
Latency Tolerant Branch Predictors

Oliverio J. Santana, Alex Ramirez, and Mateo Valero, Fellow, IEEE
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Barcelona, Spain

email:�osantana,aramirez,mateo�@ac.upc.es

Abstract

The access latency of branch predictors is a well known
problem of fetch engine design. Prediction overriding tech-
niques are commonly accepted to overcome this problem.
However, prediction overriding requires a complex recov-
ery mechanism to discard the wrong speculative work based
on overridden predictions.

In this paper, we show that stream and trace predictors,
which use long basic prediction units, can tolerate access
latency without needing overriding, thus reducing fetch en-
gine complexity. We show that both the stream fetch engine
and the trace cache architecture not using overriding out-
perform other efficient fetch engines, such as an EV8-like
fetch architecture or the FTB fetch engine, even when they
do use overriding.

1. Introduction

Fetch engine performance effectively limits the instruc-
tion level parallelism that can be exploited by wide-issue
superscalar processors. This fact has led to the development
of accurate branch prediction mechanisms, able to predict
multiple branches per cycle. The EV8 [26] and the FTB [20]
fetch architectures can predict multiple branches in a single
cycle, whenever only the last one is taken. The next trace
predictor [9] overcomes this limitation using traces as ba-
sic prediction unit. A trace is a fragment of the dynamic in-
struction flow, potentially containing multiple basic blocks,
stored in a trace cache [16, 23].

The next stream predictor uses instruction streams [19]
as basic prediction unit. We call stream to a sequence of in-
structions from the target of a taken branch to the next taken
branch. Although a fetch engine based on streams is not able
to fetch instructions beyond a taken branch in a single cycle,
streams are long enough to provide a performance similar to
a trace cache, outperforming both an EV8-like fetch archi-
tecture and the FTB fetch architecture. In addition, since

streams are sequentially stored in the instruction cache, the
stream fetch engine does not need a special-purpose stor-
age, nor a complex dynamic building engine.

Nevertheless, besides providing high fetch bandwidth,
fetch engine designers should take into account an addi-
tional problem: the branch predictor access latency. The
continuous increase in processor clock frequency, as well
as the larger wire latencies caused by modern technologies,
prevent branch prediction tables from being accessed in a
single cycle [1, 10]. In spite of this, the fetch address gener-
ation should be done in a single cycle to allow fetching in-
structions in the next cycle.

A common solution for this problem is using a small and
fast predictor to obtain a first prediction in a single cycle.
A slower but more accurate predictor provides a new pre-
diction some cycles later, overriding the first prediction if
they differ [10, 26]. Prediction overriding involves discard-
ing the speculative work done based on the overridden pre-
diction. However, this requires a complex mechanism, since
those instructions fetched using the initial prediction should
not be squashed if they will be fetched again using the new
prediction [20].

In this paper, we analyze latency tolerant branch predic-
tors, that is, prediction techniques able to provide a high per-
formance without requiring and overriding mechanism. We
focus on the length of the basic prediction unit. If predic-
tions are long enough, the execution engine of the proces-
sor can be kept busy during multiple cycles, executing in-
structions from a long prediction, while a new prediction
is being generated. Overlapping the execution of a predic-
tion with the generation of the following prediction allows
to tolerate the access delay of this second prediction, remov-
ing the need of an overriding mechanism, and thus reducing
the fetch engine complexity.

We show that instruction streams and instruction traces
are long enough to feed the processor back-end with instruc-
tions during multiple cycles, hiding the access latency of the
next prediction. Therefore, both the stream and trace predic-
tors are able to tolerate the access latency without needing a

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’03)
1527-1366/03 $ 17.00 © 2003 IEEE

prediction overriding mechanism. Not using overriding re-
duces the performance of a stream fetch engine or a trace
cache architecture, but they still outperform the FTB and
EV8-like fetch architectures using overriding, requiring a
lower complexity. This suggests an interesting tradeoff be-
tween reducing the fetch engine complexity and achieving
a higher performance.

This paper is organized as follows. Section 2 exposes
previous related work. Section 3 describes our simulation
tool and benchmark suite, as well as the four evaluated fetch
models. Section 4 shows that instruction streams and traces
are longer than EV8 and FTB fetch blocks. Section 5 pro-
vides experimental results to backup our claims. Finally,
section 6 exposes our concluding remarks.

2. Related Work

Superscalar processors require efficient fetch mecha-
nisms, capable of providing multiple instructions per cy-
cle, in order to keep their functional units busy. In addition,
the fetch address generation should be done in a single cy-
cle because this address is needed for fetching instructions
in the next cycle. However, the increase in processor clock
frequency, as well as the slower wires in modern technolo-
gies, cause branch prediction tables to require multi-cycle
accesses [1, 10].

