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Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

pedro.delicado@upc.edu

Summary

Two existing density estimators based on local likelihood have properties

that are comparable to those of local likelihood regression but they are much

less used than their counterparts in regression. We consider truncation as

a natural way of localising parametric density estimation. Based on this

idea, a third local likelihood density estimator is introduced. Our main

result establishes that the three estimators coincide when a free multiplicative

constant is used as an extra local parameter.

Some key words: Local polynomial regression; Nonparametric estimation; Truncated den-

sity.

1 Introduction

Consider the nonparametric regression model Y = m(X) + ε, where the er-

ror term ε has an absolutely continuous distribution independent of X, with

zero mean and finite variance. Let (x1, y1), . . . , (xn, yn) be a random sample

of (X, Y ). The unknown function m(t) = E(Y |X = t) is the regression func-

tion. Local polynomial regression is a standard nonparametric approach for

1



estimating m(t) (Wand & Jones, 1995; Simonoff, 1996; Fan & Gijbels, 1996;

Bowman & Azzalini, 1997). The method can be interpreted as the result of

locally maximising the loglikelihood of a polynomial regression model with

normal errors, with density function denoted by f(y|X = x, θ), with θ ∈ IRk

being the local polynomial coefficients. The estimator of m(t) = E(Y |X = t)

is m̂(t) = E{Y |X = t, θ̂(t)}, where θ̂(t) is chosen as the maximiser of

n
∑

i=1

w(xi − t) log f(yi|X = xi, θ),

and where the expectation is taken with respect to the parametric model. A

common choice for the weight function is w(u) = K(u/h)/h, where K is a

symmetric unimodal density function, denoted kernel function. The exten-

sion to other types of conditional dependence, such as binary or counting

response, is straightforward, and consists of modifying the parametric like-

lihood appropriately. Generalised linear models are flexible enough to be

used as local parametric models (Loader, 1999; Wand & Jones, 1995, §6.5;

Fan & Gijbels, 1996, §5.4; Bowman & Azzalini, 1997, §3.4). Local likelihood

nonparametric fitting combines a clear justification, appropriate theoretical

properties, flexibility to fit a wide range of datasets and automatic boundary

adaptation.

Consider now the nonparametric density estimation problem. Let X be

a random variable with density function f , and let t ∈ IR. Let x1, . . . , xn

be n independent observations of X. The goal is to estimate f(t). The

main difficulty in using local likelihood ideas in density estimation is that

there is no explanatory variable on which to condition. The only way to

make conditional inference is by conditioning on X = t. By analogy with

regression problems, the näıve version of the localised loglikelihood function
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for density estimation is

n
∑

i=1

w(xi − t) log f(xi; θ),

or any multiple thereof, where f(x; θ) belongs to a class F of local para-

metric models. Nevertheless, density estimation of X at t must depend not

only on what happens in a neighbourhood of t, but also on the remaining

observations: the estimated density might vary if the proportion of observa-

tions outside the neighbourhood of t varies. As a result the näıve localised

loglikelihood function does not work. As pointed out by Copas (1995), the

corresponding score function has nonzero expectation, leading to invalid in-

ferences.

To avoid this, Copas (1995), Loader (1996) and Hjort & Jones (1996)

proposed corrections to the näıve approach that provide consistent density

function estimators.

The local likelihood problem formulation proposed by Copas (1995) is

max
θ

n
∑

i=1



w̄(xi − t) log f(xi; θ) +

{1 − w̄(xi − t)} log
{

1 −
∫

IR
w̄(u − t)f(u; θ)du

}



 , (1)

where w̄(u) = hw(u) = K(u/h). The resulting score function now has zero

mean. Copas (1995) establishes a parallelism between local estimation and

censoring models: the weight of xi in local estimation is compared to the

probability of observing xi in censoring models. In fact he requires that

w̄(0) = 1 and that w̄(u) decrease with |u|. Usual techniques in censored data

analysis lead the author to the problem in (1). Copas (1995) admits that the
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censoring process is artificial in this context. An alternative approach, based

on local maximum likelihood, is possible when w̄(u) is the indicator function

of B(t, h) = [t − h, t + h]. Assume that the model f(x; θ) is appropriate in

B(t, h). The contribution to the local likelihood function of xi ∈ B(t, h) is

f(xi; θ) while the information that xi 6∈ B(t, h) provides about θ is that xi

belongs to a set having probability 1 − Pθ{B(t, h)}. Then the loglikelihood

function coincides with the objective function in (1).

