheric NAO/AO 445 

pattern and the anomalies in the stratosphere are smaller during January, but they are 446 

still significant (Fig. 10h and 11f). 447 

The troposphere-stratosphere coupling is further illustrated by the polar cap 448 

temperature (65°N-90°N) regression onto the MCA-snow index in Fig. 12. For 449 

observations, the daily air temperature was used, while only monthly data was available 450 

for models. The observations show a warming in the lower stratosphere between 200-451 

hPa and 70-hPa from December to February, as found by Cohen et al. (2014b) and 452 

Orsolini et al. (2016), but it is only 10% significant for a few days in early December and 453 

January. There are also hints of downward propagation in late December and late 454 

January. In models, the polar cap temperature anomalies are only half the ones 455 

observed, the timing is different as the warming starts in November, one month earlier, 456 

and the downward propagation is faster in the stratosphere with little penetration into 457 

the troposphere.  458 

In summary, the diabatic heating from the November SCE and, possibly, SIC 459 

anomalies is associated with a stationary wave pattern that weakens the polar vortex. 460 

Particularly in observations, the AO changes obtained one and two months later are 461 

consistent with the downward propagation of polar vortex weakening. Next, we will 462 

establish the relative importance of the SIC and SCE anomalies. 463 

  464 

d. Link with sea ice anomalies 465 

In order to compare the role of SIC and SCE, we also perform a MCA using SIC 466 

over the Barents-Kara Sea (65°N-85°N; 15°E-100°E) in November and SLP in December. 467 

We additionally perform a MCA using both November SIC and SCE concatenated into a 468 



 
20 

single predictor field, with SLP as predictand field. The results are summarized in Table 469 

2. When only using November SIC as predictor, the NSC is highly significant, but the 470 

correlation R is lower than when using SCE, and not significant at the 10% level, as in 471 

Garcia-Serrano et al. (2015; see also Fig. S5). On the other hand, using concatenated SCE 472 

and SIC predictors is as significant as with SCE alone, and the MCA patterns (Fig. 13a) 473 

show that the snow dipolar anomalies and the sea ice retreat in the Barents-Kara Seas 474 

precede a negative AO-like pattern in December, which is consistent with previous 475 

results (Fig. 8), but for larger SIC changes. Interestingly, SCE and SIC seem to contribute 476 

similarly to the SLP response in Fig. 13. Indeed, projecting SIC anomalies onto the SIC 477 

part of the MCA covariance map (referred to as MCAcat_SIC) and SCE anomalies onto the 478 

SCE part (referred to as MCAcat_SCE) yields two well correlated time series (0.58, 479 

significant at the 5% level) that compare well with the atmospheric December MCA time 480 

series (Fig. 13b).  481 

In order to evaluate the relative influence of the SCE and SIC pattern, we used the 482 

time series associated with the SCE and SIC fields in the SCE/SLP (MCA-snow) and 483 

SIC/SLP (referred to as MCA-SIC) individual MCA, respectively, to separate more clearly 484 

the SIC and SCE influences. These two times series have a correlation of 0.42, and a 485 

bivariate regression of the SLP using these two time series shows little multicollinearity 486 

(variance inflation factor of 1.4). The regression slopes (Fig. 14) show that the SCE holds 487 

a larger signal in observations, which is consistent with the higher correlation in the 488 

MCA analysis (see Table 2). The SIC has a similar influence, but its amplitude is twice 489 

smaller, and it is less significant. These results are not substantially modified when using 490 

other indices for SCE or SIC. 491 

The concatenated MCA yields similar results for the four models, with a SCE 492 

dipole and a decrease of SIC in November preceding the December AO (not shown), 493 
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although the NSC and correlation are much lower, and adding SIC to SCE (or considering 494 

SIC alone) strongly degrades the levels of significance (Table 2). Yet, the correlation 495 

between the MCAcat_SCE and MCAcat_SIC time series (Table 3) is significant in each 496 

model, even if it is lower than in observations, which can be explained by the different 497 

sampling, the smaller SCA occurrence, or model biases such as the colder mean state in 498 

pre-industrial climate, which allows less Barents-Kara SIC variability. However, these 499 

significance tests are biased since the four models were selected based on their 500 

response to SCE, not to SIC, and other CMIP5 models are more sensitive to SIC (Garcia-501 

