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Catalunya, Jordi Girona 1-3, 08034, Barcelona, Spain

(Received 00 Month 200x; final version received 00 Month 200x)

Functional Data Analysis is a relatively new branch of Statistics devoted to describing and
modelling data that are complete functions. Many relevant aspects of musical performance
and perception can be understood and quantified as dynamic processes evolving as functions
of time. In this paper, we show that Functional Data Analysis is a statistical methodology
well-suited for research into the field of quantitative musical performance analysis. To demon-
strate this suitability, we consider tempo data for 28 performances of Schumann’s Träumerei
and analyse them by means of functional principal component analysis (one of the most pow-
erful descriptive tools included in Functional Data Analysis). Specifically, we investigate the
commonalities and differences between different performances regarding (expressive) timing,
and we cluster similar performances together. We conclude that musical data considered as
functional data reveals performance structures that otherwise might go unnoticed.

Keywords: Commonalities; cluster analysis; diversity; local polynomial smoothing;
principal component analysis (PCA); tempo; timing.

1. Introduction

Music can be defined as the art of arranging sequences of sounds in time. Dynamic
character is an inherent feature of music: performance as well as music perception
are time-dependent (or time evolving) abstract processes. Vines et al. (2005) men-
tion fluctuations in tempo or in loudness in musical performance, and the dynamic
reactions of human participants to musical stimuli as examples of time dependent
processes in music. As these authors point out, Functional Data Analysis (FDA)
is a particularly well-suited tool-box for analysing the aspects of music that can
be represented as continuous measures smoothly evolving in time. FDA (see the
monograph Ramsay and Silverman 2005 and other references introduced in Section
2) is the generic name for the statistical techniques recently developed to describe
and model situations where a complete function is observed for each individual
constituting a random sample. In their work, Vines et al. (2005) focus attention
on participants’ judgements of tension continuously registered while they were pre-
sented with a musical performance.
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In this paper, we introduce FDA as a statistical framework for research in the
field of quantitative musical performance analysis (see Repp 1992 or Gabrielsson
2003 that use the terms objective and empirical performance analysis, respectively).
Our main point is that a FDA approach simplifies interpretation of the results,
compared with a multivariate approach, because modelling musical aspects as con-
tinuous functions of time (or of score position) automatically takes into account
that close moments in a performance are statistically dependent.

There are two basic aspects of music performance analysis: Normative (common-
ality) and individual (diversity) performance characteristics. The normative char-
acteristics are specified in the score (for example, a ritardando or fermata) and are
common for every performer, but they also include general (possibly unconscious)
unwritten rules to which all or most performers adhere. In this sense, Widmer et al.
(2003) provide examples showing that inductive rule-learning algorithms (coming
from Artificial Intelligence) are able to detect and predict general accepted norms
of musical performance. Beyond the normative aspects, the musician can play a
score in his or her personal style; even the normative score indications can be per-
formed in slightly different ways, and this is what makes music performance an
art.

There are various performance variables that can be measured, such as the rhyth-
mic structure (tempo and timing), intensity (loudness) and articulation (the way
in which contiguous notes are connected), among others (Repp 1992, Gabrielsson
2003). The music performance characteristics can be local or global (Repp 1992).
Global characteristics affect the performance of the whole piece and can be de-
tected when the piece is listened to all the way through; for example, the global
tempo or the final ritardando (it is necessary listen to the whole piece to perceive
that the notes of the final ritardando are played slower than the rest of the piece).
Local characteristics affect only a small part of the score, such as the ritardando
at the end of a phrase, or a more local one: the rubato in the arpeggi (described
below).

The central goal of this paper is to show that FDA is a useful methodology to
statistically analysing music performance. We focus on rhythmic structure because
of data availability (see Section 4), but other musical dynamical parameters can
be studied in a similar way. The main analytical tool we use is functional principal
component analysis (FPCA, see Section 2.1 for more details). This technique is well-
suited for describing diversity in performance characteristics (principal functions
identify the strongest and most important modes of variation of individuals around
a common mean; see Ramsay and Silverman 2005, p. 149) and this is in fact our aim:
to investigate the commonalities and differences between different performances
regarding (expressive) timing.

The raw data (Repp 1992) we use as the point of departure for our analysis are
time measurements at note-level, which make the study of local performance char-
acteristics possible. At the same time, the FDA framework allows us to represent
every complete performance as a function (a single datum in FDA). Therefore our
approach is also able to analyse global characteristics.

