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Abstract

We study the problem of the hydrogen atom interacting with a circularly polar-

ized microwave field, and more specifically, we focus on the so called to and fro

motion, that is, the erratic trajectories described by the electron making several

large distance excursions and close passages to the nucleus. The skeleton of such

trajectories is based on the so called ejection-collision orbits (ECO), that is, or-

bits ejected from the nucleus, describing several far/close passages to the origin

and finally colliding with it. The computation and continuation of families of

ECO, as well as their bifurcations is analysed, and finally the consequences of

such orbits to explain to and from motion as well as ionization of an electron

by the external field are also described.
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dynamics

2010 MSC: 70F07, 70F15

1. Introduction

The study of the n-body problem, and in particular, the 3-body problem in

Celestial Mechanics has been the keystone to advance in the understanding of

different aspects of classical mechanics –both from a physical and mathematical

point of view–. Chaotic dynamics is an intriguing one. However, chaos appears5
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also in the microscopic or quantum problems. It is remarkable how the study of

the Restricted three body problem –which may be regarded as a perturbation of

the Kepler problem–, is a paradigm problem in the macroscale mechanics and

a vast literature has been, and still is, devoted to it (see [3], [5], [6] and [16]

and references therein). In the microscale or quantum mechanics, there exists10

an analogue problem which is the hydrogen atom interaction with a circularly

polarized electromagnetic field, called from now on the CP problem. This prob-

lem, in rotating coordinates becomes a Keplerian problem plus a perturbation

depending on one parameter and the equations of motion for the electron can

be written as a Hamiltonian system of ordinary differential equations (ODE)15

which has a unique singularity that corresponds to the collision with the nu-

cleus (located at the origin). Thus, the tools from a dynamical system approach

that are applied for the RTBP may be used in the CP problem.

Many references have been devoted to this problem (see for example [1], [2],

[4] and [12] and references therein); the last one being the first systematic study20

of the relevant invariant objects in phase space which control the dynamics,

but more focused on ionizing/escaping orbits. However none of them analyse a

mechanism that explains the naive behaviour of the so called to and fro motion,

that is, the behaviour of the electron when it describes a trajectory with several

far and close passages to the nucleus in an erratic or chaotic way. An approach25

to this mechanism is studied in [1]; nevertheless, in that paper, the authors

considered different sets of initial conditions and integrated numerically the

CP system of ODE but stopped the numerical integration when the electron

was close to the nucleus due to the presence of the singularity. Therefore no

results about the behavior of trajectories passing very close of the origin were30

given. In the present paper, we regularize the equations of motion to remove the

singularity, so this difficulty is completely overcome. More precisely, we study

orbits that eject from (or collide with) the origin and have several close passages

to it. The skeleton of the to and fro motion consists of what we call n ejection-

collision orbits (denoted from now on as n-ECO). An n-ECO is a trajectory that35

ejects from the nucleus (origin), has 2n−1 extrema in the distance to the origin
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(typically corresponding to n maxima and n − 1 minima), and collides with

the nucleus. We will show how these ECO are simply heteroclinic connections

between different equilibrium points and we study their existence when varying

the energy. This approach was originally applied in the RTBP, and partial40

analytical results are obtained in [8], [9] and [10] for the circular RTBP and

in [11], [15] for the elliptic case. A massive numerical analysis for the circular

RTBP is recently carried out in [14]. Finally we will discuss the role that such

ECO play on the global dynamics of the CP problem, concerning not only the

to and fro motion, but the non-return (or ionization) as well.45

The paper is organized as follows: in Section 2 we provide the system of

ordinary differential equations (ODE) governing the motion for the electron

in a rotating system of coordinates. Some basic and known properties of this

problem, concerning equilibrium points, periodic orbits and possible regions of

motion, are shortly recalled. In Section 3 we explain the methodology to deal50

with ECO: the regularization of the singularity at the origin of the system of

ODE is carried out, the collision manifold is studied (which provides an insight

about how orbits passing close to the collision will behave) and the strategies to

compute ECO and the organization of ECO in families (and bifurcations) are

described. The convenience to use suitable Poincaré sections is also discussed.55

Section 4 is devoted to provide and describe the results obtained from mas-

sive simulations. The possibility of having ejection orbits that finally ionize is

also explained taking into account the values of the energy of the CP problem.

Fynally, some conclusions are drawn in Section 5.

We finally remark that the numerical integrations of the systems of ODE60

done along the paper use a Taylor method implemented on a robust, fast and

accurate software package by Jorba and Zou ([7]).

2. Description of the CP problem. Main features

In order to have a self contained paper, we present the main features of this

problem. The details can be found in [1].65
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We consider the relative motion of a hydrogen atom submitted to a circularly

polarized (CP) microwave, where the pulse of the microwave field is taken with a

flat-top shape, that is, the field amplitude is ramped up in time until it achieves a

final, constant amplitude. In this study we ignore the ramping and just consider

the dynamics after the flat-top has been reached (see [2] for a discussion of the70

consequences of the initial ramp).