Serrano et al. 2016).  502 

The same analysis was conducted using SIC anomalies in early autumn 503 

(September or October) together with November SCE (Table S2), which provides 504 

significant results only when using October SIC, with patterns as in Fig. 13, but smaller 505 

NSC and R.  We also repeated the analysis using November SIC/SCE and SLP in January 506 

and February (Table S3), as the stratospheric pathway is also important during late 507 

winter (Kim et al., 2014; Jaiser et al., 2016), but the MCA results are much less significant 508 

in the observations.  509 

 510 

e. Link with the Scandinavian pattern 511 

The upward influence of tropospheric planetary waves into the stratosphere due 512 

to atmospheric dynamics, such as during blocking situations, can also explain that the 513 

SCA is followed by an AO-like pattern one month later, without any influence of surface 514 

diabatic heating (Kuroda and Kodera, 1999; Takaya and Nakamura, 2008; Martius et al., 515 

2009; Woollings et al., 2010). To test the influence of such troposphere-stratosphere 516 

coupling, we use an MCA with Eurasian SLP (0E-150E, 45N-85N), Eurasian SCE, and 517 

Barents/Kara SIC in November concatenated as the predictor field, and Northern 518 
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Hemisphere SLP in December as the predictand field. For the sake of simplicity, the 519 

ENSO variability was not removed in the analysis. In both observations and models, the 520 

results of this MCA are strongly significant (Table 2), and the covariance maps are 521 

similar to Fig. 13, with the homogeneous SLP covariance map in November resembling 522 

the SCA (not shown).  523 

We next examine the time series of the three November predictors (SCE dipole, 524 

Barents/Kara SIC, SCA). The time series associated with the SCE and SIC fields are 525 

obtained as before from the SCE/SLP (MCA-snow) and SIC/SLP (MCA-SIC) individual 526 

MCAs, while the SCA index is given by the first rotated EOF of the Eurasian SLP (0E-527 

150E, 45N-85N) in November. To distinguish the impact of each predictor, a 528 

multivariate regression of the December SLP on the three predictors is done, noting that, 529 

despite the large correlation between predictors, multicollinearity is limited (variance 530 

inflation factors < 2.0). The results (Fig. 15a-c) again show that the SCE dipole has the 531 

largest influence onto SLP in December, while the SIC provides weaker, but significant 532 

anomalies as in the bivariate regression in Fig. 14. The SCA seems to be also important 533 

for the SLP over the British Isles or Alaska, but the anomalies are weaker and not 534 

significant. A similar multivariate regression using an AO index, as given by the first EOF 535 

of December SLP is shown in Fig. 15d. Again, the SCE appears to be the best predictor of 536 

the AO, followed by the SIC, while the SCA has the lowest R2. Taking the three indices as 537 

predictors with a multivariate regression only slightly improves the variance explained 538 

by the SCE alone. In the four models (Fig. 15d, symbols using the right vertical axis), the 539 

same analysis also shows that the SCE dipole still plays the dominant role in three 540 

models, while the SIC has a dominant influence only in one model (CanESM). In all 541 

models, the SCA pattern also appears as good predictor of the AO. This suggests that, in 542 

these models selected based on their response to SCE, internal atmospheric dynamical 543 
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processes may also explain the statistical relationship found among SCE, SIC and the 544 

atmosphere one month later, hence that the influence of SCE and SIC is underestimated. 545 

These conclusions are not substantially modified when using other indices for the AO, 546 

the snow dipole or the Barents-Kara SIC anomalies.  547 

 548 

5. Discussions and Conclusion  549 

We have investigated the links between Eurasian SCE and the atmosphere in 550 

observations during 1979-2014 and CMIP5 models. We found that a dipole of snow 551 

cover anomalies in November with positive (negative) snow cover anomalies over 552 

eastern Siberia (eastern Europe) precedes a negative AO-like pattern in December, one 553 

month later. The largest statistical links are found when considering November SCE, as 554 

in Orsolini et al. (2016), but other studies focus more on October snow cover (Cohen and 555 

Entekhabi, 1999; Cohen et al. 2007; Cohen and Jones 2011; Handorf et al. 2015). Lagged 556 

regression actually reveals that the November SCE is related to similar anomalies in 557 

