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POHOZAEV IDENTITIES FOR ANISOTROPIC

INTEGRO-DIFFERENTIAL OPERATORS

XAVIER ROS-OTON, JOAQUIM SERRA, AND ENRICO VALDINOCI

Abstract. We find and prove new Pohozaev identities and integration by parts
type formulas for anisotropic integro-differential operators of order 2s, with s ∈
(0, 1).

These identities involve local boundary terms, in which the quantity u/ds|∂Ω
plays the role that ∂u/∂ν plays in the second order case. Here, u is any solution
to Lu = f(x, u) in Ω, with u = 0 in R

n \ Ω, and d is the distance to ∂Ω.

1. Introduction and results

Integro-differential equations arise naturally in the study of stochastic processes
with jumps, and more precisely of Lévy processes. In the context of Lévy processes,
these equations play the same role that second order PDEs play in the theory of
Brownian motions. This is because infinitesimal generators of Lévy processes are
integro-differential operators.

A very special class of Lévy processes is the one corresponding to stable processes.
These are the processes that satisfy certain scaling properties, and in particular they
satisfy that the sum of two i.i.d. stable processes is also stable. The infinitesimal
generator of any symmetric stable Lévy process is of the form

Lu(x) =

∫

Sn−1

∫ +∞

−∞

(

2u(x)− u(x+ θr)− u(x− θr)
) dr

|r|1+2s
dµ(θ), (1.1)

where µ is any finite measure on the unit sphere, called the spectral measure, and
s ∈ (0, 1); see [45, 29, 32].

When this measure is absolutely continuous with respect to the classical measure
on the sphere, then it can be written as

Lu(x) =

∫

Rn

(

2u(x)− u(x+ y)− u(x− y)
)a (y/|y|)
|y|n+2s

dy, (1.2)

where a ∈ L1(Sn−1) is nonnegative and even —i.e., a(θ) = a(−θ).
As said before, integro-differential equations appear naturally when studying Lévy

processes. For example, the solution u(x) to the Dirichlet problem in a domain Ω
gives the expected cost of a random motion starting at point x ∈ Ω, the running
cost being the right hand side of the equation. When this right hand side is f ≡ 1
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in Ω, then the solution u(x) is the expected first time at which the particle exits the
domain.

Linear and nonlinear equations involving this type of operators have been widely
studied, from the point of view of both Probability and Analysis; see [2, 3, 6, 15,
20, 25, 26, 36, 39] for example.

Here we study integro-differential problems of the form
{

Lu = f(x, u) in Ω
u = 0 in R

n\Ω, (1.3)

where Ω ⊂ R
n is a bounded domain, and L is given by either (1.2) or (1.1).

In this paper, we find and prove new Pohozaev-type identities for solutions to
(1.3).

Pohozaev-type identities have been widely used in the theory of PDEs. In el-
liptic equations these identities are used to prove sharp nonexistence results, par-
tial regularity of solutions, concentration phenomena, unique continuation prop-
erties, or rigidity results [34, 38, 13, 23, 52, 53]. Moreover, they are also fre-
quently used in hyperbolic equations, control theory, harmonic maps, and geometry
[4, 50, 8, 9, 46, 28, 35].

For integro-differential equations, the first identity of this type was established
in [40], where the Pohozaev identity for the fractional Laplacian was proved. Here,
we extend the method introduced in [40] to establish Pohozaev-type identities for
more general operators of the form (1.2) and (1.1). As explained below, new ideas
are required to treat the anisotropic case, in which we obtain the extra factor in the
boundary term.

We recall that, for second order equations, Pohozaev-type identities usually follow
from the divergence theorem or from the integration by parts formula. However, for
integro-differential equations these tools are not available, and thus the approach to
these identities must be completely different.

1.1. Assumptions. In order to ensure the regularity of solutions to (1.3), one has
to impose some ellipticity assumptions on the measure µ. When L is of the form
(1.2) we will assume that

0 < λ ≤
∫

Sn−1

a(σ)dσ, 0 ≤ a(θ) ≤ Λ < ∞ for all θ ∈ Sn−1, (1.4)

while when L is of the form (1.1) we will assume

0 < λ ≤ inf
ν∈Sn−1

∫

Sn−1

|ν · σ|2sdµ(σ),
∫

Sn−1

dµ ≤ Λ < ∞. (1.5)

Moreover, in our results we will assume that either

L is of the form (1.2)-(1.4), and Ω is C1,1; (1.6)

or
L is of the form (1.1)-(1.5), and Ω is convex and C1,1. (1.7)
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The convexity of the domain Ω in (1.7) is needed in order to ensure certain interior
regularity of solutions to (1.3), as explained later on in this Introduction.

1.2. Main results. The following is our main result.

Theorem 1.1. Let s ∈ (0, 1), and assume that L and Ω satisfy either (1.6) or (1.7).
Let f be any locally Lipschitz function, u be any bounded solution to (1.3), and

d(x) = dist(x,Rn \ Ω).
Then,

u/ds|Ω ∈ Cγ(Ω) for γ < s, |∇u| ≤ Cds−1 in Ω,

and the following identity holds
∫

Ω

{

(x · ∇u)Lu+
n− 2s

2
uLu

}

dx = −Γ(1 + s)2

2

∫

∂Ω

A(ν)
( u

ds

)2

(x · ν)dσ. (1.8)

Moreover, for all e ∈ R
n, we have

∫

Ω

∂euLu dx = −Γ(1 + s)2

2

∫

∂Ω

A(ν)
( u

ds

)2

(ν · e) dσ. (1.9)

Here, ν is the unit outward normal to ∂Ω at x,

A(ν) = cs

∫

Sn−1

|ν · θ|2sa(θ)dθ, (1.10)

and cs is a constant that depends only on s.

It is important to notice that A(ξ) is the Fourier symbol of the operator (1.2).
(In probability, it is usually called the characteristic exponent of the Lévy process.)
We think it is an interesting fact that the Fourier symbol A appears in these new
identities, even though nothing is stated in terms of frequency variables.

In this direction, G. Grubb has recently found a new proof of our Pohozaev
identities; see [22]. The proofs of Grubb use Fourier transform methods, and are
completely different from ours presented above. A key ingredient in those proofs is
the existence of an appropriate factorization of the principal symbol of the operator,
in the spirit of her previous works [20, 21].

The proofs in [22] are done by flattening the boundary of Ω, and apply as well to
x-dependent operators. We think it is important to remark that, even in the case of
flat boundary, with these Fourier transform methods the treatment of anisotropic
operators L is significantly more delicate than the case L = (−∆)s.

The constant cs in (1.10) is given by

cs =
π

sin(πs)Γ(1 + 2s)
.

This can be checked by recalling that when L = (−∆)s then A ≡ 1; see [40].
We recall that the first identity of this type (with a local boundary term) was

established by the first two authors in [40] in the case of the isotropic fractional
Laplacian. Later, N. Abatangelo [1] obtained very related identities involving “large
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solutions” for the fractional Laplacian (−∆)s, i.e., solutions that blow up at the
boundary of the domain.

As said before, problems of the form (1.3) have a clear probabilistic interpretation,
in which f(x, u) can be viewed as a running cost. Informally speaking, u(x) is the
expected cost for a particle that moves randomly, following a Lévy process starting
at x ∈ Ω. However, we do not know any probabilistic interpretation of our identities.

As a consequence of Theorem 1.1 we have the following.

Corollary 1.2. Let s ∈ (0, 1), and assume that L and Ω satisfy either (1.6) or
(1.7). Let f be a locally Lipschitz function, and u be any bounded solution of

{

Lu = f(u) in Ω
u = 0 in R

n\Ω, (1.11)

Then, the following identity holds
∫

Ω

{

2nF (u)− (n− 2s)u f(u)

}

dx = Γ(1 + s)2
∫

∂Ω

A(ν)
( u

ds

)2

(x · ν)dσ,

where F (t) =
∫ t

0
f , ν is the unit outward normal to ∂Ω at x, and A is given by

(1.10).

Note that the quantity u/ds|∂Ω plays the role that the normal derivative plays
in second order PDEs. This fact is also observed in the Serrin’s problem for the
fractional Laplacian [11, 14, 49].

A consequence of Corollary 1.2 is the nonexistence of positive solutions to (1.11)-

(1.6) in star-shaped domains for the critical nonlinearity f(u) = u
n+2s
n−2s ; see Section 8.

Finally, as in [40], another consequence of Theorem 1.1 is the following integration
by parts formula.

Corollary 1.3. Let s ∈ (0, 1), and assume that L and Ω satisfy either (1.6) or
(1.7).

Let u and v be two functions satisfying the hypotheses of Theorem 1.1 – with
possibly different nonlinearities f(x, u) and g(x, v).

Then, the following identity holds for i = 1, ..., n
∫

Ω

Lu vxi
dx = −

∫

Ω

uxi
Lv dx− Γ(1 + s)2

∫

∂Ω

A(ν)
u

ds
v

ds
νi dσ.