The trace predictor [9] is a latency tolerant mechanism,
since each trace prediction is potentially a multiple branch
prediction. A trace is a fragment of the dynamic control
flow of the program, which is stored in a special-purpose
trace cache [16, 23]. The processor front-end can use a sin-
gle trace prediction to feed the processor back-end with in-
structions during multiple cycles, while the trace predictor
is being accessed again to obtain a new prediction. Over-
lapping the prediction table access with the fetch of instruc-
tions from a previous prediction allows to hide the branch
predictor access delay.

The next stream predictor [19] has the same ability, since
a stream prediction is also a multiple branch prediction. A
stream is a sequence of instructions starting in the target of a
taken branch and finishing in the next taken branch, ignor-
ing all intermediate not taken branches. The stream fetch
engine requires a lower cost and complexity than the trace
cache fetch architecture, since it does not need a special-
purpose storage like the trace cache, nor a dynamic building
mechanism. However, instruction streams are long enough
to provide a performance similar to a trace cache.

The fetch target queue (FTQ) proposed in [20] is help-
ful for taking advantage of this fact. The FTQ decouples the
branch prediction mechanism and the instruction cache ac-
cess. Each cycle, the branch predictor generates the fetch
address for the next cycle, and a fetch request which is
stored in the FTQ. Since the instruction cache is driven by

the requests stored in the FTQ, the fetch engine is less likely
to stay idle while the predictor is being accessed again.

Another promising idea to tolerate the access latency is
pipelining the branch predictor [13, 27]. Using a pipelined
predictor, a new prediction can be started each cycle. Nev-
ertheless, this is not trivial, since the result of a branch pre-
diction is needed to start the next prediction. Therefore, a
branch prediction can only use the information available in
the cycle it starts, which has a negative impact on prediction
accuracy. In-flight information could be taken into account
when a prediction is generated, like described in [27], but
this also involves an increase in the fetch engine complex-
ity. It is possible to reduce this complexity in the fetch en-
gine of a simultaneous multithreaded processor [30], as de-
scribed by Falcon et al. [4], pipelining the branch predictor
and interleaving prediction requests from different threads
each cycle. However, analyzing the accuracy and perfor-
mance of pipelined branch predictors is out of the scope
of this paper.

Prediction Overriding

A different approach is the overriding mechanism de-
scribed by Jimenez et al. [10]. This mechanism provides
two predictions, a first prediction coming from a fast branch
predictor, and a second prediction coming from a slower,
but more accurate predictor. When a branch instruction is
predicted, the first prediction is used while the second one
is still being calculated. Once the second prediction is ob-
tained, it overrides the first one if they differ, since the sec-
ond predictor is considered to be the most accurate. A sim-
ilar mechanism is used in the Alpha EV6 [6] and EV8 [26]
processors, where a multi-cycle latency branch predictor
overrides a faster but less accurate cache line predictor [2].

The problem of prediction overriding is that it requires an
important increase in the fetch engine complexity. An over-
riding mechanism requires a fast branch predictor to obtain
a prediction each cycle. This prediction should be stored
for being compared with the main prediction. Some cycles
later, when the main prediction is generated, the fetch en-
gine should determine whether the first prediction is cor-
rect or not. If the first prediction is wrong, all the specu-
lative work done based on it should be discarded. There-
fore, the processor should track which instructions depend
on each prediction done in order to allow the recovery pro-
cess. This is the main source of complexity of the overrid-
ing technique.

Moreover, a wrong first prediction does not involve that
all the instructions fetched based on it are wrong. Since both
the first and the main predictions start in the same fetch ad-
dress, they will partially coincide. Thus, the correct instruc-
tions based on the first prediction should not be squashed.
This selective squash will increase the complexity of the re-

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’03)
1527-1366/03 $ 17.00 © 2003 IEEE

covery mechanism. To avoid this complexity, a full squash
could be done when the first and the main predictions dif-
fer, that is, all instructions depending on the first prediction
are squashed, even if they should be executed again accord-
ing to the main prediction. However, a full squash will de-
grade the processor performance and does not remove all
the complexity of the overriding mechanism.

Therefore, the challenge is to develope a technique able
to achieve the same performance than an overriding mech-
anism, but avoiding its additional complexity. This paper
is focused on using long basic prediction units to remove
this complexity while still providing high performance. In
particular, we focus on instruction streams and traces. The
main difference of this paper from previous work on stream
[19] and trace [9] predictors is the use of realistic access
latencies to evaluate the performance achieved by these
predictors. Our results show that the length of instruction
streams and traces is enough to hide the branch predictor
access latency without needing an overriding mechanism.

