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Control of Wind Turbines using Takagi-Sugeno Approach )

Abstract

This thesis will investigate the use of the Takagi-Sugeno approach to the control design applied
to the wind turbines. The wind turbine model will be transformed to the Takagi-Sugeno
representation. From that, control strategies will be developed that will allow the wind turbine
operate in case of faulty situations. The proposed solutions will be tested using a well-known

wind turbine case study.
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Chapter 1

Introduction

1.1 Wind energy world capacity

Nowadays, wind energy is world wild used, as an alternative to burning fossil fuels, it is plentiful,
renewable, widely distributed, clean, produces no greenhouse gas emissions during operation,
consumes no water, and uses little land. [1] The net effects on the environment are far less

problematic than those of nonrenewable power sources.

As of 2015, Denmark generates 40% of its electric power from wind, and at least 83 other
countries around the world are using wind power to supply their electric power grids [2]. In
2014, global wind power capacity expanded 16% to 369, 553 MW [3|. Moreover almost 55GW
of wind power capacity was added during 2016, increasing the global total about 12% to nearly
487GW between 2000 and 2015 (See Figure [L.1)), wind increased from 2.4% to 15.6% of total
EU power capacity. Germany installed total of almost 50GW. These installations reflected
the grid connection of a large amount of offshore capacity that was constructed in 2015. Spain
continued to rank second in the EU for total operating capacity (23GW) but add wind capacity
less than 50M W in 2016. China added 23.4GW in 2016, for total installed capacity approaching
169GW, and accounted for one-third of total global capacity by year’s end [4].

Yo
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Figure 1.1: Wind Power Global Capacity and Annual Additions, 2006-2016.
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Figure 1.2: Wind Power Capacity and Additions, Top 10 Countries, 2016. figure from ,
Notes that Germany’s additions are net of decommissioning and re-powering. "~ 0" denotes

capacity additions of less than 50MW.

1.2 Motivation

With the large capacity of wind turbines, control of wind turbine is important.

And with

rapidly growing popularity of fuzzy control systems in engineering applications, Tagaki-Sugerno

, dﬂ-‘m bl
Y
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approach has applied to many applications [5]|:missiles [6], aircraft [7], energy production sys-
tems [§], robotic systems [9], active suspension of vehicles [10], engines |11] and fault tol-
erant control [12]. But there are very few people doing research on wind turbines, Soéren
Georg [24] [25] [26] [27]and Urs Giger [29], Xiaoxu Liu 28] etc. So this thesis will introduce the
basics of Tagaki-Sugerno approach applied on wind turbine, Which is good way for a beginning

understanding.

1.3 Objectives of project

As a size and flexible structures operating in uncertain environments, advanced control tech-
nology can improve their performance. For example, advanced controllers can help decrease the
cost of wind energy by increasing turbine efficiency, and thus energy capture, and by reducing
structural loading, which increases the lifetimes of the components and structures [15].

This project will focus on the usage of a fuzzy control technique, Tagaki-Sugerno (T-S)
approach for the controller and observer design for a dynamic nonlinear wind turbine model.
Both T-S controller and the T-S observer will be implemented and compared with the controller
presented in [14]. The controller and observer gain will be obtained by using LMI [21].

All the simulations will be implemented using MATLAB and SIMULINK. The optimizer
to be used is SeDuMi (http : //sedumi.ie.lehigh.edu/).

1.4 Thesis structure

The structure of the main work is the following:

In Chapter 2] a set of wind turbine models are presented. It is divided in three parts, the
first part will describe the wind turbine and its components. The second part presents its math-
ematics model of each components and transfer the systems to a state-space representation.
The third part will compute the T-S model of the wind turbine.

Chapter [3| will present the state feedback control of the wind turbine. It is divided in
three parts, the first part introduces the control structure. The second part presents the T-S
controller for the wind turbine. The third part will present the state feedback control by using
T-S observer.

Chapter [] will make the comparison between the result with a PI controller and the T-S

model and controller, and also the T-S observer based control.

.d‘xl'.'b
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Chapter 2

Wind Turbine Modeling

2.1 Wind turbine Basics

A wind turbine captures the wind kinematic energy and transforms it into mechanical energy
(rotating shaft) first and then into electrical energy (generator). The main components of the
horizontal-axis wind turbines (HAWT) in Figure that are visible from the ground are the

tower, nacelle, and rotor, as shown in Figure [2.2

Figure 2.1: Wind turbine

N
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18 CHAPTER 2. WIND TURBINE MODELING

Schematic overview of wind
turbine components.

Figure 2.2: Wind turbine components. Figure from

At first, the wind encounters the rotor on this upwind horizontal-axis turbine and rotates
it. The low-speed shaft transfers energy to the gearbox, which steps up in speed and spins the
high-speed shaft, which increases the speed and rotates the high-speed shaft. The high-speed
shaft causes the generator to spin, producing electricity. In the figure, it is shown that the

yaw-actuation mechanism, which is used to turn the nacelle so that the rotor faces into the

wind .

2.2 Wind Turbine Modeling

In this thesis, the wind turbine model will be used is a three-bladed pitch-controlled variable-
speed wind turbine with a nominal power of 4.8 MW that is the one described in paper [14]

The description of the model is presented in the following.

2.2.1 Aerodynamic model

The aerodynamics of the wind turbine is modeled as a torque acting on the blades, according

to:
prR3C(A(t), Bi(t))vw,i(t)?
T (t) = Z c (2.1)
1<i<3
9, O
ETSEIB
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where v,, is the wind speed, p = 1.225kg/m? is the air density, R = 57.5m is the rotor radius,
B; is pitch position, and A is the Tip Speed Ratio, defined as:

wr - R

U

A=

(2.2)

2.2.2 Pitch system model

For each blade, the hydraulic pitch system is modeled as a closed-loop transfer function between

the pitch angle 3; and its reference ; ¢, according to:

Bils) wy 23)
Biref(s)  s2+2Ewy s+ w2 '
which can be written as a differential equation:
Bz(t) = _2§Wn : ﬁ(t) - w%ﬁ(t) + wiﬁi,ref (2'4)

where ¢ = 0.6 is the damping factor, and w, = 11.11rad/s is the natural frequency, and
1 =1,2,3 for three blades.

2.2.3 Drive train model

The drive train is modeled by a two-mass model:

By
Jrop(t) = 70(t) — Katba(t) — (Bar + Br)wr (1) + Fdwg(t) (2.5)
g
K gy + Bt tBat
(0) = 00+ 5 ) — (T B ) () (20)
. 1
dalt) = wrlt) = 5yl (2.7)

where J, = 55 - 10%kg - m? is the moment of inertia of the low-speed shaft, Kz = 2.7 -
10°Nm/rad is the torsion stiffness of the drive train, By = 775.49Nms/rad is the torsion
damping coefficient of the drive train and B, = 7.11Nms/rad, By = 45.6Nms/rad is the
viscous friction of the high-speed shaft, N, = 95 is the gear ratio, J, = 390kg - m? is the

Sy
Yo
ETSEIB



20 CHAPTER 2. WIND TURBINE MODELING

moment of the inertia of the high-speed shaft, ng = 0.97 is the efficiency of the drive train,

and 0a(t) is the torsion angle of the drive train.

2.2.4 (Generator and converter model

The generator and converter dynamics can be modeled by a first transfer function

74(8) Qge

Toref(8) 8+ age

The power produced by the generator is given by

Py(t) = ngwgy(t)74(t)

(2.9)

where ag. = 50rad/s is the generator and converter model parameter, 1, = 0.98 is the efficiency

of the generator. Besides The generator torque 7, is controlled by the reference 74,.r. The

dynamics can be approximated by a first order model with time constant ¢, [16] .

