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Quantum Monte Carlo study of one-dimensional
bosons with finite range interactions

Vı́ctor Camı́ Núñez
UB, Universitat de Barcelona, Carrer de Mart́ı i Franquès, 1-11, 08028 Barcelona
(Spain).

E-mail: v.cami.nunez@gmail.com

Abstract. We have studied how the ground state and the one-body density distribution
of a one-dimensional system of bosons trapped by a harmonic oscillator potential depend
on the repulsive interaction between the bosons. This study has been done using two
numerical methods: Variational Monte Carlo and Diffusion Monte Carlo to retrieve
information about the ground state energy and the one-body density distribution. We
have covered the full range of interaction from the non-interacting regime, where the
mean field approximation is a suitable way to describe our system, to the strongly
interacting regime where we have reproduced approximately the behavior of a Tonks-
Girardeau gas. As the repulsive interaction strength is increased, the system builds pair
correlations. We have also proposed a correlated wave function to characterise these
correlations.

Keywords: 1D gas of bosons, ground state energy, VMC, DMC

1. Introduction

In recent years, there has been an important effort to understand the quantum many
body states appearing in 1D bosonic systems. The main reason to develop the physics
of 1D bosons are the recent improvements in the field of ultra-cold atomic gases [1, 2].
Bosonic atoms can be trapped in 1D, 2D and 3D traps of different geometries and their
interactions can be tuned in many cases by means of suitable Feshbach resonances [3].
This allows one to consider the transition from the non-interacting regime to the strongly
interacting one in 1D systems, which has actually being explored experimentally [4, 5],
observing features of the well-known Tonks-Girardeau gas [6].

The aim of this master thesis is the study of a one-dimensional system of N bosons
trapped in a parabolic trap, Vtrap = (1/2)mω2x2, in which the bosons interact with each
other through a repulsive interaction potential. More specifically, we will concentrate
on the properties of the ground state of the system, which will drastically change as we
increase the repulsion between the particles.

The system we consider is described by the following Hamiltonian in first
quantization,

H =
N
∑

i=1

−1

2

d2

dx2i
+

N
∑

i=1

Vtrap(xi) +
N
∑

i<j

Vint(xij), (1)

where xi for i = 1, 2, . . . , N are the positions of the particles in harmonic oscillator units
√

~/(mω) with m the mass of the particles and ω the frequency of the oscillator. Vint(xij)
is the interaction potential between pairs of particles ij where xij = |xi − xj|, in units of
~ω. We consider an atom-atom interaction potential of the form

Vint(xij) =
g√
2πσ2

e−
1

2

x2ij

σ2 , (2)
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where g > 0 characterises the repulsive strength of the interaction and σ2 defines the
interaction range. Note that this finite range potential tends to a contact δ-interaction in
the limit σ2 → 0.

There are three well-defined regimes in this problem. The first one, is a weakly
interacting regime, g ≪ 1. In this case, we expect that the mean field approximation
should work well. The second one is found by further increasing the interaction, g ≫ 1.
In this case, the system starts to build non-trivial correlations among the particles. The
mean field description fails. We will show that a correlated wave function is able to capture
the correlations appearing in the system. Finally, when g → ∞, with σ2 → 0 we have the
well known Tonks-Girardeau regime for which we can derive analytical expressions.

This work is organized as follows. In Section 2 we introduce the variational method
and the different families of wave functions considered. In Section 3 we describe the
variational Monte Carlo (VMC) strategy, which allows us to go to larger number of
particles. In Section 4 we present the main tools of the Diffusion Monte Carlo (DMC),
a method aimed to provide the exact ground state energy. In Section 5, we discuss the
main results we have obtained with the different methods and in Section 6 we present the
conclusions of this master thesis.