The paper is organised as follows. Section 2 introduces FDA and FPCA. Then
Section 3 presents the Schumann’s piece Träumerei, which we use as a case study
throughout the paper. Repp’s tempo data on Schumann’s Träumerei (Repp 1992)
are described in Section 4, as well as how they are transformed into functional
data by smoothing techniques. The application of FPCA in performance analysis
for this piece is detailed in Section 5, which also includes a cluster analysis resulting
from FPCA as a by-product. The paper ends with some conclusions summarised
in Section 6.
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2. Functional Data Analysis (FDA)

Observing and saving complete functions as results of random experiments is nowa-
days possible by the development of real-time measurement instruments and data
storage resources. For instance, continuous-time clinical monitoring is a common
practise today. Ramsay and Silverman (2005) express this by saying that random
functions are in this cases the statistical atoms. Functional Data Analysis (FDA)
deals with the statistical description and modelling of samples of random functions.
Functional versions for a wide range of statistical tools (ranging from exploratory
and descriptive data analysis to linear models and multivariate techniques) have
recently been developed. Other techniques are specific to FDA, because they ex-
ploit the functional nature of this kind of data: principal differential analysis is
a type of principal component analysis carried out on the derivatives of the ob-
served functions; registration is a pre-process step where a change of variable is
carried out on each observed function in order to make them as similar as possible.
See Ramsay and Silverman (2005) for a general perspective on FDA, and Ferraty
and Vieu (2006) for a non-parametric approach. Ramsay and Silverman (2002)
present applications of FDA to a wide range of problems and disciplines. Special
issues recently dedicated to this topic by several journals (Davidian et al. 2004,
González-Manteiga and Vieu 2007, Valderrama 2007) bear witness to the interest
for this topic in the Statistics community.

It is well worthwhile noting that random functions can also be obtained from
standard random samples by the application of non-parametric curve estimation
methods. For instance, Kneip and Utikal (2001) used non-parametric density esti-
mation methods to obtain annual income densities, which enabled them to study
the temporal evolution of income density functions in United Kingdom from 1968 to
1988. The most frequent situation, however, is that of having observations densely
sampled over time, space or other continuous parameter spaces. In these situations,
interpolation techniques (if the underlying sampled functions are smooth and there
is no sampling noise) or smoothing methods (in other cases) allow us to transform
the discrete observations into continuous functional objects.

A non-technical introduction to FDA can be found in Levitin et al. (2007), which
is illustrated with the musical application presented in Vines et al. (2005), and
which as far as we know is the only existing work applying FDA methodology to
the analysis of musical data.

2.1. Functional principal component analysis (FPCA)

Ferraty and Vieu (2006) define a functional variable as a random variable f taking
values in an infinite functional space, usually

L2(I) = {f : I → R, such that
∫

I
f(s)2ds < ∞},

where I = [a, b] ⊆ R. An observation f of f is called functional data. A func-
tional data set f1, . . . , fn is the observation of n independent functional variables
f1, . . . , fn identically distributed as f . In this context, a version of the princi-
pal component analysis (PCA, possibly the most popular descriptive statistical
technique for multivariate data) has been developed: this is functional principal
component analysis (FPCA).

The objective of FPCA can be stated as follows. Given a functional random
sample with mean function f̄(s) = (1/n)

∑n
i=1 fi(s), for all s ∈ I, we look for func-
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tions g1, . . . , gq (principal functions) in L2(I) and real numbers ψij , i = 1, . . . , n,
j = 1, . . . , q, such that

n∑

i=1

∫

I


(fi(s)− f̄(s))−

q∑

j=1

ψijgj(s)




2

ds

is minimum. Moreover, the functions g1, . . . , gq are required to be orthonormal:∫
I gi(s)gj(s)ds is equal to 0 if i 6= j and equal to 1 if i = j. In other words, we are

looking for a representation of functional data in a q-dimensional space (the space
spanned by the functions g1(·), . . . , gq(·)):

fi(s) ≈ f̄(s) +
q∑

j=1

ψijgj(s), s ∈ I, i = 1 . . . n.

It can be proved that the principal functions can be estimated, under certain
assumptions, as the eigenfunctions of the sampling covariance operator:

∫

I
Γn(s, t)gj(t)dt = λjgj(s), for all s ∈ I, (1)

where

Γn(s, t) =
1
n

n∑

i=1

(fi(s)− f̄(s))(fi(t)− f̄(t)),

and that

ψij =
∫ b

a
(fi(s)− f̄(s))gj(s)ds, i = 1, . . . , n, j = 1, . . . , q.

Coefficient ψij is the score of the observation i on the j-th principal function. The
numbers λ1, . . . , λq, known as eigenvalues, are sorted in decreasing order and are
equal to a common constant times the proportion of total variability explained by
the corresponding principal functions.

A way to interpret the meaning of the principal functions is that they represent
the main variation modes of the observed functions around the global mean func-
tion. The mean function f̄ represents what is common to all the data (commonality,
if we are dealing with music performance), the centred functions (fi − f̄) account
for individual differences (diversity) and the principal functions summarise what is
common in the way individual are diverse.