October, but statistical significance is too limited with the MCA using October SCE. The 558 

choice of the data set, the methodology and the period considered might explain this 559 

discrepancy (see Appendix A). The CMIP5 models, in general, fail to simulate this 560 

potential effect of snow cover. Nevertheless, a weaker, but similar, relationship between 561 

the SCE and the AO is present in four models: CanESM, MPI-ESM-LR, GISS-E-R and 562 

CESM-BGC.  563 

The models and ERA-Interim indicate that downward (upward) heat flux 564 

anomalies are simulated over positive (negative) snow cover anomalies over Siberia 565 

(Europe) during November. We verified that eastern Siberia pole of the snow dipole 566 

anomalies has the best relationship with the AO one month later both in observations 567 

and models, so that the SCE over Siberia seems to have the largest influence. The 568 
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diabatic cooling of the troposphere over Siberia is consistent with the intensification and 569 

westward expansion of the Siberian High. This may lead to a polar vortex weakening 570 

from November to January driven by upward planetary wave activity flux, as found 571 

previously in observations (Saito et al. 2001; Handorf et al. 2015; Furtado et al. 2016) 572 

and in sensitivity experiments using SCE anomalies (Gong et al., 2004; Fletcher et al., 573 

2009; Peings et al., 2012; Orsolini et al. 2013; Orsolini et al. 2016). Here, we show that 574 

the same process can be verified qualitatively using multi-centennial control climate 575 

model simulations, although the SCE influence is much weaker. 576 

 The atmospheric pattern responsible for the variability of the snow cover dipole 577 

is the Scandinavian pattern (SCA, as in Bueh and Nakamura, 2007), with a large 578 

anticyclone over the Urals. Such anticyclone leads to northerly cold advection east of the 579 

anticyclone, bringing cold air over Siberia, and southerly warm advection over Central 580 

Europe and the Barents and Kara Seas. The SCA forcing explains that the Barents/Kara 581 

SIC and Eurasian SCE are largely correlated (Wegmann et al., 2015; Furtado et al., 2016).  582 

We find that the models produce less frequent SCA-like and more frequent AO-like 583 

events, possibly linked to blocking processes that are not well simulated in low 584 

resolution models (Dawson, 2012), but this could also be due to natural atmospheric 585 

variability. Deficiencies in the simulation of the SCA characteristics in models might 586 

therefore explain the weaker SCE influence in models. In addition, the upward heat flux 587 

driven by a retreat of the sea ice in the Barents-Kara Seas is weaker and less robust in 588 

the models than in ERA-Interim, perhaps explaining why the SIC influence is also 589 

underestimated in the four models that simulate the SCE impacts.  590 

A MCA using SLP and combined SCE and SIC suggests that November SCE and SIC 591 

forcing provide similar covariability with the December AO in observations. However, a 592 

bivariate regression reveals that the SCE dipole is a much better predictor than the 593 
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Barents-Kara SIC anomaly. As the SCE and the SIC variability are linked, both fields 594 

might constructively interfere to weaken the polar vortex, as suggested in Cohen et al. 595 

(2014a), although the surface forcing from the snow cover anomalies might be 596 

dominant. On the other hand, the November SIC in models has an impact on the AO in 597 

only one model, perhaps because they were selected based on their representation of 598 

the SCE influence. When investigating more systematically the links between Greenland-599 

Barents-Kara SIC and the NAO/AO in CMIP5 models, Garcia-Serrano et al. (2016) did 600 

find a robust SIC influence, but they noted that the timing or the processes for the SIC 601 

influence are model dependent. Here, the lack of links between November SIC and 602 

December atmosphere may result from our selection of the models based on their 603 

representation of the SCE impact (and not SIC impact), and also from the model 604 

averaging that may mix different behavior among models. The weaker SCE influence in 605 

models and the lack of links between the SCE and SIC is consistent with the 606 

underestimated troposphere-stratosphere coupling in models, as found in Furtado et al. 607 

(2015). However, it can also be explained by the poor simulation of the SCA variability, 608 

the colder climate in preindustrial control simulation, or natural climate variability.  609 

A better understanding of the coupling between land snow cover, Arctic sea ice, 610 

and the atmosphere using dedicated climate model experiments would be necessary to 611 

properly assess the causality links and better discriminate between their influence on 612 

the winter AO. Nonetheless, the methodology used here could be applied to climate 613 

projection of the 21st century in order to investigate how the polar amplification of 614 

global warming will modify the links between the atmosphere and Arctic surface 615 

conditions. 616 

 617 

 618 
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 619 

Appendix : October snow cover influence 620 

 621 

The influence of October SCE on the atmosphere is discussed by using the MCA 622 

results, when SLP lags by one month, although statistical significance is limited (see Fig. 623 