3. Experimental Methodology

The results in this paper have been obtained using trace
driven simulation of a superscalar processor. Our simula-
tor uses a static basic block dictionary to allow simulating
the effect of wrong path execution. This model includes the
simulation of wrong speculative predictor history updates,
as well as the possible interference and prefetching effects
on the instruction cache.

We feed our simulator with traces of 300 million instruc-
tions collected from the SPEC 2000 integer benchmarks us-
ing the ref input set. To find the most representative ex-
ecution segment we have analyzed the distribution of ba-
sic blocks as described in [28]. We excluded the bench-
mark 181.mcf because its performance is very limited by
data cache misses, being insensitive to changes in the fetch
architecture. The average performance measures presented
along the paper are the harmonic mean of the eleven bench-
marks used.

Since previous work [18] has shown that code layout op-
timizations have a very important effect on all aspects of the
fetch engine performance, we present data for both a base-
line and an optimized code layout. The baseline code layout
was generated using the Compaq C V5.8-015 compiler on
Compaq UNIX V4.0, while the optimized code layout was
later generated with the spike tool [3] shipped with Com-
paq Tru64 Unix 5.1. Optimized code generation is based
on profile information collected by the pixie V5.2 tool us-
ing the train input set.

Instruction Cache

Fetch
Address

Next Stream
Predictor

FTQ

Figure 1. Stream fetch engine.

3.1. Fetch Models

We evaluate four state-of-the-art fetch architectures us-
ing prediction overriding: an EV8-like fetch architecture us-
ing a 2bcgskew branch predictor [26], the FTB fetch archi-
tecture [20] using a perceptron branch predictor [11], the
stream fetch engine using a next stream predictor [19], and
the trace cache architecture using a trace predictor [9].

The next stream predictor is evaluated using the stream
fetch engine [19], shown in figure 1. The stream predictor
access is decoupled from the instruction cache access using
a fetch target queue (FTQ) [20]. The stream predictor gen-
erates requests which are stored in the FTQ. These requests
are used to drive the instruction cache, obtain a line from
it, and select which instructions from the line should be ex-
ecuted. In the same way, the remainder three fetch models
use an FTQ to decouple the branch prediction stage from
the fetch stage.

Our EV8-like fetch model is similar to the one described
in [26] but modified to decouple the branch prediction
mechanism from the instruction cache with an FTQ. An
interleaved BTB is used to allow the prediction of multi-
ple branches until a taken branch is predicted, or until an
aligned 8-instruction block is completed. The branch pre-
diction history is updated using a single bit for prediction
block, which combines the outcome of the last branch in
the block with path information, as described in [26]. Our
FTB model is similar to the one described in [20] but us-
ing a perceptron branch predictor [11] to predict the direc-
tion of conditional branches. Figure 2 shows a diagram rep-
resenting these two fetch architectures.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’03)
1527-1366/03 $ 17.00 © 2003 IEEE

Instruction Cache

Fetch
Address

FTQ

FTB or
Interleaved

BTB

Perceptron
or

2bcgskew

Next
Address

Logic

Figure 2. Fetch engine using an FTB or
an interleaved BTB, as well as a separate
conditional branch predictor (perceptron or
2bcgskew).

Our trace cache architecture model is similar to the one
described in [24] but using an FTQ to decouple the trace
predictor from the trace cache, as shown in figure 3. Trace
predictions are stored in the FTQ, which feeds the trace
cache with trace identifiers. An interleaved BTB is used to
build traces in case of a trace cache miss. This BTB uses
2-bit saturating counters to predict the direction of condi-
tional branches when a trace prediction is not available. In
addition, an aggressive 2-way interleaved instruction cache
is used to allow traces to be built as fast as possible. This
mechanism is able to obtain up to a full cache line in a cy-
cle, independent of PC alignment.

3.2. Processor Setup

The lower cycle time of current processors involves a
larger number of stages in the processor pipeline. This fact
has an impact not only on the branch predictor, but also
on other processor components like the register bank or the
memory hierarchy. Therefore, we have configured our sim-
ulator to model a 22-stage pipeline processor. We assume
that 2 cycles are needed to access the register bank. We also
assume 3 cycles to access the first level caches and 16 cy-
cles to access the second level unified cache, according to
data obtained using CACTI 3.0 [29] for a 0.10�m technol-
ogy. Finally we assume that a main memory access requires
250 cycles.

Trace Cache

Trace
Identifier

FTQ

Interleaved
BTB

Next Trace
Predictor

Instruction
Cache

Trace
Buffers

Figure 3. Fetch engine based on a trace pre-
dictor and a trace cache.