There are different approaches to solving equation (1) in practise. A solution by
expanding sample-paths in terms of B-spline functions was proposed in Aguilera
et al. (1996). Ramsay and Silverman (2005) also propose the expression of observed
functions as linear combinations of B-splines functions forming an approximate
base of L2(I). In this way, equation (1) can be re-expressed as a matrix equation
to be solved by standard methods.

A different solution is suggested by Kneip and Utikal (2001). Once the original
functions have been properly smoothed (if required), the centred functions are
evaluated in a fine grid of evenly spaced points of I: s1 = a, . . . , sM = b. Let F be
the n×M the resulting data matrix. It can be proved that for large values of M ,
the solutions of (1) can be derived from eigenvalues and eigenvectors of M · MT



June 2, 2009 15:19 Connection Science AlmansaDelicado2008˙Rev˙2

Connection Science 5

or MT ·M , the last one having the advantage of having dimension n× n, which is
very convenient given that usually n << M . We follow this approach in Section 5.

3. The piece: Schumann’s Träumerei

Schumann’s Träumerei op.15/7 is the seventh piece from the album Kinderszenen.
Composed by Robert Schumann in 1838. It was dedicated to Clara Wieck who later
became his wife. The score is shown in Figure 1. The album, on which Träumerei
is the best known piece, is representative of the Romantic period, characterised
by its musical expressiveness, subjectivity and psychological nuances of a state of
mind. Träumerei consists of three phrases of 8-bar length in a ternary form: A B
A’. The first one (A) should be repeated by score indications. The last one (A’) is
very similar to the first (A) but the last bars of the phrase are changed to give a
conclusive sense to the whole piece. Each phrase consists of two periods of four bars,
and all of which have a very similar rhythmic structure. Musicological analyses of
the Träumerei can be found in Reti (1951), Brendel (1981) and Traub (1981), for
instance.

“Tension and release” is a term frequently used in the analysis of music to de-
scribe how a piece retains the interest of the listener (see, for instance, Meyer 1956,
Stein 1962 or Huron 2006). In the Romantic style, the clear emphasis of movement
from moments of tension and release (and vice-versa) plays an important role in
the performance. Träumerei begins in a relaxed state and the moment of maximum
tension occurs in phrase B (B-flat note in the upper voice in bar 14); in then relaxes
again until the end of the piece is reached. The same relax-tension-relax pattern
is reproduced with less emphasis within each period of each phrase. Some other
normative aspects in the performance of this piece are:

(1) There is no indication in the score about the repetition of the phrase A, so
it is expected to be performed twice with similar agogics.
(2) At the end of each phrase, there is a ritardando (intentional slowing of
tempo), and the final ritardando is the longest one (it involves more notes and
greater slowing tempo). The ritardando at the end of phrase B is located just
after the moment of maximum tension, and moves clearly to a relaxed phrase
A’. Thus, one expects to find differences in the performance of ritardando in
phrases A and B.
(3) In bar number 22, there is a fermata indicating that this note has to be
played longer.
(4) Apart from the explicit instructions on the score, some other performance
techniques are implicit and commonly accepted by musicians, such as the ru-
bato: a specific accelerando-ritardando rhythmic shape. In this score a rubato
is generally accepted, involving the six arpeggiated notes: five quavers that as-
cend in increasingly longer pitch steps to a final note. This melodic gesture is
located in the last three quavers of the second bar and the first three quavers
in the third bar of every period.

Träumerei has a very regular (and simple) musical form, and its main interest lies
in its ability to allow performers to exhibit expressiveness. Therefore, it provides a
high degree of freedom in individual performance beyond the normative aspect.
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Figure 1. Schumann’s Träumerei op. 15/7. Reprinted here with the permission of G. Henle Publishers,
http://www.henle.de.

4. Repp’s tempo data on Schumann’s Träumerei

The analysed data were kindly provided by Bruno H. Repp (see Repp 1992 for a de-
tailed description). They comprised the duration of each note of the melody in mil-
liseconds. Grace notes were omitted. Measurement process consisted in calculating
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Table 1. List of performers.
Code Artist (year of recording)
ARG Martha Argerich (<1983)
ARR Claudio Arrau (1974)
ASH Vladimir Ashkenazy (1987)
BRE Alfred Brendel (<1980)
BUN Stanislav Bunin (1988)
CAP Sylvia Capova (<1987)
CO1 Alfred Cortot (1935)
CO2 Alfred Cortot (1947)
CO3 Alfred Cortot (1953)
CUR Clifford Curzon (1955)
DAV Fanny Davies (1929)
DEM Jfirg Demus (1960)
ESC Christoph Eschenbach (<1966)
GIA Reine Gianoli (1974)