Here, ν is the unit outward normal to ∂Ω at x, and A is given by (1.10).

To establish Theorem 1.1 we have to extend the method in [40] for the fractional
Laplacian to more general operators (1.2). In the case L = (−∆)s an important
ingredient of the proof in [40] was the precise behavior of (−∆)s/2u(x) for x near ∂Ω.

Here, we consider the operator L1/2 and we study the singular behavior of the
function L1/2u near ∂Ω. This requires very fine regularity estimates for u, u/ds, and
L1/2u(x) near the boundary. Some of these estimates were already established in
[43] and [44], while some other estimates are developed in the present paper.
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The kernel of the operator L1/2 has an explicit expression in case L = (−∆)s,
but not for general stable operators. Because of this, the proofs of our Pohozaev
identities are simpler for L = (−∆)s, and new ideas are required to treat the general

case, in which we obtain the extra factor
√

A(ν(z)).

1.3. Some ingredients of the proof. As said above, the proof of Theorem 1.1
follows the strategy in [40]. However, the extension from (−∆)s to more general non-
local operators (1.2) requires new ideas and presents some interesting mathematical
questions, as explained in more detail at the end of this Introduction.

An important ingredient in the proofs of the present paper is the regularity up to
the boundary of the quotient u/ds, stated next. When the spectral measure a and
the domain Ω are C∞, this is a particular case of the results of G. Grubb [20, 21]. For
non-regular spectral measures and C1,1 domains, the regularity of u/ds was recently
established in [43]. This result reads as follows.

Theorem 1.4 ([43]). Let Ω be any bounded and C1,1 domain. Let L be any operator
of the form (1.1)-(1.5), and u ∈ Hs(Rn) be the solution of Lu = g in Ω, u = 0 in
R

n \ Ω, with g ∈ L∞(Ω).
Then, u/ds is Hölder continuous up to the boundary ∂Ω, and

‖u/ds‖Cγ(Ω) ≤ C‖g‖L∞(Ω) for all γ < s.

The constant C depends only on Ω, s, γ, and the ellipticity constants.

Recall that for more general integro-differential operators of order 2s, solutions u
may not be comparable to ds near the boundary of Ω. For example, it is shown in
[42] that fully nonlinear equations with respect to the class L0 (or even to L1 and
L2) fail to have this property; see Section 2 in [42] for more details.

We will also need the following result, established recently in [44], and which deals
with the interior regularity of solutions.

Theorem 1.5 ([44]). Let L and Ω satisfy either (1.6) or (1.7). Let u ∈ Hs(Rn) be
the solution of Lu = g in Ω, u = 0 in R

n \ Ω. Assume that g ∈ L∞(Ω) and that
|∇g| ≤ Cd−s−1 in Ω.

Then, u is C1+2s−ǫ
loc (Ω) for all ǫ > 0, with the estimate

[u]Cs+β({dist(x,∂Ω)>ρ}) ≤ Cρ−β for all ρ ∈ (0, 1),

for all β ∈ [0, 1 + s).

Moreover, we showed in [44] that there exists a nonconvex C∞ domain and an
operator (1.1)-(1.5) for which the solution of (1.3) with f ≡ 1 is not C0,1

loc (Ω). In
particular, and somewhat surprisingly, the statement of Theorem 1.5 becomes false
when both conditions (1.6) and (1.7) are dropped. This is the essential reason for
which we assume (1.6) or (1.7) in the present paper.

Remark 1.6. The ellipticity assumption in (1.4) looks at first glance different from
the one in [43, 44] (which is the one in (1.5)). However, for spectral functions
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a ∈ L∞(Sn−1) these two ellipticity assumptions are equivalent, and hence we can
apply the results of [43] and [44].

In our setting, Theorem 1.1 will follow from Proposition 1.7 below.

Proposition 1.7. Let L and Ω satisfy either (1.6) or (1.7). Let u ∈ Hs(Rn) be
the solution of Lu = g in Ω, u = 0 in R

n \ Ω. Assume that g ∈ L∞(Ω), and that
|∇g| ≤ Cd−s−1 in Ω.

Then, u/ds is Hölder continuous up to the boundary, |∇u| ≤ Cds−1 in Ω, and the
following identity holds

∫

Ω

(x · ∇u)Lu dx =
2s− n

2

∫

Ω

uLu dx− cs
2

∫

∂Ω

A(ν)
( u

ds

)2

(x · ν)dσ.

Here, ν is the unit outward normal to ∂Ω at x, and A is given by (1.10).

The hypotheses of this Proposition will be satisfied for any solution to the semi-
linear elliptic equation (1.3). Still, we expect solutions to other related equations,
like ut + Lu = f(x, u), to satisfy the same hypotheses; see [16].

The paper is organized as follows. In Section 2 we show that it suffices to prove
Proposition 1.7 for C∞ spectral measures. In Section 3 we give a description of the
operator L1/2. In Section 4 we prove some interior regularity results for the quotient
u/ds, which are important in our proof of Proposition 1.7. Then, in Section 5 we
study the singular behavior of the function L1/2u near the boundary ∂Ω. In Section 6
we give the proof of Proposition 1.7 in the case of star-shaped domains. In Section 7
we finish the proof of Proposition 1.7 and we prove Theorem 1.1. Finally, in Section
8 we give some applications of our identities.

Let us stress the main novelties of the present paper with respect to the results
in [40]. The contents of Sections 2 and 3 are new with respect to [40], while the
results of Section 4 are a modified (and simplified) version of the corresponding ones
in [39]. The results in Sections 5 and 6 have been carefully adapted to the present
case of anisotropic operators. The analysis of these two Sections is more delicate
than the one for L = (−∆)s, and it is here where the new factor A(ν) shows up in
the boundary term of the identity. The proofs of Section 7 are more similar to [40].
Finally, the results in Section 8 are new even for the fractional Laplacian.

Throughout the paper we will skip the parts of the proofs that are more similar
to the ones in [40], to focus in the ones that present new mathematical ideas and/or
difficulties.

2. An approximation argument

The hypotheses of Proposition 1.7 allow the spectral measures a(·) to be very
irregular. In this section we show that, by an approximation argument, it suffices
to consider the case in which a ∈ C∞(Sn−1).

More precisely, in this Section we assume that the following result holds, and we
prove that Proposition 1.7 follows from it.
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Proposition 2.1. Let Ω be any C1,1 domain, and let L be an operator of the form
(1.6), with a ∈ C∞(Sn−1). Let u ∈ Hs(Rn) be any function satisfying

(a) u = 0 in R
n \ Ω.

(b) For all β ∈ [0, 1 + s) and all ρ > 0, we have

[u]Cs+β({dist(x,∂Ω)>ρ}) ≤ Cρ−β.

(c) Lu is bounded in Ω.

Then, u/ds is Hölder continuous up to the boundary, and the identity (1.8) holds.

Let us give next the proof of Proposition 1.7. After this, the rest of the paper will
consist essentially on the proof of Proposition 2.1 (the proof of Proposition 2.1 will
be completed on Section 7 and this will at once also give the proof of Proposition 1.7
and Theorem 1.1).

Proof of Proposition 1.7. Let Ω and L satisfy either (1.6) or (1.7), and let u and g
be as in the statement of Proposition 1.7.

Let ak ∈ C∞(Sn−1) be a sequence of nonnegative functions converging weakly
towards the spectral measure of the operator L. Let Lk be the operator (1.2) whose
spectral measure is ak, and let uk be the solution of

{

Lkuk = g in Ω
uk = 0 in R

n\Ω.
Then, by Theorems 1.4 and 1.5, we have

‖uk‖Cs(Rn) ≤ C, ‖uk/d
s‖Cγ(Ω) ≤ C, |∇uk| ≤ Cds−1,

for some constant C that depends on g, n, Ω, and the ellipticity constants, but not
on k.

Thus, up to a subsequence, the sequence uk converges uniformly to a function w
which satisfies w ≡ 0 in R

n \ Ω,
‖w‖Cs(Rn) ≤ C, ‖w‖Cγ(Ω) ≤ C, |∇w| ≤ Cds−1.

Furthermore, since the functions uk satisfy

[uk]Cs+β({dist(x,∂Ω)>ρ}) ≤ Cρ−β for all ρ ∈ (0, 1),

for all β ∈ [0, 1 + s), then the same bound holds for the function w.
This allows us to show that, for every x ∈ Ω, Lkuk is defined pointwise, and

g(x) = Lkuk(x) −→ Lw(x).

Hence, Lw = g in Ω.
But then, by uniqueness of the solution to Lu = g in Ω, u = 0 in R

n, we have
that u ≡ w.

