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Abstract	

This study aims to improve an existing mobile application MobilitApp 
(http://mobilitat.upc.edu) for citizen mobility analytics. By eliminating the use of APIs 
with limited user activity and transportation mode detection, and energy wasting GPS, 
we developed our own system, using two approaches and only embedded mobile 
device sensors. We captured various user activity and transportation modes such as 
stationary, walking, running, riding a bicycle, motorcycle, driving a car, taking a bus, 
tram and train. We recorded all activities with video camera to be aware when activity 
actually happened. At first approach, we build feature vectors through experimentation 
and then use this data in machine learning. In the second approach, we experimented 
with neural networks if they are capable recognizing features by them self, if we 
provide them only raw data from embedded mobile device sensors. We also do studies 
if controlled capturing data with camera is required or can be done without supervision 
on larger scale.  



Resumen	

Este proyecto tiene como objetivo mejorar la aplicación para Android llamada 
MobilitApp (http://mobilitat.upc.edu) que consiste en el análisis de la movilidad de la 
ciudadanía de Barcelona. Hemos diseñado nuestro propio sistema al cual le hemos 
eliminado el uso abusivo del GPS para ahorrar energía del dispositivo y las APIs de 
detección del modo de transporte que tienen un uso limitado para el usuario. Hemos 
estudiado dos métodos de detección y utilizamos únicamente los sensores de los 
smartphones. Detectamos diversos modos de actividad y transporte del usuario tales 
como estático, a pie, corriendo, en bicicleta, en coche, en autobús, en tranvía y en 
tren. Nuestra mejora ha consistido en grabar con una cámara de vídeo todas las 
actividades para tener registrado todo lo ocurrido en la actividad. En el primer método, 
construimos vectores característicos a través de la captura de los datos de los 
sensores del dispositivo y utilizamos estos datos en el aprendizaje automático. En el 
segundo método, experimentamos con redes neuronales para ver si el sistema es 
capaz de reconocer las características por si mismo si solo le proporcionamos datos 
de los sensores. También hemos analizado la posibilidad de hacer estos estudios sin 
la necesidad de capturar vídeos de la cámara y observar solo los datos 
proporcionados por los sensores de los dispositivos.  



Resum	

Aquest projecte té com a objectiu millorar l'aplicació per a Android anomenada 
MobilitApp (http://mobilitat.upc.edu) que consisteix en l'anàlisi de la mobilitat de la 
ciutadania de Barcelona. Hem dissenyat el nostre propi sistema, hem eliminat l'ús 
abusiu del GPS per estalviar bateria del dispositiu i les APIs de detecció del mode de 
transport que tenen un ús limitat per l'usuari. Hem estudiat dos mètodes de detecció 
i utilitzem només els sensors dels telèfons intel·ligents. Detectem diversos modes 
d'activitat i transport de l'usuari tal com estàtic, a peu, corrents, amb bicicleta, amb 
cotxe, amb autobús, amb tramvia i amb tren. La nostra millora ha consistit en 
enregistrar amb una càmera de vídeo totes les activitats per tenir registrat tot el que 
ha ocorregut a l'activitat. Al primer mètode, vàrem construir vectors característics a 
través de la captura de les dades dels sensors dels dispositius i utilitzem aquestes 
dades en l'aprenentatge automàtic. Al segon mètode, vàrem experimentar amb xarxes 
neuronals per observar si el sistema és capaç de reconèixer les característiques per 
si mateix si només li proporcionem les dades dels sensors. També hem analitzat la 
possibilitat de fer aquests estudis sense la necessitat d'enregistrar amb la càmera i 
observar només les dades proporcionades pels sensors dels dispositius. 
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Mobile devices have become an indispensable device in our everyday life. With 
constant presence in our immediate vicinity, they have become convenient for 
monitoring our activities, location etc. Such information may be particularly interesting 
for some companies, which could improve their services and hence customer 
satisfaction, based on analysis of gathered data from mobile phones of their 
costumers. At Universitat Politècnica de Catalunya (UPC) in Barcelona, we joined the 
project Mobilitat, which is developing a mobile application MobilitApp, for purpose of 
implementing such a system in Barcelona city. The aim of the application is to provide 
the data for improvement of the services provided by public services companies and 
raising awareness of the users on the reduction of the carbon footprint with more 
rational use of means of transport. This is possible by tracking users location, mode 
of transport and other user activities. Goal is to offer an application or data to 
companies that provide services of public transportation, such as Autoritat del 
Transport Metropolità (ATM) of Barcelona, automated bike rental, etc. For these 
provider of public transportation services, information such as what is the distance 
from users home to nearest stop of public transportation, what is the distance from 
users of private motorized transport, to the nearest stop of public transport, the number 
of users going from the stop of public transport to a certain direction etc. Based on 
these data the company could by adjusting the routes and schedules of public 
transport improve their services, hence customer satisfaction and possibly even 
acquire new users. In the case of a company that provides rental bicycles at various 
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points in the city and return of bicycle not necessarily to the same point, the information 
of the direction and distance of users after the use of bicycles, can contribute to the 
setting up new meaningful locations to rent or return a bike. However, since the 
capture of such a data interferes the privacy of the users, they rarely use such 
applications. The idea is to encourage the use of application by offering free public 
transport rides, free minutes to rent bicycles and discounts on other urban services. 
At the same time the application also offers other useful services and information such 
as traffic information, the index of user’s carbon footprint, the number of steps walked, 
number of calories burned and system for detecting an accident. 

Since the constant recording of Global Positioning System (GPS) location, 
relative to the recording of embedded sensors, is very energy-consuming, we would 
like to eliminate usage of GPS in our detection algorithm. We figured out that recording 
the location at endpoints and intermediate points of trip at a change in the type of 
means of transportation or user activity, is sufficient enough for our use. It would 
therefore be interesting to see whether the embedded mobile device sensors can 
determine the activity and transportation mode used by mobile device user, if we use 
the known techniques in the field of signal processing and pattern recognition. The 
subject of the final work represents engineering approach to develop model for 
detection of the type of user activity and transportation mode, using signals from 
embedded mobile device sensors.  

1.1 Objectives and thesis 

The purpose of the final work is to determine whether it is possible to detect the 
type of user activity and transportation mode in pseudo real-time, by eliminating use 
of GPS and using only signals from embedded mobile device sensors. The aim is to 
develop a system that will be able to identify various user activities, such as stationary, 
walking, running, riding a bicycle, motorcycle, driving a car, taking a bus, metro, tram 
and train, and will give results comparable with existing solutions. The system will be 
developed using two approaches. In first approach we will build model using vector of 
features extracted based on analysis of signals. In second approach we will build 
model using neural networks, where we would like to explore whether neural networks 
are capable to extract the features by them self, if the captured signal is directly feed 
into neural network. We would also like to know, if separating of stationary parts from 
actual activity effects on classification. With this we can tell if supervised data capturing 
Is required or capturing can be done without supervision. In this final work we would 
like to acknowledge the following two hypotheses: 
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• Hypothesis 1: By using only embedded mobile device sensors, without usage 
of GPS, is possible to build vector of features and model, which is by efficiency 
of detection of type of user activity and transportation mode, comparable with 
“state of the art” solutions, if we use short time window up to 3 s. 

• Hypothesis 2: From raw signal of embedded mobile device sensors captured 
using short time window up to 3 s, that we feed directly into the neural network, 
neural network is capable to extract features and build model, which is by 
efficiency of detection of type of user activity and transportation mode, 
comparable with “state of the art” solutions. 

• Hypothesis 3: Treating stationary parts of different user activities and 
transportation modes as one common “stationary” class, gives better 
classification results than using stationary parts as part of it’s activity.  

1.2 Structure of work 

This work is structured in 6 main chapters. In chapter 1 we introduce us with 
problem, MobilitApp application and curse of our work. In chapter 2 we review existing 
solutions as final applications, Application Programming Interfaces (APIs) and 
research papers. In chapters 3 and 4 we present methods used and process how we 
developed our system. In chapter 5 we present data and metrics used and results of 
our test. And in final chapter 6 we open the discussion about results, we look in future 
work and conclude this work. 

1.3 MobilitApp 

MobilitApp (http://mobilitat.upc.edu) is a mobile application developed in project 
Mobilitat at UPC. Main goal of project is to provide mobility data to ATM of Barcelona, 
to improve the current transportation infrastructure in Barcelona. Through few years 
application was built and updated by various students working on this project. For now, 
application is only available on Android platform. 

Main objective of the application is to obtain mobility data from the citizens of the 
metropolitan area of Barcelona. The aim is to provide this data or complete application 
to the public service companies for further analyzes for purpose of improving their 
services and raise user’s awareness of importance of the reduction of the carbon 
footprint with more rational use of means of transport.  
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Some functionalities are still in development and some are in state of 
improvement. Over the years of different students working on project, different 
approaches for detecting user activity and transportation modes were used. Currently 
Google Activity Recognition API is in use for detecting following states: stationary, in 
vehicle, on bicycle and on foot. Because of the maximum active users limitation of 
Google Activity Recognition API, and goal to detect larger variety of specific 
transportation modes, main goal of the project is to develop own system for detection 
of user activity and specific transportation modes. 

Application also offers other useful services and information such as traffic 
information (Figure 1 a), the index of user’s carbon footprint, the number of steps 
walked, number of calories burned and system for detecting an accident. Information 
about the state of traffic and incidents on the road is provided in real-time, allowing the 
citizens to take decisions on their journey. On Figure 1 we can see screenshots of 
MobilitApp application. On screenshot a) we see initial screen with map and top bar 
with menu, shutdown and settings buttons. With shutdown button user stops all 
tracking activities in background and closes the application. In screenshot b) we see 
the main menu and live traffic information on screenshot c). 

[1] As sensitive data, such as GPS location, is used in the application, before using 
the application privacy policy is presented to the users who are concerned with how 
their Personally Identifiable Information (PII) is being used online. Data collected in 
application is not associated with specific person and it is completely anonymous. 