In addition, we simulate two different processor setups:
a 4-wide and an 8-wide superscalar processor. The fetch, is-
sue, and commit widths of the second setup are twice those
for the first setup. The wider setup also doubles the size of
the issue queues and the reorder buffer, having a larger num-
ber of registers. These setups allow us to analyze the im-
pact of the maximum fetch width in the performance of a
multi-cycle branch predictor. The wider setup is able to ex-
ecute a higher number of instructions each cycle, and thus
it adds pressure to the branch prediction mechanism, since
new predictions are required more frequently. The main val-
ues of these setups are shown in table 1.

Our instruction cache setup uses wide cache lines, that
is, 4 times the processor fetch width [19], having a 64KB
total hardware budget. The trace cache architecture is ac-
tually evaluated using a 32KB instruction cache, while the
remainder 32KB are devoted to the trace cache. This hard-
ware budget is equally divided into a filter trace cache [21]
and a main trace cache. We use a longer maximum trace
size in the 8-wide setup to help tolerating the branch pre-
dictor latency. Although longer traces reduce the total num-
ber of traces that can be kept in the trace cache, it provides a
better performance in this setup than keeping a bigger num-
ber of shorter traces. In addition, we use selective trace stor-
age [17] to avoid trace redundancy between the trace cache
and the instruction cache.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’03)
1527-1366/03 $ 17.00 © 2003 IEEE

4-wide processor
fetch/rename/commit width 4 instructions
integer issue width 4 instructions
floating point issue width 4 instructions
load/store issue width 2 instructions
fetch target queue 4 entries
integer issue queue 32 entries
floating point issue queue 32 entries
load/store issue queue 32 entries
reorder buffer 128 entries
integer registers 96
floating point registers 96
register bank latency 2 cycles
filter/main trace cache 256 traces, 4-way
maximum trace size 16 inst. (6 branches)

8-wide processor
fetch/rename/commit width 8 instructions
integer issue width 8 instructions
floating point issue width 8 instructions
load/store issue width 4 instructions
fetch target queue 4 entries
integer issue queue 64 entries
floating point issue queue 64 entries
load/store issue queue 64 entries
reorder buffer 256 entries
integer registers 160
floating point registers 160
register bank latency 2 cycles
filter/main trace cache 128 traces, 4-way
maximum trace size 32 inst. (10 branches)

memory hierarchy
L1 instruction cache 64/32KB, 2-way
instruction cache block 4*fetch width bytes
L1 data cache 64KB, 2-way, 64B block
L1 latency 3 cycles
L2 unified cache 1 MB, 4-way, 128B block
L2 latency 16 cycles
main memory latency 250 cycles

Table 1. Simulator setup.

3.3. Prediction Tables Access Latency

We have measured the access time for the branch pre-
diction structures evaluated in this paper using the CACTI
3.0 tool [29], a detailed wire and transistor structure model
of cache memories. We modified CACTI to model tagless
branch predictors, as well as to work with setups expressed
in bits instead of bytes. Data we have obtained corresponds
to a 0.10�m technology, which is expected to be used in a
recent future.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

entries

a
c
c
e
ss

 t
im

e
 (

n
s)

Perceptron
BTB / FTB
Trace Predictor
Stream Predictor
2bc Table

1 cycle

2 cycle

3 cycle

4 cycle

Figure 4. Access time to branch prediction ta-
bles in 0.10�m technology with a 3.47 GHz
clock frequency.

For translating the access time from nanoseconds to cy-
cles, we assumed an aggressive 8 fan-out-of-four delays
clock period, that is, a 3.47 GHz clock frequency as re-
ported in [1]. It has been claimed by Hrishikesh et al. [8]
that 8 fan-out-of-four delays is the optimal clock period for
integer benchmarks in a high performance processor imple-
mented in 0.10�m technology.

Figure 4 shows the branch prediction table access time
obtained using CACTI. We have measured the access time
for a 2-bit counters table ranging from 8 to 64K entries. We
have also measured the access time for a BTB, an FTB, a
stream predictor, and a trace predictor ranging from 32 to
4K entry tables. These tables are assumed to be 4-way as-
sociative because direct mapped tables provide a poor per-
formance, while 2-way associative tables require the same
number of cycles to be accessed that 4-way associative ta-
bles in the evaluated setups.

Finally, we have measured the access time for a percep-
tron table ranging from 32 to 4K entries. Since the size of
the table depends on the number of history bits, we have
used 40 bits of global history and 14 bits of local history,
that is, 55 weights [11]. We have analyzed different his-
tory setups exposed in [12] and, in general, 40–14 proved
to be the most efficient for the evaluated table sizes. How-
ever, this data does not take into account the extra latency
needed for the computation of the perceptron output. Con-

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’03)
1527-1366/03 $ 17.00 © 2003 IEEE

sequently, we add an extra cycle to the perceptron table la-
tency shown in figure 4 to model this computation process.
This is an optimistic assumption according to [12].