2. Variational Methods

Our first approach will be to find upper bounds to the energy of the many-body system
by means of the variational approach. That is, we will consider a parametric many-body
wave function |Ψλ〉 and find upper bounds for the energy by minimizing the expected
value of the Hamiltonian, ∂Eλ/∂λ = 0, with,

Eλ =
〈Ψλ|H|Ψλ〉
〈Ψλ|Ψλ〉

. (3)

2.1. Mean field approximation: weak interacting regime

For a system of N non-interacting bosons at zero temperature, all the particles are
assumed to be in the same single particle state. The total wave function of the system
is then written as ψ(x1, x2, . . . , xN) =

∏N
i=1 φ(xi). As starting point, we can consider a

simple Gaussian wave function

φ(xi) =

(

α2

π

)1/4

e−
1

2
α2x2i , (4)

where α > 0 is a variational parameter. This ansatz should work for weak interactions.
The variational energy of the system corresponding to this wave function is given by

E(α2) =
〈ψ |H|ψ〉
〈ψ |ψ〉 = N

(

α2

4
+

1

4α2

)

+
N (N − 1)

2

g√
2π

√

α2

α2σ2 + 1
. (5)

For the simplest, non-interacting, case g = 0, α2 = 1 minimizes the energy and one
recovers the harmonic oscillator energy N/2. The minimization of E(α2) with respect to
α provides the best energy in this family of wave functions.

The best mean field description of the problem can be obtained solving the Hartree-
Bose equations, which are obtained by imposing that the energy of the system is stationary
with respect to small functional variations of φ. The energy reads,

E = 〈ψ |H|ψ〉 = N

〈

φ

∣

∣

∣

∣

−1

2

d2

dx2
+

1

2
x2
∣

∣

∣

∣

φ

〉

+
N(N − 1)

2
〈φφ |Vint|φφ〉, (6)
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Figure 1: One-body density distribution normalized to unity for a system of N = 4
particles with g = 0.5 (a) and g = 4 (b), both for σ2 = 0.125. The solid line corresponds
to the solution of the Hartree-Bose equations, the cross dotted line to the Gaussian wave
function (4) and the dashed line to the non-interacting harmonic oscillator wave function
(QHO).

where 〈φφ |Vint|φφ〉 is a two-body matrix element. This requirement is expressed by
means of

δ

δφ
[〈ψ |H|ψ〉 − λ〈ψ|ψ〉] = 0, (7)

where λ is a Lagrange multiplier to ensure the normalization of |ψ〉. The result of this
minimization process yields the following Hartree-Bose equation

λφ(x) = −1

2

d2φ(x)

dx2
+
x2

2
φ(x) + (N − 1)

[
∫

dx′Vint(x− x′)|φ(x′)|2
]

φ(x), (8)

where

λ =

〈

φ

∣

∣

∣

∣

−1

2

d2

dx2
+

1

2
x2
∣

∣

∣

∣

φ

〉

+ (N − 1)〈φφ |Vint|φφ〉, (9)

defines the chemical potential. The two equations, (8) and (9), define a self-consistent
procedure. Finally, the Hartree-Bose mean field energy is given as

EHB = 〈ψ |H|ψ〉 = Nλ− N(N − 1)

2
〈φφ |Vint|φφ〉 . (10)

In table 1 we report the values of the ground state energy for N = 4 comparing both
approaches. As expected, the Hartree-Bose solution gives a better lower bound for the
energy of the ground state as compared to the simple gaussian mean field ansatz. The
differences between the simple ansatz and the Hartree-Bose are larger as we increase the
strength of the interaction. Correspondingly, the density associated to the single particle
orbital obtained with the Hartree-Bose is broader than the one obtained with the simple
gaussian ansatz as can be seen in figure 1. For small g the shapes are very similar, but
as g is increased, the shape obtained with the Hartree-Bose is much broader and closer
to the Thomas-Fermi limit [2], which would correspond to an inverted parabola. In both
cases the results are clearly different from the non-interacting case.

3
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Table 1: Values of the energy for a simple gaussian variational wave function (EG) and
the one obtained solving the Hartree-Bose equations (EHB). We consider N = 4 and
two different values of the interaction strength, g = 0.5 and g = 10. The range of
the interaction is the same in both cases. The value of α2 corresponding to the simple
Gaussian ansatz is also provided.