In future, plan is to provide user with detailed information of activities and use of 
means of transportation (range and time spent in transport or doing activity) and other 
relative information. 
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a) b) c) 

Figure 1: Screenshots of MobilitApp application 
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[2] Many systems exist to classify human motion activities and transportation 
modes. Commercial devices such as FitBit, GoWear, Philips Trackmor, etc. are widely 
available and fairly convenient, but they provide limited activity information, and they 
are separate entity. With the advancement of sensors on mobile phones, researchers 
are looking to use this device as a platform for activity detection. Most of the solutions 
really on GPS position and speed information. 

In this chapter we will focus only on those existing solutions, that are using 
embedded mobile device sensors. 

2.1 Existing APIs and applications 

There is few solutions that enable you as developers to implement their 
functionalities to your application. But down side of these solutions is that they have 
some limitations such as not detecting particular activities and limited number of active 
users. 

2.1.1 Google Activity Recognition API 

[3] Back in 2013, Google launched the ActivityRecognitionAPI to developers. 
The ActivityRecognitionAPI is an interface that allows android app developers to know 

2 STATE OF THE ART 
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what “activity” the user is currently engaged in without the hassle of getting raw data 
from individual sensors and then having to run a complex analysis to come to a 
conclusion. The API returns the detected activity together with the confidence of its 
results.  

[4] The activities are detected by periodically waking up the device and reading 
short bursts of sensor data. It only makes use of low power sensors in order to keep 
the power usage to a minimum. For example, it can detect if the user is currently on 
foot, in a car, on a bicycle or still. In Table 1 all supported activities in this API are 
displayed. The activity detection update interval can be controlled with the 
detectionIntervalMillis parameter. Larger values will result in fewer activity detections 
while improving battery life. Smaller values will result in more frequent activity 
detections but will consume more power since the device must be woken up more 
frequently. 

Table 1: Supported activities in ActivityRecognitionAPI 

Type Description 
int IN_VEHICLE The device is in a vehicle, such as a car. 
int ON_BICYCLE The device is on a bicycle. 
int ON_FOOT The device is on a user who is walking or running. 
int RUNNING The device is on a user who is running. 
int STILL The device is still (not moving). 
int TILTING The device angle relative to gravity changed significantly. 
int UNKNOWN Unable to detect the current activity. 
int WALKING The device is on a user who is walking. 

 

2.1.2 Apple CMMotionActivity 

[3] [5] Also in 2013 Apple introduced their CMMotionActivity activity recognition 
into their iOS. 

On devices that support motion, you can use a CMMotionActivityManager 
object to request updates when the current type of motion changes. When a change 
occurs, the update information is packaged into a CMMotionActivity object and sent to 
your app. The motion-related properties of this class are not mutually exclusive. In 
other words, it is possible for more than one of the motion-related properties to contain 
the value true. For example, if the user was driving in a car and the car stopped at a 
red light, the update event associated with that change in motion would have both the 
cycling and stationary properties set to true. It is also possible for all of the properties 
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to be set to false when the device is in motion but the movement does not correlate to 
walking, running, cycling or automotive travel. In Table 2 all activities, supported by 
CMMotionActivity, are displayed. 

Table 2: Supported activities in CMMotionActivity 

Type Description 
var stationary: Bool The device is stationary. 

var walking: Bool The device is on a walking person. 

var running: Bool The device is on a running person. 

var automotive: Bool The device is in an automobile. 

var cycling: Bool The device is in an bicycle. 

var unknown: Bool The type of motion is unknown. 

2.1.3 Samsung Digital Health - S Health Service 

[6] S Health is an application that monitors the user’s activities and helps the 
user has a healthier life. S Health‘s collected data can be categorized and expressed 
in various ways. It is important to present proper information to the user in the required 
time for advanced experiences. S Health 4.x supports Android devices with KitKat 4.4 
including non-Samsung devices. With Samsung Digital Health software development 
kit (SDK) developers can implement functionalities of S Health 4.x into their 
application. 

[7] Samsung has also developed their own application S Health. S Health helps 
users to better manage their health and track their fitness progress. It also offers 
various features and functions to make exercise fun, and fitness goals more attainable. 
With Detect Workouts function, the app can automatically detect and log user’s 
running, cycling, walking and hiking sessions that occur for at least 10 minutes. 
Turning on the Auto Pause setting will also improve tracking accuracy, as it will 
recognize when the exercise session stopped. 

2.2 Research papers 

In this section we will present papers of similar work like ours. Results achieve 
in those papers, presented in Table 3, will be also use as benchmark for our solution. 
We could not find any solution that has all the activities, that we are interested, covered 
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in their system. So In Table 3 beside activities of our interest, we also added classes 
Road and Rail, which are presenting two groups of some classes that we treat 
separate. From our standpoint we can also treat classes Motorcycle and Car as one 
class Road, and classes Train, Tram and Metro as class Rail. 

Table 3: Benchmark results of similar work 

Paper section 2.2.1 2.2.3 2.2.4 2.2.5 2.2.7 
Paper reference [2] [8] [9] [10] [11] 
 Accuracy 

Class 

Stationary      

Walk 96.8%  95.8% 84.8% 96.2% 

Run 91.0%  98.5% 96.4% 98.6% 

Bicycle 92.8%  97.0% 77.6% 91.2% 

Motorcycle      

Car   91.7%   

Bus   92.4%   

Metro      

Train      

Tram      

Still 95.6%   97.0% 98.2% 

Road    90.4%  

Rail    93.0%  

Motorized 93.9%    94.3% 

Sum accuracy 93.0% 94.6% 94.9% 89.8% 95.7% 

2.2.1 Using Mobile Phones to Determine Transportation Modes [2] 

[2] The focus of this work is on one dimension of context, the transportation 
mode of an individual when outside. They create a convenient (no specific position 
and orientation setting) classification system that uses a mobile phone with a built-in 
GPS receiver and an accelerometer. The transportation modes identified include 
whether an individual is stationary, walking, running, biking, or in motorized transport. 
To eliminate specific device orientation requirements, they express accelerometer as 
Root Mean Square (RMS) of 3 axes. They use 1 second sliding window and 5 features:  

• GPS speed,  
• accelerometer variance,  
• magnitude of accelerometers Discrete Fourier Transform (DFT) at 1 Hz, 
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• magnitude of accelerometers DFT at 2 Hz, 
• magnitude of accelerometers DFT at 3 Hz. 

The overall classification system consists of a decision tree followed by a first-order 
discrete Hidden Markov Model (DHMM) and achieves an accuracy level of 93.6% 
when tested on a dataset obtained from sixteen individuals. They reported problems 
with classification of slow motorized transport for biking and slow running for walking. 

2.2.2 Online Sequential ELM based Transfer Learning for Transportation 

Mode Recognition [12] 

[12] To address the transfer learning problem for transportation mode 
recognition, this paper proposes an online sequential extreme learning machine 
(OSELM) based transfer learning method called Transfer Extreme Learning Machine 
(TransELM). This method can utilize valuable features and trustable samples to 
effectively transfer common knowledge across labeled source domain and unlabeled 
target domain. TransELM mainly includes three steps: Firstly, an initial Extreme 
Learning Machine (ELM) classifier is trained on the labeled training dataset from the 
source domain. Secondly, relevant mean and standard deviation values are 
separately computed as trustable intervals for each class of transportation modes. The 
unlabeled dataset of target domain is classified with the initial ELM model and trustable 
samples whose output values belong to corresponding trustable intervals are 
effectively extracted. Thirdly, for integrating these trustable samples, an incremental 
OSELM method is employed to incrementally update the original ELM classifier. They 
present experimental results from their user study, including five people with six typical 
transportation modes (staying still, walking, riding bicycle, taking bus, taking light-rail, 
and driving) in the daily life. To eliminate specific device orientation requirements, they 
express accelerometer as RMS of 3 axes. They use 8 second sliding window and 18 
features: 

• Maximum accelerometer value, 
• minimum accelerometer value, 
• mean of accelerometer, 
• standard deviation of accelerometer, 
• energy of accelerometer, 
• zero-crossing rate of accelerometer, 
• four amplitude statistics features, 
• four shape statistics features of the power spectral density, 
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• mean GPS velocity,  
• standard deviation of GPS velocity series,  
• maximum GPS velocity, 
• maximum GPS acceleration.  

Experimental results show that TransELM obtains higher accuracy than the traditional 
ELM classifier in real world transportation mode recognition problems. 

2.2.3 Detecting Changes of Transportation-Mode by Using Classification Data 

[8]  

[8] In this paper they present a method for detecting changes of transportation 
mode on a multimodal journey, where the input data regard to the classification of 
human activities. They use a space transformation for extracting features that identify 
a transition between two transportation modes. The data are collected from the Google 
API for Human Activity Classification through a crowdsourcing-based application for 
smartphones. They are focusing on activities as walking, riding bicycle and driving. 
They use sliding window size of 5 samples and 6 features, witch they did not specify 
in paper. Results of 88 % correctly classified samples show improvements on 
precision and accuracy in comparison to initial classification data outcomes. 

2.2.4 Applying Machine Learning Techniques to Transportation Mode 

Recognition Using Mobile Phone Sensor Data [9] 

[9] This paper adopts different supervised learning methods from the field of 
machine learning to develop multiclass classifiers that identify the transportation 
mode, including driving a car, riding a bicycle, riding a bus, walking, and running. 
Methods that were considered include K-nearest neighbor, support vector machines 
(SVMs), and tree-based models that comprise a single decision tree, bagging, and 
random forest (RF) methods. For training and validating purposes, data were obtained 
from smartphone sensors, including accelerometer, gyroscope, and rotation vector 
sensors. K-fold cross-validation as well as out-of-bag error was used for model 
selection and validation purposes. Several features were created from which a subset 
was identified through the minimum redundancy maximum relevance method. In this 
paper beside accelerometer they also utilize gyroscope and orientation sensor, witch 
was never been done before. On sensors they apply RMS and extract 165 features 
using methods: 

• Spectral entropy, 
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• energy, 
• mean, 
• maximum, 
• minimum, 
• variance, 
• standard deviation,  
• range, 
• interquartile range, 
• zero-crossing rate. 

Data obtained from the smartphone sensors were found to provide important 
information to distinguish between transportation modes. The RF and SVM methods 
were found to produce the best performance. 