Finally, since each uk satisfy the hypotheses of Proposition 2.1, then we have that
∫

Ω

(x · ∇uk)g dx =
2s− n

2

∫

Ω

uk g dx− cs
2

∫

∂Ω

A(ν)
(uk

ds

)2

(x · ν)dσ.
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Thus, taking the limit k → ∞ in the previous identity, we find (1.8), and thus we
are done. �

3. Fourier symbols and kernels

The proof of the Pohozaev identity (1.8) follows the steps of the one for the
fractional Laplacian (−∆)s in [40]. In the proof of [40], the function (−∆)s/2u
played a very important role, and this role will be played here by the L1/2u.

In order to establish fine estimates for this function L1/2u, we will need the fol-
lowing result, which states that the square root of L also possesses an associated
spectral measure.

Lemma 3.1. Let s ∈ (0, 1), and L be an operator of the form (1.2)-(1.4), with
a ∈ C∞(Sn−1). Then, there exists b ∈ C∞(Sn−1) such that

L1/2u(x) =

∫

Rn

(

u(x)− u(x+ y)
)b(y/|y|)
|y|n+s

dy.

Moreover, the function b satisfies
∫

Sn−1

|ν · θ|sb(θ)dθ = c

(
∫

Sn−1

|ν · θ|2sa(θ)dθ
)1/2

(3.1)

for all ν ∈ Sn−1, for some constant c.

Proof. The Fourier symbol of L is given by

A(ξ) = c

∫

Sn−1

|ξ · θ|2sa(θ)dθ;

see for example [45]. Thus, the Fourier symbol of L1/2 is given by

B(ξ) =
(

c

∫

Sn−1

|ξ · θ|2sa(θ)dθ
)1/2

.

This symbol is homogeneous of degree s, and is positive and C∞ in R
n \{0}. Hence,

this means that the operator can be written as

L1/2w(x) =

∫

Rn

(

u(x)− u(x+ y)
)

K(y)dy,

for some kernel K(y) homogeneous of degree −n− s, and such that K ∈ C∞(Rn \
{0}); see for example Section 0.2 in [51].

In other words, we may write K as

K(y) =
b(y/|y|)
|y|n+s

,

with b ∈ C∞(Sn−1), as desired.
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In fact, the function b can be computed explicitly in terms of B by using that, for
any α ∈ N

n
◦ with |α| = n, we have

yαK(y) = c

∫

Sn−1

|y · θ|−sDαB(θ)dθ.

for all y ∈ R
n.

It is important to notice that since B is even then b will be even, but that the
positivity of B does not yield the positivity of b. �

Remark 3.2. We expect a similar result to hold not only for spectral measures
a ∈ C∞(Sn−1), but also for a ∈ L∞(Sn−1) or for general measures µ. However, we
do not need this here, since by the approximation argument in the previous Section
we can assume from now on that a ∈ C∞(Sn−1).

4. Interior regularity for u/ds

In this section we will obtain interior estimates for the quotient u/ds, that is,
Proposition 4.1 below. These estimates hold for all operators (1.1)-(1.5) in any
C1,1 domain Ω (with no convexity assumption on the domain, with no regularity
assumptions on the spectral measure).

Throughout this section, L is any operator of the form (1.1)-(1.5). Also, through-
out this section, d is a C1,1 function that coincides with dist(x,Rn\Ω) in a neighbor-
hood of ∂Ω. That is, d is just the distance function but avoiding possible singularities
inside Ω.

As in [39], the key idea to obtain these estimates is to use the following equation

Lv =
1

ds
{

Lu− v Lds + IL(v, d
s)
}

in Ω,

where v ∈ Cγ(Rn) is an extension of u/ds|Ω, with γ ∈ (0, s), and

IL(w1, w2) =

∫

Rn

(

w1(x)− w1(x+ y)
)(

w2(x)− w2(x+ y)
)a(y/|y|)
|y|n+2s

dy. (4.1)

The following is the main result of this section.

Proposition 4.1. Let L and Ω be as in (1.7), and u be such that u ≡ 0 in R
n \ Ω

and ‖Lu‖L∞(Ω) ≤ C. Then, for all γ < s and for all β < 2s

[u/ds]Cβ({dist(x,∂Ω)>ρ}) ≤ Cργ−β for all ρ ∈ (0, 1),

where C is a constant that do not depend on ρ.

The proof of this result is a modified (and even somehow simplified) version of
the one in [39, Section 4].

As said before, we need several lemmas to prove Proposition 4.1. We start with
the first one, which reads as follows.
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Lemma 4.2. Let Ω be any C1,1 bounded domain, s ∈ (0, 1), L be given by (1.2).
Then, for all ǫ > 0 there exists a constant C such that

‖dǫ Lds‖L∞(Ω) ≤ C.

Moreover, the constant C depends only on n, s, ǫ, Λ, and Ω.

Proof. Note that ds is C1,1 inside Ω, so we only need to prove that |dǫ(x)Lds(x)| ≤ C
for x ∈ Ω near ∂Ω.

Let x ∈ Ω, and let x0 ∈ ∂Ω be such that |x − x0| = d(x). Let us consider the
function ϕx0

(x) = (−x · ν)s+, where ν is the unit outward normal to ∂Ω at x0. It
follows from Lemma 2.1 in [42] that

Lϕx0
(x) = 0;

see Section 2 in [42] for more details. Hence, we only have to prove that

Lw(x) ≤ C0d
−ǫ(x),

where we have denoted w = ds − ϕx0
.

Let ρ = d(x)/2. Then, the function w satisfies

|w(x+ y)| ≤







Cρs−1|y|2 for y ∈ Bρ,
C|y|2s for y ∈ B1 \Bρ,
C|y|s for y ∈ R

n \B1.

Therefore, we have that

|Lw(x)| ≤
∫

Rn

∣

∣w(x)− w(x+ y)
∣

∣

Λ

|y|n+2s
dy

≤ Λ

∫

Bρ

ρs−1|y|2
|y|n+2s

dy + Λ

∫

B1\Bρ

|y|2s
|y|n+2s

dy + Λ

∫

Rn\B1

|y|s
|y|n+2s

dy

≤ C (1 + | log ρ|)
≤ Cd−ǫ(x),

as desired. �

The next result is the analog of Corollary 2.5 in [39], and can be found in [43].

Lemma 4.3 ([43]). Let L be given by (1.2), and let w ∈ C∞(Rn). Then, for all
β < 2s and ǫ > 0,

‖w‖Cβ(B1/2) ≤ C

(

‖Lw‖L∞(B1) + ‖w‖L∞(B1) + sup
R≥1

{

Rǫ−2s‖w‖L∞(BR)

}

)

,

where C is a constant depending only on n, s, β, ǫ, λ, and Λ.

As a consequence of the previous lemma we find the following.
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Lemma 4.4. Let s and γ belong to (0, 1), with γ < 2s. Let U be an open set with
nonempty boundary. Then, for all β < 2s,

‖w‖(−γ)
β;U ≤ C

(

‖w‖L∞(Rn) + ‖Lw‖(2s−γ)
0;U

)

for all w with finite right hand side. The constant C depends only on n, s, γ, and
β.

Proof. For each x0 ∈ U , let R = dist(x0, ∂U)/2 and w̃(y) = w(x0 + Ry) − w(x0).
Then, we have that

‖w̃‖Cγ(B1) ≤ Rγ[w]Cγ(Rn),

sup
ρ≥1

ρ−γ‖w̃‖L∞(Bρ) ≤ Rγ[w]Cγ(Rn),

and
‖Lw̃‖L∞(B1) = R2s‖Lw‖L∞(BR(x0)) ≤ Rγ‖Lw‖(2s−γ)

0;U .

Hence, using Lemma 4.3, we find that

‖w̃‖Cβ(B1/2) ≤ CRγ
(

[w]Cγ(Rn) + ‖Lw‖(2s−γ)
0;U

)

.

Then, since this happens for all x0 ∈ U , the proof finishes exactly as in the proof of
[39, Lema 2.10]. �

Finally, the last ingredient for the proof of Proposition 4.1 is the following.

Lemma 4.5. Let Ω be a bounded C1,1 domain, and U ⊂ Ω be an open set. Let s
and ǫ belong to (0, 1) and satisfy ǫ < s. Then,

‖IL(w, ds)‖(s−ǫ)
0;U ≤ C

(

[w]Cǫ(Rn) + [w]
(−ǫ)
ǫ+s;U

)

, (4.2)

for all w with finite right hand side. The constant C depends only on Ω, s, and ǫ.

Proof. Let x0 ∈ U and R = dist(x0, ∂U)/2. Let

K =

(

[w]Cǫ(Rn) + [w]
(−ǫ)
ǫ+s;U

)(

[ds]Cs(Rn) + [ds]
(−s)
ǫ+s;U

)

.

We have that

|IL(w, ds)(x0)| ≤ Λ

∫

Rn

|w(x0)− w(x0 + y)| |ds(x0)− ds(x0 + y)| dy

|y|n+2s

≤ C

∫

BR(0)

R−ǫ−s[w]
(−ǫ)
ǫ+s;U [d

s]
(−s)
ǫ+s;U |y|2ǫ+2s dy

|y|n+2s

+ C

∫

Rn\BR(0)

[w]Cǫ(Rn)][d
s]Cs(Rn)|y|ǫ+s dy

|y|n+2s

≤ CRǫ−sK.