Code Artist (year of recording)
HO1 Vladimir Horowitz (1947)
HO2 Vladimir Horowitz (<1963)
HO3 Vladimir Horowitz (1965)
KAT Cyprien Katsaris (1980)
KLI Walter Klien (?)
KRU André Krust (1960)
KUB Antonin Kubalek (1968)
MOI Benno Moiseiwitsch (1950)
NEY Elly Ney (1935)
NOV Guiomar Novaes (<1954)
ORT Cristina Ortiz (<1988)
SCH Artur Schnabel (1947)
SHE Howard Shelley (<1990)
ZAK Yakov Zak (1960)

the time difference between two consecutive notes onset (IOI: interonset intervals)
using a waveform editing program. Some measurement error was assumed. Notes
were divided into quaver length (eighth-notes in American terminology), so IOIs
longer than a nominal quaver in the score were divided into IOIs of equal duration.
Given that measures were done through IOIs, the last note had no corresponding
measure. A complete performance thus yielded 253 quavers for each performance.

This measurement process resulted in a data set that includes 28 different in-
terpretations of the Schumann’s Träumerei as performed by 24 prominent pianists
(Table 1). Two of these artists (Cortot and Horowitz) are each represented by three
different recordings each. There are two interpretations (F. Davies and A. Krust) in
whose recordings phrase A was not repeated. Therefore in the data file, the values
for the performance of phrase A are repeated twice.

Data therefore consist of a 28×253 matrix, where each row corresponds to a
performance and the n-th column gives the duration of the n-th quaver of the
score in millisecond.

Previous studies have analysed this data in different ways. Repp (1992) stud-
ied microstructure performances within the piece, and analysed commonality and
diversity using PCA and cluster analysis on multivariate data consisting of short
fragments of raw data previously described. Repp (1995) added 10 piano student
performances (three performances each) and compared student performances with
professional ones. Repp (1996) added information about dynamics (pitch intensity),
focusing on student performances recorded in 1995.

All Repp’s papers analysed each note as one different variable, ignoring the fact
that notes that are closer in the score are more statistically related than those
that are farther away. So a great deal of effort in standard multivariate techniques
is spent on re-discovering this dependence structure. An automatic way of taking
into account that close notes are dependent is by considering performances as
continuous functions of the position score (as we do in this paper).

Beran and Mazzola (1999a) employed the RUBATO software (Mazzola and Za-
horka 1994) for analysing a score according to explicit rules derived from general
music theory and practise, and for transforming the results into numerical weights:
each note in the score can be assigned a weight that measures its metric, harmonic
or melodic importance respectively. The purpose of the paper was to introduce a
statistical approach to the analysis of metric, melodic and harmonic structures of a
score and their influence on musical performance. The measures of metric, harmony
and melody, as well as the regression coefficients estimated by Beran and Mazzola,
are assumed to be vectors of high dimension. In fact they could also be modelled as
functions and, in this case, FDA techniques (functional regression with scalar re-
sponse, for instance) could be used. We believe that the functional approach would
make the interpretation of the results easier.
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Figure 2. Original and cumulated data for the 28 performances of Träumerei.

Beran and Mazzola (1999b) developed the Hierarchical Smoothing Model, as an
attempt to better understanding the relationship between the symbolic structure
of a music score and its performance. According to the observation that musical
structure typically consists of a hierarchy of global and local structures, in the Hi-
erarchical Smoothing Model data are decomposed in different smoothed functions,
each of them with their own bandwidth, so each smoothed function describes dif-
ferent aspects of the original data information. This is in contrast with usual non-
parametric smoothness methods, where the optimum bandwidth is looked for. In
the final remarks, Beran and Mazzola (1999b) cite the 1997 version of Ramsay and
Silverman (2005), as a possible way to complement their approach.

Vines et al. (2005) mention the possibility of analysing music performance with
FDA techniques. For music perception analysis, they introduce some concepts (such
as velocity and acceleration functions) that are related with other functions used
by ourselves (see below for our definition of slowness and deceleration functions).
In a final note, they point out the possibility of carrying out their type of analysis
with the Träumerei Repp’s data. The degree thesis of Almansa (2005) made the
first attempt to do this, independently of Vines et al. (2005).

4.1. Creating functional data

The original data, forming a 28×253 data matrix, have no functional form. They
just give the duration of each quaver of the score for each piano performance. The
way we transform these data into functional data is as follows. For each perfor-
mance we compute a function giving the elapsed time t (in millisecond units) of
the performance from the beginning up to any given position s (in quaver units) in
the score. The estimation of this function is done simply by cumulating the original
performance times (Figure 2). Note that this data now has a continuous sense; for
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any non-integer s ∈ [1, 253] it is possible to estimate (by linear interpolation, for
instance) the corresponding real time t. We can denote this function by t(s). These
functions are very similar throughout all the performances, and any peculiarities
among the pianists are hardly detected.