2.2.5 Transportation mode recognition based on smartphone embedded sensors 

for carbon footprint estimation [10] 

[10] This paper focuses on a particular type of context, the transportation mode 
used by a person for carbon footprint estimation and it summarizes a method for 
automatically classifying different transportation modes with a smartphone. The model 
was built using a random forest followed by a DHMM filtering and can classify 7 
different classes (still, walk, run, bike, road, rail, plane and other). Beside GPS they 
are using 5 second sliding windows on accelerometer and magnetometer sensors 
extracting 13 based features using: 

• Magnetic field norm standard deviation, 
• standard deviation of linear acceleration components, 
• proportion of energy in different frequency bands of the vertical 

acceleration, 
• spectral centroid and spectral spread of the vertical acceleration, 
• spectral centroid and spectral spread of the norm of the magnetic field, 
• median of GPS speed. 

In this article oppose to others they do not user RMS on accelerometer, instead they 
use accelerometer orientation estimation algorithm explained in [13]. They also use 
features calculated from different frequency bands such as [0.7Hz-3.5Hz], [3.5Hz-
8.5Hz], [8.5Hz-18.5Hz] and [18.5Hz-45Hz]. The model was evaluated with real data 
and performed with accuracy around 94%, while the addition of the GPS feature 
improved the performance up to 96%.  
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2.2.6 Detecting the transportation mode for context-aware systems using 

smartphones [14] 

[14] This paper presents a classification method for smartphone users mobility 
data in urban environments according to the used transportation mode. This 
classification is possible among several different transportation modes and using only 
the location data from user's mobility. Among the methods applied, includes data 
mining with machine learning techniques for the inference. This paper also presents 
the performance analysis for several machine-learning algorithms for the proposed 
task; the process used to collect mobility data for nine users along six months. They 
compared numerous classification methods such as Bayesian networks, Naive Bayes, 
SVM, Multilayer Perceptron, Decision Tree, Random Forest, Random Trees, K-
Means, K-Nearest Neighbors (K-NN), Ada boost and Sequential Minimal Optimization 
(SMO), using 3 features, chosen by Weka Experimenter tool: 

• Maximum speed,  
• maximum acceleration,  
• number of direction changes. 

Beside classifying between walking, not walking, bicycle, motorcycle, bus and car, 
they also classified between walking and not walking, walking and bicycle, walking, 
bicycle and motorized, car, motorcycle and bus, motorized and not motorized modes. 
The classification algorithms, Decision Tree, J.48, Bayes Net, SMO, preformed best 
in every of classification groups mentioned before. 

2.2.7 Determining Transportation Mode On Mobile Phones [11] 

[11] We focus on one type of context, the transportation mode of an individual, 
with the goal of creating a convenient (no requirement to place sensors externally or 
have specific position/orientation settings) classification system that uses a mobile 
phone with a GPS receiver and an accelerometer sensor to determine if an individual 
is stationary, walking, running, biking, or in motorized transport. The target application 
for this transportation mode inference involves assessing the hazard exposure and 
environmental impact of an individual’s travel patterns. Their prototype classification 
system is consisting of a decision tree followed by a first-order Hidden Markov Model 
using 1 second sliding window and features: 

• Variance, 
• energy, 
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• sum of Fast Fourier Transformation (FFT) coefficients between 1-5 Hz 
from the accelerometer, 

• speed from the GPS receiver. 
They tested their system with device on different positions of users body, such as arm, 
bag, chest, hand and pocket, and discovered average decrease of 1.2% in accuracy 
between the generalized classifier and position specific classifier. When testing with 
their dataset consisting of twenty hours of data collected across six individuals, they 
achieved accuracy level greater than 90%. 

2.2.8 Accelerometer based transportation mode recognition on mobile phones 

[15] 

[15] In this paper, they introduce transportation mode recognition on mobile 
phones only using embedded accelerometer. In order to deal with uncertainty of 
position and orientation of mobile phone, acceleration synthesization based method 
(RMS) and acceleration decomposition based method (accelerometer orientation 
estimation method presented in [13]) are introduced. Using 8 seconds sliding window 
they classify between walking, running, bicycling, inline skating and driving car, using 
features: 

• Mean,  
• standard deviation, 
• mean crossing rate, 
• third quartile, 
• sum and standard deviation of frequency components between 0-2 HZ, 
• ratio of frequency components between 0-2 HZ to all frequency 

components, 
• sum and standard deviation of frequency components between 2-4 HZ, 
• ratio of frequency components between 2-4 HZ to all frequency 

components, 
• spectrum peak position. 

They compared results using DT J48, K-NN and SVM, and comparison indicates 
that acceleration synthesization based method outperforms acceleration 
decomposition based method. 
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In this chapter we describe nontrivial methods that were used to develop our 
model for user activity type and transportation mode detection using embedded mobile 
device sensors.	

3.1 Accelerometer orientation estimation using gravity 

This approach [13] for obtaining orientation-independent acceleration 
information makes use of the fact that Microelectromechanical Systems (MEMS) 
accelerometers measure gravitational (“static”) acceleration as well as (“dynamic”) 
accelerations caused by the wearer’s motion. The pull of gravity downward along 
some accelerometer axis manifests itself in the accelerometer output as an 
acceleration in the opposite direction along that same axis. 

3 METHODOLOGY 
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     Figure 2: Relevant coordinate systems 

There are two relevant coordinate systems, as shown In Figure 2. The three axis 
accelerometer configuration is in some arbitrary orientation on the wearer’s body. The 
three accelerometer axes are denoted in the figure as x, y, and z. Ideally, we would 
like to know acceleration information in terms of a coordinate system oriented to the 
user and his forward motion. In the figure, these axes are denoted v (for vertical), f (for 
the direction of horizontal forward motion), and s is a (usually of less interest) 
horizontal axis orthogonal to the direction of motion. 

The algorithm works as follows: for a chosen sampling interval, typically a few 
seconds, obtain an estimate of the gravity component on each axis by averaging all 
the readings in the interval on that axis. That is, we are estimating the vertical 
acceleration vector v corresponding to gravity as 
 

𝑣 = (𝑣$, 𝑣&, 𝑣') (1) 
 
where vx, vy and vz are averages of all the measurements on those respective axes 
for the sampling interval. Let  
 

𝑎 = (𝑎$, 𝑎&, 𝑎') (2) 
 
be the vector made up of the three acceleration measurements taken at a given point 
in the sampling interval. We assume for the sake of simplicity that the three 
measurements are taken simultaneously. We set  
 

𝑑 = (𝑎$ − 𝑣$, 𝑎$ − 𝑣&, 𝑎$ − 𝑣') (3) 
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to represent the dynamic component of a, that caused by the user’s motion rather than 
gravity. Then, using vector dot products, we can compute the projection p of d upon 
the vertical axis v as 

𝑝 =
𝑑 ∙ 𝑣
𝑣	 ∙ 𝑣 𝑣 (4) 

 
in other words, p is the vertical component of the dynamic acceleration vector d. Next, 
since a 3D vector is the sum of its vertical and horizontal components, we can compute 
the horizontal component of the dynamic acceleration by vector subtraction, as  

ℎ = 𝑑 − 𝑝 (5) 
 
However, as opposed to the vertical case, we do not know the orientation of h relative 
to f, the horizontal axis we’d like to have it projected upon. Furthermore, it appears 
impossible to detect. There is no dominating static acceleration as there is in the 
vertical case. Accordingly, we simply compute the magnitude of the horizontal 
component of the dynamic accelerations, concluding that that is the best we can 
expect to do. 

The result of the algorithm performed across a sampling interval is a pair of 
waveforms, estimates of the vertical components and the magnitude of the horizontal 
components of the dynamic accelerations, each of which is independent of the 
orientation of the mobile device containing the accelerometers. 

This algorithm was proven to be useful in detecting and distinguishing several 
user motion activities, such as walking, running, climbing or descending stairs, or 
riding in a vehicle – in spite of the fact that the position and orientation of the device 
are not known. We conjecture that the vertical acceleration component is sufficient 
information for most such activity detection. 

3.2 Spectral centroid 

[16] The spectral centroid is a common measure used in digital signal processing 
to characterize a spectrum. It indicates where the "center of mass" of the spectrum is. 
Perceptually, it has a robust connection with the impression of "brightness" of a sound. 

[17] It is computed considering the spectrum as a distribution which values are 
the frequencies and the probabilities to observe these are the normalized amplitude: 
 

𝑆𝐶 𝑚 =	
𝑓4 𝑋(𝑚, 𝑘)4

𝑋(𝑚, 𝑘)4
 (6) 
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where m is the signal, 𝑋(𝑚, 𝑘) represents the value of signal m at index k and fk is the 
amplitude of frequency f. 

3.3 Spectral spread 

[17] Following the definition of spectral centroid, spectral spread is defined as 
the spread of the spectrum around its mean value or in other words the variance of 
the above defined defined distribution: 
 

𝑆𝐶 𝑚 =	
𝑓4 − 𝑆𝐶 𝑚 7 𝑋(𝑚, 𝑘)4

𝑋(𝑚, 𝑘)4
 (7) 

 
where m is the signal, 𝑋(𝑚, 𝑘) represents the value of signal m at index k, fk is the 
amplitude of frequency f, and SC(m) is spectral centroid of signal m. 

3.4 Zero-crossing rate 

[18] The zero-crossing rate is the rate of sign-changes along a signal, meaning 
the rate at which the signal changes from positive to negative or back. This feature 
has been used heavily in both speech recognition and music information retrieval, 
being a key feature to classify percussive sounds. Zero-Crossing rate (ZCR) is formally 
defined as: 
 

𝑍𝑅𝐶 =
1

𝑇 − 1 1ℝ=>

?@A

BCA

(𝑠B − 𝑠B@A) (8) 

 
where s is a signal of length T and 1ℝ=> is an indicator function. 
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3.5 Vector norm 

[19] In linear algebra, functional analysis, and related areas of mathematics, a 
norm is a function that assigns a strictly positive length or size to each vector in a 
vector space. [20] L2 norm is one of the variations of vector norm and is defined as: 

 

𝑥 = 	 𝑥A7 +	𝑥77 +	𝑥G7 (9) 

 
where x is the vector consisted of three values. 
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In this chapter we will present our work from capturing data to development of our 
algorithm using two approaches. In first approach based on research of existing work 
and introducing some of our ideas we build feature vectors, that we used to develop 
model using machine learning. In second approach we try to feed Neural networks 
with sliding window - signal sequence from embedded sensors. At the beginning of 
this work we defined three hypotheses, which we also try to prove in this chapter. 