Loader (1996) and Hjort & Jones (1996) formulate the local likelihood

problem as

max
θ

n
∑

i=1

w(xi − t) log f(xi; θ) − n
∫

IR
w(u − t)f(u; θ)du. (2)

These papers comment on the good performance of the resulting estimator

in the presence of edge effects, as well as the parallelism between its large

sample properties and those of local polynomial regression. Loader claims

that the usual loglikelihood function should be written as

n
∑

i=1

log f(xi; θ) − n
(

∫

IR
f(u; θ)du− 1

)

,

and that (2) is its natural localised version. Hjort & Jones (1996, §2.3)

provide five additional arguments for the use of (2). Of those, from our

point of view, the most convincing argument for (2) is that it leads to the

nearest local parametric approximation to the true density, in terms of local

Kullback-Leibler distance (Hjort & Jones, 1996, §2.1).

Observe that the Copas and Loader-Hjort-Jones proposals are general

ways of defining local likelihood density estimators. A local parametric family

F must be specified to define an estimator completely. Two different families,

F I and F II say, will produce two different Copas or Loader-Hjort-Jones
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estimators. The theoretical properties of the Copas and Loader-Hjort-Jones

estimators have been studied for a generic family F , and when a particular

family is used these properties have to be discussed in detail. Other papers

studying local likelihood density estimation are Eguchi & Copas (1998), Kim

et al. (2001), Park et al. (2002) and Hall & Tao (2002).

Local likelihood density estimation has not become as popular as local

regression in spite of the theoretical and practical similarities. A possible

explanation for that could be that arguments leading to local likelihood re-

gression are much more direct than in the density case. In this paper we

consider truncation, using a uniform kernel, as the most natural way to lo-

calise parametric density estimation.

2 A new proposal based on truncation

Let B(t, h) = [t − h, t + h] for h > 0. If pr{X ∈ B(t, h)} > 0 then

f(t) = f{t|X ∈ B(t, h)}pr{X ∈ B(t, h)}. (3)

The first factor is the density of X truncated to B(t, h). The second factor

can be estimated by the sampling proportion

Fn{B(t, h)} =
nth

n
, (4)

where nth = #{xi ∈ B(t, h)} =
∑n

i=1 IB(t,h)(xi). For small h the unknown

function f can be approximated by a parametric model on B(t, h),

F0 = {f0(x; θ) : θ ∈ Θ ⊆ IRk}

say, where f0 is a known nonnegative function with
∫

IR f0(x, θ)dx = 1 for all

θ. For instance, the class F I
0 may contain the N(µ, σ2) density functions,
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with θ = (µ, σ). Then we have that

f0{x; θ|X ∈ B(t, h)} =
f0(x; θ)

∫

B(t,h) f0(u; θ)du

is a reliable estimator of f{x|X ∈ B(t, h)}, provided that θ is adequately

chosen. We propose to select θ by maximum truncated likelihood, solving

the optimisation problem

max
θ

∑

xi∈B(t,h)

log
f0(xi; θ)

∫

B(t,h) f0(u; θ)du
. (5)

Let θ̂h(t) be the solution of this problem. The estimator of f(t) is then

f̂h(t) =
f0{t; θ̂h(t)}

∫

B(t,h) f0{u; θ̂h(t)}du
Fn{B(t, h)}. (6)

Uniform kernels are often replaced by smoother kernel functions to obtain

smoother nonparametric estimators (Silverman, 1986, p. 13). We define the

uniform kernel KU(u) = (1/2)I[−1,1](u). For any function K(u) and any

h > 0 we write Kh(u) = (1/h)K(u/h). Thus the objective function of the

problem in (5) can be written as

n
∑

i=1

2hKU
h (xi − t) log

f0(xi; θ)
∫

IR 2hKU
h (u − t)f0(u; θ)du

.