Tg(t) n Tgref (t)
tg tg

7.'g(t) = -

where ¢, = 20 - 1073

2.3 PI control of wind turbine description

Figure shows the different operating ranges of the wind turbine [14].

lﬁ\
{ Y
S RATS

(2.10)
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Figure 2.3: Tlustration of the reference power curve for the wind turbine depending on the
wind speed

The controller has two modes. Mode 1 corresponds to the wind zone 2 and mode 2 corre-
sponds to the wind zone 3. Consider our wind data in Figure [2.4] at more or less time 2300s,
the wind speed goes from zone 2 to zone 3. Hence, we can assume that from time 0 to 2300s,
the PI controller is in mode 1, and after that it goes to mode 2 [14].

The control mode switches from mode 1 to 2 if
Pyn] > P.[n] VvV wgn] > wnom (2.11)

where wpom = 162rad/s is the nominal generator speed. The control mode switches from mode
2 to 1if

wg[n] < Wpom —wa (2.12)
Control Mode 1: )
wg|n]
Tgr[n] = Kopt - ( jvg > (2.13)
where c
1 max
Kop = - pAR? =2 (2.14)
2 )\Opt

where A is the area swept by the wind turbine blades, so we have A = 7R? = 1.0387 x 10*m?,

and A, is the optimal value of A\, Cpy,q, is the maximum value of the power coefficient.

Sy
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Control Mode 2: In this mode, the major control actions are handled by the pitch system

using a PI controller trying to keep wgy[n] at wpom
Brin| = Brln — 1] + Kpe[n] + (K; - Ts — Kp)e[n — 1] (2.15)

where e[n] = wy[n] — wpom, and the controller gain of the PI is K}, = 4 and K; = 1. In this

case, the converter reference is used to suppress fast disturbances by

P,[n]

77790 "oyl (2.16)

Tgrln] =

2.4 Data definition

The data of the system we are going to use are all described in the following table.

Parameter | value unit

p 1.225 kg/m3

R 57.5 m

13 0.6 -

Wn, 11.11 rad/s

J, 55-10° | kg-m?
Kg 2.7-10° | Nm/rad
Ba 775.49 Nms/rad
B, 7.11 Nms/rad
B, 45.6 Nms/rad
Ny 95 -

Jg 390 kg -m?
Nt 0.97 —

g 0.98 -

ty 20-107° | —

Table 2.1: Data of the system

And the wind data we are using is shown in the figure below,

lﬁl
{ Y
S RATS
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[xa]
) | |
. , 1 1L
| | o
“’ “l'l 1
Re:dr = = = = = = = = [T=4400 000

Figure 2.4: The wind speed

T
the reference of the inputs |:7—g,re ¢ Biref Boref DB3re f} are shown as follow, notice that

the value of reference for each pitch angle to the blade.

i qu\ Mgl
L -

500 1000 1500 2000 2500 3000 3500 4000

Figure 2.5: reference of the torque

o,
Sy
SR
ETSEIB



24 CHAPTER 2. WIND TURBINE MODELING

§ N LRI L

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 2.6: reference of the pitch angle

2.4.1 State space representation of the wind turbine

In order to use the Takagi-Sugeno Approach, first we need to transform our model into state-

space representation. Defining the state and input vectors, as in [16]
. . 1T
z(t) = [wr wg Oa T4 B B B2 B2 B ﬁ3] (2.17)

T
u(t):[Tg,ref Bl,?‘ef ﬁ2,ref /33,ref:| (218)

the model of the wind turbine can be written into a state space embedding the non-linearities
in the parameters
& = Ax(t) + Bu(t) (2.19)

y = Cx(t) (2.20)

&y
SRS
ETSEIB
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where
[ Bg: + B, B Ka -
— - t t t
JT NgJT JT Zl( ) 0 22( ) 0 23( ) 0
dtBa aBa By maikq 1
JarZde M P P deBa 0 0 0 0 0
NyJ, N2J, Jg  NgJy Jy
1
1 -
N, 0 0 0 0 0 0 0 0
1
A= 0 0 0 —-— 0 0 0 0 0 0
tg
0 0 0 0 0 1 0 0 0 0
0 0 0 0 —w? —2w, 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —w? 2w, 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —wp —2wy]
(2.21)
where
TR3C, (A1), 1 (1)) vy (t)?
., t):p d(A(t), B1(t))vw(t) (2.22)
6Jrﬁ1
pR3C, (A1), Ba (1)) vy (t)?
ao(t) = a(A(t), B2(t))vw(t) (2.23)
6Jr/82
TR3C, (A (1), B3(t)) vy (t)?
Z3t):p a(A(1), B3(t))vuw () (2.24)
6<]7"B3
U oe ¥

ETSEIB
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0
0
0
1
go 0 0
B=[0 0 0 0 (2.25)
0 w? 0
0 0 0 0
0 0 w2 0
0 0 0 0
0 0 0 w2
1 00000000 0
0100000000
c_000 1000000 2.2
0000100000
0000001000
00000000 10

2.5 Takagi-Sugeno Model

2.5.1 Takagi-Sugeno approach

To apply Takagi-Sugeno (T-S) model, here we are using the method which presented in Chapter
2 of the book [17]. The fuzzy model proposed by Takagi and Sugeno [18] is described by fuzzy
IF-THEN rules which represent local linear input-output relations of a nonlinear system. The
main feature of a Takagi-Sugeno fuzzy model is to express the local dynamics of each fuzzy

implication (rule) by a linear system model.

The ith rules of the T-S fuzzy models are of the following form, where CFS and DFS denote

the continuous fuzzy system and the discrete fuzzy system, respectively.
Model Rule i:
IF Zl(t) 18 Mil, ...and Zp(t) 18 Mipa

lﬁl
{ Y
S RATS
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THEN

i=1,2,....r (2.27)

Here, M;; is the fuzzy set and r is the number of model rules; z(t) € R" and z(k) € R™ are
the state vectors, u(t) € R™ and u(k) € R™ are the input vectors, y(t) € R? and y(k) € R? are
the output vectors, 4; € R™*"™, B; € R"*™ and C; € R1*™, z(t), ..., 2p(t) are known premise

variables that may be functions of the state variables, external disturbances, and/or time.

Given a pair of z(t), u(t), the final outputs of the fuzzy systems are inferred as follows:

i(t) = = . (2.28)
> wi(z(t))
=1
= ha(2(t)(As(t) + Biu(t)) (2.29)
i=1
S wi(2(1)Ciar(t)
y(t) = = (2.30)
; wi(2(t))
= hi(=(t))Cia(t) (2.31)
=1
where
2(t) = [21()22(t) . . 2p(1)] (2.32)
wi(z(t)) = [T Mij(2(1)) (2.33)
j=1
ha(t) = W) (2.34)
> wi(2(1))
=1
Rt

ETSEIB
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for all t. The term M;;(z;(t)) is the grade of membership of z;(¢) in M;;. Since

Yo wi(z(t) >0
i=1 (2.35)
wi(z(t)) >0,i=1,2,...,r

we have .
> hi(2(t)) >0
i=1 (2.36)
hi(z(t)) >0,i=1,2,...,r

for all ¢.