Hence, the result follows. �
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We can now continue with the proof of Proposition 4.1. To complete it, we need
to recall the definition of the following weighted Hölder norms:

Definition 4.6. Let β > 0 and σ ≥ −β. Let β = k + β ′, with k integer and
β ′ ∈ (0, 1]. For w ∈ Cβ(Ω) = Ck,β′

(Ω), define the seminorm

[w]
(σ)
β;Ω = sup

x,y∈Ω

(

min{d(x), d(y)}β+σ |Dkw(x)−Dkw(y)|
|x− y|β′

)

.

For σ ≥ 0, we also define the norm ‖ · ‖(σ)β;Ω as follows: in case that σ ≥ 0,

‖w‖(σ)β;Ω =

k
∑

l=0

sup
x∈Ω

(

d(x)l+σ|Dlw(x)|
)

+ [w]
(σ)
β;Ω ,

while

‖w‖(−σ)
β;Ω = ‖w‖Cσ(Ω) +

k
∑

l=1

sup
x∈Ω

(

d(x)l−σ|Dlw(x)|
)

+ [w]
(−σ)
β;Ω .

Proof of Proposition 4.1. Let v be a Cγ(Rn) extension of u/ds|Ω. Then, as in [39,
Section 4], we have that v solves the equation

Lv =
1

ds
{Lu− v Lds + IL(v, d

s)} in Ω, (4.3)

where

IL(f, g) =

∫

Rn

(

f(x)− f(x+ y)
)(

g(x)− g(x+ y)
)a(y/|y|)
|y|n+2s

dy.

Here, d is a function that coincides with dist(x,Rn \ Ω) in a neighborhood of ∂Ω
and that is C1,1 inside Ω. With this slight modification on the distance function, we
will have that (4.3) holds everywhere inside Ω.

We want to prove that

‖v‖(−γ)
β; Ω ≤ C,

where the Hölder norms ‖ · ‖(−γ)
β are defined above.

Let us use the equation for v to prove the result. Let U ⊂⊂ Ω. We prove next
that

‖v‖(−γ)
β;U ≤ C

for some constant C independent of U , and this will yield the desired result.
Since v = u/ds in Ω, and u ∈ C2s−ǫ and ds ∈ C1,1 inside Ω, then it is clear that

‖v‖(−γ)
β;U < ∞. Next we obtain an a priori bound for this seminorm in U . To do it,

we use equation (4.3) and Lemma 4.4. Namely,

‖v‖(−γ)
β;U ≤ ‖Lv‖(2s−γ)

0;U

≤ ‖d−sv Lds‖(2s−γ)
0;U + ‖d−sLu‖(2s−γ)

0;U + ‖d−s IL(v, d
s)‖(2s−γ)

0;U .
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Now, by Lemma 4.2 (with ǫ = s− γ > 0), we have

‖d−sv Lds‖(2s−γ)
0;U ≤ C‖ds−γv Lds‖L∞(U) ≤ C‖v‖L∞(Ω).

Similarly,

‖d−s Lu‖(2s−γ)
0;U ≤ C‖Lu‖L∞(Ω).

Moreover, by Lemma 4.5 (with ǫ = s− γ), we have

‖IL(v, ds)‖(s−γ)
0;U ≤ C

(

‖v‖Cγ(Rn) + ‖v‖(−γ)
γ+s;U

)

.

Thus, assuming β > γ + s without loss of generality, we deduce that

‖v‖(−γ)
β;U ≤ C

(

‖Lu‖L∞(Ω) + ‖v‖Cγ(Rn) + ‖v‖(−γ)
γ+s;U

)

≤ C

(

‖Lu‖L∞(Ω) + ‖v‖Cγ(Rn)

)

+
1

2
‖v‖(−γ)

β;U .

This last inequality is by standard interpolation.
Hence, we have proved that

‖v‖(−γ)
β;U ≤ C

(

‖Lu‖L∞(Ω) + ‖v‖Cγ(Rn)

)

,

and letting U ↑ Ω we obtain the desired result. �

5. Behavior of L1/2u near ∂Ω

Throughout this section, L is an operator of the form (1.2)-(1.4) with a ∈ C∞(Sn−1).
We will also use the following:

Definition 5.1. Given a C1,1 domain Ω a point x0 ∈ ∂Ω, and ε > 0, we define the
cone

Cx0
= {|(x0 − x) · ν| ≥ ε |x− x0|},

where ν = ν(x0) is the outward unit normal to ∂Ω at x0. We also consider

C+
x0

= {(x0 − x) · ν ≥ ε |x− x0|} and C−
x0

= Cx0
\ C+

x0
,

and a ball Bρ(x0), with ρ > 0 small enough so that C+
x0

∩ Bρ(x0) ⊂ Ω and C−
x0

∩
Bρ(x0) ⊂ R

n \ Ω.
Theorem 5.2. Let Ω be a bounded and C1,1 domain, L be given by (1.2)-(1.4) with
a ∈ C∞(Sn−1), and u be a function such that u ≡ 0 in R

n\Ω and that Lu is bounded
in Ω. Let x0 ∈ ∂Ω, and let ν, Cx0

and ρ as in Definition 5.1.
Then, for all x ∈ Cx0

∩ Bρ(x0),

L1/2u(x) = c1
{

log− |x− x0|+ c2χΩ(x)
}
√

A(ν(x0))
( u

ds

)

(x0) + h(x),

where A is given by (1.10), and h is a Cγ(Rn) function satisfying

‖h‖Cγ(Cx0∩Bρ(x0)) ≤ C,
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with C independent of x0.
Here, the number (u/ds)(x0) has to be understood as a limit (recall that u/ds ∈

Cα(Ω)), and c1 and c2 are constants that depend only on n and s.

The proof of this result is split into two results: Propositions 5.3 and 5.4.
The first one, stated next, compares the behavior of L1/2u near ∂Ω with the one

of L1/2(ds). Recall that, by Lemma 3.1,

L1/2w(x) =

∫

Rn

(

w(x)− w(x+ y)
)b(y/|y|)
|y|n+s

dy,

for some b ∈ C∞(Sn−1).

Proposition 5.3. Let Ω be a bounded and C1,1 domain, L be given by (1.2)-(1.4)
with a ∈ C∞(Sn−1), and u be a function such that u ≡ 0 in R

n \ Ω and that Lu is
bounded in Ω.

Then, there exists a Cα(Rn) extension v of u/ds|Ω such that

L1/2u = v L1/2ds + h in R
n,

where h ∈ Cα(Rn), and
‖h‖Cα(Rn) ≤ C

for some constant C that does not depend on θ.

The second result gives the singular behavior of L1/2ds near ∂Ω.
It is important to notice that, in the following result, d ≡ 0 in R

n \Ω, while δ > 0
in R

n \ Ω.
Proposition 5.4. Let Ω be a bounded and C1,1 domain, L be given by (1.2)-(1.4)
with a ∈ C∞(Sn−1). Let x0 ∈ ∂Ω, and let ν, Cx0

and ρ as in Definition 5.1.
Then, for all x ∈ Cx0

∩ Bρ(x0),

L1/2(ds)(x) = c1
{

log− |x− x0|+ c2χΩ(x)
}
√

A(ν(x0)) + h1(x),

where h1 is Cα(Rn), and log− t = min{log t, 0}.
To prove these results it is important to recall that, by Lemma 3.1, we have

L1/2w(x) =

∫

Rn

(

w(x)− w(x+ y)
)b(y/|y|)
|y|n+s

dy

for some b ∈ C∞(Sn−1).
In the proof of Proposition 5.3 we will also use the product rule

L1/2(w1w2) = w1L
1/2w2 + w2L

1/2w1 − I(w1, w2),

where

I(w1, w2)(x) =

∫

Rn

(

w1(x)− w1(x+ y)
)(

w2(x)− w2(x+ y)
)b(y/|y|)
|y|n+s

dy. (5.1)

The next lemma will lead to a Hölder bound for I(ds, v).
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Lemma 5.5. Let Ω be a bounded domain, and I be given by (5.1). Then, for each
α ∈ (0, 1),

‖I(ds, w)‖Cα/2(Rn) ≤ C[w]Cα(Rn), (5.2)

where the constant C depends only on n, s, and α.

Proof. Let x1, x2 ∈ R
n. Then,

|I(ds, w)(x1)− I(ds, w)(x2)| ≤ J1 + J2,

where

J1 =

∫

Rn

∣

∣w(x1)− w(x1 + y)− w(x2) + w(x2 + y)
∣

∣

∣

∣ds(x1)− ds(x1 + y)
∣

∣

C

|y|n+s
dy

and

J2 =

∫

Rn

∣

∣w(x2)− w(x2 + y)
∣

∣

∣

∣ds(x1)− ds(x1 + y)− ds(x2) + ds(x2 + y)
∣

∣

C

|y|n+s
dy .