3.4. Branch Predictors Setup

We have evaluated the four simulated fetch engines vary-
ing the size of the branch predictor from small and fast ta-
bles to big and slow tables. Taking into account realistic ta-
ble access latencies, the best performance is achieved us-
ing the larger three cycle latency tables [25]. Although big-
ger predictors are slightly more accurate, their increased ac-
cess delay harms processor performance. On the other hand,
predictors with a lower latency are too small and provide a
poor performance. Therefore, we have chosen to simulate
all branch predictors using the bigger tables that can be ac-
cessed in three cycles.

Table 2 shows the configuration of the simulated predic-
tors, as well as the single-cycle predictors used by the over-
riding mechanism. We have explored a wide range of his-
tory lengths, as well as DOLC configurations for the trace
and stream predictors, and selected the best one found for
each setup. Table 2 also shows the approximated hardware
budget for each predictor. Since we simulate the larger three
cycle latency tables1, the total hardware budget devoted to
each predictor is different. The stream fetch engine requires
less hardware resources because it uses a single prediction
mechanism, while the other evaluated fetch architectures
use two separate structures.

4. The Length of Basic Prediction Units

Long basic prediction units help to hide the branch pre-
dictor access latency. The longer a prediction is, the more
cycles the execution engine will be busy without requiring
a new prediction. Figure 5 shows the average length of the
basic prediction units for the four evaluated fetch architec-
tures and for both the baseline and optimized code layouts.

EV8 fetch blocks are the shorter prediction unit. They
have the lower probability of hiding the branch predictor
access by executing instructions from previous predictions.
Therefore, our EV8-like fetch model requires an overrid-
ing mechanism to provide a high performance. FTB fetch
blocks are longer, so they are less sensible to the branch
predictor access latency. However, instruction streams are
longer than both EV8 and FTB fetch blocks, so it can be
expected that the stream predictor without overriding pro-
vides a high performance, even outperforming the FTB and
EV8-like fetch architectures using overriding.

1 The first level of the trace and stream predictors is actually smaller
than the second one because larger first level tables do not provide a
significant improvement in prediction accuracy.

2bcgskew predictor (approx. 89KB)
four 64K entry tables

16 bit history (bimodal 0 bits)
4096 entry, 4-way associative, interleaved BTB

64 entry single-cycle gshare (6-bit history)
32 entry direct-mapped single-cycle BTB

perceptron predictor (approx. 46KB)
256 perceptrons

40 bit global and 4096x14 bit local history
4096 entry, 4-way associative, FTB

64 entry single-cycle gshare (6-bit history)
32 entry direct-mapped single-cycle BTB

next stream predictor (approx. 33KB)
1024 entry, 4-way associative, first level

4096 entry, 4-way associative, second level
DOLC 16-2-4-10

32 entry direct-mapped single-cycle stream predictor
DOLC 0-0-0-5

next trace predictor (approx. 74KB)
2048 entry, 4-way associative, first level

4096 entry, 4-way associative, second level
DOLC 10-4-7-9

4096 entry, 4-way associative, interleaved BTB
32 entry direct-mapped single-cycle trace predictor

DOLC 0-0-0-5
perfect BTB override

Table 2. Branch predictors setup.

Figure 5 also shows that code layout optimizations have
a beneficial effect on the length of instruction streams. Code
layout optimizations try to map together those basic blocks
which are frequently executed as a sequence. Therefore,
most dynamic conditional branches in optimized codes are
not taken, enlarging instruction streams. On average, in-
struction streams are 22% longer when using optimized
codes, increasing the stream predictor ability of tolerating
the access latency.

Instruction traces are also long enough to hide the pre-
dictor access latency. However, since traces are stored in a
special purpose cache, their size is physically limited. Fig-
ure 5 shows data for both 16-instruction and 32-instruction
maximum trace size. Increasing the maximum trace size in-
volves an increase in the average size (although a trace is
also limited by other factors, like indirect branches), but it
will also reduce the total number of traces that can be stored
in the trace cache, increasing its miss rate.