The Hamiltonian for the electron of the hydrogen atom (in the limit of an

infinitely massive nucleus and in atomic units me = h̄ = e = 1) subjected to a

CP microwave field is the following:

H̃(X,Y,X ′, Y ′) =
1

2
(X ′2 + Y ′2 + Z ′2)− 1

R
+ F (X cosωs+ Y sinωs), (1)

where (X,Y, Z) are the position coordinates, R2 = X2 +Y 2 +Z2, s is the time,

′ = d
ds , ω is the angular frequency of the microwave field and F > 0 is the field

strength (see [2]). We will consider the motion in the planar case, that is for

Z = 0. Furthermore, we take a rotating frame with the CP field, that is, (x, y)

coordinates such that X

Y

 =

 cosωs − sinωs

sinωs cosωs

 x

y


Defining now the momenta px = ẋ − ωy and py = ẏ + ωx, the transformed

Hamiltonian becomes

Ĥ(x, y, px, py) =
1

2
(p2x + p2y)− ω(xpy − ypx)− 1

R
+ Fx,

being R =
√
x2 + y2.

Now we simplify this Hamiltonian re-scaling time and distances. We define

a new time t = ωs and consider the symplectic change of coordinates with

multiplier ω−1/3, more precisely,75

(x, y) = ω−2/3(x̄, ȳ), (px, py) = ω1/3(p̄x, p̄y).

The transformed Hamiltonian becomes in the new variables (for simplicity, we

drop the bar and we keep the same names for the position and momentum
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coordinates),

H(x, y, px, py) =
1

2
(p2x + p2y)− xpy + ypx −

1

r
+Kx, (2)

where K = F/w4/3 > 0 and now r =
√
x2 + y2, px = dx

dt − y and py = dy
dt + x.

A first remark is that we obtain an autonomous Hamiltonian, depending on80

the parameter K > 0, with two degrees of freedom, which turns out to be a

perturbation of the well known Kepler problem. So for K very small, we should

expect the typical dynamics of a Hamiltonian system close to an integrable one,

but of course with the features of a non integrable one. We will take K = 0.1 and

at the end of the paper, we will comment on the consequences of considering85

different values of K. Finally we will denote by h the constant value of the

Hamiltonian H = h over each solution and will be called the energy.

The equations of the motion of the CP problem associated with (2) are

ẋ = px + y,

ẏ = py − x,

ṗx = py − x
r3 −K,

ṗy = −px − y
r3 ,

(3)

with ˙ = d
dt and they satisfy the symmetry

(t, x, y, px, py) −→ (−t, x,−y,−px, py). (4)

This implies that, for each solution of the equations of motion, there also exists

another one which is symmetric with respect to y = 0 in the configuration space90

(x, y).
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Figure 1: Zero velocity curves in (x, y) coordinates for K = 0.1 and the following energies:

h = −1.7 < h1 (left), h = −1.585 ∈ (h1, h2) (middle) and h = −1.4 ∈ (h1, h2) (right).
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The CP problem in rotating coordinates has two equilibrium points, denoted

by L1 and L2 and located in the x-axis at x < 0 and x > 0 respectively.

Taking into account the eigenvalues of the Jacobian matrix of the vector field

(3) at the equilibrium points, it can be proved that L1 is of type saddle ×95

center for any value of K, whereas L2 is of type center × center for K for

K ≤ 3−4/3

2 ' 0.11556021 and is a complex saddle for K > 3−4/3

2 (see [2]). We

denote by hi, i = 1, 2 the energy at each equilibrium point.

Concerning the existence of periodic orbits (PO), just applying the well

known Lyapunov theorem (see for example [13]), we claim that, for any K >100

0 each equilibrium point gives rise to families of periodic orbits, with h as

parameter, the so called Lyapunov periodic orbits (LPO). More precisely, there

exists:

• a family of LPO around L1 (denoted by LPO1), for h > h1 which are un-

stable (at least for h close to h1). The associated invariant stable/unstable105

manifolds play a key role as will be shown later on.

• A family of LPO of long period around L2 (LPO2l): it exists for h1 < h ≤

h2 and the orbits are stable.

• A family of LPO of short period around L2 (LPO2s): it exists for h ≥ h2
and the stability of the orbit depends on the value of the Hamiltonian h.110

We also recall the Hill’s regions (following the naming in Celestial Mechan-

ics), that is, the regions in configuration space (x, y) where the motion is pos-

sible. We plot in Figure 1 the boundary curves of such regions, called the zero

velocity curves (zvc). In particular, the motion is forbidden in the ring region

(between the two closed curves) for h < h1 (Figure 1 left), and inside the moon115

shaped region for h1 < h < h2. For the purposes of this paper, the orbits that

go far from the origin and come close to it will take place necessarily in the

bounded inner component for h < h1. For h1 < h < h2, such to and from

motion can take place both in the inner region and in the outer region through

the bottleneck around the equilibrium point L1 where the LPO1 and the invari-120
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ant manifolds are located and the mixing of such orbits becomes dramatic (see

Section 4). Finally, the motion is possible everywhere for h ≥ h2.

3. Ejection/collision orbits. Methodology

In this Section we explain the methodology used to deal with the ECO.

We sketch the necessary changes of variables to regularize the singularity at125

the origin, we describe the collision manifold (obtained when r = 0 from the

outcoming differential equations) and we account for the different strategies to

study n-ECO, both as individual orbits and from a global point of view.

3.1. Regularization of the singularity at the origin

Our goal is to study orbits that not only pass close to the origin but even130

that collide with (or eject from) it. So a first step is to remove the singularity

r = 0 from the equations of motion (3).