We now replace the uniform kernel by a generic weight function w(u − t) =

Kh(u − t). The smoothed version of the problem in (5) is then obtained as

max
θ

n
∑

i=1

w(xi − t) log
f0(xi; θ)

∫

IR w(u − t)f0(u; θ)du
; (7)

constants not affecting the optimisation have been removed. Let θ̂ST (t) be

the maximum; ST stands for smooth truncation.
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The smoothed version of the term Fn{B(t, h)} = (1/n)
∑n

i=1 IB(t,h)(xi) is

2hf̂w(t), where f̂w(t) is the usual kernel estimator of f(t), defined by f̂w(t) =
∑n

i=1 w(xi − t)/n.

Taking into account the truncation rationale that led from the problem

in (5) to the estimator f̂h(t) defined in (6), our proposal for local likelihood

density estimation is

f̂ST (t) =
f0{t; θ̂

ST (t)}
∫

IR w(u − t)f0{u; θ̂ST (t)}du
f̂w(t). (8)

Observe that f0( · ; θ) need not be a density function: it is enough that f0

is nonnegative and has finite integrals over finite intervals. For instance, the

class F II
0 may contain the functions f0(x; θ) = exp(ax+ bx2), with θ = (a, b).

We define a more flexible parametric model, including a free multiplicative

constant:

F1 = {f1(x; c, θ) = cf0(x; θ) : c > 0, θ ∈ Θ ⊆ IRk}. (9)

For the examples F I
0 and F II

0 , the corresponding F1 families coincide and

can be expressed as F I
1 = F II

1 = {f1(x; α, β, γ) = exp(α + βx + γx2)}.

Observe that F1 is closed for products by positive constants: for all g(x) ∈

F1 and all δ > 0, δg(x) ∈ F1. Moreover, if F0 has this property then F1

coincides with F0. Two important parametric classes of functions having

this property are the polynomial parametric model considered by Hjort &

Jones (1996) and the log-polynomial parametric model introduced by Loader

(1996), where F I
1 = F II

1 is obtained for second degree polynomials.

We now establish the numerical equivalence of our proposal and the prob-

lems corresponding to (1) (Copas, 1995) and (2) (Loader, 1996; Hjort &
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Jones, 1996) when the working parametric family is F1, that is, a family

closed for products by positive constants. We first consider the problem in

(1) when the parametric family is F1, and the maximisation is carried out

over (c, θ). Some care has to be taken in order to have positive arguments

for the log function in the second term of the objective function: in fact the

appropriate extended parametric model for the problem in (1) is

FC
1 = {f1(x; c, θ) = cf0(x; θ) : c > 0, θ ∈ Θ ⊆ IRk, c

∫

IR
w̄(u−t)f0(u; θ) < 1}.

Let (ĉC(t), θ̂C(t)) be the solution and let f̂C(t) = f1{t; ĉ
C(t), θ̂C(t)} be the

corresponding estimator of f(t).

Now we consider the problem in (2), when the parametric family is F1 and

the maximisation is carried out over (c, θ). Let (ĉL(t), θ̂L(t)) be the solution.

The resulting estimator of f(t) is f̂L(t) = f1{t; ĉ
L(t), θ̂L(t)}.

Observe that in (7) it is enough to take F0 as the local parametric model.

Theorem 1. In the previous context, θ̂C(t) = θ̂L(t) = θ̂ST (t). Moreover

ĉC(t) = ĉL(t) =
f̂w(t)

∫

IR w(u − t)f0{u; θ̂ST (t)}du
.

Finally f̂C(t) = f̂L(t) = f̂ST (t).

The proof is deferred to the Appendix.

Under the same assumptions, the three local likelihood problems are

equivalent to maximising the näıve localised likelihood function, subject to

the kernel estimator of f(t) being equal to its expected value under the para-

metric model; see the note following the proof of Theorem 1.