N g σ2 EHB EG α2

4 0.5 0.125 3.06561 3.070618 0.7964824
4 4 0.125 8.59706 8.749062 0.3376884

2.2. Introduction of correlations between the particles of the system

As the interaction strength is increased there are two competing effects. On one side the
system gets larger, reducing the atom-atom interactions. On the other side, the system
builds up suitable pair correlations to avoid the atom-atom interaction. The mean field
only captures the first effect, to incorporate the second we need to take into account
correlations. We propose the following correlated wave function,

ψ(x1, x2, . . . , xN) =
N
∏

i=1

(

α2

π

)1/4

e−
1

2
α2x2i

∏

i<j

(

1− ae−bx
2

ij

)

, (11)

where a and b are the parameters which characterize the correlations between the particles.
The three parameters α, a and b will be used as variational parameters. The parameter a
has a very clear physical interpretation. If a = 0 the wave function reduces to the simple
mean field Gaussian of (4). If a = 1 the wave function has zeros whenever two atoms are
at the same position, thus reducing the atom-atom interaction.

2.2.1. Case of two particles. The N = 2 case can be evaluated analytically. We express
the Hamiltonian in terms of the centre of mass position X = x1+x2

2
and the relative

coordinate xr = x1 − x2,

H = HCM +Hr = −1

4

d2

dX2
+X2 − d2

dx2r
+

1

4
x2r + g

1√
2πσ2

e−
1

2

x2r

σ2 , (12)

where HCM is the Hamiltonian of the centre of mass and Hr is the relative Hamiltonian
between the two particles which also includes the interaction term. The wave function of
the system using these coordinates can be expressed as:

ψ(X, xr) = φCM(X) · φr(xr) ∝ e−α
2Xe−

α2

4
x2r

(

1− ae−bx
2
r

)

. (13)

The variational energy is computed by means of

EN=2 =
1

4B2

[

√

2π

α2

1

α2
− 2a

√

2π

α2 + 2b

1

α2 + 2b
+ a2

√

2π

α2 + 4b

1

α2 + 4b

]

+
α2

4
+

1

4α2
+

+
1

B2

[√
2πα2

4
−

(

1

2
aα4 + 2abα2

)
√
2π

(α2 + 2b)3/2
+

(

1

4
α4a2 + 4a2b2 + 2a2bα2

)
√
2π

(α2 + 4b)3/2

]

+

+
1

B2

g√
2πσ2

[

√

2πσ2

α2σ2 + 1
− 2a

√

2πσ2

α2σ2 + 2bσ2 + 1
+ a2

√

2πσ2

α2σ2 + 4bσ2 + 1

]

, (14)
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where B2 is a normalization constant whose value is

B2 =

√

2π

α2
− 2a

√

2π

α2 + 2b
+ a2

√

2π

α2 + 4b
. (15)

This analytical expression can be minimized numerically in order to obtain the value of
the ground state energy. We have used it to test the results of the energies obtained later
with VMC and DMC for N = 2.

3. Variational Monte Carlo

The Variational Monte Carlo Method evaluates the average value of the Hamiltonian, (3),
with the proposed wave function. The upper bound is found performing the following
average,

Eupper
GS =

1

Niter

Niter
∑

i=1

Ei
L, (16)

where EL is the local energy of the system

EL =
1

ψT
HψT =

N
∑

i=1

(

− 1

ψT

1

2

d2ψT
dx2i

+
1

2
x2i

)

+
∑

i<j

g
1√
2πσ2

e−
1

2

x2ij

σ2 , (17)

where ψT is a trial wave function which characterises the system. In our case it corresponds
to the correlated wave function (11). EL has to be computed a large enough number
of times Niter because (16) is exact in the limit Niter → ∞. The local energy has to
be computed for different positions of the particles, these positions should describe the
correlated wave function. To achieve this, we use the Metropolis algorithm which provides
sets of positions for the particles describing the probability density distribution of the
system.