Figure 2: Collision manifold

We introduce the canonical change of polar coordinates

x = r cos θ px = pr cos θ − pθ
r

sin θ

y = r sin θ py = pr sin θ +
pθ
r

cos θ
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and the Hamiltonian (2) becomes

H(r, θ, pr, pθ) =
1

2

(
p2r +

p2θ
r2

)
− pθ −

1

r
+Kr cos θ. (5)

The associated Hamiltonian system of ODE is

ṙ = pr

θ̇ =
pθ
r2
− 1

ṗr =
p2θ
r3
− 1

r2
−K cos θ

ṗθ = Kr sin θ.

(6)

Following McGehee’s ideas (see [15] in the context of the elliptic RTBP), we

introduce the new variables

v = ṙr1/2 u = r3/2θ̇ (7)

and a change of time dt/dτ = r3/2, such that the system of ODE becomes

r′ = vr

θ′ = u

v′ =
1

2
v2 + u2 − 1 + 2ur3/2 + r3 −Kr2 cos θ

u′ = −1

2
uv − 2vr3/2 +Kr2 sin θ,

(8)

where ′ = d/dτ . We remark that the singularity r = 0 has been removed. If

we consider the hamiltonian (5) in these variables, which is a first integral, the135

relation H = h becomes

0 = −rh+
1

2
(v2 + u2)− 1

2
r3 − 1 +Kr2 cos θ. (9)

Finally we notice that the equations (8) satisfy the symmetry

(τ, r, θ, v, u) −→ (−τ, r,−θ,−v, u). (10)

3.2. The collision manifold

For each energy level of the constant Hamiltonian, system (8) has an in-

variant manifold Λ defined by r = 0, called the collision manifold (see also the
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same kind of study for the Restricted three-body problem in [14]). From (9) we

conclude that Λ is a torus, that is,

Λ = {u2 + v2 = 2, θ ∈ [0, 2π]} (11)

and the dynamics on this torus is given by
θ′ = u

v′ =
1

2
v2 + u2 − 1

u′ = −1

2
uv.

(12)

In order to show the orbits of the flow on this torus, in Figure 2 (imported

from [14]), we plot the torus taking the coordinates in the plane (u, v) for each140

θ, and varying θ ∈ [0, 2π]. Due to the first equation in system (12), θ(τ) in-

creases (decreases) for u(τ) > 0 (< 0), when varying τ . Concerning the second

equation, from the relation (11) we obtain v′ = u2

2 , so v(τ) is an increasing func-

tion in τ . On the other hand, system (8) has two circumferences of equilibrium

points, belonging to Λ, defined by S+ = {r = 0, θ, v =
√

2, u = 0, θ ∈ [0, 2π]}145

and S− = {r = 0, θ, v = −
√

2, u = 0, θ ∈ [0, 2π]}. We can clearly see these two

circumferences in Figure 2 and the increasing character of v and the monotone

behavior of θ as well.

In order to determine the stability of the equilibrium points, we consider the

linearization of system (8) at the corresponding equilibrium points belonging to150

S±. We define the matrix M± as

M± =


±
√

2 0 0 0

0 0 0 1

0 0
√

2 0

0 0 0 ∓
√

2/2

 ,

The matrix M+ has eigenvalues:

λ1 = −
√

2/2, λ2 = λ3 =
√

2, λ4 = 0
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and corresponding eigenvectors:

v1 = (0,−
√

2, 0, 1), v2 = (0, 0, 1, 0), v3 = (1, 0, 0, 0), v4 = (0, 1, 0, 0).

Therefore each equilibrium point P ∈ S+ has an associated 2-d unstable

manifold Wu(P ) and a 1-d stable one W s(P ). Similarly, each equilibrium point

Q ∈ S− has a 2-d stable manifold W s(Q) and a 1-d unstable one Wu(Q).
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Figure 3: K = 0.1, h = −1.4. Top. Examples of 1, 2 and 3-ECO (left, middle and right

respectively) in configuration space rotating rescaled variables (x, y). The round points satisfy

ẋ = 0, ẏ < 0. Middle. The ECO in original (non-rotating) coordinates (X,Y ). Bottom. The

ECO in (s,R) variables (right), s the physical time and R the distance to the origin.

We can conclude that any orbit ejecting from (colliding with) the origin155

is precisely an orbit belonging to Wu(P ) (W s(Q)) for some equilibrium point

P ∈ S+ (Q ∈ S−). More particularly, any ejection-collision orbit (ECO) is

a heteroclinic orbit connecting some P (when τ → −∞) with some Q (when

τ → +∞).

Finally, we remark that when K = 0, we obtain the Kepler problem, and it160
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is well known that, for h < 0, Wu(S+) and W s(S−) coincide, i. e., any ejection

orbit is also a collision one. The interesting point here is that forK 6= 0, Wu(S+)

and W s(S−) do not coincide anymore and there appears a rich dynamics.
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Figure 4: K = 0.1, h = −1.6. Top. D+
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(left), n = 2 (middle). Right. Curves (θ0, Tn) for n = 2 (black) and n = 4 (red). Bottom.

Curve (θ0, un), for n = 2 (left), n = 4 (middle) and n = 6 (right).

3.3. n-Ejection-collision orbits

We recall, from the introduction, that an n-ejection-collision orbit (n-ECO),165

is a trajectory that ejects from the origin, reaches 2n − 1 relative extrema in

the distance r, typically n maxima and n− 1 minima, before colliding with the

origin. In Figure 3, for K = 0.1 and h = −1.4, we show an example of 1, 2

and 3-ECO in rotating rescaled variables (x, y) (top), in original non-rotating

variables (X,Y ) (middle), and in (s,R) variables (s the physical time and R the170

distance to the origin) for the particular value w = 1, F = K = 0.1. Of course

the range for the rescaled time τ would be (−∞,∞) for any of them. Along the

paper we will typically study the CP using the rotating rescaled variables (x, y)

and the rescaled time τ .