2.5.2 Wind turbine Takagi-Sugeno model

From equation to we bound 21 (t) € [21,min, 21,maz)s 22(t) € [22,min, 22,maz), 23(t) €
[ZS,miny Z3,max]

From the maximum and minimum values, z1(t), z2(t) and z3(¢) can be represented by

) TG0, 500

Z21 6.J-51 = Ml(zl (t)) * Z1maz MQ(ZI (t)) * Z1,min (2-37)
TR3C,(\(t), U (t)?

2(t) = - g é?w%(t)) & = Ni(22(t)) - 22.maz + No(22(1)) - 22.min (2.38)
TR3C, (1), B3 (1) you (1)

z3(t) = ’ ( é?rﬁﬁj(t)) © = L1(23(t)) - 23,maz + L2(23(t)) - 23,min (2.39)

Therefore the membership functions can be calculated as

M 21 — Z1,min
1 = —-—
Z1,max — Z1,min (240)
Z1lmax — <1
My=———"84H4¥——
\ Z1,mazx — %1,min
N 22 — Z22,min
1=—
z — Z 1
2,max 2,min (241)
Z2max — %2
Noy=—"6#¥H+—//4/4/—/—
L Z2max — 22,min



CHAPTER 2. WIND TURBINE MODELING 29

I Z3 — Z3,min
1=
23, max — Z3,min (242)

L= Z3,max — <3
Z3,max — Z3,min
We name the membership functions "Positive", "Negative", respectively. Then, the nonlinear
system is represented by the following fuzzy model.
Model Rule 1:
IF z(t) is "Negative", z5(t) is "Negative" and z3(¢t) is "Negative"
THEN i(t) = Ajz(t) + Bu(t)
Model Rule 2:
IF z(t) is "Positive", zo(t) is "Negative" and z3(t) is "Negative"
THEN z(t) = Asx(t) + Bu(t)
Model Rule 3:
IF z(t) is "Negative", z5(t) is "Positive" and z3(t) is "Negative"
THEN i(t) = Asx(t) + Bu(t)
Model Rule 4:
IF z(t) is "Positive", zo(t) is "Positive" and z3(t) is "Negative"
THEN i(t) = Aqz(t) + Bu(t)
Model Rule 5:
IF z(t) is "Negative", z(t) is "Negative" and z3(¢t) is "Positive"
THEN i(t) = Asz(t) + Bu(t)
Model Rule 6:
IF z(t) is "Positive", 2z5(t) is "Negative" and z3(t) is "Positive"
THEN i(t) = Agz(t) + Bu(t)
Model Rule 7:
IF z(t) is "Negative", zo(t) is "Positive" and z3(t) is "Positive"
THEN i(t) = A7z(t) + Bu(t)
Model Rule 8:
IF z(t) is "Positive", 2o(t) is "Positive" and z3(t) is "Positive"
THEN i(t) = Asz(t) + Bu(t)
For illustrative purposes, this can be represented by the following table, where ” Positive” can

be represented by "+" and ” Negative” can be represented by "—".
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Set 21(t) | z2(t) | z3(f) | A matrix
rulel | — — - Ay
rule 2 | + — — Ao
rule 3 | — + — Az
rule 4 | + + — Ay
rule 5 | — — + As
rule 6 | + - + Ag
rule 7 | — + + Az
rule 8 | + + + Ag

Table 2.2: Fuzzy model

Figure [2.7) to [2.9) shows the graphical representation of the membership functions.

Negative Positive

Z,min Z,max

Figure 2.7: Membership Functions M;(z1(t)) and Ma(z1(t))

MNegative Positive

Z,max
2]

Figure 2.8: Membership Functions Ni(z2(t)) and Na(z2(t))
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MNegative Positive
Figure 2.9: Membership Functions Li(z3(t)) and La(z3(t))
Thus, the matrices of the local models are
By + B, By Kt
_T Nng - 7. 0 Z1,min 0 Z2,min 0 Z3,min 0
B B B K 1
Ndt Dt _ndtZ dt Dy Ndt 4 dt 4 0 0 0 0 0 0
NyJy, NgJg  Jg  NgJg Jy
1
1 - 0 0 0 0 0 0 0 0
Ny
1
A = 0 0 0 —— 0 0 0 0 0 0
tg
0 0 0 0 0 1 0 0 0 0
0 0 0 0 —w? 2w, 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —w? 2w, 0 0
0 0 0 0 0 0 0 0 1
i 0 0 0 0 0 0 0 —w? —28wp |
(2.43)
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| Bu+ B B Kao ]
J, NyJ, J, ’ ’ ’
Nat Bat natBa: By matKat 1
NgJy _Ng2J9 _79 NgJg _jg ’ ’ ’ ’ ’ !
1
1 N 0 0 0 0 0 0 0 0
1
Ay = 0 0 0 % 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 —w? 2w, 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —w? 2w, 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —wi  —2wy |
(2.44)
| Bu+ B B Ka ]
J, NyJ, J, 7 ’ 7
Nat Bat natBa: By matKat 1
Nng N92J9 - Jg NQ‘JQ _jg ! ! ! ! ’ ’
1
1 N 0 0 0 0 0 0 0 0
1
Ag = 0 0 0 7 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 —w?2 2w, 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —w? 2w, O 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —wp —2wy |
(2.45)
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_ButB  Ba e 0 om0 oz O
J, NyJ, J, 7 ’ ’
Nat Bat natBa: By MatKat 1
NgJy - NgQJg - 7g NgJy _jg ’ ! ’ ’ ’ !
1
1 N 0 0 0 0 0 0 0 0
1
Ay = 0 0 0 % 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 —w? 2w, 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —w? 2w, 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —w?  —28w,
] (2.46) ]
Dt By Dt B R
J, NyJ, J, ’ ’ :
Nat Bat natBa By matKa 1
NgJg - Ng2‘]9 - 799 NgJg _‘Tg ’ ’ ’ ! ’ ’
1
1 N 0 0 0 0 0 0 0 0
1
As = 0 0 0 7 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 —w?2 —2fw, 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —w? 2w, 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —wh —2wn |
(2.47)
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_ButB  Ba L R S’
J, NyJ, J, ’ ’ ’
Nat Bat natBa: By matKat 1
NgJy _Ng2J9 _79 NgJg _jg ’ ’ ’ ’ ! !
1
1 N 0 0 0 0 0 0 0 0
1
Ag = 0 0 0 % 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 —w? 2w, 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —w? 2w, 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —w? 2w,
] (2.48)
B D e 0 e 0 e 0
J, NyJ, J, ’ ’ ,
Nat Bat natBa: By matKat 1
NyJ, N2J, J, NgJy, — J, 0 0 0 0 0 0
1
1 N 0 0 0 0 0 0 0 0
1
A7 = 0 0 0 % 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 —w?2 2w, 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —w? 2w, 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —w? 2w,
(2.49)
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| Bat B D e 0 e 0 s O _
J, NyJ, J, 7 ’ ’
ndt Bat NatBat By narKat 1
NgJy - NgQJg - 7g NgJy _79 ’ ! ’ ’ ! ’
1
1 N 0 0 0 0 0 0 0 0
1
Ag = 0 0 0 % 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 —w? 2w, 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —w? 2w, 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —wi  —28wn
(2.50)
The defuzzification is carried out as
2 2 2
i(t) = Z Z Z M;(Z1(t))N;j(Za(t)) Li(Z5(t)) - Aiz(t) + Bul(t) (2.51)
i=1 j=1 k=1
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Chapter 3

State feedback control

3.1 Control of Wind Turbines

3.1.1 Design fuzzy controller

From the wind turbine T'S model obtained in previous chapter, we are going to design a state
feedback controller. Here we will use a design procedure called "parallel distributed compen-
sation" (PDC) [20]. This model-based design procedure was proposed in [19].