Remark 1. Asymptotic properties of f̂ST (t). The numerical equivalence

established in Theorem 1 implies that the asymptotic properties of the new
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estimator coincide with those of the previous ones. Hjort & Jones (1996)

study small bandwidth asymptotics for the Loader-Hjort-Jones local likeli-

hood density estimator when a generic parametric family, with p parameters,

is used. They prove that the asymptotic bias and variance of the estimator

depends only on the number p of local parameters fitted. Their results apply

in particular for the local parametric model F1, for p = k + 1. So, following

§§3 and 4 in Hjort & Jones (1996), we can say that, when we use a second-

order kernel K and k parameters in F0, the bias of f̂ST (t), as well as those

of f̂C(t) and f̂L(t), is O(h2) for k = 0 or k = 1, and is O(h4) for k = 2 or

k = 3. The variance is always O{(nh)−1}.

Large bandwidth asymptotics were discussed in Eguchi & Copas (1998)

for a wider class of local likelihood methods including both the Copas and

the Loader-Hjort-Jones estimators; for this class, Park et al. (2002) find

small bandwidth asymptotic results similar to those of Hjort & Jones (1996).

Theorem 1 guarantees that the asymptotic results established in Eguchi &

Copas (1998) also apply to f̂ST (t), given the required assumption that the

true density function f(t) is in the semiparametric band

⋃

c,θ

{g : D(g(·), cf0(·; θ)) = O(n−(1+α))},

where n is the sample size, α > 0, and D(g, f) is the Kullback-Leibler dis-

tance between g and f .

Remark 2. Computational considerations for f̂ST (t). From Remark 1 it

follows that the three estimators differ in terms of computational consider-

ations. We will compare only f̂L(t) and f̂ST (t), for two reasons. First, the

direct numerical computation of f̂C(t) requires us to solve a constrained op-

timisation problem, since (c, θ) must be such that cf0(t; θ) is in FC
1 , that is
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much more expensive than computing f̂L(t) or f̂ST (t). Secondly, the proof

of Theorem 1 in the Appendix gives the closed-form expression for the op-

timal value c for a fixed θ, and shows that including this formula in the

implementation of f̂C(t) leads to solving the same problem as in f̂ST (t).

The main difference between solving the problem in (2) to obtain f̂L(t)

and that in (7) to obtain f̂ST (t) is that in the former the optimisation variable

has dimension k+1, and in the latter the dimension is k. This favours f̂ST (t).

Nevertheless, the theoretical levels of computational complexity coincide:

in both cases the evaluation of the objective function, its gradient and its

Hessian matrix requires numerical integrations and sums of O(nh) terms.

The evaluation of f̂ST (t) involves the kernel density estimator f̂w(t), but it

can be determined at no extra cost from previously computed quantities. On

the other hand the objective function in (2) is simpler than that in (7), and

this favours f̂L(t).

In order to evaluate the practical performance of both estimators we have

designed the following computer experiment. As local parametric model we

have considered the log-polynomial model

F0 = {exp(
k

∑

j=1

θjx
j) : θj ∈ IR}, F1 = {exp(

k
∑

j=0

θjx
j) : θj ∈ IR}.

A Newton-Raphson algorithm was implemented in R to solve the problems

in (2) and (7) numerically. For each problem we derive the formulae for the

gradient and the Hessian matrix; numerical integration is required.

We have considered samples from a mixture of normal distributions, with

theoretical density function f(x) = (3/4)φN(x; µ = 0, σ = 1)+(1/4)φN(x; µ =

3/2, σ = 1/3), where φN(x; µ, σ) is the density function of a N(µ, σ2). Thus

the interval [−3, 3] has probability almost equal to 1. This density function
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appears as an example in the second chapter of Wand & Jones (1995). We

use a sample size of n = 100 and the degree of local polynomials is k = 2,

equivalent to locally fitting a normal density, multiplied by a constant. We

use an Epanechnikov kernel and a window width of h = 1.25.