We aim at studying orbits that go far from and come close to the origin175

several times. So we can regard the n-ECO simply as the skeleton of such

orbits. In this subsection we will describe the numerical machinery to study the
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n-ECO and later on we will show the consequences that such orbits have on the

to and fro motion.

3.3.1. Computation of n-ECO180

Fixed a value of K > 0 and H = h, let us describe first how to compute

ejection orbits, that is orbits on Wu(S+). To do so, we take an equilibrium

point P = (0, θ0,
√

2, 0), θ0 ∈ [0, 2π], and consider the tangent plane to Wu(P ),

through P , generated by the eigenvectors v2 and v3 (of matrix M+), i.e. vectors

like v = (β, 0, γ, 0), with β, γ ∈ R. The restriction that the orbit Wu(P ) also185

belongs to H = h can be written as the perpendicularity condition between

vector v and n = (−h, 0,
√

2, 0), which is the gradient vector to the energy level

set H = h defined implicitly by (9). So we require the condition

−βh+ γ
√

2 = 0.

and we take the initial condition of an ejection orbit associated with the point

P = (0, θ0,
√

2, 0) as

(0, θ0,
√

2, 0) + s
w

‖w‖
(13)

with w = (1, 0, h/
√

2, 0) and s > 0 a small quantity (typically ranging from

10−7 to 10−5). We will say that the ejection orbit is defined by θ0 (its initial190

condition determined from θ0). Varying θ0 ∈ [0, 2π], we generate a set of initial

conditions belonging to the (tangent plane to the) unstable manifold Wu(S+)

for H = h fixed. For each initial condition we integrate the system (8) forward

in time and check that the Hamiltonian remains constant (through the relation

(9)) along the integration.195

We proceed similarly in order to obtain a set of initial conditions of the

collision orbits belonging to the stable manifold W s(S−) for H = h fixed. For

each initial condition, we integrate system (8) backward in time and check the

relation (9).
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Figure 5: K = 0.1 and (x, y) coordinates. Ejection orbit and the associated points in Σ̂

–round points–. A bounded one (left) for h = −1.4, an escape one (right) for h = −0.8.

The next goal is to compute n-ECO, for a given n.200

A very useful numerical tool will be to consider the Poincaré section Σ :

g(x) = g(r, θ, v, u) = v = 0, which corresponds to a passage of maximum or

minimum distance to the origin (if r 6= 0). Furthermore, given K and H = h,

let us denote Σn, the n-th crossing with Σ and define D+
n = Wu(S+)∩Σn, and

D−n = W s(S−)∩Σn. For example, in Figure 4 top left, we show the curves D+
1205

(in black) and D−1 (in blue). We also define Tn(θ0) and un(θ0) as the values of

τ and u for an orbit on Wu(S+) (defined by θ0) when it reaches Σn. We will

drop the θ0 notation and we will simply write Tn and un. See the curves (θ0, T2)

and (θ0, un), for n = 2, 4, 6 in Figure 4.

In the procedure to compute n-ECO we will distinguish two steps.210

First step. Existence of n-ECO. We want to visualize if there exist such

orbits for a given K and H = h. To do so we consider different approaches:

• First strategy, we look for intersection points belonging to D+
n ∩D−n . Any

such point corresponds to an n-EC orbit. For example, Figure 4 top left

shows the curves D+
1 and D−1 and we see there are two intersecting points215

that belong to D+
1 ∩D

−
1 . Of course, due to the symmetry (10), we expect

to have at least two 1-ECO, which correspond to the intersecting points

on the x axis. Such two ECO will be symmetric with respect to the x axis

(in the (x, y) projection). See for example Figure 3 left. The outstanding

fact is that there are no other 1-ECO (for small values of h) as happens220

in other problems (there appear typically four 1-ECO for small values of
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the energy and any value of the mass parameter in the Restricted three-

body problem, see [14]). We remark that for n ≥ 2, the curves D+
n and

D−n become more involved and a more detailed analysis is required to

determine the number of n-ECO. See, for example, the curves D+
n and225

D−n , for n = 2 in Figure 4 top.

• A second strategy is based on the property that n-ECO are heteroclinic

orbits, so any n-ECO defined by a suitable θ0 (for its initial condition)

ejected from the origin (when τ → −∞), will take an infinite time τ to

reach the origin again after 2n − 1 crossings with the section Σ. So we230

just need to plot the curve (θ0, T2n), and look at the vertical asymptotes

in time. From now on any value θ0 such that T2n becomes infinite will

be called a singularity. For example in Figure 4 top right, from the curve

(θ0, T2) (in black) we can see that there are two singularities, in accordance

with the previous strategy. To look for 2-ECO, we plot (θ0, T4) (in red)235

in Figure 4 top right, and of course there appear four asymptotes: two of

them correspond to the 1-ECO (for the associated values of θ0, T4 should

not be computed but we take a discrete grid of values of θ and the exact

values of θ0 for 1-ECO are not considered) and two new ones corresponding

to the 2-ECO. So we remark that, in general, for n ≥ 2 we must compare240

the curve (θ0, T2n) with the (θ0, T2n−2) one in order to identify the new

vertical asymptotes in T2n and that do not appear in the curve (θ0, T2n−2).