Using that ‖ds‖Cs(Rn) ≤ 1 and supp ds = Ω,

J1 ≤
∫

Rn

∣

∣w(x1)− w(x1 + y)− w(x2) + w(x2 + y)
∣

∣min{|y|s, (diamΩ)s} C

|y|n+s
dy

≤ C

∫

Rn

[w]Cα(Rn)|x1 − x2|α/2|y|α/2min{|y|s, 1} C

|y|n+s
dy

≤ C|x1 − x2|α/2[w]Cα(Rn) .

Analogously,
J2 ≤ C|x1 − x2|α/2[w]Cα(Rn) .

Finally, the bound for ‖I(ds, w)‖L∞(Rn) is obtained with a similar argument, and
hence (5.2) follows. �

The following lemma, which is the analog of Lemma 4.3 in [39], will be used in the
proof of Proposition 5.3 below (with w replaced by v) and also in the next section
(with w replaced by u).

Recall that the norms ‖w‖(σ)β;Ω were defined in the previous section.

Lemma 5.6. Let Ω be a bounded domain and α and β be such that 0 < α ≤ s < β
and β−s is not an integer. Let k be an integer such that β = k+β ′ with β ′ ∈ (0, 1].
Then,

[L1/2w]
(s−α)
β−s;Ω ≤ C

(

‖w‖Cα(Rn) + ‖w‖(−α)
β;Ω

)

(5.3)

for all w with finite right hand side. The constant C depends only on n, s, α, and
β (but not on θ).

Proof. The proof is exactly the same as the one of Lemma 4.3 in [39]. The only
important point in the proof is that the kernel b(y/|y|) is a Cβ−s function on the
unit sphere – which is the case here since b ∈ C∞(Sn−1). �

Next we give the:
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Proof of Proposition 5.3. Since Lu ∈ L∞(Ω), then u/ds|Ω is Cα(Ω) for some α ∈
(0, s). Thus, we may define v as a Cα(Rn) extension of u/ds|Ω.

Then, we have that

L1/2u(x) = v(x)L1/2ds(x) + ds(x)L1/2v(x)− I(v, ds),

where

I(v, ds) =

∫

Rn

(

v(x)− v(x+ y)
)(

ds(x)− ds(x+ y)
)b(y/|y|)
|y|n+s

dy.

This equality is valid in all of Rn because ds ≡ 0 in R
n\Ω and v ∈ Cα+s inside Ω –

by Proposition 4.1. Thus, we only have to see that the terms dsL1/2v and I(v, ds)
belong to Cα(Rn).

For the first one we combine Proposition 4.1 with β = s+α and Lemma 5.6. We
obtain

‖L1/2v‖(s−α)
α;Ω ≤ C, (5.4)

and this immediately yields dsL1/2v ∈ Cα(Rn); see the proof of Proposition 3.1 in
[40] for more details.

The second bound, that is,

‖I(v, ds)‖Cα(Rn) ≤ C,

follows from Lemma 5.5. �

Let us now prove Proposition 5.4. For it, we need some lemmas.

Lemma 5.7. Let L be given by (1.2)-(1.4) with a ∈ C∞(Sn−1).
Let η be a C∞

c (R) with support in (−2, 2) and such that η ≡ 1 in [−1, 1]. Let
ν ∈ Sn−1, and

φx0
(x) =

(

(x− x0) · ν
)s

− η((x− x0) · ν), (5.5)

where z− = min{z, 0}. Then, we have

L1/2φ(x) = c1
{

log |(x− x0) · ν| + c2χ(0,∞)(x)
}
√

A(ν) + h(x)

for x ∈ B1/2(x0), where h ∈ Cs(B1/2(x0)).

Proof. On the one hand, since φx0
is a 1-D function, then by Lemma 2.1 in [42] we

have that
L1/2φx0

(x) = cs B(ν)(−∆)
s/2
R

φ((x− x0) · ν),
where φ(t) = (t−)

s η(t) and

B(ν) =
∫

Sn−1

|ν · θ|sb(θ)dθ.

Moreover, by Lemma 3.1, we have B(ν) = c
√

A(ν) for some constant c.
On the other hand, by Lemma 3.7 in [40], we have that

(−∆)
s/2
R

φ(t) = c1
{

log |t|+ c2χ(0,∞)(t)
}

+ h0(t),

with h0 ∈ Cs. Thus, the result follows. �
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Remark 5.8. Throughout the rest of the Section the quantity ρ0 > 0 will be a fixed
constant, depending only on Ω, such that every point on ∂Ω can be touched from
both inside and outside Ω by balls of radius ρ0.

Lemma 5.9. Let s ∈ (0, 1), and L be an operator of the form (1.2)-(1.4), with
a ∈ C∞(Sn−1). Let Ω be any bounded C1,1 domain in R

n, and let ρ0 be given by
Remark 5.8.

Fix x0 ∈ ∂Ω, and define φx0
as in (5.5), with ν = ν(x0) the outward unit normal

to ∂Ω at x0. Let us consider the segment

Sx0
= {x0 + tν, t ∈ (−ρ0/2, ρ0/2)}, (5.6)

where φ is given by (5.5) and ν is the unit outward normal to ∂Ω at x0. Define also
wx0

= ds − φx0
.

Then, for all x ∈ Sx0
,

|L1/2wx0
(x)− L1/2wx0

(x0)| ≤ C|x− x0|s/2,
where C depends only on Ω and ρ0 (and not on x0).

Proof. We denote w = wx0
and δ(x) = dist(x, ∂Ω).

Note that, along Sx0
, the distance to ∂Ω agrees with the distance to the tangent

plane to ∂Ω at x0. That is, denoting δ± = (χΩ −χRn\Ω)δ and d̄2(x) = −ν · (x− x0),
we have δ±(x) = d̄2(x) for all x ∈ Sx0

. Moreover, the gradients of these two functions
also coincide on Sx0

, i.e., ∇δ±(x) = −ν = ∇d̄2(x) for all x ∈ Sx0
.

Therefore, for all x ∈ Sx0
and y ∈ Bρ0/2(0), we have

|δ±(x+ y)− d̄2(x+ y)| ≤ C|y|2

for some C depending only on ρ0. Thus, for all x ∈ Sx0
and y ∈ Bρ0/2(0),

|w(x+ y)| = |(δ±(x+ y))s+ − (d̄2(x+ y))s+| ≤ C|y|2s, (5.7)

where C is a constant depending on Ω and s.
On the other hand, since w ∈ Cs(Rn), then

|w(x+ y)− w(x0 + y)| ≤ C|x− x0|s. (5.8)

Finally, let ρ < ρ0/2 to be chosen later. For each x ∈ Sx0
we have

|L1/2w(x)− L1/2w(x0)| ≤ C

∫

Rn

|w(x+ y)− w(x0 + y)| C

|y|n+s
dy

≤ C

∫

Bρ

|w(x+ y)− w(x0 + y)| C

|y|n+s
dy

+ C

∫

Rn\Bρ

|w(x+ y)− w(x0 + y)| C

|y|n+s
dy

≤ C

∫

Bρ

|y|2s C

|y|n+s
dy + C

∫

R\Bρ

|x− x0|s
C

|y|n+s
dy

= C(ρs + |x− x0|sρ−s) ,
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where we have used (5.7) and (5.8). Taking ρ = |x−x0|1/2 the lemma is proved. �

Finally, we give the proof of Proposition 5.4.

Proof of Proposition 5.4. Let ρ0 be given by Remark 5.8, and

U = {x ∈ R
n : dist(x, ∂Ω) < ρ0}.

For each x ∈ U , let x∗ ∈ ∂Ω be the unique point such that |x− x∗| = dist(x, ∂Ω).
Define

h0(x) = L1/2ds(x)− c1
{

log− |x− x∗|+ c2χΩ(x)
}
√

A(ν(x∗)).

We claim that h0 ∈ Cα(U).
Indeed, we show next that we have

(i) h0 is locally Lipschitz in U and

|∇h0(x)| ≤ K|x− x∗|−M in U

for some M > 0.
(ii) There exists α > 0 such that

|h0(x)− h0(x
∗)| ≤ K|x− x∗|α in U.

Then, (i) and (ii) yield that

‖h0‖Cγ(Rn) ≤ CK

for some γ > 0; see for example Claim 3.10 in [40].
Let us show first (ii). On one hand, by Lemma 5.7, for all x0 ∈ ∂Ω and for all

x ∈ Sx0
, where Sx0

is defined by (5.6), we have

h0(x) = L1/2ds(x)− L1/2φx0
(x) + h̃(x),

where h̃ is the Cs function from Lemma 5.7. Hence, using Lemma 5.9, we find

|h0(x)− h0(x0)| ≤ C|x− x0|s/2 for all x ∈ Sx0

for some constant independent of x0.
Recall that for all x ∈ Sx0

we have x∗ = x0, where x∗ is the unique point on ∂Ω
satisfying δ(x) = |x− x∗|. Hence, (ii) follows.