1). The covariance maps (Fig. A1a) show that increasing October SCE over northern 624 

Eurasia precedes a SLP pattern in November that has some resemblance with the SCA, 625 

plus a deeper Aleutian low. This differs from the negative AO found later, from 626 

December to February. It might be due the snow data used, as many previous studies 627 

used a more integrated snow index, such as the Eurasian snow cover areal extent (e.g. 628 

Cohen et al. 2007; Cohen and Fletcher 2007). It could be due to differences in 629 

methodology, as Furtado et al. (2016) used multivariate EOF. It could also be due to non-630 

stationarity (Peings et al., 2013). For instance, Cohen et al. (2007) considered the 1948-631 

2004 period, Cohen and Fletcher (2007) the 1972-2005 one, while we focus on 1979-632 

2014.  633 

 To investigate the possible influence of non-stationarity, we performed the MCA 634 

in different sub-periods (Table A1). The most significant influence of October snow 635 

cover on SLP is found for November in the 1979-2005 period, as used in Cohen and 636 

Fletcher (2007); the MCA mode is also significant for December SLP, with a MCA pattern 637 

(Fig. A1d) sharing a large similarity with previous studies (i.e. Handorf et al., 2015). 638 

However, the levels of significance are limited when the DJF atmosphere is considered. If 639 

1979-2011 or 1979-2014 is used, significance is lost. Hence, the detected influence of 640 

the October snow cover is sensitive to the period.  641 

 642 

 643 
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Tables 859 

 860 

TABLE 1. CMIP5 models and control simulations used.  861 

 862 
 Group Model AGCM  length 
   Resolution (year) 

1 CCCma CanESM2 2.8°x2.8° L35  995 
2 CNRM-CERFACS CNRM-CM5 1.4°x1.4° L31 850 
3 CSIRO-QCCCE CSIRO-Mk3-6-0 1.9°x1.9° L18 500 
4 LASG-CESS FGOALS-g2 2.8°x2.8° L26 700 
5 MIROC MIROC-ESM 1.4°x1.4° L40 630 
6 MPI-M MPI-ESM-LR 1.9°x1.9° L47 1000 
7 MRI MRI-CGCM3 1.1°x1.1° L48 500 
8 NASA-GISS GISS-E2-R 2.5°x2° L40 550 
9 NCAR CCSM4 1.25°x0.9° L26 600 
10 NCC NorESM1-ME 2.5°x1.9° L26 250 
11 NSF-DOE-NCAR CESM1-BGC 1.25°x0.9° L26 500 
12 IPSL IPSL-CM5A-LR 1.9°x3.75° L39 1000 
 863 

  864 
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 865 

TABLE 2. Statistics of different MCAs using December SLP as the left field, and November 866 

snow cover (SCE), sea ice concentration (SIC), concatenated SCE and SIC (SCE+SIC) or 867 

concatenated SCE, SIC and Eurasian SLP  (SCE+SIC+SLPEur) as the right field. For the 868 

models, the mean over the four selected models is given. The level of significance is 869 

given in parentheses for observation (see section 2c for details). For climate models, the 870 

number in parentheses indicates the number of models, out of four, where the level of 871 

significance is equal or below 10%.  872 

 873 
 OBS Models 
 NSC R NSC R 

SCE 2.5 (0%) 0.82 (1%) 0.10 (4/4) 0.23 (4/4) 
SIC 2.9 (3%) 0.61 (18%) 0.14 (1/4) 0.14 (1/4) 

SCE+SIC 2.4 (0%) 0.75 (2%) 0.10 (2/4) 0.16 (0/4) 
SCE+SIC+SLPEur 2.1 (0%) 0.78 (0%) 0.14 (4/4) 0.24 (4/4) 
 874 

 875 

 876 

 877 

 878 

TABLE 3. Correlation between MCAcat-SCE and MCAcat-SIC time series. The bold 879 

numbers indicate 1% significance. 880 

 881 
Data Correlation 

Observations 0.58 
CanESM2 0.26 
GISS-E2-R 0.24 

MPI-ESM-LR 0.40 
CESM1-BGC 0.27 

  882 

  883 
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TABLE A1. Statistics of the MCA using October snow cover and SLP in following months, 884 

using different time periods (79-05 : from 1979 to 2005 ; 79-11 : from 1979 to 2011 and 885 