The inverse of these cumulative functions (namely s(t)) are position functions:
given a real time t, they return to what position of the score s the pianist is
playing at t. By applying basic notions of physics, we can compute the velocity
(v(t)) and acceleration (a(t)) functions from the position function (first and second
derivatives: v(t) = s′(t), a(t) = v′(t) = s′′(t)). These new functions (velocity and
acceleration) are more meaningful than position, and provide better discrimination
of the performances (Vines et al. 2005).

Our option is to work with the cumulative functions t(s) as the raw functional
data. The main advantage of working with t(s) is that this way all the observed
functions (ti(s), i = 1, . . . , n) have thereby a common support ([1, 253]). This is not
the case when using position functions s(t), because different performances have
different durations. Having a common support is very convenient for comparing
different functions and for relating their values directly to the score. We call the
function t(s) the elapsed-time; its first derivative w(s) = t′(s) is slowness and its
second derivative d(s) = w′(s) = t′′(s) is deceleration. Taking into account that
s(t) and t(s) are inverse functions (s(t(s)) = s and that t(s(t)) = t), it is easy to
prove the following relations,

w(t) =
1

v(s(t))
, d(t) = −a(s(t))

v(s(t))
,

which can help to interpret results expressed in terms of slowness and deceleration.
For instance, higher values in the slowness function around a score position s mean
that the note placed in s takes more time to be played and consequently its real
velocity is lower. Although slowness and deceleration functions are both estimated,
in the analyses presented below slowness functions are mainly used.

4.1.1. Non-parametric adequacy

Smoothed elapsed-time functions and their first and second derivatives are esti-
mated from the elapsed-time raw functions by a non-parametric regression method.
The choice of non-parametric estimation methodology has several advantages.
First, the performance of a musical piece will not be well fitted by a function
expressed in a closed parametric form, because within a single performance there
is so much variability and tendency changes that it cannot be explained through a
specific parametric expression. Secondly, the adjustment of a non-parametric model
for smoothing is preferable to interpolation, because observed values are measured
with error. In addition, a musician will never play the same piece twice in the same
way; the trend is to do it within the same style. So we have a sample of how a
pianist interprets a piece, and it makes sense to make an inference about it rather
than taking it as an exact value. Thirdly, what is played in music at any particular
time is strongly determined by what is played before as well as what is going to be
played later: the execution of a note is determined by its musical context. (Vines
et al. 2005 talk about “the effect of temporal context in music —what has been
played before and what is about to be played”) Therefore, it makes perfect sense to
estimate the value of a note by using the values of the notes next to it.

At this point it is worth citing Langner and Goebl (2003), in which a visualising
technique for expressive performance is introduced. These authors extract infor-
mation on tempo and loudness (as functions of time) from MIDI instruments or
audio recordings; then they smooth the data by computing local means (which is
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equivalent to the Nadaraja-Watson non-parametric regression; see Fan and Gijbels
1996), and finally display the smoothed data in a two-dimensional space (loudness
against tempo) as animation over time: a red dot moves in synchrony with the
music, leaving behind it a trajectory that vanishes over time. These ideas have
been implemented in a visualisation program called performance worm (Dixon
et al. 2002). Observe that the smoothed loudness and tempo functions (depend-
ing on time) are an example of a two-dimensional functional data, and that FDA
techniques could enhance the visualisation capabilities of performance worms for
analysing musical performance.

4.1.2. Function estimation

Smoothed elapsed-time, slowness and deceleration functions are estimated
through local polynomial regression (see, e.g., Fan and Gijbels 1996). The general
idea is to fit a polynomial regression of degree p to the data (sj , tij), j = 1, . . . , 253,
(corresponding to the i-th performance) locally around a specific point s ∈ [1, 253],
giving higher weight to nearby s points and lower weight to more distant ones.
Based on this estimated polynomial function a response value is predicted for s.
By repeating this process for a dense grid of points s in [1, 253], the estimated
function t̂i(s) is obtained. The weights of neighbouring observations sj are chosen
to be proportional to K((s − sj)/h), where K is a positive symmetric function
non-increasing on [0,∞), known as the kernel, and h > 0 is a smoothing param-
eter (larger values of h correspond to smoother estimated functions) called the
bandwidth. The bandwidth choice is a crucial step in all non-parametric smoothing
techniques. Here we choose the bandwidth by following the rule of thumb pro-
posed by Fan and Gijbels (1996) in order to optimise the estimation of derivative
functions. This rule starts with the asymptotically optimal constant bandwidth
expression, which contains some unknown quantities that must be estimated from
the data. In particular, a polynomial of degree p + 3 is fitted globally to (sj , tij)
in order to obtain a pilot estimation of the quantities, depending on the unknown
function ti(s) that we are estimating.