Although the 32-instruction setup has longer traces, it
is able to store half the number of traces than the 16-
instruction setup. We have found that the 32-instruction
setup provides a better performance in the 8-wide proces-

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’03)
1527-1366/03 $ 17.00 © 2003 IEEE

0

4

8

12

16

20

In
st

ru
ct

io
n

s

EV8 Fetch Block

FTB Fetch Block
Trace Max16

Trace Max32
Stream

(a) baseline code

0

4

8

12

16

20

In
st

ru
ct

io
n

s

EV8 Fetch Block

FTB Fetch Block
Trace Max16

Trace Max32
Stream

(b) optimized code

Figure 5. Average basic prediction unit length
in the four evaluated fetch engines.

sor. However, the 16-instruction setup provides a better per-
formance in the 4-wide processor because a lower number
of instructions is required to hide the predictor delay, be-
ing more beneficial to store a larger number of traces in the
trace cache. Nevertheless, streams are long enough to pro-
vide a performance similar to a trace cache at a lower com-
plexity [19], specially when using optimized codes.

5. Performance Evaluation

Figure 6 shows the average processor performance
achieved by the four evaluated fetch architectures us-
ing the 4-wide setup. Data is shown for both the baseline
and the optimized code layout. Besides the performance
of the four fetch engines using overriding, the perfor-
mance achieved by the stream fetch engine and the trace
cache fetch architecture not using overriding is also shown
(labeled No Ov).

When all evaluated models use overriding, that is, un-
der equal conditions, the stream fetch engine and the trace
cache fetch architecture outperform the EV8-like and FTB
models. Moreover, the stream fetch engine and the trace
cache fetch architecture do not need the complex overrid-
ing mechanism to outperform the EV8-like and FTB fetch
architectures.

Using the baseline code layout, the stream fetch engine
without overriding achieves an average IPC speedup of 5%
over the EV8-like fetch engine using overriding. Code lay-
out optimizations enlarge the average length of fetch blocks.
Since EV8 fetch blocks are shorter than instruction streams,
code optimizations are more beneficial for the EV8-like
fetch architecture performance than for the stream fetch
engine. However, using optimized codes, the stream fetch
engine not using overriding still achieves an average 4%
IPC speedup over the EV8 fetch architecture with overrid-
ing. Even more, if the EV8-like fetch architecture does not
use overriding, the stream fetch engine would achieve an
speedup over 40% (not shown in the figure). The trace cache
fetch architecture not using overriding achieves speedups
even higher than the stream fetch engine.

Since FTB fetch blocks are longer than EV8 ones, the
FTB fetch architecture is less sensible to prediction de-
lay. However, the stream fetch engine without overriding
achieves a performance similar to an FTB fetch architecture
using overriding. The stream predictor not using overriding
achieves an average 0.5% IPC speedup against the FTB with
overriding, which is raised to 1.5% when using optimized
codes. If the FTB fetch architecture does not use overriding,
the stream fetch engine would achieve an speedup higher
than 5%. Once again, the trace cache fetch architecture not
using overriding provides larger IPC speedups.

Figure 7 shows the average processor performance
achieved by the four evaluated fetch architectures us-
ing the 8-wide setup. In this setup, a larger number of
instructions is needed each cycle to keep the execution en-
gine busy. This fact reduces the ability of the trace and
stream predictors for tolerating the access latency. Con-
sequently, the stream fetch engine without overriding is
not able to outperform the FTB fetch architecture us-
ing overriding. It achieves an average 3.5% IPC slowdown.
In spite of this, the stream fetch engine not using over-

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’03)
1527-1366/03 $ 17.00 © 2003 IEEE

(a) baseline code

(b) optimized code

Figure 6. Average processor performance
achieved by the 4-wide evaluated setups.

(a) baseline code

(b) optimized code

Figure 7. Average processor performance
achieved by the 8-wide evaluated setups.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’03)
1527-1366/03 $ 17.00 © 2003 IEEE

riding outperforms the EV8-like fetch architecture using
overriding, achieving an average 9% IPC speedup. In addi-
tion, the trace cache fetch architecture not using overriding
outperforms both the EV8-like and the FTB fetch architec-
tures using overriding.

Using optimized codes, the longer size of streams com-
pensates the need for a larger number of instructions in the
8-wide setup. The stream fetch engine not using overrid-
ing performs almost equally well than the FTB fetch ar-
chitecture using overriding. Since the performance of both
fetch architectures is so close, the stream predictor without
overriding is a good choice in order to reduce the fetch en-
gine complexity. In addition, the stream predictor without
overriding still outperforms the EV8-like fetch engine us-
ing overriding, achieving an average 11% IPC speedup.

On average, the trace cache is the most efficient evalu-
ated fetch mechanism, thanks to its ability of fetching in-
structions beyond taken branches in a single cycle. In ad-
dition, the trace predictor without overriding outperforms
both the FTB and EV8-like fetch architectures using over-
riding in all the evaluated setups. Thus, a trace predictor not
using overriding is also an interesting alternative to remove
the overriding mechanism, still achieving a high perfor-
mance. The main disadvantage of the trace predictor regard-
ing the stream predictor is its higher complexity. It requires
an special-purpose storage and a dynamic building mech-
anism, while instruction streams are sequentially stored in
the instruction cache. Moreover, the stream fetch engine is
only slightly slower than the trace cache. Using optimized
codes, the IPC slowdown is even reduced under 2%. There-
fore, the stream predictor represents the best tradeoff be-
tween processor performance and fetch engine complexity.