In the PDC design, each control rule is designed from the corresponding rule of a T-S fuzzy
model. The designed fuzzy controller shares the same fuzzy sets with the fuzzy model in the
premise parts. For the fuzzy model , we construct the following fuzzy controller via the
PDC:

Control Rule i:

IF z(t) is M;; and ...and z,(t) is M,

THEN u(t) = —Fz(t),i=1,2,...,r

where F; is the feedback control gain, it can be described a fuzzy control rule.

The overall fuzzy controller is represented by

Y owi(z(t)Fx(t) .
uft) = = == > hi(2(t)) Fa(t) (3.1)
> wi(z(t)) i=1

Now to apply this procedure to our wind turbine case, we have.

Control Rule 1:
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IF z(t) is "Negative", zo(t) is "Negative" and z3(t) is "Negative"
THEN u(t) = —Fiz(t)

Control Rule 2:
IF z1(t) is "Positive", z2(t) is "Negative" and z3(t) is "Negative"
THEN u(t) = —Fyx(t)

Control Rule 3:
IF z(t) is "Negative", z2(t) is "Positive" and z3(¢) is "Negative"
THEN u(t) = —F3x(t)

Control Rule 4:
IF z(t) is "Positive", 2z5(t) is "Positive" and z3(t) is "Negative"
THEN u(t) = —Fyx(t)

Control Rule 5:
IF z(t) is "Negative", z2(t) is "Negative" and z3(t) is "Positive"
THEN u(t) = —Fsx(t)

Control Rule 6:
IF z(t) is "Positive", z(t) is "Negative" and z3(t) is "Positive"
THEN u(t) = —Fsx(t)

Control Rule 7:
IF z(t) is "Negative", z5(t) is "Positive" and z3(t) is "Positive"
THEN u(t) = —Frx(t)

Control Rule 8:
IF z(t) is "Positive", z5(t) is "Positive" and z3(t) is "Positive"
THEN u(t) = —Fgx(t)

Thus, we can design the feedback control law u(t) = —F;z(t) for each model, such that our
system & = (A; + BK;)z(t) is asymptotically stable, where K; = —Fj, therefore in our case, we
haveBlngz---:Bi:B.

We can also present in following table.

{ Y
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Set z1(t) | z2(t) | z3(t) | A matrix | Control gain
rule 1 — — — A1 Kl
rule 2 | + — — Ag Ky
rule 3 | — + — As Ks
rule 4 | + + — Ay Ky
rule 5 | — — + As Ks
rule 6 | + - + Ag Kg
rule 7 | — + + Az K7
rule 8 | + + + Ag Ky

Table 3.1: Fuzzy model with fuzzy control rule

The design is based on Lyapunov stability theory and LMI condition for stablility of T-S
systems in book [21]. We have the LMI region stabilization problem in the case of S(«,r,0)
has a solution if and only if there exist a symmetric positive definite matrix P; and a matrix

W; satisfying

AP+ BW; + PAT + WI'BT + 2aP <0 (3.2)
—rP; P, + A; P+ BW;
r 1 <0 (3.3)
qP; + PiAZT + WZTBZ-T —rP;

(AiP; + BW; + PAT + WI'BT)sinf  (A;P; + BW; — (PAT + WI'BT))cosf <0 (3.4)

(PAT + WIBT — (AP, + BW;))cos (AP, + BW; + PAT + W' BT)sinb .

In this case, the solution to our problem is given by

K; =W;P (3.5)

where « is the minimum speed of the response, r is the maximum speed of the response, and

0 is the overshoot. The LMI region S is shown in the following figure [21].
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I

|

|

L a
-]

Figure 3.1: LMI region S(a,r,0)

All the poles should be inside the shadow region.

3.1.2 Observer design

For designing the observer, book [17]| has presented the methodologies for designing the T-S
fuzzy observer. In linear system theory, one of the most important results on observer design
is the so-called separation principle, which means that the controller and observer design can
be carried out separately without compromising the stability of the overall closed-loop system.
As this point, we can design the observer based on LMIs. As in all observer designs, fuzzy
observers 22| |23] are required to satisfy

lim (z(t) — 2(t)) =0 (3.6)

t—o00

where Z(t) denotes the state vector estimated by a fuzzy observer. This condition guarantees
that the steady-state error between x(t) and Z(¢) converges to 0. As in the case of controller

design, the PDC concept is employed to arrive at the following fuzzy observer structures:
Observer Rule i

IF Z1 (t) 18 Mil and ... and Zp(t) 18 Mip

Ut
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THEN

i@ (t) + Byu(t) + Li(y(t) — g(t))

where L; is the observer gain. For our wind turbine case, we have fuzzy observer law is
given by (notice that in our case B; = By = ... = Bg and C; = C1 = ... = C%).

Observer Rule 1:
IF z(t) is "Negative", z5(t) is "Negative" and z3(t) is "Negative"

THEN

Observer Rule 2:
IF z(t) is "Positive", 2zo(t) is "Negative" and z3(t) is "Negative"

THEN

Observer Rule 3:
IF z(t) is "Negative", z5(t) is "Positive" and z3(t) is "Negative"

THEN

Observer Rule 4:
IF z(t) is "Positive", zo(t) is "Positive" and z3(t) is "Negative"

THEN

I@\
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Observer Rule 5:

IF z(t) is "Negative", zo(t) is "Negative" and z3(t) is "Positive"

THEN

Observer Rule 6:

IF z(t) is "Positive", z(t) is "Negative" and z3(t) is "Positive"

THEN

Observer Rule 7:

IF z(t) is "Negative", zo(t) is "Positive" and z3(t) is "Positive"

THEN

Observer Rule 8:

IF z(t) is "Positive", z5(t) is "Positive" and z3(t) is "Positive"

THEN

For a better understanding,, this can be represented by the following table, where ” Positive”
1

can be represented by "+" and ” Negative” can be represented by "—'



CHAPTER 3. STATE FEEDBACK CONTROL 43

Set 21(t) | z2(t) | z3(f) | A matrix | Observer gain
rule 1 — — — A1 L1
rule 2 | + — — Ay Lo
rule 3 | — + — Asg L3
rule 4 | + + — Ay Ly
rule 5 | — — + As Ls
rule 6 | + - + Ag Lg
rule 7 | — + + Az Lo
rule 8 | + + + Ag Lg

Table 3.2: Fuzzy model with fuzzy observer rule

Now in order to obtain the observer gain L;, for a full-order state observers design following
the LMIs condition |21]. It has a solution if and only if there exist a symmetric positive definite

matrix P; and a matrix W; satisfying

ATP+ "W+ (ATP+ CTW)T +20P <0 (3.7)
—rP, P+ AT P, + CTw;
" air Ay <0 (3.8)
(aP; + AT P+ CTWy)” —rP;

(A?Pi + CTW,; + (AT P + CTW¢)T)3in9 (A;‘FPZ +CTW; — (AT P + CTWZ‘)T)COSQ -0
(= (ATP 4+ CT™W;) + (AT P + CTWy)T)cost (AT P, + CTW; + (AT P + CTW;)T) sind
(3.9)

In this case, the solution to our problem is given by

Li= P 'W; (3.10)

Similarly, the poles of the observer should be in the shadow area in Figure [24] [25].