Let us now show (i). Observe that ds ≡ 0 in R
n\Ω, |∇ds| ≤ Cds−1 in Ω, and

|D2ds| ≤ Cds−2 in U . Then, letting r = dist(x, ∂Ω)/2, we have

|∇L1/2ds(x)| ≤ C

∫

Rn

|∇ds(x)−∇ds(x+ y)||y|−n−s dy

≤ C

∫

Br

Crs−2|y| dy
|y|n+s

+ C

∫

R\Br

( |∇ds(x)|
|y|n+s

+
|∇ds(x+ y)|

|y|1+s

)

dy

≤ C

r
+

C

r
+ C

∫

Rn\Br

|d(x+ y)|s−1 dy

|y|n+s
.
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Now, by Lemma 4.2 in [44] (with s̄ and ᾱ therein replaced by s/2 and 1− s/2 here)
we have that

∫

Rn\Br

|d(x+ y)|s−1 dy

|y|n+s
≤ C

r
,

and thus we get

|∇L1/2ds(x)| ≤ C|x− x∗|−1.

This yields (i).
Thus, we have proved that h0 ∈ Cγ(U) for some γ > 0.
To finish the proof, we only have to notice that the function |x − x∗|/|x− x0| is

Lipschitz in Cx0
∩B1/2(x0) and bounded by below by a positive constant, so that

log− |x− x∗| − log− |x− x0|

is Lipschitz in Cx0
∩B1/2(x0). Moreover,

√

A(ν(x∗)−
√

A(ν(x0) is also Lipschitz in
Cx0

∩ B1/2(x0) and vanishes at x = x0. Thus, the function

{

log− |x− x∗|+ c2χΩ(x)
}
√

A(ν(x∗))−
{

log− |x− x0|+ c2χΩ(x)
}
√

A(ν(x0))

is Hölder continuous in Cx0
∩B1/2(x0).

This implies that

h(x) = L1/2ds(x)− c1
{

log− |x− x0|+ c2χΩ(x)
}

√

A(ν(x0))

is Cα in Cx0
∩ B1/2(x0), as desired. �

To end this section, we give the

Proof of Proposition 5.2. By Propositions 5.3 and 5.4, we have that

L1/2u(x) = c1
{

log− |x− x0|+ c2χΩ(x)
}

√

A(ν(x0))v(x) + h1(x)

for some function h1 ∈ Cα(Cx0
∩Bρ(x0)).

Thus, the result follows by taking into account that v is Cα and that v(x0) =
(u/ds)(x0). �

6. Proof of the results in star-shaped domains

In this section we prove Proposition 2.1 for strictly star-shaped domains. Recall
that Ω is said to be strictly star-shaped if, for some z0 ∈ R

n,

(x− z0) · ν ≥ c > 0 for all x ∈ ∂Ω (6.1)

for some c > 0. The result for general C1,1 domains will be a consequence of this
strictly star-shaped case and will be proved in Section 7.

Before proving Proposition 2.1 we state an essential ingredient in the proof of this
result. It is a fine 1-D computation that we did in [40].
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Proposition 6.1 ([40]). Let A and B be real numbers, and

ϕ(t) = A log− |t− 1|+Bχ[0,1](t) + h(t),

where log− t = min{log t, 0} and h is a function satisfying, for some constants β
and γ in (0, 1), and C0 > 0, the following conditions:

(i) ‖h‖Cβ([0,∞)) ≤ C0.
(ii) For all β ∈ [γ, 1 + γ]

‖h‖Cβ((0,1−ρ)∪(1+ρ,2)) ≤ C0ρ
−β for all ρ ∈ (0, 1).

(iii) |h′(t)| ≤ C0t
−2−γ and |h′′(t)| ≤ C0t

−3−γ for all t > 2.

Then,

− d

dλ

∣

∣

∣

∣

λ=1+

∫ ∞

0

ϕ (λt)ϕ

(

t

λ

)

dt = A2π2 +B2.

Moreover, the limit defining this derivative is uniform among functions ϕ satisfy-
ing (i)-(ii)-(iii) with given constants C0, β, and γ.

We can give now the

Proof of Proposition 2.1 for strictly star-shaped domains. By the argument in [40,
Section 2], we may assume without loss of generality that Ω is strictly star-shaped
with respect to the origin, that is, z0 = 0 in (6.1).

We start with the identity

∫

Ω

(x · ∇u)Lu dx =
d

dλ

∣

∣

∣

∣

λ=1+

∫

Rn

uλLu dx, (6.2)

where uλ(x) = u(λx) and d
dλ

∣

∣

λ=1+
is the derivative from the right side at λ = 1. At

a formal level, formula (6.2) follows by taking derivatives under the integral sign;
rigorously, this can be justified using the bounds |Lu| ≤ C and |∇u| ≤ Cds−1 in Ω
and the fact that uλ ≡ 0 in R

n \ Ω for λ > 1.

Thus, as in [40], integrating by parts and using the change of variables y =
√
λx,

we find
∫

Rn

uλLu dx = λ
2s−n

2

∫

Rn

w√
λw1/

√
λdy,

where

w(x) = L1/2u(x), and wλ(x) = w(λx).
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This leads to
∫

Ω

(∇u · x)Lu dx =
d

dλ

∣

∣

∣

∣

λ=1+

{

λ
2s−n

2

∫

Rn

w√
λw1/

√
λdy

}

=
2s− n

2

∫

Rn

|w|2dx (6.3)

+
d

dλ

∣

∣

∣

∣

λ=1+

∫

Rn

w√
λw1/

√
λdy

=
2s− n

2

∫

Ω

uLu dx+
1

2

d

dλ

∣

∣

∣

∣

λ=1+

∫

Rn

wλw1/λdy. (6.4)

Hence, we have to prove that

− d

dλ

∣

∣

∣

∣

λ=1+
Iλ = Γ(1 + s)2

∫

∂Ω

A(ν)
( u

ds

)2

(x · ν) dσ, (6.5)

where

Iλ =

∫

Rn

wλw1/λdy. (6.6)

We write the integral (6.5) in coordinates (t, x0) ∈ (0,∞)× ∂Ω, where each y ∈ R
n

is written as y = tx0. We find

d

dλ

∣

∣

∣

∣

λ=1+
Iλ =

d

dλ

∣

∣

∣

∣

λ=1+

∫

∂Ω

(x · ν)dσ(x)
∫ ∞

0

tn−1w(λtx)w

(

tx

λ

)

dt. (6.7)

Fix now x0 ∈ ∂Ω, and define

ϕ(t) = t
n−1

2 w (tx0) = t
n−1

2 L1/2u(tx0).

By Theorem 5.2, we have

ϕ(t) = t
n−1

2

√

A(ν)c1
{

log− |t− 1|+ c2χ(0,1)(t)
}

( u

ds

)

(x0) + h1(t)

in [0,∞), where h1 is a Cγ([0,∞)) function.
Thus, this yields

ϕ(t) =
√

A(ν)c1
{

log− |t− 1|+ c2χ(0,1)(t)
}

( u

ds

)

(x0) + h(t)

in [0,∞), where h ∈ Cγ([0,∞)).
We want to apply now Proposition 6.1 to this function ϕ(t). For this, we have to

check that (ii), and (iii) hold – we already checked (i).
To check (ii), we just apply Lemma 5.6 with w = u, β ∈ (0, 1 + s), and α = s.

We find that ϕ satisfies the bound in (ii), and thus h also satisfies the same bound.
To check (iii), we notice that for x ∈ R

n \ (2Ω) we have

L1/2u(x) = −
∫

Ω

u(y)K(x− y)dy,
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where K(y) = b(y/|y|)|y|−n−s. Since b ∈ C∞(Sn−1), differentiating under the inte-
gral sign one gets

|∇L1/2u(x)| ≤ C|x|−n−s−1 and |D2L1/2u(x)| ≤ C|x|−n−s−2.