From examining existing solutions, we discovered that there are good solutions 
for detecting different user activities and transportation modes in general, but there is 
still not to be found good solution for detecting specific transportation type.  

Our goal is to develop system (Figure 3), that will be able to detect user activities 
and transportation modes presented in Table 4, using only embedded mobile device 
sensors such as accelerometer and magnetometer, and completely eliminating usage 
of GPS. This way we intend to save the life of battery on mobile device, by setting 
GPS retrieval frequency or fetch GPS locations based on current state or transition of 
our system. We think retrieving GPS location on transitions between different states 
will be sufficient for our purpose. System will not be limited with specific device 
orientation, but we defined some restrictions for capturing data. From research of 
existing solutions, we figured out, that everybody is capturing larger data sets and 

4 PROPOSED ALGORITHM TO DETECT 
USER ACTIVITY AND TRANSPORTATION 
MODE 
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uses specific activity’s data as whole from start to end of capture. Meaning that 
stationary parts of trip, such as stopping at bus, train, metro stops are also included. 
We believe, that stationary parts can be differentiated from moving parts so we 
suggest, that stationary parts of every activity should be treated separate from activity 
as one common “Stationary” class. To differentiate stationary sections from moving 
sections in sensors data, we decided to record capture sessions with video camera. 
System will be developed and tested on computer using Python programming 
language. While doing that we will keep in mind, that later this system can be also 
implemented on mobile platform. 
 

 

Figure 3: Flow chart of detection system 

 



22 

Table 4: Supported types of activity and transportation modes in our system 

State Description 
Stationary Device is stationary (including stationary in any of other state). 
Walk Device is on user who is walking. 
Run Device is on user who is running. 
Bicycle Device is on user who is riding bicycle. 
Motorcycle Device is on user who is riding motorcycle. 
Car Device is on user who is taking the ride with car. 
Bus Device is on user who is taking the ride with bus. 
Metro Device is on user who is taking the ride with metro. 
Train Device is on user who is taking the ride with train. 
Tram Device is on user who is taking the ride with tram. 

4.1 Data collection 

As we had project application available to work on it, we just updated it with 
sensor capture routines. We present changes in the application in section 4.1.1. These 
added functionalities are temporary, just for use of data gathering, and will be removed 
at the end.  

We decided to record capture sessions with external video camera, so later when 
processing data, we will have better sense of environment. Capturing session will start 
with close up shoot of mobile device running applications with pop-up Start capture 
dialog containing early mentioned information for easier matching and synchronization 
of captured sensor data and video. When user presses Start button he puts his device 
in pocket or purse and we adjust framing of vide camera, so that user and surrounding 
environment is seen. At end user takes his device out od pocket or purse and stops 
capture by pressing Stop button. After this we also stop video recording.  

At first we were recording video at 25 frames per second (FPS), but we 
discovered that this is not sufficient enough, to precisely synchronize sensor data and 
video and define sections of activity in sensor data. So we decided to increase FPS 
rate to 100, which is also the same number as out sampling rate. Initial plan to 
synchronize sensor data and video was by looking at a frame when start capture 
button in pressed. At moment when the button was pressed we assumed that sensors 
also started capturing data at this exact moment, so video and signals from sensors 
should be synchronized. But we discovered that this is not the case, because of the 
UI delay which is around 60m. So we went with different synchronization approach: 
playing 500ms long high pitch sound right at the beginning of capturing data from 
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sensors. As shown in Figure 4 this high pitch sound can be in most cases easily 
differentiated from rest of the ambient sound. 
 

 

Figure 4: High pitch sound in video file 

With increasing frame rate and improving synchronizing method, signals can be more 
precisely indexed, so that they correctly represent each activity. Still in some cases, it 
is difficult to exactly determine start of activity from video. For example, because of 
slight camera shake it is difficult to select correct frame when transitioning from 
stationary to moving or vice versa. Timeline of capture session is presented on  Figure 
5. 
 

 

Figure 5: Timeline of capture session 

 Our plan was to capture sensors data at the highest possible sampling rate, so 
we defined sensor capture delay in out application to Android predefined sensor data 
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delay value SensorManager.SENSOR_DELAY_FASTEST. This value defines that 
sensor value is saved with delay of 0ms. But after initial captures we figured out that 
after few minutes or running app we ended up with really large files. We also noticed 
that we did not get same file sizes for captures of same length on different and also 
on same phones. Fluctuations in file sizes occurred because of the way sensors work 
on Android. [21] On Android the data delay (or sampling rate) controls the interval at 
which sensor events are sent to your application via the onSensorChanged() callback 
method. When you specify sensor data delay on Android, this is only suggested delay 
and Android system or other applications can effect this delay. So phones processing 
power also has effect on this. If phone is suddenly under a load by other application 
this can effect on sensor data delay. Based on all of this information we can conclude, 
that on Android it is impossible to capture sensors data at fixed sampling rate. In [2] 
they discovered that frequency of accelerometer did not have effect on classification. 
Because of that and issues presented before, we decided to increase sensor data 
delay value to 10000ms. That would be sampling rate of 100 Hz. For this sampling 
rate we decided based on [10], where they say that vibrations caused by motorized 
transportation are in frequency band [18.5 Hz – 45 Hz]. Using a larger delay also 
imposes a lower load on the processor and therefore uses less power. 

From initial measurement we also discovered that in motorized activities like 
using car, train, tram, metro, or any other activity where there is no excessive 
movement of device, in some moments device goes to sleep and capture is interrupted 
– gaps in data appear. To solve this problem, while capturing activity, we acquired 
Android PowerManager.PARTIAL_WAKE_LOCK, which keeps phone’s Central 
Processing Unit (CPU) awake to capture data without interruptions. 

For each captured session we have four files: accelerometer, magnetometer, 
metadata and video file. Filename structure of these files is shown in Figure 6. 

 

DeviceID_CaptureID_ActivityName_ACCELEROMETER_date_hour.csv 
DeviceID_CaptureID_ActivityName_MAGNETICFIELD_date_hour.csv 
DeviceID_CaptureID_ActivityName_METADATA_date_hour.txt 
DeviceID_CaptureID_ActivityName_VIDEO_date_hour.mp4 

Figure 6: Filename structure of data files 

Accelerometer and magnetometer file structure is shown in Figure 7. File starts 
with header line and it is continued with actual timestamp, x, y, and z sensors values 
with each sample in his own line. 
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Timestamp, x, y, z 
Timestamp1, x1, y1, z1 

... 
TimestampN, xN, yN, zN 

Figure 7: Accelerometer and magnetometer file structure 

To describe what is happening in the session we introduced metadata file 
where, with help of captured video, we define sections of activity when it actually 
happened. Structure of metadata file is presented in Figure 8. File starts with integer 
number StartCaptureTime in first line, representing time in milliseconds used for 
synchronization of metadata and sensor files. In following lines, two integer numbers, 
SectionStartTime and SectionEndTime, and string ActivityClassName are 
representing start and end time in milliseconds and class name for each observed 
section in its own line.   

In some cases, capture was interrupted or something specific happened, that 
we would like to exclude from data. For this purpose, we introduced dummy class 
name “ignore”, so these sections can be then excluded in further process. Typical 
metadata file includes sections of actual activity, stationary and ignored parts, if they 
happend. 
 

StartCaptureTime 
SectionStartTime1 SectionEndTime1 ActivityClassName1 

... 
SectionStartTimeN SectionEndTimeN ActivityClassNameN 

Figure 8: Metadata file structure 

4.1.1 Updates in MobilitApp application for gathering data 

To gather data from sensors we had to make some changes in the existing 
project application. We used existing select transport pop-up dialog from previous 
student [22] working on this project, but we written our own class SensorLoger, to 
capture data from sensors. Instead of pop-up dialog for transportation type selection 
showing when the application is opened, we introduced start/stop button in top bar 
(Figure 9 screenshots a and c), which starts and stops capture of accelerometer and 
magnetometer. When user presses button start, he is prompted with pop-up dialog as 
shown on Figure 9 screenshot b, where he choses which kind of activity or 
transportation mode will he use. In this pop-up dialog we also included device ID and 
serial number of capture, so that we can match sensor data with captured reference 
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video. After pressing stop button, user is prompted with pop-up dialog, with option to 
discard or save current captured data, as shown on Figure 9 screenshot d. 
 

Figure 9: Screenshots of updated MobilitApp application 

4.1.1.1 Main	activity	

In main activity in onOptionsItemSelect function, we added code (Figure 10) to 
respond to start/stop record activity button. When pressing start button, if capture is 
not running, we open transportation type selection dialog, else we stop capture and 
open discard or save capture dialog. 

    
a) b) c) d) 
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else if (itemId == R.id.addActivity) { 
 
   this.setFinishOnTouchOutside(true); 
 
   if (sensorLoger.isCaptureRunning()) { 
 
      sensorLoger.stopCapture(); 
      item.setIcon(android.R.drawable.ic_media_play); 
 
      AlertDialog.Builder builder = new AlertDialog.Builder(this); 
      builder.setTitle("Captured activity"); 
 
      builder.setPositiveButton("SAVE", new DialogInterface.OnClickListener() { 
         @Override 
         public void onClick(DialogInterface dialog, int which) { 
            sensorLoger.saveCapture(); 
         } 
      }); 
      builder.setNegativeButton("DISCARD", new DialogInterface.OnClickListener()  
      { 
         @Override 
         public void onClick(DialogInterface dialog, int which) { 
            sensorLoger.discardCapture(); 
            dialog.cancel(); 
         } 
      }); 
 
      builder.show(); 
 
   } else { 
      SelectTransportFragment selectTransportFragment =  
         new SelectTransportFragment(); 
      selectTransportFragment.show(getSupportFragmentManager(), 
         "select_transport"); 
      item.setIcon(R.drawable.ic_stop_capture); 
   } 
   return true; 
} 

Figure 10: Added code in MainActivity.java in onOptionsItemSelected function 

To avoid continuous capturing in background in case of when capture is running 
and application is exited, we added single line of code (Figure 11) to onDestroy 
function and shutdown button handler. 
 

sensorLoger.discardCapture(); 

Figure 11: Line of code to discard capture 

4.1.1.2 SensorLoger	class	

As we mentioned before, we developed our own class for capturing sensor 
data, which is derived from Services and sensorEventListener classes. We also written 
CSVFile class for easier writing data to file, but we will not present it here as it is not 
relevant to our work. 
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On Figure 12 we see constructor of SensorLoger class. In constructor we define 
WakeLock with PowerManager.PARTIAL_WAKE_LOCK paramter, which is required 
for uninterrupted capturing of data from sensors. Instances of accelerometer and 
magnetometer sensors are also defined in constructor. 
 

public SensorLoger(Context mContext) { 
 
    this.mContext = mContext; 
 
    powerManager = (PowerManager) mContext.getSystemService(POWER_SERVICE); 
    wakeLock = powerManager.newWakeLock( 
       PowerManager.PARTIAL_WAKE_LOCK, 
       "WakeLockSensorCapture"); 
 
    mSensorManager = (SensorManager) 
                     mContext.getSystemService(Context.SENSOR_SERVICE); 
    sAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 
    sMagneticField = mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD); 
} 

Figure 12: Constructor of SensorLoger class 

In onSensorChanged rutine, as shown on Figure 13, we get value from sensor 
and save it to the list of corresponding sensor. 
 