3.2 Obtaining the state feedback controller

To implement the observer using the methodology introduced in Subsection |3.1.1} the following
LMIs parameter are considered: r = 50, ¢ = 0, « = 0.5 and 6 = 7/6, applied to our Wind
Turbine case study. The resulting closed loop poles are presented in Figure [3.2
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Figure 3.2: Poles of the controller

From that figure, we can see that all the poles are located in the shadow region presented

in Figure |3.1]

3.2.1

Control structure of Wind Turbines

The considered control structure can be represent by the following diagram

Bi,?'ef +

Tgref +

Wind Speed
Bi
Pitch Pitch
controller Motor Wind
Turbine 7
Torque Power
controller Converter
Sensors
Sensors

Figure 3.3: Wind turbine control feedback loops

The designed control is tested in SIMULINK, leading to the results presented in Figure|3.4
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35

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 3.4: Controlled torque

In this figure, we can see that the output torque.

Similarly, we have the output of the pitch angle,

D m |4t

o 500 1000 1500 2000 2500 3000 3500 4000

Figure 3.5: Controlled pitch angle
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3.3 Obtaining the observer

To implement the observer using the methodology introduced in Subsection the following

LMI parameter are considered: r = 500, ¢ = 0, « = 50 and 6 = 7/3, applied to our Wind

turbine case study, The resulting observer poles are presented in Figure |3.6]

1000

Imag(s)
o

Pole clustering of the state observer
T T T T T

Figure 3.6: Poles of the observer

From the figure, we can see that all the poles are located in the shadow region that described

in figure 3.1}

3.3.1

Observer based control

The observer based estimation scheme considered is presented in Figure [3.7
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Uyef wind Turbine plant ¥
State space model
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x

Figure 3.7: Closed-loop estimation by using the observer

This observer schemes is integrated with the state feedback controller designed previously

and implemented in SIMULINK, leading to the following result.

3.5

dauy

25 h Mﬂ !N W! ‘IJ N U’W
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Figure 3.8: Torque estimated by the observer

In this figure, the estimated torque (in blue) match the reference (in red) very well, we can

make a zoom in to see the details.
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Figure 3.9: Zoom in of the torque estimated by the observer

Also, we can see the estimated pitch angle in Figure [3.10]

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 3.10: Pitch angle generated by the observer

3.3.2 State feedback using observer

Based on the model in Figure 3.7 we can use the state feedback controller for it.
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Uref +f\ u Wind Turbine plant y
N State space model
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Figure 3.11: State feedback using the observer

Testing this observer with the controller in SIMULINK, we have the following result.
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Figure 3.12: Controlled torque obtained by state feedback using the observer

Figure [3.13] shows the pitch angle
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Figure 3.13: Controlled pitch angle obtained by state feedback using the observer
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Chapter 4

Comparison with PI controller

4.1 T-S controller

Now we can compare the generated torque and pitch angle with the result we obtained from

state feedback T-S controller.

©10 &=

35— —

25 - | . | . i ] SEH - | | I

| | | | | | | |
[ 500 1000 1500 2000 2500 3000 3500 4000

Figure 4.1: Output torque generated by state feedback T-S controller and PI controller

In this figure, the torque generated by state feedback T-S controller (blue) is almost match
the torque generated by PI controller (red).

We can make a zoom in of mode 1 part. We can see in the figure below.
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7500 —

50 100 150 200 250 300 350 400

Figure 4.2: Output torque generated by state feedback T-S controller and PI controller in time
0 to 400s

Theoretically, in this part the two curves should be the same, because in mode 1, system
does not has state feedback. We can see that there are small difference between two curves, a
possible reason on this maybe is the error of the simulation between differential equation and

the state-space model.

Then we can make zoom in on mode 2, we can see the figure below.
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Figure 4.3: Output torque generated by state feedback T-S controller and PI controller in time
2600s to 3000s

In this part, the difference becomes larger. The state feedback of PI (mode 2) starts to
work. And the torque under the T-S controller (blue) has a little overshoot.
Additionally, we can see the pitch angle.

i m I | LIl

o 500 1000 1500 2000 2500 3000 3500 4000

Figure 4.4: Output pitch angle generated by T-S controller and PI controller

In Figure , we can see the pitch angle of the state feedback T-S controller (blue) is almost
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match the pitch angle generated by PI controller (red).

Also we can make a zoom in of this result. We can see that at zone 2, there is no turning

on the blade, the pitch angle is 0. So we can see the detail from 2600s.

o

2700 2750 2800 2850 2800 2950

Figure 4.5: Output pitch angle generated by T-S controller and PI controller in time 2600s to
3000s

In Figure we can see that there are small overshoot.

4.2 T-S observer based control

Similarly, we can also compare the result with T-S observer based control.
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o 500 1000 1500 2000 2500 3000 3500 4000

Figure 4.6: Output torque generated by T-S observer based state feedback T-S controller and
PT controller

The result looks similar with the previous in Figure .1} we can also make a zoom in of each

mode. Firstly, we can see the mode 1 part in the figure below.
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Figure 4.7: Output torque generated by T-S observer based state feedback T-S controller and
PI controller from time 0 to 400s
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Figure 4.8: Output torque generated by T-S observer based state feedback T-S controller and
PI controller from time 2600s to 3000s

Comparing Figures .2 and there is no significant improvement, the overshoot is more

or less the same, also the setting time, but the curve becomes more smooth.

Also we can take a look for the pitch angle.
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Figure 4.9: Output pitch angle generated by T-S observer based state feedback T-S controller
and PI controller
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For pitch angle there is a significant improvement, we can see the detail from a zoom in.
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Figure 4.10: Output pitch angle generated by T-S observer based state feedback T-S controller
and PI controller in time 2600s to 3000s

We can see that the overshoot is smaller than the previous [4.5]
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Chapter 5

Conclusions

5.1 Work Summery

In this thesis, a horizontal-axis wind turbine (HAWT) has modeled into a state-space represen-
tation and transformed into a Takagi-Sugeno (T-S) model structure. The T-S model exactly
represents the nonlinear model as a weighted combination of linear models.

Then a state feedback control schemes for wind turbines were investigated based on a
Takagi-Sugeno controller and Takagi-Sugeno observer. The controller and observer were ob-
tained by using LMIs, where the constrains are based on Lyapunov stability theory and LMI
region S(a, r,0) stabilization [21]. In this part, choosing the suitable parameter (o, r,0) is very
important. They can directly influence the controller performance, « is the minimum speed of
the response, r is the maximum speed of the response, and 6 is the overshoot. These parameter
can not set as much as possible, otherwise it will obtain positive poles or the poles are out of
the LMI region S.

By tested on T-S wind turbine model. The wind speed we are using include low speed and
high speed, which means that it include Zone 2 and Zone 3 (See Figure and . The
performance is very well, with only the T-S controller, the outputs keep reaching the reference
and no too much overshoot, then the observer based state feedback control were tested, the
performance is similar like the previous, approximately same overshoot, same setting time, but
more smooth, where the performance is similar with the PI controller in [14].

For a conclusion, we can say that Takagi-Sugeno approach is a good way for presenting the
nonlinear system of wind turbine. The T-S controller can give a very good performance under

a suitable LMI condition. The T-S observer estimate the states very perfect. For wind turbine
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case study, T-S approach can be a powerful tool for the future research.

5.2 Future work

This T-S model can be improved, for decreagsing the error.

The performance of the controller can be improved, and also it can apply by other control
methodology on T-S model, for example sliding model control, H,, control, MPC, etc.

For the simulation the 4.8 MW HAWT by using SIMULINK, this T-S model can be embeded
in the benchmark model [14], and replace the controller Mode 2 by T-S controller. Then see if
there are better performance.