Those will correspond to the n-ECO specifically.

• Finally, a third strategy has to do with the geometry of the ECO itself.

More precisely, a typical n-ECO (defined by θ0 –which determines its245

initial condition–) may be regarded as a heteroclinic orbit that behaves

like this: it ejects from collision in physical (non-regularized) coordinates,

this means that in regularized variables tends to a particular equilibrium

point P ∈ Λ (as τ → −∞) with r = 0, u = 0, v =
√

2 and some particular

θ0; as time goes on, it has n far passages from the origin and n − 1250

close to it (that is 2n − 1 intersections with Σ, i. e. v = 0) before final
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collision –in physical variables– for a finite physical time s, this means

that the trajectory tends to a suitable equilibrium point Q ∈ Λ, with

r = 0, u = 0, v = −
√

2 and some suitable θ as τ → ∞ (in regularized

variables). In particular, if we take two other ejection orbits, called E1 and255

E2 (which are not n-ECO), E1 defined by θ0,1 < θ0 and E2 by θ0,2 > θ0,

both θ0,1, θ0,2 very close to θ0, the corresponding trajectories will follow

a path very close to the heteroclinic orbit. However, after the 2n − 1

intersections with Σ, the trajectory E1 (E2) will go on passing very close

to the point Q ∈ Λ, with v close to −
√

2 but, due to the flow behavior on260

Λ (see Figure 2), the trajectory E1 (E2) will follow near Λ with increasing

values of v with u > 0 (u < 0) until v = 0, that is until the 2n crossing

with Σ is reached. (Notice that it might happen the other way around

u < 0 for E1 (u > 0 for E2)). In particular, for this 2n-th crossing the

value of u2n will be very close to + or −
√

2 (since at Λ, when v = 0,265

u = ±
√

2) . Therefore a discontinuity or jump in the curve (θ0, u2n) from

u < 0 to u > 0 (or viceversa) provides the numerical existence of a suitable

θ0 of a heteroclinic orbit, that corresponds to a n-ECO. So, similarly to

the previous strategy, we just need to plot the curve (θ0, u2n) and look for

discontinuities in θ0. The advantage of this approach is that the jumps in270

the curve (θ0, u2n) provide directly the suitable values of θ0 corresponding

to n-ECO regardless of what happens for smaller values of n (since the

curve (θ0, u2n) is generated from a discrete grid of values of θ0 and the

exact values of θ0 for which u2k, k < n, is not defined –that correspond to

k-ECO– are not taken into account). See the curves (θ0, u2n) in Figure 4275

for n = 1, 2, 3. The two discontinuities (u2n changing sign from positive to

negative or viceversa) locate the two values of θ0 of n-ECO, for n = 1, 2, 3.

We remark that we have applied the third strategy to numerically compute

a particular n-ECO, simply considering a bisection method taking the θ0 as

variable and the value of u2n as function.280

Second step. Continuation of families of n-ECO for a given K and n. We
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have applied the second and third strategies doing a massive simulation, varying

the energy parameter h, and for each h, considering the whole set of initial

conditions, i.e., for θ ∈ [0, 2π]. See next Section for the results obtained.
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Figure 6: K = 0.1, h = −1.4. Top. Two different ejection orbits (in (x, y) coordinates).

Middle. Left. Two ejection orbits (in (x, y) coordinates), one with a close passage to the

origin with u > 0 (in red), and the other one with u < 0 (in black). Right. Curves (θ0, un),

for n = 2 (red) and n = 4 (green). Bottom. Curves (θ0, un), for n = 2, 4, 6 (left, n = 6 in

blue) and for n = 2, 4, 6, 8 (right, n = 8 in pink).

3.4. Global behavior of Wu,s(S+,−)285

Another approach that becomes useful in order to describe the behavior of

the whole set of orbits in Wu(S+) (W s(S−)) is by means of what we called

Poincaré section plots (PSP) in [1]: for K > 0 and h given, we consider a new

Poincaré section Σ̂, defined by ẋ = 0 and ẏ < 0, and plot the successive crossings
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–called from now on iterates– of a given orbit with Σ̂ in (x, y) coordinates.290

Such plots show how the orbits look like, it they escape or not, and (somewhat)

encapsulate their behavior, giving an insight for to and fro motion. In particular,

any n-ECO will be represented by a finite number of points in Σ̂. In Figure 3

we show 1, 2, and 3-ECO together with their points in Σ̂. However, a bounded

ejection orbit (which is not an ECO), will typically look like a rosette (see Figure295

5 left) or we may also have ejection orbits that escape (Figure 5 right).
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Figure 7: K = 0.1, Top. Characteristic curves of families of 1-ECO in variables (θ0, h).

Right. Zoom. Bottom. Symmetric and non-symmetric 1-ECO (in (x, y) variables) labeled by

1, 2, 2a, 3, 4 if they belong to families f1, f2, f2a, f3, f4 respectively.

4. To and fro motion. Numerical simulations. Results.

As stated in the Introduction, the n-ECO provide the skeleton of the natural

to and fro motion. Actually, once we study such orbits, just by continuity with

respect to initial conditions, we can find other orbits with close/far passages to300

the origin, and which do not belong to Wu(S+) ∪W s(S−). So this section is

devoted to provide the results obtained considering massive simulations of both

ECO and ejection/collision orbits. More precisely, we will consider geometrical
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aspects, continuation of families and the discussion of appearing bifurcations.