@Override 
public void onSensorChanged(SensorEvent event) { 
 
    float x = event.values[0]; 
    float y = event.values[1]; 
    float z = event.values[2]; 
 
    timestamp = new Date().getTime(); 
 
    if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER) { 
 
        accelerometerData.add(new SensorSample(timestamp, x, y, z)); 
    } 
    else if (event.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD) { 
 
        magneticFieldData.add(new SensorSample(timestamp, x, y, z)); 
    } 
} 

Figure 13: onSensorChanged rutine in SensorLoger class 

We also written few supporting functions as shown in Figure 14. 
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public boolean isCaptureRunning() { 
 
    return isCaptureRunning; 
} 
 
public boolean isReadyToSave() { 
 
    return !isCaptureRunning && !isCaptureSaved; 
} 
 
public boolean isNewCaptureAvailable() { 
 
    return !isCaptureRunning && isCaptureSaved; 
} 

Figure 14: Support functions in SensorLoger class 

In startNewCapture rutine on Figure 15, we acquire WakeLock and start the 
capture with registering sensor listeners. Wright before capture is started we also call 
function playSynchronizationSound, which generates and plays high pitch sound for 
synchronization of video and sensor data. 
 

public void startNewCapture(int captureID, String activityType) { 
 
    if (isCaptureRunning()) { 
        Toast.makeText(this, "Capture start failed! Please try again.", 
            Toast.LENGTH_SHORT).show(); 
        return; 
    } 
 
    // Lock phones CPU from going to sleap 
    wakeLock = powerManager.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, 
        "WakeLock"); 
    wakeLock.acquire(); 
 
    Log.d("SENSOR", "Start capture"); 
 
    accelerometerData = new ArrayList<SensorSample>(); 
    magneticFieldData  = new ArrayList<SensorSample>(); 
 
    this.captureID = captureID; 
    this.activityType = activityType; 
 
    // Play sound for synchronition of video and sensor files 
    playSynchronizationSound(); 
 
    // Register sensor listeners - start capture 
    mSensorManager.registerListener(this, sAccelerometer, SENSOR_SAMPLING_PERIOD, 
        new Handler()); 
    mSensorManager.registerListener(this, sMagneticField, SENSOR_SAMPLING_PERIOD, 
        new Handler()); 
 
    this.isCaptureRunning = true; 
    this.isCaptureSaved = false; 
} 

Figure 15: startNewCapture rutine in SensorLoger class 
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On Figure 16 we see stopCapture rutine, which unregisters sensors and 
releases WakeLock. 
 

public void stopCapture() { 
 
    if (!isCaptureRunning()) return; 
 
    Log.d("SENSOR", "Capture finished"); 
 
    // Unregister listeners - stop capture 
    mSensorManager.unregisterListener(this); 
 
    wakeLock.release(); 
 
    isCaptureRunning = false; 
    isCaptureSaved = false; 
} 

Figure 16: stopCapture rutine in SensorLoger class 

Rutine discardCapture on Figure 17 is used in case if user discards the capture 
or when application is exited while capture is still running. 
 

public void discardCapture() { 
 
    if (isCaptureRunning()) { 
        stopCapture(); 
    } 
 
    Log.d("SENSOR", "Discard capture"); 
 
    this.isCaptureSaved = true; 
} 

Figure 17: discardCapture rutine in SensorLoger class 

Figure 18 shows saveCapture rutine, where data from both sensors is saved in 
separate files. This is done in separate thread, to insure uninterrupted workflow of 
application. 
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public void saveCapture() { 
 
    if (!isReadyToSave()) { 
        return; 
    } 
 
    new Thread(new Runnable() { 
        public void run() { 
 
            Log.d("SENSOR", "Saving sensor data to files"); 
 
            final TelephonyManager tm = (TelephonyManager)  
                mContext.getSystemService(Context.TELEPHONY_SERVICE); 
 
            String FILENAME_FORMAT = 
                tm.getDeviceId() 
                + "_" + String.format("%04d", captureID) 
                + "_" + activityType 
                + "_%s" // sensor type 
                + "_" + new SimpleDateFormat("dd.MM.yyyy_HH.mm.ss") 
                    .format(Calendar.getInstance().getTime()) 
                + ".csv"; 
 
            // Save accelerometer data 
            String filename = String.format(FILENAME_FORMAT, "ACCELEROMETER"); 
            CSVFile csv = new CSVFile(FILE_STORE_DIR, filename); 
 
            csv.open(); 
            csv.writeLine("timestamp,x,y,z"); 
            csv.writeData(accelerometerData); 
            csv.close(); 
 
            // MAGNETICFIELD 
            filename = String.format(FILENAME_FORMAT, "MAGNETICFIELD"); 
            csv = new CSVFile(FILE_STORE_DIR, filename); 
 
            csv.open(); 
            csv.writeLine("timestamp,x,y,z"); 
            csv.writeData(magneticFieldData) 
            csv.close(); 
 
            isCaptureSaved = true; 
 
            Log.d("SENSOR", "Data successfully writed to files"); 
        } 
    }).start(); 
} 

Figure 18: saveCapture rutine in SensorLoger class 

4.2 Model development using feature vectors built based on signal 

analysis and experimentation 

The raw input data is often too large or complex, noisy and redundant for 
machine learning. So standard practice in pattern recognition is transformation of 
signal into a new (smaller) space of variables (features) that simplify analysis. Feature 
is as measurable property of the observed phenomenon, usually containing 
information relevant for pattern recognition.  
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After we gathered all the data it was time to review and preprocess data. As we 
gathered data from two sensors which each has tree axis, we are now dealing with 6 
signals. Analyzing each axis separate would not make sense, as different orientation 
of device has different impact on each separate axis.  

In following section, we present our first approach of developing model, using 
feature vectors.  

4.2.1 Interpolation 

Inconsistent capture frequency of embedded mobile device sensors leads us to 
use of interpolation on accelerometer and magnetometer sensor. We decided to 
interpolate norm of accelerometer to exact 100Hz. After examining FFT before and 
after interpolation or norm of accelerometer, we discovered that difference, as shown 
on Figure 19, is negligible, and so we decided not to use interpolation. This way, in 
future when we implement algorithm on mobile device, we save some processing 
power and with that also battery life. We should also mention, that frequencies of 
accelerometer and magnetometer are not always the same and they vary time to time. 
So number of samples in sliding windows might also vary. 
 

 

Figure 19: FFT of norm of accelerometer before and after interpolation 



33 

4.2.2 Eliminating mobile device orientation restrictions 

To eliminate mobile device orientation restrictions, we had to implement some 
method to neutralize the orientation. We decided to use two approaches. 

 In literature [13] we discovered method of estimating accelerometer orientation 
using gravity. We used this method as first approach to eliminate orientation 
restrictions as described in section 3.1. Result of this method implemented on 
accelerometer data is decomposition to vertical p and horizontal h component as 
shown on Figure 20. 

Figure 20: Accelerometer orientation estimation using gravity 

 
 

We also addressed the problem with second solution of our own. With 
calculating norm of a samples of x, y and z values of accelerometer we get signal that 
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should not be effected by device orientation. We discovered that norm values are 
shifted up by some constant. From stationary state of device, we figured out, that this 
constant is constant of gravity. By subtracting gravity constant from norm values, we 
get signal that is floating around x axis. NormG is our own method to eliminate device 
orientation restrictions and is calculated as: 
 
 𝑁𝑜𝑟𝑚𝐺L = 	 𝑥L7 + 𝑦L7 + 𝑧L7 − 𝐺 (10) 

 
where x, y and z stands for values of accelerometer and G = 9.80665 stands for gravity 
constant. Example of method applied to accelerometer data is shown on Figure 21. 
 

 

Figure 21: Development of norm without gravity 
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4.2.3 Overview and analysis of captured samples of separate activity 

Good way to start analysis of signals is to visualize them. For each activity we 
drawn graphs of NormG of accelerometer, norm of magnetometer, vertical component 
p and horizontal component h of accelerometer and FFT of NormG and vertical 
component p of accelerometer. On graphs we marked the stationary parts with gray 
background color, and white background presents the time when activity was actually 
happening. 
 

 

Figure 22: Walk 

 

Figure 23: Run 
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On Figure 22 and Figure 23 we can see graphs for activities walk and run. We  
can differentiate those two activities from each other and the rest of activities by just 
looking at the vertical and horizontal components of accelerometer and FFTs. 