We use p = 2 for the estimation of the slowness functions and p = 3 for de-
celeration. The kernel is Gaussian. The function locpoly of R (R Development
Core Team 2008) is used. The bandwidths obtained from the rule of thumbs for
the 28 slowness functions go from 3.595 to 6.051 quavers (1st Quartile: 4.224, Me-
dian: 4.509, 3rd Quartile: 4.820). For deceleration functions, the bandwidth values
go from 2.650 to 4.065 quavers (1st Quartile: 3.289, Median: 3.525, 3rd Quartile:
3.720). As pointed out by Fan and Gijbels (1996), the rule of thumb for choosing
bandwidths gives an approximate idea about how large the amount of smoothness
should be, but in certain cases this approximate selection might suffice. This is
what occurs in our case, because the estimated functions obtained prove extremely
useful for analysing the different performances by functional principal components.

As an example, Figure 3 shows the original data and the estimated slowness
function for performers DAV and ESC. Figure 4 shows the mean (accounting for
performance commonality) and the standard deviation of the 28 estimated func-
tions. At the end of each period there is a slowing in the tempo performance, which
is more evident in phrase B and at the end of the piece. The largest variability re-
mains in the final part of the piece. The fermata and the end of phrase B also have
high variability among the 28 performances.

One disadvantage of the non-parametric regression is the estimation in the
boundaries of the interval I = [1, 253] where functions are defined. Because of
this effect the end of every performance is overestimated (the functions here are
not so smooth as in the rest of interval). As the components of a FPCA analysis
are orthogonal, this problem will only be reflected in the overestimation of the
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Figure 3. Original and estimated slowness for two performers (DAV and ESC).
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Figure 5. Phase-plane plot. Numbers indicate the quaver order in the score.

percentage of variability explained by one of the factors, without interfering in the
interpretation of other components.

The phase-plane plot, as explained in Vines et al. (2005) and in Ramsay and
Silverman (2002), shows the second derivative function against the first derivative.
Pure oscillatory function yields to a circular phase-plane plot. In Figure 5 the mean
deceleration function against the mean slowness function is shown, as a comple-
mentary way of describing performance commonality. The mean slowness function
is centred in order to obtain zero-mean. The plot is divided by phrases to facilitate
the interpretation. Phrases A and rep-A are very similar, only significantly differing
at the beginning of the phrase, where phrase A shows considerable changes in the
deceleration function, but this is produced by the boundary estimation bias. So we
can consider that the global mean performance of phrase A and its repetition are
equally performed. The first and second periods of phrase A follow the same flat-
shape structure, (an oscillatory movement with little change in deceleration), but
in the second period there is a greater variation in velocity. At the end of the first
period and in the arpeggi of the second period (quavers 32 to 42 for phrase A, and
96 to 106 for rep-A) there is a vertical ellipse shape showing rapid changes in the
deceleration function. This is clearly a rubato. Phrase B has a different structure
compared with A, both periods having a very similar oscillatory shape where the
end of both periods have remarkably slower timings. The end of the second period
(end of phrase B) is remarkably slower than the end of the first period. The first
period of phrase A’ has a shape similar to first period of phrase B, but with slower
velocity, which releases the tension created in phrase B. Around the fermata (bar
with notes 234 to 242) there is a rapid change in in the deceleration function, and
then the piece ends with an exaggerated deceleration timing.
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5. Performance analysis by FPCA

Non-Standardised and standardised FPCA are conducted on the slowness func-
tion. Both methods aim to summarise the maximum amount of data variabil-
ity in a small number of components. The difference between non-standardised
and standardised FPCA is that, in the first case, the functions are analysed in
their original measurement units (the covariance operator Γn(s, t), defined in Sec-
tion 2.1, is used), whereas in the second case all notes are forced to have the
same variability across performers (unit variance, because the correlation operator
ρn(s, t) = Γn(s, t)/

√
Γn(s, s)Γn(t, t) is used). Therefore, in the non-standardised

analysis, the larger variability corresponds to notes that are usually played slowly
by all pianists (fermata, ritardandos, etc.), allowing for larger differences among
performers. Typically, this information will be kept by the first component. When
data are standardised, slow notes are no longer more important than others. Then
the first principal component captures differences among performers that are rele-
gated to second or posterior components in the non-standardised analysis.

The position of an individual in a principal function is the scalar product between
its original functional data and the corresponding eigenfunction, so score-positions
where an eigenfunction takes large values correspond to notes that have great
importance in this principal function. Another graphical way of interpreting the
principal functions is to sum and subtract from the grand mean the eigenfunction
multiplied by an appropriate constant. This gives us an idea of how the perfor-
mance pattern differs from the mean for performances having significant positive
or negative values in the principal functions (looking at score parts where the
shifted mean function is above or below the original mean function and where the
maxim and minim values are found). Principal functions show several independent
(orthogonal) performance patterns in a decreasing order of importance. When the
first principal function has constant sign, it can then be used as a measure of global
size (whatever that means in the specific context; see Mardia et al. 1979). The fol-
lowing ones (taking positive and negative signs) explain local shape characteristics.