Figure 1 shows the results of four iterations of the Newton-Raphson algo-

rithm. The initial values of the parameters were such that the corresponding

density was uniform in [−3, 3]. After four iterations both estimators are

almost identical, as predicted by the theory. The main differences are in

regions where the density is close to 0. In one iteration the estimator f̂ST (t)

gives good results, and two iterations are enough to arrive at the final solu-

tion. The convergence of f̂L(t) is slower; the four iterations are needed. In

terms of computer time, f̂ST (t) requires about 5% more time than f̂L(t) to

complete the four iterations. The process of fitting f̂ST (t) presents sporadic

numerical stability problems when the objective function in (7) is evaluated

at parameters θ such that f0(t, θ) is close to the machine precision, because

the log argument is close to 0/0. In this sense f̂L(t) is more robust.

We also have experimented with other sample sizes n, other degrees k of

polynomials, other smoothing parameters h and other types of kernel. We

also have used a theoretical model with density f(x) = (2 − x)I[0,1](x). The

results were qualitatively similar.

We conclude that ĥST (t) requires less iterations than ĥL(t) to reach the

solution, but the optimisation problem leading to ĥL(t) is simpler and nu-

merically more stable.

Remark 3. θ̂ST (t) and the T-version of Eguchi & Copas (1998). It is

appropriate to compare the estimator (8) with the T-version, where T stands
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for truncation, of the local likelihood estimator proposed by Eguchi & Copas

(1998). It is easy to see that the Apart from a constant, the corresponding

local likelihood function coincides with the objective function in (7). Thus

the estimated parameter in the T-version is equal to θ̂ST (t). The difference

stems from the definition of the density estimator: the T-version estimator

is f̂T (t) = f0{t; θ̂
ST (t)}, while estimator (8) includes a normalising factor,

i.e. the denominator, and a weight factor, f̂w(t). We have seen that the

natural estimator for f(t) derived from truncation is f̂ST (t), and not f̂T (t).

It is therefore not surprising that the T-version has undesirable properties

for small h, as reported by Eguchi & Copas (1998) and by Park et al. (2002).

Remark 4. Two problems affect the three estimators we have dealt with

in this paper, namely how to choose the bandwidth h, and the fact that the

estimated density is not a bona fide function, in that it does not integrate to

one. The bandwidth choice is considered in the §8.3 of Hjort & Jones (1996).

They suggest using a plug-in rule or least squares crossvalidation, the latter

being less reliable. For the second difficulty, ideas in Gajek (1986) and Hall

& Murison (1993) can be applied in our context to create bona fide densities

without changing asymptotic properties.
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Appendix

Proof of Theorem 1

We start proving that (5) is equivalent to the version of (2) corresponding to

the uniform kernel. The equivalence between θ̂L(t) and θ̂ST (t), and the value

of ĉL(t) can be established in a completely parallel way.

The problem in (5) is equivalent to the constrained optimisation problem

maxc,θ

∑

xi∈B(t,h) log f1(xi; c, θ),

subject to
∫

B(t,h) f1(u; c, θ)du = 1,

(A1)

in the sense that (c, θ) is solution of (A1) if and only if θ is solution of (5) and

c = {
∫

B(t,h) f0(u; θ)du}−1. The estimator of f(t) can be written as f̂h(t) =

f1{t; ĉh(t), θ̂h(t)}Fn{B(t, h)}, where (ĉh(t), θ̂h(t)) is the optimiser of (A1).

Remember that F1 is closed for products by positive constants. Let ĉ∗h(t) =

ĉh(t)Fn{B(t, h)}. Then f1{x; ĉh(t), θ̂h(t)}Fn{B(t, h)} = f1{x; ĉ∗h(t), θ̂h(t)} for

all x, which verifies that
∫

B(t,h) f1{u; ĉ∗h(t), θ̂h(t)}du = Fn{B(t, h)}. We con-

clude that problem (A1) is equivalent to

maxc,θ

∑

xi∈B(t,h) log f1(xi; c, θ),

subject to
∫

B(t,h) f1(u; c, θ)du = Fn{B(t, h)},

(A2)

because (c∗, θ) is the solution of (A2) if and only if (c, θ) is the solution of

(A1) and c∗ = cFn{B(t, h)}. Thus, the estimator of f(t) is obtoined directly
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as f̂h(t) = f1{t; ĉ
∗

h(t), θ̂h(t)}, where (ĉ∗h(t), θ̂h(t)) is the optimiser of (A2). The

Lagrangian function associated with (A2) is

l0th(c, θ, λ) =
∑

xi∈B(t,h)

log f1(xi; c, θ) − λ

[

∫

B(t,h)
f1(u; c, θ)du − Fn{B(t, h)}

]