Finally, we will explain the role that such orbits play on the to and fro motion305

in the dynamics of the problem from a global point of view.

The simulations have been done taking the value K = 0.1, for which h1 =

−1.59836975 and h2 = −1.39829568. A comment regarding other values of K

is done at the end of this Section.
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Figure 8: K = 0.1, Top left. Diagram (θ0, h, T2), θ0 (h) in the x (y) axis and T2 for the

chronogram. For the remaining plots h = −0.3. Top right. Curve (θ0, u2). Middle. Two

ejection orbits (in (x, y) variables) for close values of θ0, the left one has the second crossing

close to the origin (which is the typical behaviour) but the right one has the second crossing

far from it. Bottom. A 1-ECO with a far first crossing from the origin for h = −0.05
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4.1. Coding the close passages to the origin.310

As mentioned above, the n-ECO have a finite number of close and far pas-

sages from the origin. However, we may also consider those ejection orbits with

infinitely many passages close and far from the origin. Due to the existence of

the circumference S− of equilibrium points in the collision manifold Λ, and the

internal dynamics on Λ, there is a huge freedom for any orbit passing close to315

the origin, i. e., the orbit passes close to an equilibrium point in S−, which

can be a different point for each close passage. In Figure 6 top we show two

different examples of ejection orbits. We see in the plots that the orbits pass

close to the origin in an apparent erratic way. So, a natural question that arises

is to give a certain code to such close passages. A natural answer is to take into320

account the sign of u at the close passage, i. e., the sign of θ̇ which decides the

increasing/decreasing character of θ.
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Figure 9: K = 0.1. Left. Characteristic curves of families of 2-ECO in variables (θ0, h).

Projection (x, y) of two 2-ECO for h = −0.43 (middle) and h = −0.01 (right). The cross

points in Σ are plotted in red.

This is shown, for example, in Figure 6 middle left, where two ejection

orbits are plotted, the red (black) one has a close passage with u > 0 (u < 0).

The strategy for coding an ejection orbit (that typically behaves describing325

sequentially far and close passages to the origin) is to encode each close passage

to the origin by a 1 or −1 according to the sign of u at that close passage.

So an ejection orbit, defined by θ0, has an associated sequence such that the

k-th element of the sequence is 1 or −1 according to the sign of u2k, sequence

that will be finite if the ejection orbit is an ECO. To apply this strategy, we330

just need to overlap the curves (θ0, un) for even n. Let us clarify how it works.
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We take, for example, K = 0.1 and h = −1.4. In Figure 6 middle right we

overlap the curves (θ0, un), for n = 2 (red curve) and n = 4 (green one). The

overlapping defines the following intervals in the variable θ0: [0, a] where for

each θ0 ∈ [0, a] the ejection orbit defined by that θ0 will satisfy that u2 < 0 and335

u4 < 0; [a, b] where u2 > 0 and u4 < 0; [b, e] where u2 > 0 and u4 > 0; [e, f ]

where u2 < 0 and u4 > 0 and [f, 2π] where u2 < 0 and u4 < 0. This means that

for each ejection orbit defined by θ0 with θ0 ∈ [0, a], the first two elements of the

associated sequence will be −1 (since u2 < 0 and u4 < 0) so the corresponding

sequence will be {−1,−1, ...}. Similarly for each ejection orbit with θ0 ∈ [a, b],340

the sequence will be {1,−1, ...} (since u2 > 0 and u4 < 0); if θ0 ∈ [b, e], the

sequence will be {1, 1, ...}; if θ0 ∈ [e, f ], the sequence will be {−1, 1, ...} and if

θ0 ∈ [f, 2π], the sequence will be {−1,−1, ...}. In Figure 6 bottom left we have

overlapped the curves (θ0, un), for n = 2, 4, 6 (n = 6 in blue), so we may infer

the third element of the sequence of each ejection orbit. And in Figure 6 bottom345

right the overlapping of the curves n = 2, 4, 6, 8 (n = 8 in pink) is shown. So,

from this overlapping and according to the sign of un for n = 2, 4, 6, 8, each

ejection orbit, defined by θ0, has the following coding sequence (we know its

first four elements)

• for θ0 ∈ [0, a] ∪ [h, 2π], {-1,-1,-1,-1,...}350

• for θ0 ∈ [a, b], {1,-1,-1,-1,...}

• for θ0 ∈ [b, c], {1,1,-1,-1,...}

• for θ0 ∈ [c, d], {1,1,1,-1,...}

• for θ0 ∈ [d, e], {1,1,1,1,...}

• for θ0 ∈ [e, f ], {-1,1,1,1,...}355

• for θ0 ∈ [f, g], {-1,-1,1,1,...}

• for θ0 ∈ [g, h], {-1,-1,-1,1,...}
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So we can summarize that the successive values of u at the close passages

provide geometrical information of such near passages and a code for each ejec-

tion orbit.360
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points in Σ are plotted in red.