5.1. Non-standardised FPCA

The first component (Figures 6 and 8) is a size component (it is always negative)
showing that the main variation characteristic of the piece performance is the global
tempo. It explains 60.3% of the whole variability. The performances with greatest
negative value in the first principal function (see Figure 8) are ESC, CAT and
BUN, which means that these are the slowest performances. On the right hand
side of Figure 8 we find the fastest ones, which correspond to CO2 and DAV.

The second component (20.02% of total variability; see Figures 7 and 8) shows
the contrast between the global tempo and the final tempo. This means that this
component separates relatively fast performances that have a slow conclusion to the
piece (the final ritardando, after the fermata) from others with opposite properties.
This makes sense because a fast tempo produces more tension and requires more
time to produce a relaxed sensation at the end of the piece. The performances that
provide a greater contrast between the global tempo and the tempo at the end of
the piece (those having large negative value in the second component; see the the
vertical axis of Figure 8) are ORT and BUN, and the most homogeneous ones in
the final tempo are ARG, CAP, NEY, KLI and ESC (see the top of Figure 8).
So, we can describe BUN as a lower tempo performance with great tempo-contrast
at the end of the piece (even lower), because it is placed in the bottom left-hand
corner of Figure 8.
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Figure 6. Left: First principal function (non-standardised FPCA). Right: Global mean function +/- a
multiple of the first principal function.

The third component (5.00% of total variability; see Figure 7) shows a pattern
where faster performance of phrases A and B contrast with slower tempo at the
end of phrase B and the fermata (but not in the final ritardando). Performers
who accentuate this contrast are ASH, KAT and ARG. This assertion is based on
the score of each performance at the third component. The corresponding figure
(analogous to Figure 8 for first and second components) is not shown here due to
space limitations; the same occurs for the fourth and fifth principal components
below.

The fourth component (4.53% of total variability; see Figure 7) emphasises the
mean rhythmic pattern where there is a slowing tempo in the half of each period,
and accelerates until the end of the period. Negative component values (CO1, CUB,
CAP) indicate more emphasis within the rhythm of the periods, and positive values
(HO3, KLI, BRE) indicate more homogeneous performances in the rhythm of the
periods.

The fifth component (2.18% of total variability; see Figure 7) shows a different
oscillatory pattern in the periods of the performance of A-phrases. Performances
with high positive values in this component (ARG, HO1) are characterised by
accelerating the tempo until the end of the arpeggi, then decelerating until the
half-note in the last bar of the period, and finally accelerating again toward the
next period. In contrast, negative values (DEM, ASH, SHE) are characterised by
the opposite style: decelerating in the arpeggi, accelerating in the next notes until
the last bar of the period and then decelerating at the entrance to the next period.
The latter also have a slower tempo in the fermata, but are faster at the end of
phrase B. It can be said that the oscillations in the fifth component are shifted half
a bar from the global mean.
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Figure 7. Global mean function +/- a multiple of the principal functions 2 to 5 (non-standardised FPCA).
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5.2. Standardised FPCA

The main results are shown in Figures 9 and 10. The first component is also a
size component, showing that the first characteristic of the piece performance is
the global tempo. It explains 70.2% of the total variability. In contrast to the non-
standardised FPCA, the final ritardando is not so differentiated. In this component
BUN is not so well represented as compared with the non-standardised first com-
ponent, because the notes where BUN tended to play longer are also the notes
where all the performers played longer as well.

The second component is very similar to the fourth in the non-standardised anal-
ysis (except that now the fermata is not a discriminant note). The fifth component
is also very similar to the fifth in the non-standardised analysis. So it can be said
than both performance patterns are highly characteristic of this piece.

In the third component, those with positive value (BUN, KAT and ORT, at
the top of the third graph in Figure 10) follow the mean rhythmic pattern with
slightly more emphasis -the longer notes (i.e. ritardandos) generally being played
longer and the faster ones faster. However, on the negative side (NEY and MOI, at
the bottom of the third graph in Figure 10) there is a differentiated performance in
the two periods of A phrases: in the first period accelerating in the arpeggi and then
decelerating, but in the second period decelerating in the arpeggi and accelerating
afterwards; these pianists also perform the end of phrase B and most of phrase A’
faster.

The fourth factor pattern has two rhythmic change-points: the end of the first
period in the A-repetition phrase, and the fermata. Performances with a positive
component (ARG; the corresponding figure is not included due to space limitations)
tend to be faster from the beginning to the end of the first period of the A-repetition,
then slower until the fermata with the end of the piece being played significantly
faster. One may surmise that different pianists anticipate phrase B in different
ways, and this is reflected in the repetition of phrase A. As regards the negative
component, BUN is the most representative pianist (figure not shown here); he
tends to play the second half of the A-repetition and the B phrases faster.