 

 

Figure 24: Bicycle 

 

Figure 25: Motorcycle 

From Figure 24 of bicycle activity we can also see larger values in vertical and 
horizontal component of accelerometer. We have more or less consistent value of 
horizontal component. In vertical component we can start to see some spikes, which 
we assume are from the vibrations on the road. This is also seen on Figure 25, which 
present motorcycle activity. 
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Figure 26: Car 

 

Figure 27: Bus 

We can see similarities in vertical and horizontal component on Figure 26 when 
driving with the car. Compared to bus activity on Figure 27, at car horizontal 
component has higher presence, as car is much shorter and so more G force is applied 
to device when driving fast through corner or changing lane. Ride on bus is usually 
smooth with occasionally strong vertical accelerations coursed by holes or bumps on 
the road. This is clearly seen on graph. 
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Figure 28: Train 

 

Figure 29: Tram 

Rides with train and tram are usually very smooth with slow accelerations and 
decelerations. On Figure 28 and Figure 29, which represent train and tram activities, 
we can see low values of vertical and horizontal acceleration. We can also notice the 
change in accelerometer behavior, as train and tram run on electric motors. 
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Figure 30: Metro 

On final Figure 30 of metro activity, we can see the biggest effects on 
magnetometer as metro is also running on electric motors and in most of the time it 
runs in closed space underground, what probably contains in and magnifies magnetic 
field. Horizontal accelerations on metro are also higher than on train and metro. 

4.2.4 Feature vector assembly 

From suggestions in literature of existing solutions and overview and analyze of 
our data, we used following methods to extract features: 

• Standard deviation, 
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• Energy, 
• Spectral centroid, 
• Spectral spread, 
• Zero-crossing rate, 
• Minimum, 
• Maximum. 

 
Before applying these methods, we transformed our raw signals using accelerometer 
decomposition and NormG, methods explained in section 4.2.2. In [10] they also 
calculate FFT of vertical component p of accelerometer, and from that energy in four 
separate frequency bands. From analyzing our data, we discovered that FFT of 
NormG of accelerometer has more energy and different characteristic for different 
activities, than FFT of vertical component p. Energy is calculated in [1Hz-4Hz], [5Hz-
9Hz], [10Hz-19Hz] and [20Hz-45Hz] bands, similar as in [10]. Based on 
experimentation we assembled the following feature vector, that produces best results 
with machine learning: 
 

𝑎𝑐𝑐_𝑠𝑡𝑑
𝑚𝑎𝑔_𝑠𝑡𝑑
𝑎𝑐𝑐_𝑝_𝑠𝑡𝑑
𝑎𝑐𝑐_ℎ_𝑠𝑡𝑑

𝑎𝑐𝑐_𝑛𝑜𝑟𝑚𝑔_𝑒_𝑏1
𝑎𝑐𝑐_𝑛𝑜𝑟𝑚𝑔_𝑒_𝑏2
𝑎𝑐𝑐_𝑛𝑜𝑟𝑚𝑔_𝑒_𝑏3
𝑎𝑐𝑐_𝑛𝑜𝑟𝑚𝑔_𝑒_𝑏4
𝑚𝑎𝑔_𝑛𝑜𝑟𝑚_𝑒_𝑏1
𝑚𝑎𝑔_𝑛𝑜𝑟𝑚_𝑒_𝑏2
𝑚𝑎𝑔_𝑛𝑜𝑟𝑚_𝑒_𝑏3
𝑚𝑎𝑔_𝑛𝑜𝑟𝑚_𝑒_𝑏4

𝑎𝑐𝑐_𝑝_𝑠𝑐
𝑎𝑐𝑐_𝑣_𝑠𝑠

𝑚𝑎𝑔_𝑟𝑚𝑠_𝑠𝑐
𝑚𝑎𝑔_𝑟𝑚𝑠_𝑠𝑠
𝑎𝑐𝑐_𝑟𝑚𝑠𝑔_𝑧𝑐𝑟

max_𝑝

 (11) 

where: 
• acc_std is standard deviation of accelerometer, 
• mag_std is standard deviation of magnetometer, 
• acc_p_std is standard deviation of accelerometers vertical component p, 
• acc_h_std is standard deviation of accelerometers horizontal component h, 
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• acc_normg_e_b1 and mag_norm_e_b1 are energies of FFT of NormG of 
accelerometer and norm of magnetometer in frequency band [1Hz-4Hz], 

• acc_normg_e_b2 and mag_norm_e_b2 are energies of FFT of NormG of 
accelerometer and norm of magnetometer in frequency band [5Hz-9Hz], 

• acc_normg_e_b3 and mag_norm_e_b3 are energies of FFT of NormG of 
accelerometer and norm of magnetometer in frequency band [10Hz-19Hz], 

• acc_normg_e_b4 and mag_norm_e_b4 are energies of FFT of NormG of 
accelerometer and norm of magnetometer in frequency band [20Hz-45Hz], 

• acc_p_sc is spectral centroid of vertical component p of accelerometer, 
• acc_p_ss is spectral spread of vertical component p of accelerometer, 
• mag_norm_sc is spectral centroid of vertical component p of magnetometer, 
• mag_norm_ss is spectral spread of vertical component p of magnetometer, 
• acc_normg_zrc is zero-crossing rate of NormG of accelerometer 
• min_p is minimum value of vertical component p of accelerometer.  
• max_p is maximum value of vertical component p of accelerometer.  

 
Our goal is for the detection to happen in pseudo real-time, so we chosen 1s 

sliding window to generate data set for training and testing our system. Choosing 
larger sliding window would also increase the probability of other activity happening in 
the same window. Using 1s sliding window (75% overlapping) and information in 
metadata files, we iterated through accelerometer and magnetometer data files. For 
every 1s window, we calculate feature vector and save it to data set. With this 
approach we created following data sets DS1, DS2 and DS3 (Figure 31) where in: 

1. DS1: stationary parts of all activities are grouped into one global “stationary” 
class, 

2. DS2: stationary parts of each activity, are part of it’s activity class, except 
stationary parts of walk, run and bicycle, which are grouped into “stationary” 
class, 

3. DS3: classes car, motorcycle, bus are grouped into “road” class and classes 
metro, train, tram are grouped into “rail” class, where stationary parts of 
each activity, are part of it’s activity class, except stationary parts of walk, 
run and bicycle, which are grouped into “stationary” class. 

In DS2 and DS3 we treat stationary parts of each activity, as part of activity, except for 
activities walk, run and bicycle, of which stationary parts have similar characteristics 
and are not effected by surrounding vehicle. 
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Figure 31: Data sets 

4.2.5 Machine learning using developed feature vectors 

For machine learning we used standard Decision Tree [23], Random Forest 
[24] and Gradient Boosting [25] method with Decision Tree classifiers. 

[26] In statistics and machine learning we usually split our data into to subsets: 
training data and testing data (and sometimes to three: train, validate and test), and fit 
our model on the train data, in order to make predictions on the test data. When we 
do that, one of two thing might happen: we overfit our model or we underfit our model. 
We do not want any of these things to happen, because they affect the predictability 
of our model — we might be using a model that has lower accuracy and/or is 
ungeneralized. In order to avoid this, we can perform something called cross 
validation. It’s very similar to train/test split, but it’s applied to more subsets of data. 
There are few cross validation methods and one of them is K-fold cross validation, that 
we used. To asses the model we split our data into k subsets, and train on k-1 one of 
those subset. What we do is to hold the last subset for test. We do this for each subset 
and present average of all k iterations. To evaluate our method with K-fold cross 
validation, we used parameter k=4 or 4 folds. Before applying split to k parts we 
shuffled the data always using the same seed. On Figure 32 we can see code for K-
fold cross validation for three different types of model. For each model classification 
metrics are printed to screen, so we can choose the best one. Later, the best 
performing model is trained with whole data set and tested on separate test samples 
as shown on Figure 33. Best type of model is them used for rest of the tests, that we 
performed. 
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# Initialize models 
dt = DecisionTreeClassifier(max_depth=17, class_weight='balanced')  
rf = RandomForestClassifier(n_estimators=80) 
gb = GradientBoostingClassifier(n_estimators=10,  
     learning_rate=0.1, max_depth=3, random_state=0) 
 
# Initialize K-Fold split 
kf = KFold(n_splits=4, random_state=12345, shuffle=True) 
 
# Execute K-fold cross validation for each model 
print "Decision Tree" 
predicted = cross_val_predict(dt, data, target, cv=kf) 
cm = metrics.confusion_matrix(target, predicted)  
mbt.classificationMetrics(cm) 
 
print "Random Forest" 
predicted = cross_val_predict(rf, data, target, cv=kf) 
cm = metrics.confusion_matrix(target, predicted)  
mbt.classificationMetrics(cm) 
 
print "Gradient Boosting" 
predicted = cross_val_predict(gb, data, target, cv=kf) 
cm = metrics.confusion_matrix(target, predicted)  
mbt.classificationMetrics(cm) 

Figure 32: K-fold cross validation 

# Train model 
model = rf.fit(trainData, target) 
 
# Test model 
predicted = model.predict(testData) 
cm = metrics.confusion_matrix(target, predicted)  
mbt.classificationMetrics(cm) 

Figure 33: Train and test Random forest model 

4.3 Model development using Neural Networks 

[27] Artificial neural networks (ANNs) or connectionist systems are computing 
systems inspired by the biological neural networks that constitute real biological 
brains. Such systems learn (progressively improve performance) to do tasks by 
considering examples, generally without task-specific programming. An ANN is based 
on a collection of connected units called artificial neurons, (analogous to axons in a 
biological brain). Each connection (synapse) between neurons can transmit a signal 
to another neuron and typically, neurons are organized in layers. 

The original goal of our second approach using neural network was to solve 
problem in the same way that a human brain would. [27] Over time, attention focused 
on matching specific mental abilities, leading to deviations from biology such as back-
propagation, or passing information in the reverse direction and adjusting the network 
to reflect that information. The idea of this approach was to figure out if neural network 
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can detect type of user activity or transportation mode, if we feed raw data from sensor 
to input of neural network. This might be difficult for human to solve, but machines are 
faster and better with numbers, and they also learn faster. 