4.2. Families of n-ECO. Bifurcations.

The purpose of this subsection is to show families of n-ECO for K fixed and

varying the h parameter. Following the third strategy explained above, we will

obtain characteristic curves in variables (θ0, h), i. e., curves of points such that

each point gives rise to an initial condition of an n-ECO, for n given.365

So, we now fix a (small) value of K > 0, and we know that for each H = h

with h < h1, the n-ECO exist on the inner bounded component of the Hill’s

region (see Figure 1). More particularly, there exist two n-ECO. We have done

the continuation of such ECO varying h (for ranges of h up to values bigger

than h2 > h1) giving rise to what we call the main families f1 and f2.370

- Concerning the families of 1-ECO, we show in Figure 7 top, the characteris-

tic curves (θ0, h) for K = 0.1 and h ∈ (−5, 0), of the families f1 and f2. For the

sake of comparison, we also show in Figure 8 top left, the diagram (θ0, h, T2),

where we plot T2n as a function of θ0 and h. The accordance between both

plots is apparent. Of course in the last one, we do not obtain unbounded values375

of T2, but finite ones (due to numerical simulations), but the existence of the

different families is clearly visible (from the bigger values of T2).
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Figure 11: K = 0.1, h = −1.4 ∈ (h1, h2) and (x, y) coordinates. Top left. PSP of the
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invariant curves (in red) and the stable LPO2s and surrounding invariant curves (in light

blue). Bottom. Zoom Right. Lyapunov periodic orbits for h = −1.4, −0.8, −0.5.

Three remarks must be made:

First, when h is small, only the families f1 and f2 exist and the associated

1-ECO are symmetric (with respect to the x axis, in the configuration plane380

(x, y)). However, as far as h increases, there appear some bifurcations. We

show for example in Figure 7 top right the bifurcated families f3 and f4 from

family f1. Such families contain non-symmetric 1-ECO. See in Figure 7 bottom

left, the orbit (in black) that belongs to f1 and the bifurcated ones that belong

to families f3 (in red) and f4 in blue, for h = −0.5. Similarly, families f3385

and f4 bifurcate from family f2. For h = −0.3, we plot the corresponding

orbits: the non-bifurcated symetric ones in family f2 (in black) (and f2a –in

blue– after the bifurcation) and the bifurcated non-symmetric ones in families

f3 (in red) and f4 (in pink). We notice that, as h increases, there appear other

bifurcations.390

The second remark deals with the continuation of the bifurcated families.

We can see in Figure 7 top right that there are some missing pieces of the
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characteristic curves. The reason for that is shown in Figure 8. When plotting

the curve (θ0, u2) we observe the typical behavior of u2 (close to the values

±
√

2) associated with close passages to the origin at the second crossing with395

Σ. However there appear four misplaced pieces of negative values of u2 which

correspond to the second passage of the orbit with Σ but far from the origin.

We plot two example orbits (together with the crossing points with Σ –in red–)

in Figure 8 middle: the typical orbit (on the left) with the second crossing close

to the origin, but the weird one (on the right) with the second crossing far from400

it. This weird behaviour is clearly seen in the diagram in the top left Figure 8:

the specially dark regions and the thin dark tongue correspond to small values

of T2 compared to the remaining regions.

Finally the third remark is related with the geometry of the 1-ECO them-

selves. For small values of h, the 1-ECO are simple and reach small values405

for the maximum distance in r due to the restriction of the Hill’s region. See

Figure 3 left. However, as h is close to zero, there is no restriction concerning

Hill’s regions, moreover, we have 1-EC orbits that spiral, on and on, around the

origin, reaching big values for maximum r. See for example Figure 8 bottom.

- Concerning the continuation of families of 2-ECO and 3-ECO, we show in410

Figure 9 and 10 the corresponding characteristic curves and bifurcated families.

In both cases, the two main families are visible and the pattern of bifurcation

is similar.

A remarkable comment, compared with the 1-ECO, is that the (unique)

point in Σ, i. e. v = 0, for 1-ECO, corresponds to the furthest passage to the415

origin. However, for n-ECO, n ≥ 2, the orbit has 2n − 1 crossings with v = 0;

typically, for small values of h, odd and even crossings with Σ correspond to

far and close passages, respectively. These are the typical n-ECO. See Figure 3

middle and right for n = 2 and n = 3, respectively. But, for higher values of h,

it may happen that the 2n− 1 crossings with Σ take place far from the origin.420

See Figures 9 and 10 right.
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Figure 12: K = 0.1 and h = −0.8 > h2. First row. PSP obtained from Wu(S+) (left) and

from Wu(S+) (in black) and W s(S−) (in violet) for a higher number of iterates (right), in

(x, y) variables. Second row. ECO in (x, y) variables (left) and in (τ, r) ones (right). Third

row. PSP of Wu(S+) (in black), the manifolds of LPO1 (in dark blue), some invariant curves

(in red) and the unstable LPO2s (in light blue). Right. Zoom. Fourth row. Ejection orbit

((τ, r) variables) with erratic to and fro motion that finally ionizes.
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including Wu(S+) (in black), the inner invariant curves (in red) and the stable LPO2s and

the associated surrounding invariant curves (in light blue).

So the skeleton of the to and from motion is qualitatively different: whereas

for the typical n-ECO, the orbits have alternate very far/very close passages

to the origin -the intrinsic definition of to and fro motion-, for the non-typical

ones, they only have far passages from the origin before going to collision with425

the origin.

4.3. Global dynamics. Poincaré section plots

So far we have considered the skeleton of to and from motion just taking

into account the ejection, collision and ECO up to a (small) number of cross-

ings with the Poincaré section Σ. In particular, for K > 0 and h given, just430

individual orbits have been taken. In this section we want to consider the un-

stable and stable manifolds manifolds, Wu(S+) and W s(S−), that is the set

of ejection/collision as a whole set and its effect on the global dynamics of the

system.