If we set the partial derivative of l0th with respect to c equal to zero, it follows

that λ = n. We then define lth(c, θ) = l0th(c, θ, n), so that

lth(c, θ) =
∑

xi∈B(t,h)

log f1(xi; c, θ) − n

[

∫

B(t,h)
f1(u; c, θ)du− Fn{B(t, h)}

]

,

and conclude that (A2) is equivalent to

max
c,θ

lth(c, θ). (A3)

Note that the last term in lth(c, θ) does not depend on (c, θ) and thus can be

deleted. Therefore (A3) is the version of (2) corresponding to the uniform

kernel, and the first part of the proof is complete.

We now study the equivalence between the problems in (1) and (7). The

local likelihood function maximised in (1) is, after addition and subtraction

of
∑

i w̄(xi − t) log
∫

IR w̄(u − t)cf0(u; θ)du,

l(c, θ) =
n

∑

i=1

w̄(xi − t) log
f0(xi; θ)

∫

IR w̄(u − t)f0(u; θ)du

+

{

n
∑

i=1

w̄(xi − t)

}

log{c
∫

IR
w̄(u − t)f0(u; θ)du}

+

{

n −
n

∑

i=1

w̄(xi − t)

}

log
{

1 − c
∫

IR
w̄(u − t)f0(u; θ)du

}

.

The first term does not depend on c. Let nw =
∑n

i=1 w̄(xi − t) = nhf̂w(t),

and Pw(θ) =
∫

IR w̄(u − t)f0(u; θ)du. The sum of the second and third terms
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is

gθ(c) = nw log{cPw(θ)} + (n − nw) log{1 − cPw(θ)}.

The maximiser of gθ(c) is

ĉ(t; θ) =
nw

nPw(θ)
=

f̂w(t)
∫

IR w(u − t)f0(u; θ)du

and gθ{ĉ
C(t; θ)} is constant in θ. The optimum value of θ is therefore the

solution of

max
θ

n
∑

i=1

w̄(xi − t) log
f0(xi; θ)

∫

IR w̄(u − t)f0(u; θ)du
=

h

{

n
∑

i=1

w(xi − t) log
f0(xi; θ)

∫

IR w(u − t)f0(u; θ)du

}

− h
n

∑

i=1

w(xi − t) log h,

which is equivalent to the problem in (7). Therefore, θ̂C = θ̂ST and ĉC(t) =

ĉ(t; θ̂C) is as stated in the Theorem.

Finally, observe that for any θ the pair (θ, ĉ(t; θ)) satisfies

ĉ(t; θ)
∫

IR
w̄(u − t)f0(u; θ)du =

nw

n
=

∑n
i=1 w̄(xi − t)

n
≤

∑n
i=1 w̄(0)

n
= 1,

taking into account that w̄ has its maximum at 0 and that w̄(0) = 1. It

follows that the optimisation was done within the parametric model FC
1 . 2

Note: Suppose that in problem (A2) we replace the uniform kernel by a

generic one. Then the equality constraint becomes
∫

IR w(u−t)f1(u; c, θ)du =

1
n

∑n
i=1 w(xi − t) and problem (A2) becomes

maxc,θ

∑n
i=1 w(xi − t) log f1(xi; c, θ),

subject to {f1( · ; c, θ) ∗ w}(t) = f̂w(t),

thus proving the claim following Theorem 1.
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Figure 1: Results from the computing experiment. (a) Loader-Hjort-Jones

estimator. (b) Smooth-truncation estimator. Four iterations for each esti-

mator. Dotted line corresponds to the true density.

18