There are many variations of neural network systems and training methods. In 
our approach we used multilayer feed-forward neural network with supervised back-
propagation learning. 
 Our goal was to use raw data from sensors, but we have to consider that we 
want to, for our system to work in every position and orientation of mobile device. We 
also have to merge data of accelerometer and magnetometer into one input vector. 
Concatenating x, y and z axes of two sensors would yield large input for neural 
network. Using 1s sliding window and capturing frequency 100Hz we should get 100 
samples per each axes, but as we discovered, that is not always the case. As in this 
approach we are using raw data and the size of input data must be exact as number 
of input neurons, we were forced to use interpolation. To address problem with 
orientation restrictions we decided to do the decomposition of accelerometer, as we 
did in first approach in section 4.2.2, and calculate norm of magnetometers x, y and z 
axes. From accelerometer decomposition we used vertical component p and norm of 
magnetometer to form new concatenated input vector as: 
  

𝑎A, 𝑎7, … , 𝑎],𝑚A,𝑚7, … ,𝑚]  (12) 
 
where a represent samples vertical component p of accelerometer, m represent 
samples of a norm of magnetometer and N is the length of signal of both sensors.  

In our network we have input, output and one hidden layer. Number of neurons 
in input layer is defined by size of input vector, and number of neurons in output layer 
is defined by number of classes. From [28] we considered following rule to select the 
number of neurons in hidden layer: 
 

𝐻 = 𝑂 + 0.74𝐼 				𝑎𝑛𝑑					ℎ < 2𝐼 (13) 
  

where H is the number of hidden neurons, I is the number of input neurons and O is 
the number of output neurons. As we have 10 classes to differentiate (O=10) and input 
vector of 200 samples (I=200), we get H=158 hidden neurons. 
 To build and train neural network we used Python library Pybrain and code 
written in Figure 34 where n is the instance of neural network, and t is the instance of 
back-propagation trainer. Variable numOut represents number of output neurons, 
numHid number of hidden neurons and numOut number of output neurons. Instead of 
default linear activation function of output neurons, with outclass parameter, we 
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defined sigmoid function instead. [29] With setting bias to True, we allow activation 
function to be shifted left or right, which may be critical for successful learning. 
BackpropTrainer constructor accepts instance of neural network, training dataset, 
momentum of learning and weightdecay parameters, which were selected by 
experimenting. Finally, function trainUntilConvergence trains network until 
convergence. To test the network, we activate it with test data set as shown on Figure 
35. Result of activateOnDataset function are vectors of output values of output layer. 
Every output neuron corresponds with one activity, and the neuron with highest value 
is selected as detected activity. 
 

n = buildNetwork(numOut, numHid, numOut, outclass=SigmoidLayer, 
    bias=True) 
t = BackpropTrainer(n, dataset=trainDS, momentum=0.5, weightdecay=0.01) 
t.trainUntilConvergence() 

Figure 34: Code used to train neural network 

r = t.activateOnDataset(testDS) 

Figure 35: Code to activate neural network 
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In this chapter we present and compare results of both approaches used to 
develop our system. We also describe environment where and how data was 
collected. 

5.1 Experimental environment and matrixes 

While capturing data we did not specifically define position or orientation of 
mobile device. We let user to put away his phone to desired location. In most cases 
happened that users had their device in front pocket, in some cases in back pocket 
and few cases in lady’s purse. Standing or sitting position restriction were also not 
defined, but we were strict not to combine activities like walking or running on bus, 
metro, train etc. We also asked user not do do any sudden movements while 
recording. Since riding bicycle and not pedaling has completely different 
characteristics we asked user to pedal as much as possible. Sections riding bicycle 
when user is not pedaling, were discarded. 

We captured data with help of tree volunteers using their own device. We also 
introduced the fourth device. Every volunteer did all activities using his and our fourth 
device recording at same time. Then we captured all activities again using 3 devices 

5 DATA COLLECTION PROCESS AND 
ANALYSIS OF RESULTS 
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each in separate session and in different environment (position of user in vehicle and 
location of capturing activity). We should mention that while gathering data we use 
only one motorcycle and two different cars. Each session lasted at least 5 minutes and 
in total we captured over 7 hours of data. In Table 5 whole amount of captured data is 
presented. At the end we also captured 2 minute sessions for final tests. 

Table 5: Amount of captured data of activities and transportation modes 

Activity Activity time Stationary time Total time 
Walk 00:38:50 00:04:16 00:43:07 
Run 00:37:40 00:05:36 00:43:16 
Bicycle 00:43:03 00:04:45 00:47:48 
Motorcycle 00:35:15 00:12:37 00:47:52 
Car 00:30:58 00:13:44 00:44:42 
Bus 00:39:23 00:15:00 00:54:24 
Metro 00:38:43 00:13:21 00:52:05 
Train 00:39:05 00:13:47 00:52:52 
Tram 00:36:42 00:12:11 00:48:53 
Sum 05:39:39 01:35:17 07:14:59 

 
To assess the error in our approach, we use the metrics such as precision, recall, 

accuracy, and F1 score which are defined as follows:  
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 (14) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛 (15) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛 (16) 

 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(17) 

 
where tp, fp, tn and fn stand for true positive, false positive, true negative and false 
negative.  

Precision (14) is the proportion between number of correctly detected samples 
of activity and number of samples when activity actually happened. Recall (15) is the 
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proportion between correctly detected samples and number of all samples that should 
be classified as activity. In other words, recall gives us information about a classifier's 
performance with respect to false negatives (how many did we miss), while precision 
gives us information about its performance with respect to false positives. Accuracy 
(16) is proportion between correctly predicted observation to the total observations. 
[30] F1 score (17) is the weighted average of Precision and Recall. Therefore, this 
score takes both false positives and false negatives into account. Intuitively it is not as 
easy to understand as accuracy, but F1 is usually more useful than Accuracy, 
especially if you have an uneven class distribution. 

5.2 Qualitative and quantitative results 

In this section we present the results of our system. Our second approach with 
Neural networks did not converge so we were unable to run tests. Neural networks 
proven not to be appropriate for this problem. All results in this section are from our 
first approach where we tested the model using K-fold cross validation with k=4 
parameter, and later we also tested the model on separate small test data set.  

From results we can see that using only Accuracy metrics is not quite reliable if 
Precision and Recall have low value. Instead we evaluate our model by F1 score. 

5.2.1 K-fold cross validation 

In Table 6 we can see results of K-fold cross validation using three different 
types of model (Decision tree, Random forest and Gradient boosting using decision 
trees). In this data set (DS1), stationary parts of each activity are grouped into one 
global “stationary” class. Precision, Recall, Accuracy and F1 score of results are 
presented for each method. We will mainly focus on F1 score as, Accuracy can be 
deceiving. Random forest method proven to deliver best results of all three methods 
in F1 score for all activities. With 82%, it scored lowest for bicycle activity, with 98% 
highest for transportation mode tram and in average 88% in F1 score. For Decision 
tree and Gradient boosting methods we can see that they performed good in 
stationary, motorcycle, car, bus and tram but not in other activities. 
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Table 6: Results of K-fold cross validation with global stationary class (DS1) 

 Decision tree Random forest Gradient boosting 
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Stationary 0,92 0,92 0,98 0,92 0,93 0,96 0,99 0,94 0,87 0,92 0,97 0,89 

Walk 0,71 0,73 0,94 0,72 0,85 0,84 0,97 0,85 0,53 0,57 0,90 0.55 

Run 0,66 0,70 0,95 0,68 0,85 0,81 0,97 0,83 0,60 0,31 0,92 0,41 

Bicycle 0,71 0,72 0,94 0,72 0,82 0.82 0,96 0,82 0,57 0,49 0,90 0,53 

Motorcycle 0,80 0,86 0,97 0,83 0,84 0,91 0,98 0,87 0,64 0,87 0,93 0,74 

Car 0,95 0,95 0,99 0,95 0,99 0,95 0,99 0,97 0,97 0,93 0,99 0,95 

Bus 0,87 0,77 0,91 0,82 0,85 0,88 0,93 0,86 0,80 0,81 0,89 0,80 

Metro 0,77 0,76 0,95 0,76 0,89 0,83 0,97 0,86 0,67 0,52 0,92 0,58 

Train 0,68 0,78 0,94 0,73 0,83 0,83 0,97 0,83 0,51 0,65 0,90 0,57 

Tram 0,96 0,96 0,99 0,96 0,97 0,98 1.00 0,98 0,94 0,95 0,99 0,94 

Average 0,80 0,82 0,96 0,81 0,88 0,88 0,97 0,88 0,71 0,70 0,93 0,70 
 

For all proceeding tests we used Random forest classifier, which produced the 
best results of all three methods. To prove our 3rd hypothesis we performed K-fold 
cross validation on data set (DS2), where stationary parts of each activity (except from 
classes walk, run and bicycle) are not treated as global “stationary” class, but as part 
of it’s own activity. Results of this K-fold cross validation are in Table 7. Compared to 
results of Random forest classifier in Table 6 we can say that performance improved 
significantly. With average F1 score of 92%, 87% for bus activity was the lowest score 
and highest for tram activity with 98%. 
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Table 7: Results of K-fold cross validation using Random Forest when stationary parts are part of activity (DS2) 

Class Precision Recall Accuracy F1 score 
Stationary 0,94 0,95 0,99 0,94 

Walk 0,89 0,93 0,98 0,91 

Run 0,91 0,89 0,98 0,90 

Bicycle 0,88 0,90 0,97 0,89 

Motorcycle 0,92 0,96 0,99 0,94 

Car 0,99 0,96 1.00 0,97 

Bus 0,92 0,83 0,99 0,87 

Metro 0,93 0,90 0,98 0,92 

Train 0,91 0,91 0,98 0,91 

Tram 0,97 0,98 1.00 0,98 

Average 0,93 0,92 0,98 0,92 
 

In Table 8 we can see the results of K-fold cross validation of Random forest 
classifier on generalized data set (DS3), where classes motorcycle, car, and bus were 
grouped into “road” class, and classes metro, train, tram were grouped into “rail” class. 
With this data set we achieved the best results, compared to all other K-fold cross 
validations and two other data sets. With average of 94% of F1 score, the road class 
scored the lowest score with 83% and bicycle activity highest with 97%. From 
generalized group rail, we can say that metro, tram and train transportation modes 
share similar characteristic. But we can not say this for transportation modes 
motorcycle, car and bus that were grouped into road class, as they perform better in 
both previous K-fold cross validations with Random forest, when they are treated as 
separate class. 