We consider that initially all the particles are distributed at random inside a given
volume. Then, we start a series of random movements following the Metropolis algorithm
which is implemented in the following way:
1.− Each particle is moved to a new trial position xnew = xold + SCAL · (ζ − 0.5)
where SCAL is an arbitrary distance. The new wave function is then computed,
ψT (x

new
1 , xnew2 , . . . , xnewN ).

2.− We compute,
|ψT (xnew

1
,xnew

2
,...,xnew

N
)|2

|ψT (xold
1
,xold

2
,...,xold

N
)|2 . If this value is smaller than a random number

between zero and one, the new positions are rejected and the particles remain in the old
positions. Otherwise, the new positions are accepted and the particles are moved to the
new positions.
3.− The local energy corresponding to the current positions of the particles is computed.

We repeat this iterative process adding the different local energies obtained with the
different sets of positions generated by means of the Metropolis algorithm. Then, the
upper bound of the ground state energy is computed by means of (16).

We have to choose properly the SCAL distance, a large value implies that the wave
functions in the old and in the new position could be quite different. So, the number of
accepted new positions will decrease which means that the particles will remain a larger
number of iterations in the same positions. If the SCAL distance is too small, the number
of accepted trial moves would be higher but it would require a large number of iterations
to avoid that the particles remain in an small region. A reasonable number of accepted
movements is normally accepted to be between 50-70% [10].

The Variational Monte Carlo provides an upper bound of the ground state energy
for a given set of values of the variational parameters α2, a and b. However, we can

5



Quantum Monte Carlo study of one-dimensional bosons

not know how far away this upper bound is from the actual ground state energy. To
determine the best upper bound, we have assembled the VMC calculations with a package
of FORTRAN subroutines called MINUIT [11]. This package finds the values of the
variational parameters for which the upper bound of the ground state energy is minimized.

3.1. Centre of mass correction

Similarly to what we have done to compute the variational energy (14) for N = 2,
the Hamiltonian for the N -particle system can be also decomposed in two pieces:
H = HCM + Hr and the same happens with the correlated wave function. Therefore,
the expectation value of the total Hamiltonian can be separated in two contributions:

〈ψ|H|ψ〉 = 〈φCM |HCM |φCM〉+ 〈φr|Hr|φr〉 (18)

with 〈φCM |HCM |φCM〉 = α2

4
+ 1

4α2 . Then we define a new upper bound for the ground
state energy as

Ẽupper
GS = Eupper

GS −
(

α2

4
+

1

4α2

)

+
1

2
, (19)

which is equivalent to assume that the centre of mass is in the ground state of the
system. Both expressions (16) and (19) are upper bounds of the ground state energy
but Ẽupper

GS < Eupper
GS so Ẽupper

GS is a smaller upper bound.

4. Diffusion Monte Carlo

In this section we go one step further and consider a method to compute the exact ground
state energy of the system. The Diffusion Monte Carlo method provides the value of the
ground state energy by solving the time dependent Schrödinger equation in imaginary
time

− δψ(~x, t)

δt
= [H(~x)− ET ]ψ(~x, t), (20)

whose formal solution is
ψ(~x, t) = e−[H−ET ]tψ(~x, t = 0), (21)

where ~x ≡ {x1, x2, . . . , xN} defines the positions of the N particles and ET is a trial
energy. The wave function of the system is represented by a set of walkers, each walker is
made of N particles. The time evolution of the wave function, which is done in small time
steps dt = t/nsteps, is represented by the time evolution of these walkers. We can express
the starting state ψ(~x, t = 0) in the base of the stationary states of the Hamiltonian

ψ(~x, t) =
∑

n=0

e−[En−ET ]tCnφn(~x), (22)

where Cn is the amplitude of the stationary state φn. So if, we let the system evolve for a
large time, t → ∞, only the ground state component will survive. This is the basic idea
behind DMC.

To efficiently implement DMC, one introduces an importance sampling wave function
which improves the variance of the ground state energy as well as reducing the
computational time. We define f(~x, t) = ψT (~x)ψ(~x, t), where ψT (~x) is a time independent
trial wave function which in our case is the correlated wave function (11).