Nevertheless, both the stream and trace predictors are
able to achieve a higher performance when using overrid-
ing. An overriding mechanism is specially complex for a
trace predictor, since the secondary predictor used to build
traces should be taken into account. Not only the instruc-
tions based on wrong predictions should be squashed, but
also the portions of traces built based on wrong predictions
should be undone. Since the stream predictor using overrid-
ing provides a performance similar to a trace predictor us-
ing overriding, it still represents the best tradeoff between
processor performance and fetch engine complexity.

6. Conclusions

In modern superscalar processors, higher clock frequen-
cies and larger wire delays cause branch prediction tables
to require multiple cycles to be accessed. This is an im-
portant limiting factor for fetch engine performance, since
branch predictions should be completed in a single cycle to
allow fetching instructions in the following cycle. Predic-
tion overriding is an efficient technique proposed to over-

come this problem. However, it needs a complex recovery
mechanism to discard the wrong speculative work based on
overridden predictions.

In this paper, we have shown that the stream and trace
predictors are able to tolerate their access latency without
using such an overriding mechanism, reducing fetch engine
complexity. Instruction streams and traces are long enough
to feed the execution engine during multiple cycles, hiding
the access delay of the following prediction. We have shown
that both the stream and trace predictors without overrid-
ing are able to outperform other efficient fetch mechanisms,
such as an EV8-like fetch architecture and the FTB fetch en-
gine, even when they do use overriding.

It is true that, using prediction overriding, the stream
fetch engine and the trace cache fetch architecture provide
a better performance than not using it. This fact leads to an
important decision in the design of the processor front-end:
reducing the fetch engine complexity or increasing its per-
formance using overriding. Nevertheless, it is still possible
to enlarge streams and traces. If we obtain longer predic-
tion units, the branch predictor access latency can be com-
pletely hidden, removing all the complexity of the overrid-
ing mechanism without loosing performance.

As we have shown, code layout optimizations enlarge in-
struction streams, increasing the ability of the stream pre-
dictor to tolerate the access latency. Therefore, more re-
search effort should be devoted to new optimization tech-
niques in order to achieve streams long enough to com-
pletely hide the access latency. In the same way, techniques
to enlarge instruction traces would also be useful to hide
the access latency of the trace predictor. In [22] some dy-
namic trace selection techniques are proposed in order to
enlarge instruction traces. Another approach is the rePLay
microarchitecture [15]. It uses a front-end derived from the
trace cache, making extensive use of the branch promotion
technique [14] to build very long instruction traces, called
frames, and then dynamically optimize them.

In general, long instruction traces will avoid the need of
an overriding mechanism in a trace cache fetch architecture.
However, it does not remove the additional complexity of
such architecture, which is its main disadvantage against the
stream fetch engine. If performance is the only relevant fac-
tor, then the trace cache is probably the best option, since it
provides other advantages like storing decoded instructions
[7] or enabling dynamic optimizations [5, 15]. However, if
complexity is also taken into account, the stream fetch ar-
chitecture provides a worthwhile alternative.

Acknowledgements

This research has been supported by CICYT grant TIC-
2001-0995-C02-01, an Intel scholarship grant, and CEPBA.
Oliverio. J. Santana is also supported by Generalitat de
Catalunya grant 2001FI-00724-APTIND.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’03)
1527-1366/03 $ 17.00 © 2003 IEEE

References

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger.
Clock rate versus IPC: The end of the road for conventional
microarchitectures. Proceedings of the 27th International
Symposium on Computer Architecture, 2000.

[2] B. Calder and D. Grunwald. Next cache line and set predic-
tion. Proceedings of the 22nd International Symposium on
Computer Architecture, 1995.

[3] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin. Spike:
an optimizer for Alpha/NT executables. Proceedings of the
USENIX Windows NT Workshop, 1997.

[4] A. Falcon, O. J. Santana, A. Ramirez, and M. Valero. Toler-
ating Branch Predictor Latency on SMT. Proceedings of the
5th International Symposium on High Performance Comput-
ing, 2003.

[5] D. H. Friendly, S. J. Patel, and Y. N. Patt. Alternative fetch
and issue techniques from the trace cache mechanism. Pro-
ceedings of the 30th International Symposium on Microar-
chitecture, 1997.

[6] L. Gwennap. Digital 21264 sets new standard. Microproces-
sor Report, vol. 10, no. 14, 1996.