And this yields (iii).
Therefore, we can apply Proposition 6.1 to find that, for each x0 ∈ ∂Ω,

d

dλ

∣

∣

∣

∣

λ=1+

∫ ∞

0

tn−1w(λtx)w

(

tx

λ

)

dt = cA(ν(x0))
( u

ds

)2

(x0)

for some constant c.
Finally, by uniform convergence on x0 of the limit, and by (6.7), this leads to

d

dλ

∣

∣

∣

∣

λ=1+
Iλ = c

∫

∂Ω

(

x0 · ν
)

A(ν)
( u

ds

)2

dx0,

which is exactly what we wanted to prove. �

7. Non-star-shaped domains and proof of Theorem 1.1

In this section we prove Proposition 2.1 for general C1,1 domains.
The key idea, as in [40], is that every C1,1 domain is locally star-shaped, in the

sense that its intersection with any small ball is star-shaped with respect to some
point. To exploit this, we use a partition of unity to split the function u into a set
of functions u1, ..., um, each one with support in a small ball. Using this, we will
prove a bilinear version of the identity, namely

∫

Ω

(x · ∇u1)Lu2 dx+

∫

Ω

(x · ∇u2)Lu1 dx =
2s− n

2

∫

Ω

u1Lu2 dx+

+
2s− n

2

∫

Ω

u2Lu1 dx− Γ(1 + s)2
∫

∂Ω

A(ν)
u1

ds
u2

ds
(x · ν) dσ.

(7.1)

The following lemma states that this bilinear identity holds whenever the two
functions u1 and u2 have disjoint compact supports. In this case, the last term in
the previous identity equals 0, and since Lui is evaluated only outside the support
of ui, we only need to require ∇ui ∈ L1(Rn).

Lemma 7.1. Let u1 and u2 be W 1,1(Rn) functions with disjoint compact supports
K1 and K2. Then,

∫

K1

(x · ∇u1)Lu2 dx+

∫

K2

(x · ∇u2)Lu1 dx =

=
2s− n

2

∫

K1

u1Lu2 dx+
2s− n

2

∫

K2

u2Lu1 dx.

Proof. Notice first that

Lw(x) = cs

∫

Sn−1

(−∂θθ)
sw(x)dµ(θ), (7.2)
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see e.g. formula (2.2) and Lemma 2.1 in [42].
We claim that, for each θ ∈ Sn−1,

(−∂θθ)
s(x · ∇ui) = x · ∇(−∂θθ)

sui + 2s(−∂θθ)
sui in R

n\Ki. (7.3)

Indeed, fix θ ∈ Sn−1 and fix x0 ∈ {x+τθ : τ ∈ R}. Let τ1 be such that x0+τ1θ = x.
Then, using that ui ≡ 0 in R

n \Ki, for each x ∈ R
n\Ki we have

(−∂θθ)
s(x · ∇ui)(x) = c1,s

∫

x0+τθ∈Ki

−(x0 + τθ) · ∇ui(x0 + τθ)

|τ − τ1|1+2s
dτ

= c1,s

∫

x0+τθ∈Ki

(τ − τ1)θ · ∇ui(x0 + τθ)

|τ − τ1|1+2s
dτ

+ c1,s

∫

x0+τθ∈Ki

−(x0 + τ1θ) · ∇ui(x0 + τθ)

|τ − τ1|1+2s
dτ

= c1,s

∫

x0+τθ∈Ki

∂τ

(

τ1 − τ

|τ − τ1|1+2s

)

ui(y)dτ + x · (−∂θθ)
s∇ui(x)

= c1,s

∫

x0+τθ∈Ki

−2s

|τ − τ1|1+2s
ui(y)dτ + x · ∇(−∂θθ)

sui(x)

= 2s(−∂θθ)
sui(x) + x · ∇(−∂θθ)

sui(x),

as claimed.
Therefore, using (7.3) and (7.2), we find

L(x · ∇ui) = x · ∇Lui + 2s Lui in R
n\Ki. (7.4)

We also note that for all functions w1 and w2 in L1(Rn) with disjoint compact
supports W1 and W2, it holds the integration by parts formula

∫

W1

w1Lw2 =

∫

W1

∫

W2

−w1(x)w2(y)

|x− y|n+2s
a

(

x− y

|x− y|

)

dy dx =

∫

W2

w2Lw1. (7.5)

Now, integrating by parts,
∫

K1

(x · ∇u1)Lu2 = −n

∫

K1

u1Lu2 −
∫

K1

u1x · ∇Lu2.

Next we apply (7.4) and (7.5) to w1 = u1 and w2 = x · ∇u2. We obtain
∫

K1

u1x · ∇Lu2 =

∫

K1

u1L(x · ∇u2)− 2s

∫

K1

u1Lu2

=

∫

K2

Lu1(x · ∇u2)− 2s

∫

K1

u1Lu2.

Hence,
∫

K1

(x · ∇u1)Lu2 = −
∫

K2

Lu1(x · ∇u2) + (2s− n)

∫

K1

u1Lu2.
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Finally, again by the integration by parts formula (7.5) we find
∫

K1

u1Lu2 =
1

2

∫

K1

u1Lu2 +
1

2

∫

K2

u2Lu1,

and the lemma follows. �

The second lemma states that the bilinear identity (7.1) holds whenever the two
functions u1 and u2 have compact supports in a ball B such that Ω∩B is star-shaped
with respect to some point z0 in Ω ∩ B.

Lemma 7.2. Let Ω be a bounded C1,1 domain, and let B be a ball in R
n. Assume

that there exists z0 ∈ Ω ∩ B such that

(x− z0) · ν(x) > 0 for all x ∈ ∂Ω ∩ B.

Let u be a function satisfying the hypothesis of Proposition 2.1, and let u1 = uη1
and u2 = uη2, where ηi ∈ C∞

c (B), i = 1, 2. Then, the following identity holds
∫

B

(x · ∇u1)Lu2 dx+

∫

B

(x · ∇u2)Lu1 dx =
2s− n

2

∫

B

u1Lu2 dx+

+
2s− n

2

∫

B

u2Lu1 dx− Γ(1 + s)2
∫

∂Ω∩B
A(ν)

u1

ds
u2

ds
(x · ν) dσ.

Proof. The proof is exactly the same as Lemma 5.2 in [40]. One only has to check
that for all η ∈ C∞

c (B), and letting ũ = uη, then the function ũ satisfies the
hypotheses of Proposition 2.1.

Hypotheses (a) and (b) are immediate to check, since η is smooth. So, we only
have to check that Lũ is bounded. But

L(uη) = ηLu+ uLη − IL(u, η),

where IL is given by (4.1). The first term is bounded because Lu is bounded. The
second term is bounded since η ∈ C∞

c (B). The third term is bounded because
u ∈ Cs(Rn) and η ∈ Lip(Rn). Thus, the lemma is proved. �

We now give the

Proof of Proposition 2.1. As in [40], the result follows from Lemmas 7.2 and 7.1.
We omit the details of this proof because it is exactly the same as in [40]. �

Hence, recalling the result in Section 2, Proposition 1.7 is proved.
Finally, as in [40], the other results follow from Proposition 1.7.

Proof of Theorem 1.1. The first identity follows immediately from Proposition 1.7
and the results in [44]. The second identity follows from the first one by applying it
with two different origins; see [40] for more details. �

Proof of Corollary 1.2. The result follows immediately from the first identity in The-
orem 1.1. �
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Proof of Corollary 1.3. Applying Proposition 1.7 with two different origins, we find
that

∫

Ω

wxi
Lw dx = −Γ(1 + s)2

2

∫

∂Ω

A(ν)
(w

ds

)2

νi dσ

whenever w satisfies the hypotheses of the Proposition. Then, the result follows by
applying this identity with w = u + v and w = u − v, and subtracting the two
identities. �

8. Applications of the identities

We give here some consequences of our identities.
A typical application of Pohozaev-type identities is the nonexistence of solutions

to Lu = up, with p ≥ n+2s
n−2s

. For supercritical powers p > n+2s
n−2s

, the nonexistence
of bounded solutions was already known, since it follows from the results in [41].

For the critical nonlinearity f(u) = u
n+2s
n−2s , the nonexistence of bounded positive

solutions follows directly from Corollary 1.2 (see [40]), and hence the nonexistence
of all positive solutions follows combining this with the following result, which we
prove here.

Proposition 8.1. Let Ω be any bounded domain, and f(x, u) be such that

|f(x, u)| ≤ C0

(

1 + |u|n+2s
n−2s

)

. (8.1)

Let L be any operator of the form (1.2)-(1.4), and u be any weak solution of (1.3).
Then

‖u‖L∞(Ω) ≤ C, (8.2)

for some C > 0 depending only on n, s, C0, ellipticity constants, and ‖u‖Hs
µ(R

n).

Remark 8.2. Here, we say that u is a weak solution of (1.3) if u ≡ 0 in Ωc,

‖u‖2Hs
µ(R

n) :=

∫

Rn

∫

Sn−1

∫ ∞

−∞

(

u(x)− u(x+ rθ)
)2 dr

|r|1+2s
dµ(θ) dx

is finite, and
∫

Rn

∫

Sn−1

∫ ∞

−∞

(

u(x)− u(x+ rθ)
)2 dr

|r|1+2s
dµ(θ) dx =

∫

Ω

f(x, u)η dx

for all η ∈ C∞
c (Ω).

By Lemma 8.4 below, the norm ‖u‖Hs
µ(R

n) is equivalent to ‖u‖Hs(Rn), so that weak
solutions belong to Hs.