79-14 : from 1979 to 2014), and atmospheric months (NOV : November ; DEC : 886 

December ; DJF : December-January-February). The level of statistical significance is 887 

given in parentheses. 888 

 889 
Period SLP season NSC R 
79-14 NOV 1.3 (10%) 0.70 (13%) 
79-14 DJF 1.1 (29%) 0.63 (32%) 
79-05 NOV 1.9 (3%) 0.83 (5%) 
79-05 DEC 1.9 (6%) 0.80 (6%) 
79-05 DJF 2.4 (6%) 0.71 (25%) 
79-11 NOV 1.1 (27%) 0.77 (21%) 
79-11 DEC 1.6 (9%) 0.71 (27%) 
79-11 DJF 1.5 (11%) 0.66 (44%) 

    
    
    
    
    

 890 

  891 
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 892 

Figures Caption 893 

Figure 1 :  894 

Normalized squared covariance (NSC, contours, in %) for the first MCA mode between 895 

observed SLP and Eurasian snow cover, for each month in the atmosphere. The lag is 896 

positive when the snow cover leads SLP. The gray shading provides the level of 897 

statistical significance for NSC. The plus symbols indicate the atmospheric month and 898 

time lag where the level of significance for the correlation (R) is below 5%. 899 

 900 

Figure 2 :  901 

(a) Scatter plot of the confidence level, in %, of the normalized squared covariance, NSC, 902 

versus that of the correlation, R, for the first MCA mode between SLP and Eurasian snow 903 

cover. (b) Scatter plot of the spatial correlation between the SLP covariance map found 904 

in models and that of ERA-Interim, versus the spatial correlation between the snow 905 

cover covariance map found in models and that of ERA-Interim. The black indicates the 906 

results for SLP in December and SCE in November (one month lag). The blue indicates 907 

the results for SLP in November and SCE in October (one month lag). The red indicates 908 

the results for the SLP in January and SCE in November (two month lag). In (b), the bold 909 

symbols indicate levels of significance lower than 15% for both NSC and R. 910 

 911 

Figure 3 :  912 

(a) Homogeneous snow cover fraction (in %) and heterogeneous SLP (in hPa) 913 

covariance maps for the first MCA mode, for December SLP and November snow cover, 914 

when the snow cover leads by one month the atmosphere, in ERA-Interim. (b) Same as 915 
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(a), but using January SLP with a 2 month lag. (c), (d), (e), (f) and (g) same as (a) but for 916 

CanESM2, MPI-ESM, GISS-E2-R, CESM1-BGC and the mean of the four models, 917 

respectively. Note that the color scale is different for observation and models. (h) Box 918 

plots of the NSC and R statistics from the MCA using 36-yr periods extracted from the 919 

control runs of each models (1: CanESM2, 2:MPI-ESM, 3: GISS-E2-T and 4: CESM1-BGC), 920 

error bars show the 5% and 95% percentiles. The dashed horizontal lines show the NSC 921 

and R values in observations. 922 

 923 

Figure 4 :  924 

Regression of SLP (contours, in hPa) and 2m air temperature, (color, in K) on the MCA-925 

snow index, in November, for (a) ERA-Interim and (b) the subset of four models. In (a), 926 

colors are masked if the level of significance is above 10% for observation. In (b), colors 927 

indicate anomalies of the same sign among the four models. 928 

 929 

Figure 5 :  930 

Homogeneous SLP (in hPa) and heterogeneous snow cover (in %) covariance maps for 931 

the first MCA mode, when the SLP and snow cover are simultaneous (no lag), for (a) 932 

November fields in ERA-Interim; (b) December fields in ERA-Interim and (c) November 933 

fields in the mean of the four models. 934 

 935 

Figure 6 :  936 

(a) REOF1 of November SLP (in hPa) in ERA-Interim. (b) Same as (a) for the model mean 937 

REOF1 using the four models. In (a), the variance fraction is given in parentheses. In (b), 938 

the minimum and maximum variance fraction among the four models is indicated in 939 

parentheses. (c) Box plots of the November variance (in %) explained by the SCA and 940 
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the NAO/AO in 36-yr chunks from the control runs of each models (1: CanESM2, 2:MPI-941 