[7] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Caerman, A.
Kyker, and P. Roussel. The microarchitecture of the pentium
4 processor. Intel Technology Journal, 2001.

[8] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W.
Keckler, and P. Shivakumar. The optimal useful logic depth
per pipeline stage is 6-8 fo4. Proceedings of the 29th Inter-
national Symposium on Computer Architecture, 2002.

[9] Q. Jacobson, E. Rotenberg, and J. E. Smith. Path-based next
trace prediction. Proceedings of the 30th International Sym-
posium on Microarchitecture, 1997.

[10] D. A. Jimenez, S. W. Keckler, and C. Lin. The impact of de-
lay on the design of branch predictors. Proceedings of the
33rd International Symposium on Microarchitecture, 2000.

[11] D. A. Jimenez and C. Lin. Dynamic branch prediction with
perceptrons. Proceedings of the 7th International Confer-
ence on High Performance Computer Architecture, 2001.

[12] D. A. Jimenez. Delay-sensitive branch predictors for future
technologies. Ph.D. thesis, Department of Computer Sci-
ences, University of Texas at Austin, 2002.

[13] D. A. Jimenez. Reconsidering complex branch predictors.
Proceedings of the 9th International Conference on High
Performance Computer Architecture, 2003.

[14] S. J. Patel, M. Evers, and Y. N. Patt. Improving trace cache
effectiveness with branch promotion and trace packing. Pro-
ceedings of the 25th International Symposium on Computer
Architecture, 1998.

[15] S. J. Patel, T. Tung, S. Bose, and M. M. Crum. Increasing
the size of atomic instruction blocks using control flow as-
sertions. Proceedings of the 33rd International Symposium
on Microarchitecture, 2000.

[16] A. Peleg and U. Weiser. Dynamic flow instruction cache
memory organized around trace segments independent of
virtual address line. U.S. Patent Number 5,381,533, 1995.

[17] A. Ramirez, J. L. Larriba-Pey, and M. Valero. Trace cache
redundancy: red & blue traces. Proceedings of the 6th Inter-
national Conference on High Performance Computer Archi-
tecture, 2000.

[18] A. Ramirez, L. Barroso, K. Gharachorloo, R. Cohn, J. L.
Larriba-Pey, G. Lawney, and M. Valero. Code layout op-
timizations for transaction processing workloads. Proceed-
ings of the 28th International Symposium on Computer Ar-
chitecture, 2001.

[19] A. Ramirez, O. J. Santana, J. L. Larriba-Pey, and M. Valero.
Fetching instruction streams. Proceedings of the 35th Inter-
national Symposium on Microarchitecture, 2002.

[20] G. Reinman, T. Austin, and B. Calder. A scalable front-
end architecture for fast instruction delivery. Proceedings
of the 26th International Symposium on Computer Architec-
ture, 1999.

[21] R. Rosner, A. Mendelson, and R. Ronen. Filtering tech-
niques to improve trace cache efficiency. Proceedings of the
10th International Conference on Parallel Architectures and
Compilation Techniques, 2001.

[22] R. Rosner, M. Moffie, Y. Sazeides, and R. Ronen. Select-
ing long atomic traces for high coverage. Proceedings of the
17th International Conference on Supercomputing, 2003.

[23] E. Rotenberg, S. Benett, and J. E. Smith. Trace cache: a
low latency approach to high bandwidth instruction fetch-
ing. Proceedings of the 29th International Symposium on
Microarchitecture, 1996.

[24] E. Rotenberg, S. Bennett, and J. E. Smith. A trace cache mi-
croarchitecture and evaluation. IEEE Transactions on Com-
puters, vol 48, no. 2, 1999.

[25] O. J. Santana, A. Ramirez, J. L. Larriba-Pey, and M. Valero.
Accurate Latency-Tolerant Branch Prediction. Technical Re-
port UPC-DAC-2003-09, 2003.

[26] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design
tradeoffs for the Alpha EV8 conditional branch predictor.
Proceedings of the 29th International Symposium on Com-
puter Architecture, 2002.

[27] A. Seznec and A. Fraboulet. Effective ahead pipelining of in-
struction block address generation. Proceedings of the 30th
International Symposium on Computer Architecture, 2003.

[28] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-
tribution analysis to find periodic behavior and simulation
points in applications. Proceedings of the 10th International
Conference on Parallel Architectures and Compilation Tech-
niques, 2001.

[29] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An integrated
cache timing, power and area model. Western Research Lab-
oratory Research Report 2001/2, 2001.

[30] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. Proceedings of
the 22nd International Symposium on Computer Architec-
ture, 1995.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’03)
1527-1366/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