The Diffusion Monte Carlo method is an iterative algorithm repeatedNtimes consisting
in the next steps:
1.− For a given value of dt, the N walkers are initialized to describe f(~x, t = 0). This is
done using a previous VMC calculation. The trial energy ET is computed as the mean
value of the local energy (17) of each walker.

6
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2.− Each walker is moved to a new position representing a time step dt.

~xnew = ~xold +
1

2
dtF (~xold) + ξ, (23)

where ξ is a random number sampled from a multivariate gaussian distribution with null
mean and σ = dt. F (~x) is a drift term whose function is to displace the walkers towards
the region where the trial wave function ψT is larger [10].
3.− At time step j, the number of walkers is modified by means of the replication factor

nj = edt(E
old

j /2+Enew

j /2−ET ), (24)

where Eold
j and Enew

j are the local energies of each walker in the previous and in the
current positions. We create nj copies of each walker obtaining a new set of walkers for
the next iteration. The energy of this iteration, ENfinal , is computed as the mean value of
the local energies of this new set of walkers.

We repeat this process Ntimes to represent the time evolution of the wave function in
a time t→ ∞. We add the different ENfinal obtained to compute the ground state energy
for this time step dt as Edt

GS = (
∑Ntimes

i=1 ENfinal)/Ntimes. With this algorithm, we obtain
the value of the ground state energy for a given dt. To obtain the ground state energy we
have to compute Edt

GS for different values of dt and compute the least-square extrapolation
of Edt

GS to dt→ 0 [10], this can be seen in figure 2.
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Figure 2: Values of Edt
GS obtained for different dt, the black line is the least-square

extrapolation of Edt
GS to dt → 0. (a) N = 2 with g = 3 and σ2 = 0.5. (b) N = 2

with g = 10 and σ2 = 0.125. The extrapolated values Edt→0
GS are given in table 2.

5. Results: Interplay between interactions and correlations

5.1. Evolution of the ground state energy

Some features of the transition from the non-interacting to the strongly interacting limit
can be illustrated even with N = 2. In figure 3 we depict the evolution of the different
terms of the Hamiltonian as a function of the interaction strength g. The numbers are
obtained with a fairly small range, σ2 = 0.001.

First we observe that the total energy increases from ET ≃ 1 for g = 0, as expected
for two bosons in a 1D harmonic potential, to a value slightly above 2 for g ≃ 20. The
total energy is seen to saturate as g is increased. The kinetic and potential energies
follow a similar trend: they increase with g for small g but then saturate as g is further
increased. The interaction energy follows a very different fate. For small values of g it

7
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increases, as predicted also by the simple mean field approach. At a certain value of g ≃ 3
the interaction energy reaches its maximum value and then decreases as g is increased.
This is due to the development of correlations among the particles which reduce the
interaction energy. Moreover, for g = 20 the value of the interaction energy is nearly zero
as it is expected in the strongly interacting regime (with zero range) in which we have a
Tonks-Girardeau gas.
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Figure 3: Values of the total energy (Etot), the kinetic energy (Ekin), the parabolic
trapping potential (Vtrap) and the interaction energy (Vint) for a system of N = 2 as
a function of the repulsive strength g and σ2 = 0.001.

The results obtained with the correlated VMC are in general of similar quality to those
obtained with DMC. This basically means that our correlated variational wave function
captures well the exact solution. In table 2 we report some results obtained with DMC
compared to VMC also for N = 2 bosons and different values of the interaction strength.
In all cases, the DMC results are slightly smaller than the VMC ones, as expected.

Table 2: Values of the energies for a system of N = 2 obtained using VMC (EVMC), DMC
(EDMC) and minimizing numerically (14) (Evariational) for different values of g and σ2.

N g σ2 Evariational EDMC EVMC

2 10 0.125 2.212031 2.2071 2.2122
2 3 0.500 1.823598 1.8220 1.8237
2 2 0.125 1.581950 1.5791 1.5821

The density distribution of the system changes substantially as g is varied. In figure 4
we compare the one-body density distributions obtained using a mean field approximation,
panel (a), with the ones resulting from the correlated wave function of (11), panel (b). As
expected, for small values of g both approximations agree. As we increase g the mean field
does not predict a qualitative change in the density while the correlated wave function
starts to develop a two peak structure.