ESM, 3: GISS-E2-R and 4: CESM1-BGC); the error bars give the 5% and 95% percentiles, 942 

and the dashed horizontal lines the AO and SCA variance fraction in observations. 943 

 944 

Figure 7 :  945 

Regression of the December SLP in hPa onto (Left) European and (Right) Siberian snow 946 

anomalies, given by multivariate regression; for (upper) ERA-Interim and (lower) the 947 

subset of four models. In (a) and (b), colors are masked if the level of statistical 948 

significance is above 10%. In (c) and (d), colors indicate anomalies of the same sign 949 

among the four models. 950 

 951 

Figure 8 :  952 

Regression of the snow cover fraction (gray contours and color shading over continent, 953 

in %) and sea ice concentration (blue contours and color shading over the ocean, in %), 954 

onto the November MCA-snow index, for (a) ERA-Interim in October; (b) the four 955 

models in October; (c) and (d) Same as (a) and (b) for November; (e) and (f) same as (a) 956 

and (b) for December. The sea-ice concentration contour interval is 5% in observations, 957 

and 1% for models, the zero contour is removed. The thick gray contour provides the 958 

50% contour for climatological SIC. 959 

 960 

Figure 9 :  961 

November heat flux thermodynamical component, positive upward, in W m-2, associated 962 

with the November MCA-snow index in (a) ERA-Interim and (b) the four models. The 963 

color scale is different over land and ocean to emphasize the changes over continental 964 

surfaces. Note the different contour intervals for ERA-Interim and models. (c,d) 965 
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Regressions of the shortwave (SW), longwave (LW), sensible (SH), latent (LH) and total 966 

(Tot) heat flux over the Siberia (SIB), Europe (EUR) and Barents-Kara Sea (B/K) 967 

integrated over boxes shown in (a) and (b) with histograms for (c) ERA-Interim and (d) 968 

the four models mean. In (d) the error bars indicate the minimum and maximum values 969 

among models. 970 

 971 

Figure 10 :  972 

Regression of the SLP, in hPa (contour interval 0.5 hPa), onto the MCA-snow index, (left 973 

column) ERA-Interim and (right column) models, in (a), (b) October; (c), (d) November; 974 

(e), (f) December  and (g), (h) January . The thick black line indicates 5% significance for 975 

observations or anomalies of the same sign among the four models. The contour interval 976 

at -0.2 and 0.2 hPa was added for models. 977 

 978 

Figure 11 :  979 

Regression of the zonal-mean temperature (gray contours and color shading, in K) and 980 

geopotential height (blue contours, in m) onto the MCA-snow normalized index, for (left 981 

column) ERA-Interim and (right column) models, in (a), (b) November; (c), (d) 982 

December and (e), (f) January. Colors indicate zonal mean temperature (left) level of 983 

significance below 10% or (right) anomalies of the same sign among the four models. 984 

 985 

Figure 12 :  986 

Regression of the temperature over the polar cap (65°N-90°N) onto the MCA-snow 987 

normalized index, for (a) ERA-Interim and (b) models. The thick black lines indicate (a) 988 

level of significance below 10% or (b) anomalies of the same sign among the four 989 

models. Note the different contour intervals in (a) and (b). 990 
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 991 

Figure 13 :  992 

 (a) Snow cover (color over land, in %) and SIC (color over ocean, in %) homogeneous 993 

covariance map and SLP (in hPa) heterogeneous map for the first MCA mode using 994 

combined snow/sea-ice in November and SLP in December for ERA-Interim. (b) (black) 995 

MCAcat_SCE, (red) MCAcat_SIC and (green) atmospheric SLP yearly time series from the 996 

MCA (normalized).  997 

 998 

Figure 14 :  999 

Regression slopes of a bivariate regression of the  December SLP (in hPa) for the (a) 1000 

MCA-snow, and (b) MCA-SIC indices. Colors indicate level of significance below 10%. 1001 

 1002 

Figure 15 :  1003 

Regression slopes of a multivariate regression of the SLP (in hPa) onto the (a) snow 1004 

dipole, (b) Barents-Kara Sea SIC and (c) SCA indices. In (a-c) colors indicate level of 1005 

significance below 10%. (d) R2 value of univariate regressions using the AO index as 1006 

predictand and snow dipole, Barents-Kara Sea SIC or SCA as predictor. ALL indicates the 1007 