Table 8: Results of K-fold cross validation using Random Forest with simplified class range (DS3) 

Class Precision Recall Accuracy F1 score 
Stationary 0,94 0,95 0,99 0,94 

Walk 0,95 0,96 0,97 0,96 

Run 0,93 0,95 0,96 0,94 

Bicycle 0,99 0,95 1,00 0,97 

Road 0,95 0,73 0,99 0,83 

Rail 0,98 0,98 1,00 0,98 

Average 0,98 0,92 1,00 0,94 
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5.2.2 Tests with separate test data sets 

After training the model using Random forest classifier and whole data set that 
was used for K-fold cross validation, we also performed tests with separate small test 
data set.  

In Table 9 we can see results of test of Random forest classifier trained on data 
set DS1 and tested with separate test data set. Tram, bus, car and stationary classes 
scored 89% in average F1 score. And the rest of classification results we would not 
consider good. Score of 15% for bicycle activity, was the lowest score in this test. 

Table 9: Results of Random forest on test group with global stationary class (data set DS1) 

Class Precision Recall Accuracy F1 score 
Stationary 0,68 0,94 0,94 0,79 

Walk 0,50 0,70 0,91 0,59 

Run 0,57 0,23 0,89 0.33 

Bicycle 0,31 0,10 0,89 0,15 

Motorcycle 0,73 0,71 0,91 0,72 

Car 0,98 0,95 0,99 0,97 

Bus 0,81 0,90 0,91 0,85 

Metro 0,57 0,56 0,89 0,56 

Train 0,31 0,42 0,85 0,36 

Tram 0,90 0,96 0,99 0,96 

Average 0,64 0,65 0,98 0,62 
 

In Table 10, where Random forest classifier was trained on data set DS2 and 
tested on separate test data set, compared to Table 9 we achieved worse results. 
Stationary, run, car and train classes scored the same F1 score as in Table 9. For rest 
of the classes F1 score dropped for between 5-7%. With average 59% this test scored 
the lowest in F1 score.  
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Table 10: Results of Random Forest on test group where stationary parts are part of activity (DS2) 

Class Precision Recall Accuracy F1 score 
Stationary 0,68 0,94 0,93 0,79 

Walk 0,47 0,64 0,82 0,54 

Run 0,47 0,25 0,78 0,33 

Bicycle 0,23 0,06 0,84 0,10 

Motorcycle 0,66 0,68 0,87 0,67 

Car 0,99 0,94 0,99 0,97 

Bus 0,71 0,75 0,96 0,73 

Metro 0,45 0,57 0,84 0,50 

Train 0,32 0,41 0,79 0,36 

Tram 0,90 0,97 0,98 0,93 

Average 0,59 0,62 0,88 0,59 
 
 

From results in Table 9 and Table 10, we can say that results for some classes 
are good but not good for rest of them. From good K-fold cross validation results and 
this two tests we can assume that classes with bad results have low variance in 
training data set, which could be improved with acquiring larger data set. 

Before we already mentioned that we achieved best results in K-fold cross 
validation with DS3 data set, where we simplified class range. Benefit of generalization 
of classes is also shown on results of test with separate test data, which are presented 
in Table 11. With DS3 data set we achieved best results with K-fold cross validation 
as well as with this test among other two tests with separate test data. Overall these 
results are considered pretty good except for samples of class road, just like in K-fold 
cross validation in Table 8, which confirms our thought that metro, train and tram share 
similar features, but motorcycle, car and bus not as much. Comparing results in Table 
10 and Table 11, we can se difference of only 11% in average F1 score.  
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Table 11: Results of Random Forest on test group with simplified class range (DS3) 

Class Precision Recall Accuracy F1 score 
Stationary 0,70 0,93 0,95 0,80 

Walk 0,82 0,83 0,88 0,82 

Run 0,82 0,77 0,84 0,80 

Bicycle 0,98 0,94 0,99 0,96 

Road 0.74 0.57 0,97 0.65 

Rail 0,89 0,97 0,98 0,93 

Average 0,83 0,84 0,94 0,83 

5.2.3 Summary of the results 

Overall we achieved good results with K-fold cross validation, but based on results 
of tests with separate test data, we think additional work is required, to improve 
variance in data with acquiring larger data set. 

In Table 8 with results of K-fold cross validation using Random Forest with 
simplified class range (DS3) we achieved best results of all tests, with average 
Accuracy of 100% and F1 score 94%. But our main objective was to classify between 
specific transportation modes, so results in Table 7 of K-fold cross validation using 
Random Forest when stationary parts are part of activity (DS2), are more relevant to 
us. Here we achieved Accuracy of 98% and F1 score of 92%. 

Our results are comparable or in some cases outperforming existing solutions. 
We should mention that all tests have been done offline and goal for future work is to 
include the algorithm within the MobilitApp application to do further tests, as it is 
pointed out in next chapter 6.   
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In final chapter we open the discussion about results, problems and challenges 
that we dealt with through the work. We also look in possible future work and conclude 
this work with final word. 

In this work we reviewed existing solutions and worked up on them with our ideas, 
to develop system, that is able to detect specific user activities and transportation 
modes such as stationary, walking, running, riding a bicycle, motorcycle, driving a car, 
taking a bus, metro, tram and train. Since the energy consumption of GPS, relative to 
the usage of embedded sensors, is very high, we completely eliminated usage of GPS 
in our detection algorithm. 

As we wanted for detection to happen in pseudo real-time we decided to use 1s 
sliding window. Using larger sliding window would also increase probability of two 
different activities happening in same window.  

Our goal was to develop system using two approaches. In approach using neural 
networks we discovered, that neural networks are not suited for the problem that we 
presented to them. Our idea was to feed the raw data from embedded mobile device 
sensors to the input of neural network and the network will be able to differentiate 
between the activities. With assembled training data, our network never converged. In 
other approach we assembled feature vector based on analysis of signals of separate 
activities and experimentation. From initial tests with standard decision tree, Random 
forest and Gradient boosting methods, we chose Random forest as the best 
performing classifier to run the rest of the tests. To test the performance of model we 

6 CONCLUSION AND FUTURE WORK 
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used popular and effective K-fold cross validation method. Results just of K-fold cross 
validation are comparable and in some cases outperforms some of best existing 
solution. But later we also trained the model on whole data set used for K-fold cross 
validation and tested it on separate small test data set. From those tests, which were 
not as good, we discovered, that we have low variance in data, which can be improved 
with acquiring larger data set. We performed tests on three different data sets. In first 
data set we treat stationary parts of all activities as separate common “stationary” 
class. In second data set we treated stationary parts as part of activity, except for 
stationary parts of walk, run and bicycle, which we grouped into common “stationary” 
class. In the third data set where in addition to applying the same principal as in second 
data set, we also grouped corresponding classes to “road” and “rail” classes. In this 
master thesis we defined three hypotheses and attained following main goals: 

• Hypothesis 1: By using only embedded mobile device sensors, without usage 
of GPS, is possible to build vector of features and model, which is by efficiency 
of detection of type of user activity and transportation mode, comparable with 
“state of the art” solutions, if we use short time window up to 3 s. 
Based on K-fold cross validation results, we can confirm this hypothesis. Using 
1s sliding window, developed feature vector and machine learning, we can 
detect user activity and transportation mode without use of GPS. 

• Hypothesis 2: From raw signal of embedded mobile device sensors captured 
using short time window up to 3 s, that we feed directly into the neural network, 
neural network is capable to extract features and build model, which is by 
efficiency of detection of type of user activity and transportation mode, 
comparable with “state of the art” solutions. 
Based on our neural network not converging, this hypothesis overruled. We 
discovered that neural networks are not able to differentiate between user 
activities and transportation modes just using raw data from sensor. 

• Hypothesis 3: Treating stationary parts of different user activities and 
transportation modes as one common “stationary” class, gives better 
classification results than using stationary parts as part of it’s activity. 
As we got better results with second data set, where stationary parts are part 
of it’s activity, this hypothesis is overruled. Meaning that vibrations and 
magnetic field in vehicle is still present in stationary mode and identification of 
moving and stationary parts is not necessary. Walk, run and bicycle activity’s 
stationary sections can not be treated as part of activity as they posses 
different characteristic as moving sections. 

As none of reviewed existing solutions performed classification with such range of 
specific transportation modes, we also run K-fold cross validation on our third 
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generalized data set, to compare results with existing solutions. With this data set we 
achieved the best results in K-fold cross validation and with separate test data set as 
well. 

Overall we achieved good results, that are comparable or in some cases 
outperforming existing solutions, but based on results of tests with separate test data, 
additional work is required. Pending objectives to develop in future work: 

• Main goal is to eventually implement the system on the mobile platform.  
• We think it is also essential to capture much larger data set. Capturing data 

is not as time consuming as reviewing the footage. With overruling our third 
hypothesis, we see that detailed dissection (identifying stationary and 
moving parts) of activity is not necessary and so capturing data could be 
executed with less effort in much larger scale (different positions, more 
devices/volunteers). But we would still suggest some level of control while 
capturing. Mobile devices have such a high presence in our life, that we are 
usually event not aware of them until we need them again. From experience 
at the beginning of our captures, we know that after you start the capture 
and you put your device in the pocket you eventually forget about it. You 
have to be focused on capturing all the time or other activities or 
interruptions could appear, which could corrupt the data. So we think that 
training or supervision of volunteers, to capture large data set, is necessary. 

• We also think that there is still space to improve and optimize developed 
feature vector. One way to do this is to minimize number of features based 
on detailed analysis of feature importance. 

• If we look at the transitions between the different activities we can tell, that 
transitions between some activities are less likely to happen. For example, 
after riding tram, train or metro you do not use the car, bus, bicycle right 
away, but instead walk, run or stationary activities probably happened 
between. From this observation we can suggest some kind of post 
processing of the classification. Hidden Markov model is one of the 
methods that could be used for that. 

We were keen to join this interesting project, and we would like to thank all the 
members working on this project for support. We ran into some difficulties with 
gathering data, and after technical problems were solved, we successfully gathered 
proper data in third try. As we joined this project as part of ERASMUS student 
exchange program, we only had limited time to work on this project. We hope to 
continue this work and improve our system, so in future it can be used in the final 
application.
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