Additionally this work can be tested on The FAST (Fatigue, Aerodynamics, Structures,
and Turbulence) Code, it should be more accurate for wind turbine case study.

Furthermore, this can be a starting point for FDI (Fault detection and isolation) and FTC
(Fault Tolerant Control) concepts, because now the accidents on wind turbine are getting

increase. The following figure shows the accidents up to May 2017.
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Figure 5.1: Wind turbine accidents in year, up to 31 of May 2017.Figure from [13]

Many cases can cause the wind turbine accident, blade failure, fire, structural failure, Ice
throw, transport, environmental damage (including bird deaths) and other miscellaneous (Com-
ponent or mechanical failure, lack of maintenance, electrical failure, Construction and construc-
tion support accidents, lightning strikes). In these accidents, poor quality control can cause a

portion of structural failure.
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Year Before 2000 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006
Number of Accidents | 15 9 3 9 7 4 7 9
Year 2007 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014
Number of Accidents | 13 9 16 9 13 10 14 13
Year 2015 2016 | 2017

Number of Accidents | 12 11 6

Table 5.1: Structural failure of wind turbine up to 31 May 2017

For decrease this kind of accident, keeping the wind turbine works in a normal and stable

status seems very important, especially FDI and FTC technique.
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Appendix

MATLAB code for TS controller design

Notice that the Aerodynamics data is required, which it contains X, §, Cyq and C, (See in

Section .

% TS model for controller desgin

clear all; clc; close all;

load AeroDynamics.mat

[ANGLE, LAMBDA] = meshgrid(Angle,Lambda);

ANGLE = ANGLE(:,11:end);

LAMBDA = LAMBDA(:,1l:end);

Cqg = Cq(:,11:end);

CqLAMBDA = Cq./ANGLE;

% wind turbine parameter

omega_n=11.11; xi=0.6; rho=1.225; R=57.5; J_r=55e6; B_dt=775.49; B_g=45.6;
B_r=7.11; N_g=95; K_dt=2.7e9; eta_dt=0.97; J_g=390; vwmax = 25; tau_g = 20e—3;

thetamin = rhoxpi*R”*3*vwmax”~2+min(min(CqLAMBDA))/(6xJ_r);
thetamax = rhoxpixR*3xvwmax”~2*max(max(CqLAMBDA))/(6x]_r);

thetarange = [thetamin thetamin thetamin ;

thetamax thetamax thetamax]';

amatcaixa = pvec('box',thetarange);

caixavertex = polydec(amatcaixa);

nx = 10; ny = 6;

Avertex = zeros(nx,nx,size(caixavertex,2));
ATvertex = zeros(nx,nx,size(caixavertex,2));
Cvertex = zeros(ny,nx,size(caixavertex,2));
CTvertex = zeros(nx,ny,size(caixavertex,2));
all

a2l

—(B_dt+B_r)/J_r; al2 = B_dt/(N_g*J_r); al3 = —K dt/J_r;
eta_dt*B_dt/(N_gxJ_g); a22 = —(eta_dt*B_dt/(N_g"2%*J_g)+B_g/J_g); a23 = eta_dtxK dt/(N_gxJ_g);

ETSEIB




64 CHAPTER 5. CONCLUSIONS

a24 = —1/31_g; a32 = —1/N_g; a44 = —1/tau_g; b4l = 1/tau_g; a88 = —2xxixomega_n;
ab5 = —omega_n"2; ab66 = —2+xixomega_n; b62 = omega_n"2; a87 = —omega_n"2;

b83 = omega_n"2; al@9 = —omega_n"2; al0ld = —2xxixomega_n; bl04 = omega_n"2;

for k=1:size(caixavertex,2)

Avertex(:,:,k) = [all al2 al3 O caixavertex(1l,k) 0 caixavertex(2,k) 0 caixavertex(3,k) 0 ;
a2l a22 a23 a24 0 0 0 0 0 0 ;

a32 00000000 ;

ad4d 0 0 0 0 ;

060100

0 ab5 a66

60001

0

0

00
00 ;
0000 ;
00
0 0 a87 a88 0 0 ;
0600001 ;
00000000 aleg aldlo];
ATvertex(:,:,k)= Avertex(:,:,k)";
Bvertex(:,:,k) = [0 0 0 b4l1 OO 0000 ;
00000Db620O00OOO ;
000000O0Db83OO;
00000000606 blE4]’;

BTvertex(:,:,k) = Bvertex(:,:,k)';

o O ©O © © © =+
o © ©O ©o © o
o © O © © o

Cvertex(:,:,k) = [1 000000000 ;
0100000000 ;
000100006000 ;
000010006000 ;
0000001000 ;
0000000061 0];

CTvertex(:,:,k)= Cvertex(:,:,k)';

end

vertices = size(Avertex,3); % 8

of
o°

DESIGN OF THE OBSERVER

rL =50; % r

qL = 0; % g

lambdaL = 0.5; % alpha

thetal = pi/6; % theta

Kvertex = zeros(4,nx,vertices); % (4,10,8)

PolesK = zeros(nx,vertices); % (10,8)

XL = sdpvar(nx); % P
W = cell(vertices,1); % W
for k=1:vertices

W{k} = sdpvar(4,nx);
end

v
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clear F

tic

F = [XL>0];

% LMI condition D—stability

for i1 = l:vertices
F = [F, Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii}+XL*ATvertex(:,:,ii)+W{ii}'*BTvertex(:,:,ii)+2*lambdalL*XL
<0];
F = [F, [—rLxXL gL*XL+Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii};...
gL*xXL+XLxATvertex(:,:,ii)+W{ii}"'*BTvertex(:,:,ii) —rL*XL]<0];
F = [F, [sin(thetal)*(Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii}+XL*xATvertex(:,:,ii)+W{ii}'*BTvertex(:,:,ii
)) ..
cos(thetalL)*(Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii}—(XL*ATvertex(:,:,ii)+W{ii}'*BTvertex(:,:,ii)));
cos(thetalL)x(—(Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii})+XL*ATvertex(:,:,ii)+W{ii}'*BTvertex(:,:,1ii))
sin(thetal)*(Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii}+XL*ATvertex(:,:,ii)+W{ii}'«BTvertex(:,:,1ii))
1<01;
end

sdpoptions = sdpsettings('showprogress',1, 'solver', 'sedumi', 'sedumi.eps',le—10, " 'sedumi.maxiter',300);
diagnosticsL = solvesdp(F,[],sdpoptions);
temp = double(XL); clear XL;
XL = double(temp);
for k=1l:vertices
W{k} = double(W{k});
Kvertex(:,:,k) = W{k}*inv(XL);
PolesK(:,k) = eig(Avertex(:,:,k)+Bvertex(:,:,k)*Kvertex(:,:,k));
end

toc

display('The LMIs for designing the state feedback controller are:')
if diagnosticsL.problem ==

disp('Feasible")

elseif diagnosticsL.problem == 1

disp('Infeasible")

else

disp('Something else happened')

end

eigtest = zeros(3xvertices+1,1);
k =1;

eigtest(k) = max(eig(XL));

for ii = 1l:vertices

k = k+1; eigtest(k) = max(eig(Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii}+XL*ATvertex(:,:,1ii)+W{ii}"'*

et
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BTvertex(:,:,ii)+2xlambdaL*XL));

k = k+1; eigtest(k) = max(eig([—rLxXL Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii} ;
XLxATvertex(:,:,ii)+W{ii}'*BTvertex(:,:,ii) —rLxXL]));