R2 when using the three indices in a multivariate regression. Note that the y-axis is 1008 

different for observation (bars, left axis) and models (symbols, right axis). 1009 

The black symbols (bars) provide the results for models (observations), thick symbols 1010 

(bars) indicating level of significance of R2 below 10%. 1011 

 1012 

Figure A1 :  1013 

(a) Homogeneous October snow cover fraction (in %) and November heterogeneous SLP 1014 

(in hPa) covariance maps for the first MCA mode, when the snow cover leads by one 1015 
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month the atmosphere, for ERA-Interim during 1979-2014. (b) Same as (a) but for the 1016 

1979-2005 period. (c) Same as (a) but using the December SLP. (d) Same as (c) but for 1017 

the 1979-2005 period. 1018 



 

 

 

Fig. 1 : Normalized squared covariance (NSC, contours, in %) for the first MCA mode 

between observed SLP and Eurasian snow cover, for each month in the atmosphere. The 

lag is positive when the snow cover leads SLP. The gray shading provides the level of 

statistical significance for NSC. The plus symbols indicate the atmospheric month and 

time lag where the level of significance for the correlation (R) is below 5%. 
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Fig. 2 : (a) Scatter plot of the confidence level, in %, of the normalized squared 

covariance, NSC, versus that of the correlation, R, for the first MCA mode between SLP 

and Eurasian snow cover. (b) Scatter plot of the spatial correlation between the SLP 

covariance map found in models and that of ERA-Interim, versus the spatial correlation 

between the snow cover covariance map found in models and that of ERA-Interim. The 

black indicates the results for SLP in December and SCE in November (one month lag). 

The blue indicates the results for SLP in November and SCE in October (one month lag). 

The red indicates the results for the SLP in January and SCE in November (two month 

lag). In (b), the bold symbols indicate levels of significance lower than 15% for both NSC 

and R.  

 

 

  



 

 

Fig. 3 : (a) Homogeneous snow cover fraction (in %) and heterogeneous SLP (in hPa) 

covariance maps for the first MCA mode, for December SLP and November snow cover, 

when the snow cover leads by one month the atmosphere, in ERA-Interim. (b) Same as 

(a), but using January SLP with a 2 month lag. (c), (d), (e), (f) and (g) same as (a) but for 

CanESM2, MPI-ESM, GISS-E2-R, CESM1-BGC and the mean of the four models, 



respectively. Note that the color scale is different for observation and models. (h) Box 

plots of the NSC and R statistics from the MCA using 36-yr periods extracted from the 

control runs of each models (1: CanESM2, 2:MPI-ESM, 3: GISS-E2-T and 4: CESM1-BGC), 

error bars show the 5% and 95% percentiles. The dashed horizontal lines show the NSC 

and R values in observations. 

  



 

 

 

Fig. 4 : Regression of SLP (contours, in hPa) and 2m air temperature, (color, in K) on the 

MCA-snow index, in November, for (a) ERA-Interim and (b) the subset of four models. In 

(a), colors are masked if the level of significance is above 10% for observation. In (b), 

colors indicate anomalies of the same sign among the four models. 

 

 

  



 

 

 

Fig. 5 : Homogeneous SLP (in hPa) and heterogeneous snow cover (in %) covariance 

maps for the first MCA mode, when the SLP and snow cover are simultaneous (no lag), 

for (a) November fields in ERA-Interim; (b) December fields in ERA-Interim and (c) 

November fields in the mean of the four models.  

 



 

Fig. 6 : (a) REOF1 of November SLP (in hPa) in ERA-Interim. (b) Same as (a) for the 

model mean REOF1 using the four models. In (a), the variance fraction is given in 

parenthesis. In (b), the minimum and maximum variance fraction among the four 

models is indicated in parenthesis. (c) Box plots of the November variance (in %) 

explained by the SCA and the NAO/AO in 36-yr chunks from the control runs of each 

models (1: CanESM2, 2:MPI-ESM, 3: GISS-E2-R and 4: CESM1-BGC); the error bars give 

the 5% and 95% percentiles, and the dashed horizontal lines the AO and SCA variance 

fraction in observations.  



 

 

 

 

 

Fig. 7: Regression of the December SLP in hPa onto (Left) European and (Right) Siberian 

snow anomalies, given by multivariate regression; for (upper) ERA-Interim and (lower) 

the subset of four models. In (a) and (b), colors are masked if the level of statistical 

significance is above 10%. In (c) and (d), colors indicate anomalies of the same sign 

among the four models. 