Another consequence of Corollary 1.2 and Proposition 8.1 is the following unique
continuation principle. Recall that a nonlinearity f(u) is said to be subcritical if

t f(t) <
n− 2s

2n

∫ t

0

f (8.3)

for all t 6= 0.
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Corollary 8.3. Let s ∈ (0, 1), and assume that L and Ω satisfy (1.6).
Let f be any locally Lipschitz function, and u be any weak solution of (1.11).

Assume in addition that f(u) is subcritical, in the sense that (8.3) holds.
Then, u is bounded in Ω, u/ds is Hölder continuous up to the boundary, and the

following unique continuation principle holds:

u

ds

∣

∣

∣

∂Ω
≡ 0 on ∂Ω =⇒ u ≡ 0 in Ω.

Here, u/ds on ∂Ω has to be understood as a limit (as in Theorem 1.1).

We next prove Proposition 8.1 and Corollary 8.3.
To establish Proposition 8.1, we will need the following.

Lemma 8.4. Let L be any operator of the form (1.1)-(1.5). Then,

c[u]2Hs(Rn) ≤
∫

Rn

∫

Sn−1

∫ ∞

−∞

(

u(x)− u(x+ rθ)
)2 dr

|r|1+2s
dµ(θ)dx ≤ C[u]2Hs(Rn),

where the constants c and C depend only on the ellipticity constants in (1.5).

Proof. The result follows by writing each of the terms in the Fourier side. Indeed,
since the symbol of L is A(ξ), and it satisfies

λ|ξ|2s ≤ A(ξ) ≤ Λ|ξ|2s,
then we have

c

∫

Rn

|ξ|2s|û|2dξ ≤
∫

Rn

A(ξ)|û|2dξ ≤ C

∫

Rn

|ξ|2s|û|2dξ,

as desired. �

We will also need the following result, established in [16].

Proposition 8.5 ([16]). Let Ω ⊂ R
n be any bounded domain, and L any operator

of the form (1.2)-(1.4). Let u be any weak solution of
{

Lu = g in Ω
u = 0 in R

n \ Ω,
Then,

(i) If 1 < p < n
2s
,

‖u‖Lq(Ω) ≤ C‖g‖Lp(Ω), q =
np

n− 2ps
.

(ii) If n
2s

< p < ∞,

‖u‖L∞(Ω) ≤ C‖g‖Lp(Ω).

The constant C depends only on n, s, p, Ω and ellipticity constants.

The last ingredient for the proof of Proposition 8.1 is the following technical result.
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Lemma 8.6. Fix T > 0 and β ≥ 0. Then, for all real numbers a, b, we have
∣

∣aβTa− bβT b
∣

∣

2 ≤ C(a− b)
(

a2βT a− b2βT b
)

,

where aT = min{|a|, T} and bT = min{|b|, T}. The constant C depends only on β.

Proof. Let

f(z) = z ·
(

min{|z|, T}
)β
.

Then, we clearly have

|f(a)− f(b)|2 =
(
∫ b

a

f ′
)2

≤ (a− b)

∫ b

a

(f ′)2.

Also,

|f(a)− f(b)|2 =
∣

∣aβTa− bβT b
∣

∣

2
,

so that we only have to show that

(a− b)

∫ b

a

(f ′)2 ≤ (a− b)
(

a2βT a− b2βT b
)

. (8.4)

But

f ′(z) =

{

T β if |z| > T
(β + 1)|z|β if |z| < T,

and therefore
(

min{|z|, T}
)β ≤ f ′(z) ≤ (β + 1)

(

min{|z|, T}
)β
.

Similarly, the function

g(z) = z ·
(

min{|z|, T}
)2β

satisfies
(

min{|z|, T}
)2β ≤ g′(z) ≤ (β + 1)

(

min{|z|, T}
)2β

.

Thus,

(a− b)

∫ b

a

(f ′)2 ≤ (β + 1)2(a− b)

∫ b

a

g′ = C(a− b)
(

g(a)− g(b)
)

,

and this yields (8.4). �

We give now the:

Proof of Proposition 8.1. We adapt a classical argument of Brezis-Kato for −∆u =
f(x, u) to the present context of nonlocal equations.

Fix β ≥ 0 and T > 1, and let uT = min{|u|, T}. By Lemma 8.6, for all x, y ∈ R
n,

∣

∣u(x)uβ
T (x)− u(y)uβ

T (y)
∣

∣

2 ≤ C
(

u(x)− u(y)
)(

u(x)u2β
T (x)− u(y)u2β

T (y)
)

. (8.5)
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Hence, using (8.5), we find
∫

Rn

∫

Rn

∣

∣u(x)uβ
T (x)− u(y)uβ

T (y)
∣

∣

2
K(x− y)dx dy

≤ C

∫

Rn

∫

Rn

(

u(x)− u(y)
)(

u(x)u2β
T (x)− u(y)u2β

T (y)
)

K(x− y)dx dy,

where we denoted K(y) = a(y/|y|)|y|−n−2s.
Moreover, using the equation (1.3), we also have

∫

Rn

∫

Rn

(

u(x)− u(y)
)(

u(x)u2β
T (x)− u(y)u2β

T (y)
)

K(x− y)dx dy =

∫

Ω

f(x, u) u u2β
T dx.

Now, by (8.1), we have that

|f(x, u)| ≤ α(x)
(

1 + |u|
)

,

with

α(x) =
|f(x, u)|
1 + |u| ≤ C

(

1 + |u| 4s
n−2s

)

∈ L
n
2s (Ω).

We have used that u ∈ L
2n

n−2s (Ω), since u ∈ Hs(Rn) by Lemma 8.4.
Combining these facts, we find
∫

Rn

∫

Rn

∣

∣u(x)uβ
T (x)− u(y)uβ

T (y)
∣

∣

2
K(x− y)dx dy ≤ C

∫

Ω

α(x)(1 + |u|)2u2β
T dx,

and thus, using Lemma 8.4,

[

uuβ
T

]2

Hs(Rn)
≤ C

∫

Ω

α(x)(1 + |u|)2u2β
T dx.

Therefore, by the fractional Sobolev inequality,
(
∫

Ω

|uuβ
T |

2n
n−2sdx

)
n−2s
2n

≤ C1

∫

Ω

α(x)(1 + |u|)2u2β
T dx. (8.6)

Assume that
∫

Ω

|u|2+2βdx ≤ C2

for some β ≥ 0. Then,
∫

Ω

α(x)|u|2u2β
T dx ≤ M0

∫

Ω

|u|2+2βdx+

∫

{α(x)>M0}
α(x)|u|2u2β

T dx

≤ C2M0 + ε(M0)

(
∫

Ω

|uuβ
T |

2n
n−2sdx

)
n−2s
2n

,

where

ε(M0) =

(
∫

{α(x)>M0}
|α(x)|n/2sdx

)2s/n

−→ 0
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as M0 → ∞. Also, note that we can deal with
∫

Ω
α(x)u2β

T dx in the analogue proce-
dure.

Therefore, taking M0 large enough so that C1ε(M0) ≤ 1/2, we find
(
∫

Ω

|uuβ
T |

2n
n−2sdx

)
n−2s
2n

≤ CC2,

with C independent of T . Thus, letting T → ∞, we obtain that
∫

Ω

|u|(2+2β) n
n−2sdx ≤ CC2.

Hence, iterating β0 = 0, 1 + βk = (1 + βk−1)
n

n−2s
for k ≥ 1, we conclude that

u ∈ Lp(Ω) for all p < ∞.
Finally, by Proposition 8.5 and (8.1), this yields u ∈ L∞(Ω), as desired. �

Remark 8.7. Notice that Proposition 8.1 establishes the boundedness of solutions

for critical and subcritical nonlinearities |f(x, u)| ≤ C
(

1 + |u|n+2s
n−2s

)

whenever the

operator L satisfies (1.2)-(1.4), but the assumption (1.4) is only needed in order to
apply Proposition 8.5.

For subcritical nonlinearities |f(x, u)| ≤ C(1 + |u|p), with p < n+2s
n−2s

, the result in

Proposition 8.1 could be proved by using the argument in [12, Theorem 2.3]. In this
proof, only does not need to use Proposition 8.5 but only Lemma 8.4, and thus the
result would be true for any operator (1.1)-(1.5).

We can finally give the:

Proof of Corollary 8.3. First, since f is locally Lipschitz and (8.3) holds, then

|f(x, u)| ≤ C
(

1 + |u|n+2s
n−2s

)

.

Hence, by Proposition 8.1, the solution u is bounded, and by Theorem 1.4 u/ds ∈
Cα(Ω).

Assume that u/ds|∂Ω ≡ 0 on ∂Ω. Then, by Corollary 1.2 we have
∫

Ω

{

F (u)− 2n

n− 2s
u f(u)

}

= 0.

But since

F (t)− 2n

n− 2s
t f(t) > 0

whenever t 6= 0, then we find that u ≡ 0 in Ω. �
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