5.2. Study of the strong interacting regime

In the limit case g → ∞ and σ2 → 0 the bosonic gas in 1D becomes the so-called
Tonks-Girardeau gas [6]. In this limit, the Fermi-Bose mapping allows one to obtain the
analytical wave function of the system [6, 9]. The wave function of the ground state of
a system made of N interacting bosons can be written as the absolute value of the wave
function of a system of N non-interacting fermions in the same trap:

ψg=∞

bosons(x1, x2, . . . , xN) = |ψg=0
fermions(x1, x2, . . . , xN)| . (25)

8
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Figure 4: One-body density distributions for N = 2 and different g’s and a constant value
of σ2 = 0.125. (a) mean field approximation, (b) correlated wave function (11).

The density of the system can then be readily written as,

ρ(x) =
N−1
∑

n=0

∣

∣

∣

∣

∣

(

1

π

)1/4
Hn(x)√
2nn!

e−x
2/2

∣

∣

∣

∣

∣

2

, (26)

where Hn are the Hermite polynomials. The corresponding ground state energy is
E =

∑N−1
n=0 (2n+ 1)/2.

In order to study our system of N bosons in the limit g → ∞ and σ2 → 0, we have
used the correlated wave function (11) and large enough values of g and small enough
values of σ2. As it is shown in the table 3, for the case of N = 2 the interaction energy is
nearly zero and the ground state energy is nearly equal to the fermionized value E = 2.

For the case of N = 5 the interaction energy has not a value near to zero but is quite
smaller than the kinetic energy and the parabolic trapping potential. The total energy is
12.75 while the expected one is 12.5. So, we can say that in both cases the systems are
in the very strong interacting regime.

Table 3: Values of the total energy for a system of N bosons (E), the kinetic energy
(Ekin), the parabolic trapping potential (Vtrap) and the interaction energy (Vint), for given
values of g and σ2.

N g σ2 E Ekin Vtrap Vint
2 20 0.001 2.076 0.0982 1.0031 0.082
5 15 0.0001 12.75 4.791 6.772 1.12

Moreover, figure 5 shows the one-body density distributions obtained with the values
of N , g and σ2 of table 3. As it can be seen, the one-body density distribution of a system
of N bosons can be approximately mapped with the one-body density distribution of a
system of non-interacting fermions with the same number of particles (26).

6. Summary and Conclusions

We have studied the energy and the one-body density distribution of a one-dimensional
system of N bosons trapped by an harmonic oscillator potential in which the bosons
interact through a repulsive interaction of gaussian type, characterised by its strength g
and its range σ2. For weak interactions, g ≪ 1, the system is well described by a mean

9
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Figure 5: One-body density distribution for a system of N = 2 bosons, g = 20 and
σ2 = 0.001 in panel (a) and for N = 5, g = 15 and σ2 = 0.0001 in panel (b). In both
panels the dashed line represents the density distribution calculated with the correlated
wave function (11) and the solid line corresponds to the distribution calculated with (26).

field wave function. We have solved the Hartree-Bose equations to determine the best
mean field wave function. As the strength of the interaction increases, the system builds
up pair correlations to decrease the interaction energy. As, by definition, the mean field
can not incorporate these correlations we have proposed a correlated wave function which
reduces to the mean field one for certain values of the parameters defining the variational
wave function. The VMC method has been used to calculate the variational energy. The
case of N = 2 can be calculated analytically and has been used as a benchmark for the
VMC method. To test the quality of the proposed wave function we have compared the
outcomes with DMC results.

Finally, using the same correlated wave function we have satisfactorily explored the
case in which the strength of the interaction goes to g → ∞ and σ2 → 0 which is equivalent
to the Tonks-Girardeau gas.

We can conclude, that the proposed variational wave function provides a global ac-
curate description of the energy and structure of the ground state in the full range of the
interactions.
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