 

 



 

 

 

Fig. 8 : Regression of the snow cover fraction (gray contours and color shading over 

continent, in %) and sea ice concentration (blue contours and color shading over the 

ocean, in %), onto the November MCA-snow index, for (a) ERA-Interim in October; (b) 

the four models in October; (c) and (d) Same as (a) and (b) for November; (e) and (f) 

same as (a) and (b) for December. The sea-ice concentration contour interval is 5% in 

observations, and 1% for models, the zero contour is removed. The thick gray contour 

provides the 50% contour for climatological SIC. 



 

 

Fig. 9 : November heat flux thermodynamical component, positive upward, in W m-2, 

associated with the November MCA-snow index in (a) ERA-Interim and (b) the four 

models. The color scale is different over land and ocean to emphasize the changes over 

continental surfaces. Note the different contour intervals for ERA-Interim and models. 

(c,d) Regressions of the shortwave (SW), longwave (LW), sensible (SH), latent (LH) and 

total (Tot) heat flux over the Siberia (SIB), Europe (EUR) and Barents-Kara Sea (B/K) 

integrated over boxes shown in (a) and (b) with histograms for (c) ERA-Interim and (d) 

the four models mean. In (d) the error bars indicate the minimum and maximum values 

among models.  

  



 

 

 

Fig. 10 : Regression of the SLP, in hPa (contour interval 0.5 hPa), onto the MCA-snow 

index, (left column) ERA-Interim and (right column) models, in (a), (b) October; (c), (d) 

November; (e), (f) December  and (g), (h) January . The thick black line indicates 5% 

significance for observations or anomalies of the same sign among the four models. The 

contour interval at -0.2 and 0.2 hPa was added for models. 

 

 

  



 

 

Fig. 11 : Regression of the zonal-mean temperature (gray contours and color shading, in 

K) and geopotential height (blue contours, in m) onto the MCA-snow normalized index, 

for (left column) ERA-Interim and (right column) models, in (a), (b) November; (c), (d) 

December and (e), (f) January. Colors indicate zonal mean temperature (left) level of 

significance below 10% or (right) anomalies of the same sign among the four models. 

  



 

Fig. 12 : Regression of the temperature over the polar cap (65°N-90°N) onto the MCA-

snow normalized index, for (a) ERA-Interim and (b) models. The thick black lines 

indicate (a) level of significance below 10% or (b) anomalies of the same sign among the 

four models. Note the different contour intervals in (a) and (b). 

 

 

 



 

Fig. 13 : (a) Snow cover (color over land, in %) and SIC (color over ocean, in %) 

homogeneous covariance map and SLP (in hPa) heterogeneous map for the first MCA 

mode using combined snow/sea-ice in November and SLP in December for ERA-Interim. 

(b) (black) MCAcat_SCE, (red) MCAcat_SIC and (green) atmospheric SLP yearly time 

series from the MCA (normalized).  

  



 

 

 

Fig. 14: Regression slopes of a bivariate regression of the December SLP (in hPa) for the 

(a) MCA-snow, and (b) MCA-SIC indices. Colors indicate level of significance below 10%.  

 

 

 

  



 

 

 

Fig. 15 : Regression slopes of a multivariate regression of the SLP (in hPa) onto the (a) 

snow dipole, (b) Barents-Kara Sea SIC and (c) SCA indices. In (a-c) colors indicate level 

of significance below 10%. (d) R2 value of univariate regressions using the AO index as 

predictand and snow dipole, Barents-Kara Sea SIC or SCA as predictor. ALL indicates the 

R2 when using the three indices in a multivariate regression. Note that the y-axis is 

different for observation (bars, left axis) and models (symbols, right axis). 

The black symbols (bars) provide the results for models (observations), thick symbols 

(bars) indicating level of significance of R2 below 10%. 

  



 

 

 

 

Fig. A1 : (a) Homogeneous October snow cover fraction (in %) and November 

heterogeneous SLP (in hPa) covariance maps for the first MCA mode, when the snow 

cover leads by one month the atmosphere, for ERA-Interim during 1979-2014. (b) Same 

as (a) but for the 1979-2005 period. (c) Same as (a) but using the December SLP. (d) 

Same as (c) but for the 1979-2005 period. 

 

 