We identify eight meaningful components, although the last ones have a more
complex interpretation (see Figure 11; scatterplots for the pianists on the com-
ponent planes are not included here for these components due to space limi-
tations). For example, pianists on the negative side of the eighth component
(ARR,BRE,,ARG) perform the end of phrases A and rep-A more slowly, and are
more expressive in the first period of B and A’. On the side of the positive compo-
nent side (KAT, ZAK) pianists perform the end of the A phrases faster and have
more homogeneous timing in phrase B, although slightly slower fermata. Inside
phrase A and A’, an oscillatory movement similar to the fifth component (but not
so marked) appears. The eighth component differs from the fifth component in
phrase A’, which does not follow the same structure as A and rep-A.

Comparison between non-standardised and standardised analysis can be sum-
marised as follows: the most important characteristics of the data have been discov-
ered by both methods (components 1, 2, 4 and 5 in the non-standardised analysis,
and 1, 2 and 5 in the standardised one), but other are pointed out only by one of
them (component 3 in the non-standardised analysis, and 3 to 8 in the standardised
one).

5.3. Cluster analysis

Once principal functions are computed, a cluster analysis is conducted with the
first 8 components from the standardised FPCA. This choice is justified because
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Figure 9. Global mean function +/- a multiple of the principal functions 1 to 4 (standardised FPCA).
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Figure 11. Global mean function +/- a multiple of the principal functions 5 to 8 (standardised FPCA).

standardised analysis show individual characteristics better. The input matrix has
dimension 28×8, where the 28 performances have 8 estimated values of their scores
in principal components, so any standard cluster algorithm can be used in this
context. A hierarchical algorithm is applied with Ward’s minimum variance method
(the function agnes in the R software is used). Cluster analysis defines groups of
performances that are similar to other performances in the same group as regards
their main characteristics, but are different from elements in other groups. The
description of clusters is the only difference between using functional data and
using multivariate data.

A standard graphical output of cluster analysis is a dendrogram, such as that rep-
resented in Figure 12. From the dendrogram we can see that there are three or four
clusters. The four cluster partition gives a greater between-class variance relative
to the within-class variance, and more meaningful clusters. Class descriptions are
shown in Figure 13. Cluster 1 is the closest one to the global mean performance.
Cluster 2 is also close to the mean in the global tempo, but with a homogeneous
rhythmic (flatter slowness function). Cluster 3 has a faster global tempo and Clus-
ter 4 has a lower tempo. Class membership is as follows (see Figure 10): Class 1:
ARG, ARR, CUR, DEM, KRU; Class 2: ASH, HO1, HO2, HO3, KLI, MOI, NOV,
SCH; Class 3: BUN, CAP, ESC, KAT, KUB, NEY, ZAK; Class 4: BRE, CO1, CO2,
CO3, DAV, GIA, ORT, SHE. The three performances of Horowitz and Cortot are
grouped in the same class (Horowitz in class 2, Cortot in Class 4), so although
these three performances are different they share the most relevant characteristics.

A complementary class description can be performed by considering the values
taken by the principal functions in the elements in each class. Figure 10 (right
panels) shows the mean values of principal functions for each class. Cluster 1 is
characterised by low values in the second principal function, and significantly it
is also located on the negative side of the eighth principal function (figure not
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Figure 12. Dendrogram corresponding to cluster analysis from standardised FPCA. The vertical line
indicates the tree cut in order to obtain four clusters.

shown here). Cluster 2 is characterised by high second function values and low
third function values. Performances in cluster 3 have high first principal function
values, whereas the opposite occurs for those in cluster 2.

6. Conclusions

The FPCA analysis enables us to interpret the information on rhythmic diversity
in Träumerei performances. Some of the information obtained is obvious (global
differences in tempo, for instance), but this type of analysis also looks for significant
information that is not so easily perceived. The ability of FPCA to recover a priori
known information indicates the plausibility of the novel information provided by
the method.

All the expected performance characteristics are found in some principal func-
tions (ritardandos, fermata, phrase structure, etc.). The rhythmic structure of
phrase A and its repetition are very similar in all the principal functions, except
for the fourth component in the standardised FPCA. The main rhythmic struc-
tures in the performances (see, for instance, the fourth principal function in Figure
7) follow the regularity of the musical form of the piece. As an example of non-
expected patterns, we mention the fact that the oscillations in the fifth component
are shifted half a bar from the global mean.

FDA is shown to be a useful technique for analysing musical performance data.
Among its merits are the following: it considers in a natural way musical events
as dynamic processes evolving over time; it allows both global and local aspects
of musical performances to be combined; the statistical tools involved are no more
complex than those employed with multivariate data. A broad variety of musical
data (the performance worm of Langner and Goebl 2003, for instance) could benefit
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Figure 13. Class descriptions. Group mean functions minus global mean function.

from interaction with FDA methodology.
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