k = k+1; eigtest(k) = max(eig([sin(thetal)x(Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii}+XL+xATvertex(:,:,ii)+
W{ii}'*BTvertex(:,:,ii))
cos(thetal)=(Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii}— (XL*ATvertex(:,:,ii)+W{ii}'*BTvertex(:,:,1ii)))

cos(thetal)*(—(Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii})+XL*ATvertex(:,:,ii)+W{ii}"'*BTvertex(:,:,1ii))

sin(thetal)=(Avertex(:,:,ii)*XL+Bvertex(:,:,ii)*W{ii}+XL*ATvertex(:,:,ii)+W{ii}'*BTvertex(:,:,1i1))]))

end

oP

o
)

clear W

figure(1l);
plot(real(PolesK),imag(PolesK),'.b'); title('Pole clustering of the controller');
hold on;
plot([—lambdaL —lambdalL], [—2*xrL 2x*rL],'r—',—rL*cos(linspace(0,2x*pi,200)),rL*sin(linspace(0,2*pi,200)), ' r—'
,[qL—rL 0 gL—rL], [(—qL+rL)*tan(—thetal) 0 (—qgL+rL)*tan(thetal)], 'r—")
xlabel('Real(s)"'); ylabel('Imag(s)"');
figure(2);
if(eigtest(1)>0)
plot(eigtest(2:end));
else
plot(eigtest);
end

title('Eigenvalues test for the design of the controller');

save datacontroller.mat thetarange Kvertex PolesK Avertex Bvertex

MATLAB code for TS observer design

% TS model for observer desgin

clear all; clc; close all;

load AeroDynamics.mat

[ANGLE, LAMBDA] = meshgrid(Angle,Lambda);

ANGLE = ANGLE(:,11:end);

LAMBDA = LAMBDA(:,1l:end);

Cq = Cq(:,11:end);

CqLAMBDA = Cq./ANGLE;

% wind turbine parameter

omega_n=11.11; xi=0.6; rho=1.225; R=57.5; J_r=55e6; B_dt=775.49; B_g=45.6;
B_r=7.11; N_g=95; K_dt=2.7e9; eta_dt=0.97; J_g=390; vwmax = 25; tau_g = 20e—3;

v
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thetamin = rhoxpi*R*3xvwmax”2+min(min(CqLAMBDA))/(6*J_r);
thetamax = rhoxpixR”*3xvwmax”~2+max(max(CqLAMBDA))/(6xJ_r);
thetarange = [thetamin thetamin thetamin ;

thetamax thetamax thetamax]';

amatcaixa = pvec('box',thetarange);

caixavertex polydec(amatcaixa);
nx = 10; ny = 6;

Avertex = zeros(nx,nx,size(caixavertex,2));

ATvertex = zeros(nx,nx,size(caixavertex,2));
Cvertex = zeros(ny,nx,size(caixavertex,2));
CTvertex = zeros(nx,ny,size(caixavertex,2));

obsv_UNFAULTY = zeros(size(caixavertex,2),1);

obsv_L0SS1 = zeros(size(caixavertex,2),1);

obsv_L0SS2 = zeros(size(caixavertex,2),1);

obsv_L0SS3 = zeros(size(caixavertex,2),1);

obsv_L0SS4 = zeros(size(caixavertex,2),1);

obsv_L0SS5 = zeros(size(caixavertex,2),1);

obsv_L0SS6 = zeros(size(caixavertex,2),1);

all = —(B_dt+B_r)/J_r; al2 = B_dt/(N_gxJ_r); al3 = K. dt/J_r;

a2l = eta_dt*B_dt/(N_g+J_g); a22 = —(eta_dt*B_dt/(N_g”2*J_g)+B_g/J_g); a23 = eta_dt*K_dt/(N_g*J_g);
a24 = —1/31_g; a32 = —1/N_g; a44 = —1/tau_g; b4l = 1/tau_g; a88 = —2xixomega_n;
ab5 = —omega_n"2; a66 = —2+xixomega_n; b62 = omega_n"2; a87 = —omega_n"2;

b83 = omega_n"2; al@9 = —omega_n"2; al0ld® = —2xxixomega_n; blO4 = omega_n"2;

for k=1:size(caixavertex,?2)

Avertex(:,:,k) =

[all al2 al3 O caixavertex(l,k) 0 caixavertex(2,k) 0 caixavertex(3,k) 0 ;

a2l a22 a23 a24 0 0 06 0 0 0 ;
123200000000 ;
000at4000000 ;
06000010000 ;
0000 ab5 ab6 0000 ;
0000000100 ;
000000 aB87 a88 0 0 ;
06000000001 ;
06000060006 aleg aloloe];
ATvertex(:,:,k)= Avertex(:,:,k)";
Bvertex(:,:,k) = [0 06 0 b41 0 0 0000 ;
060000Db620060OO0 ;
000000O0DbEOO ;
0000000006 blod]"
Cvertex(:,:,k) =[1000000000 ;
06100000000 ;
000100006000 ;

’
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0000100000

000000106000 ;

00000000610];
CTvertex(:,:,k)= Cvertex(:,:,k)";

’

obsv_UNFAULTY (k)
obsv_L0SS1(k)
obsv_L0SS2 (k
obsv_L0SS3
obsv_L0SS4
obsv_L0SS5
obsv_L0SS6

rank(obsv(Avertex(:,:,k),Cvertex(:,:,k))
456
456
456
356
346
345

rank(obsv(Avertex(:,:,k),Cvertex([2
1

rank(obsv(Avertex(:,:,k),Cvertex

v ’

rank(obsv(Avertex(:

(
(
(
(
(

, 1, k),Cvertex ,

rank(obsv
(
rank(obsv(Avertex(:

Avertex(:,:,k),Cvertex

’ ’

rank(obsv(Avertex(:,:,k),Cvertex

’ ’

)

3 1,:

(k) ([1 3 1.t

(k) ([12 1,:

(k) ([12 1,:

(k) ([12 1,:
(k) 1, k),Cvertex([1 2 ]

v ’

end

A [all al2 al3 0 ; a2l a22 a23 a24 ;
C=[1000;0100; 000 1];
obsv_reducedl = rank(obsv(A,C));

A =1[01; a65 a66];

C=1[10];

obsv_reduced2 = rank(obsv(A,C));

1a3200; 000 ad4];

vertices = size(Avertex,3);

oP

DESIGN OF THE OBSERVER

rL 500;

qL = 0;
lambdalL = 50;
thetal = pi/3;

Lvertex = zeros(nx,ny,vertices);

PolesL = zeros(nx,vertices);

XL = sdpvar(nx);
W = cell(vertices,1);
for k=1l:vertices
W{k} = sdpvar(ny,nx);
end

clear F
tic
F = [XL>0];

1l:vertices

for ii
F [F, ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii}+(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii}) " '+2x*

lambdalL*XL<0];

[F, [—rL«XL gL+XL+ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii} ;

(gLxXL+ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii})"' —rL*XL]<0];

[F, [sin(thetal)=(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii}+(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)=*W{

ii})")