A useful approach to do so is, for K > 0 and h given, to consider the PSP435

defined in Section 3, that is to save a high number of the crossings –iterates– of

any orbit belonging to Wu(S+) (W s(S−)) with the Poincaré section Σ̂ defined

by ẋ = 0 and ẏ < 0. Moreover, in order to see the consequences of such orbits

on the dynamics from a global point of view, we will also consider the iterates

obtained from orbits not related with ejection/collision orbits. More precisely,440
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on the one hand, we take initial conditions along the x axis (with v = 0 and

u < 0 obtained from the fixed value of h). On the other hand, since for h > h1,

there exist the corresponding unstable Lyapunov periodic orbit (LPO1) and

their stable and unstable invariant manifolds, we compute them all.

For example, for K = 0.1 and according to the value of h we will distinguish445

between different phenomena:

(i) We take h = −1.4 ∈ (h1, h2). See Figure 11. On the top left plot we can

see the PSP obtained from the ejection orbits in Wu(S+). We may conclude

that the ejection orbits reach maximum values of r ranging approximately in

the interval (0.68, 0.72) and minimum values that range from 0 (ECO) to small450

values corresponding to close passages to the origin. On the top right plot, we

show the PSP of the Wu(S+) (in black) together with the stable and unstable

manifolds of the LPO1 (in dark blue) as well as some region of confined invariant

curves (in red), which are known to exist for small values of K (see [1]), and the

stable LPO2s and the surrounding invariant curves and islands (in light blue).455

We plot the single LPO2s in the bottom right plot. We also plot a zoom of the

PSP in the bottom left plot. Actually, we see an outer region of red invariant

curves –surrounding the Wu,s(S+,−)– and an inner one. For this level of the

energy h, we can conclude that all the to and from motion coming from the

manifolds of Wu,s(S+,−) will be confined since the outer red invariant curves460

(limiting the black ejection orbits) act as barriers. It is also clear that there is

a rich structure of heteroclinic orbits and escape orbits just taking into account

the manifolds of the LPO1. For smaller values of h, even the manifolds of the

LPO1 are confined by a bigger region of invariant curves (see more details in

[1]).465

(ii) For bigger values of h, say h = −0.8 > h2, and concerning the set of

ejection orbits, Wu(S+), we plot in Figure 12 (first row left) some iterates on

the PSP. We can see that there exist some ejection orbits that remain bounded,

in a typical rossette shape (see for example Figure 5 left for a different value

of h), escape orbits (see Figure 5 right) and of course ECO. In Figure 12 (first470

row right), we plot a higher number of iterates obtained from both Wu(S+)
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and W s(S−). On the one hand, from this plot we infer a high richness of

heteroclinic orbits (that is ECO belonging to both manifolds) that reach big

values of r. For example we plot in Figure 12 (second row) an ECO in (x, y)

coordinates (left) and in (τ, r) variables (right) (the range in τ should be infinite475

of course but we just plot a finite one). On the other hand, if we also consider

the global PSP (taking other initial conditions and the manifolds of the LPO1),

we remark that the outer region of invariant curves has disappeared and that

the mixing between the ejection orbits and the manifolds of the LPO1 is clearly

visible (see Figure 12 third row). In particular, orbits are highly sensitive to480

small variations in initial conditions. For example, we plot in (τ, r) variables, a

nearby orbit of the previous ECO, for a big range of time (see Figure 12 fourth

row). We clearly see the erratic excursions far and close to the origin, and it

finally seems to escape; actually there is no certainty that this orbit escapes,

but if it reaches a high enough value of r, it is considered that it ionizes. So,485

for this level of the energy, both the ejection orbits and the manifolds of the

LPO1 orbit are responsible not only for erratic to and fro motion but also for

to and fro motion, for a range of time, plus ionization (or final escape). We also

observe the LPO2s passes very close to the origin (see Figure 11) and becomes

unstable, so the previous invariant curves around such orbit have disappeared490

(see the light blue point in Figure 12 third row).

(iii) Finally, for higher values of h, for example h = −0.5, most of the ejection

orbits become unbounded and get completely mixed with the manifolds of the

LPO1. See, in Figure 13 left. The inner red region of invariant curves still

remains (see the red area in Figure 13) right, and, for this level of energy, the495

LPO2s is again stable. See the (x, y) projection of the orbit in Figure 11 and

the invariant curves around the associated fixed point in the PSP (light blue)

in Figure 13 right.

As a final remark, we mention that the numerical simulations shown in this

paper correspond to the particular caseK = 0.1. However, this is not any special500

value. The analysis of ejection/collision orbits for other values of K would be

essentially the same and the code works, of course, exactly the same. However,
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but for smaller values of K, the system is closer to integrable (when K = 0)

so it is harder to distinguish between the non-integrable typical behaviour and

the integrable one (the orbits for h < 0 become invariant curves, since they are505

keplerian ellipses in rotating coordinates). For bigger values of K, in particular

for K > (3−4/3)/2, the equilibrium point L2 (which was a center × center for

smaller values of K) becomes a complex saddle. So the analysis of the global

dynamics should take into account this feature, but this is the purpose of a

future paper.510

5. Conclusions

We have shown how the n-ECO may be regarded as the skeleton of to and

fro motion. Just pairs of such orbits appear for any given n and small values of

the energy h, but intricated families and bifurcations show up for higher values

of the energy.515

Considering the dynamics from a global point of view, and more particularly,

looking for erratic to and fro motion with very far passages to the origin, both

the ejection/collision orbits and the manifolds of the unstable Lyapunov periodic

orbits play a key role.
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