M
v, :

doe

O
v
t&'
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cos(thetalL)*(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii}—(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii})
")
cos(thetal)x(—(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii})+(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii
HnY
sin(thetal)*(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii}+(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii})
')1<01;
end
sdpoptions = sdpsettings('showprogress',1, 'solver', 'sedumi', 'sedumi.eps',le—10, " 'sedumi.maxiter',300);
diagnosticsL = solvesdp(F,[],sdpoptions);
temp = double(XL); clear XL;
XL = double(temp);
for k=1l:vertices
W{k} = double(W{k});
Lvertex(:,:,k) = (W{k}/XL)';
PolesL(:,k) = eig(Avertex(:,:,k)+Lvertex(:,:,k)*Cvertex(:,:,k));
end

toc

display('The LMIs for designing the state observer are:')
if diagnosticsL.problem ==

disp('Feasible')

elseif diagnosticsL.problem ==

disp('Infeasible")
else

disp('Something else happened')
end

eigtest = zeros(3xvertices+1,1);
k =1;
eigtest(k) = max(eig(XL));
for ii = l:vertices
k = k+1; eigtest(k) = max(eig(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii}+(ATvertex(:,:,1ii)*XL+CTvertex
(:,:,ii)*=W{ii}) '+2xlambdalL*XL));
k = k+1; eigtest(k) = max(eig([—rL*XL qLxXL+ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii} ;
(qLxXL+ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii})"' —rL=*XL]))
k = k+1; eigtest(k) = max(eig([sin(thetal)x(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii}+(ATvertex(:,:,1ii)*
XL+CTvertex(:,:,ii)*W{ii})")
cos(thetalL)*(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii}—(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii})
")
cos(thetal)x(—(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii})+(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii
HY
sin(thetal)*(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii}+(ATvertex(:,:,ii)*XL+CTvertex(:,:,ii)*W{ii})
1));
end

clear W

figure(1);
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plot(real(PolesL),imag(PolesL),'.b'); title('Pole clustering of the state observer');
hold on;
plot([—lambdaL —lambdalL], [—2*rL 2x*rL],'r—',—rL*cos(linspace(0,2x*pi,200)),rL*sin(linspace(0,2*pi,200)), ' r—'
,[qL—rL 0 gL—rL], [(—qL+rL)*tan(—thetalL) 0 (—qgL+rL)*tan(thetalL)], 'r—")
xlabel('Real(s)'); ylabel('Imag(s)"');
figure(2);
if(eigtest(1)>0)
plot(eigtest(2:end));
else
plot(eigtest);
end

title('Eigenvalues test for the design of the state observer');

save dataObserver.mat thetarange Lvertex

The Matrix A of Wind Turbine T-S model

—1.4229 x 107° 1.4842 x 10°7  —49.0909 0 —0.0304 0 —0.0304 0 —0.0304 0
0.0203 —0.1171 7.0688 x 10*  —0.0026 0 0 0 0 0 0
1 —0.0105 0 0 0 0 0 0 0 0
0 0 0 —50 0 0 0 0 0 0
A= 0 0 0 0 0 1 0 0 0 0
0 0 0 0 —123.4321 —13.332 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —123.4321 —13.332 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —123.4321 —13.332
(214220 % 105 1.4842 x 1077 —49.0909 0 0.0873 0 —0.0304 0 —0.0304 0 |
0.0203 —0.1171 7.0688 x 10*  —0.0026 0 0 0 0 0 0
1 —0.0105 0 0 0 0 0 0 0 0
0 0 0 —50 0 0 0 0 0 0
Ay = 0 0 0 0 0 1 0 0 0 0
0 0 0 0 —123.4321 —13.332 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —123.4321 —13.332 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —123.4321 —13.332
ain
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(14220 x 105 14842 x 1077 —49.0909 0 —0.0304 0 0.0873 0 —0.0304 0o |
0.0203 —0.1171 7.0688 x 10*  —0.0026 0 0 0 0 0 0
1 —0.0105 0 0 0 0 0 0 0 0
0 0 0 —50 0 0 0 0 0 0
Ay = 0 0 0 0 0 1 0 0 0 0
0 0 0 0 —123.4321 —13.332 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —123.4321 —13.332 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —123.4321 —13.332
(14929 % 105 14842 x 1077 —49.0909 0 0.0873 0 0.0873 0 —0.0304 0o |
0.0203 —0.1171 7.0688 x 10*  —0.0026 0 0 0 0 0 0
1 —0.0105 0 0 0 0 0 0 0 0
0 0 0 —50 0 0 0 0 0 0
Ay = 0 0 0 0 0 1 0 0 0 0
0 0 0 0 —123.4321 —13.332 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —123.4321 —13.332 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —123.4321 —13.332
(14220 x 1075 1.4842 x 107 —49.0909 0 —0.0304 0 —0.0304 0 0.0873 0 |
0.0203 —0.1171 7.0688 x 10*  —0.0026 0 0 0 0 0 0
1 —0.0105 0 0 0 0 0 0 0 0
0 0 0 —50 0 0 0 0 0 0
A= 0 0 0 0 0 1 0 0 0 0
0 0 0 0 —123.4321 —13.332 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —123.4321 —13.332 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —123.4321 —13.332
a@a
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(214220 x 105 1.4842 x 1077 —49.0909 0 0.0873 0 —0.0304 0 0.0873 0o |
0.0203 —0.1171 7.0688 x 10*  —0.0026 0 0 0 0 0 0
1 —0.0105 0 0 0 0 0 0 0 0
0 0 0 —50 0 0 0 0 0 0
Ay — 0 0 0 0 0 1 0 0 0 0
0 0 0 0 —123.4321 —13.332 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —123.4321 —13.332 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —123.4321 —13.332
(21,4220 % 105 1.4842 x 1077 —49.0909 0 —0.0304 0 0.0873 0 0.0873 0 |
0.0203 —0.1171 7.0688 x 10*  —0.0026 0 0 0 0 0 0
1 —0.0105 0 0 0 0 0 0 0 0
0 0 0 —50 0 0 0 0 0 0
A= 0 0 0 0 0 1 0 0 0 0
0 0 0 0 —123.4321 —13.332 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —123.4321 —13.332 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —123.4321 —13.332
(214229 % 105 14842 x 107 —49.0909 0 0.0873 0 0.0873 0 0.0873 0o |
0.0203 —0.1171 7.0688 x 101 —0.0026 0 0 0 0 0 0
1 —0.0105 0 0 0 0 0 0 0 0
0 0 0 —50 0 0 0 0 0 0
Ao — 0 0 0 0 0 1 0 0 0 0
0 0 0 0 —123.4321 —13.332 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 —123.4321 —13.332 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 —123.4321 —13.332
ain
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The Matrix B of Wind Turbine T-S model

[ 0 0 0 ]
0 0 0
0 0 0 0
50 0 0 0
s |0 0 0 0
0 1234321 0 0
0 0 0 0
0 0 1234321 0
0 0 0 0
0 0 0 123.4321

The Controller Gain of Wind Turbine T-S model

[6.6081 x 10°  —235.4576 —235.5610 9355351 |
7.5821 x 103 2.5520 2.5532 2.5529
3.8556 x 107 —878.9696 —877.3409 —877.2067
—0.5291 —1.4289 x 107> —1.4377 x 107° —1.4365 x 107>
K, = 152.3250 —9.1843 —0.1076 —0.1081
—14.8008 —0.4547 6.7634 x 107*  6.7468 x 1074
152.2279 —0.1079 —9.1843 —0.1080
—14.8008 6.7544 x 104 —0.4547 6.7469 x 10~*
152.2559 —0.1080 —0.1081 —9.1843
—14.7992 6.7379 x 107*  6.7472 x 1074 —0.4547
Reits
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[ 6.4775 x 10°
7.4389 x 103
3.8140 x 107

—0.5117
—3.0018 x 103
—18.7857
204.1472
—13.7177
204.1747
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