

Title: Learning tasks with bimanual robots using motion
symmetries

Author: Enric Cosp Arqué

Advisor: Adrià Colomé and Carme Torras

Department: Institut de Robòtica i Informàtica Industrial

Academic year: 2016/17

Degree in Mathematics

Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estad́ıstica

Degree in Mathematics

Bachelor’s Degree Thesis

Learning tasks with bimanual robots
using motion symmetries

Enric Cosp Arqué

Supervised by Adrià Colomé and Carme Torras

June, 2017

Firstly, I wish to express my sincere thanks to my tutors, Adrià Colomé and Carme Torras. I am
extremely thankful and indebted to them for sharing expertise, and sincere and valuable guidance and
encouragement extended to me.

I take this opportunity to express gratitude to my parents and brother for the incessant encouragement,
support and attention. I am also grateful to my partner who supported me throughout this venture.

Finally, place on record, my sense of gratitude to one and all, who directly or indirectly, have lent their
hand.

Abstract

The main aim of this work is to present a motion learning framework in order to make a Whole Arm
Manipulator (WAM) robot learn a task. In addition, we will improve the motion learning algorithm by
reducing the dimensionality of the problem in both general one arm cases, and two arm motions which
include symmetries. In the last case, we will use the symmetry feature in order to upgrade the learning
process.

Keywords

Motion learning, Robotics, Symmetries, Bimanual Robots.

1

Contents

1 Introduction 7
1.1 Motivations and project picture . 7

1.2 Global context . 9

1.2.1 Artificial Intelligence and Machine Learning 9

1.2.2 Robotics . 11

2 Reinforcement learning 13
2.1 Introduction . 13

2.2 Method . 13

2.2.1 Markov Decision Problems . 13

2.2.2 Policy Search . 14

3 Required multi-disciplinary knowledge 19
3.1 Robot geometrical structure . 19

3.2 Dynamic Movement Primitives . 20

3.2.1 What are DMPs? . 20

3.2.2 Building DMPs . 20

3.3 Principal Component Analysis . 25

3.3.1 Goal and intuitive view . 25

3.3.2 Method . 26

3.4 Moore-Penrose Pseudo-inverse . 29

4 Implementation 30
4.1 Process and code . 30

5 DOF reduction 37
5.1 General case . 38

5.2 Symmetric tasks . 41

5.2.1 Method . 41

6 Conclusions 46

6

1 Introduction

1.1 Motivations and project picture

Which tasks, problems, concepts and challenges does a researcher face day
by day? This question has been boiling in the bowels since the beginning
of the last year and the time to take it off the pot has arrived. From the
curiosity of the applications of Machine Learning and the chance to collab-
orate with the Institut de Robòtica i Informàtica Industrial, CSIC-UPC,
has flourished the idea to solve the latent question in an ideal environment.

In greedy fields as they are, nowadays, robotics and machine learning, it
was not difficult to find a goal that both satisfied my inquietudes and was
useful to the community. The main aim of this work is to present part of
the process developed in order to make a Whole Arm Manipulator (WAM)
robot learn a task. The subject that we are focusing in is the robot mo-
tion learning. Moreover, we want to implement this model in order to
make the robot learn movements which involve symmetries, and use this
feature to optimize the process. This task jumbles a variety of scientific
areas, including kinematics, dynamics, probability, statistics and more.

7

This multi-disciplinary feature is also appealing as, lately, more problems
are being approached in this way, and the trend seems to continue this way.

In order to carry out the motion learning process, we will characterize
trajectories with Dynamic Movement Primitives (DMPs) and afterwards,
we will use the latest advances in Reinforcement Learning, more specif-
ically Policy Search, for the learning itself. To reduce the time required
to implement this process, we will use a well known algorithm: Princi-
pal Component Analysis. Moreover, when applying this framework to bi-
manual tasks which include symmetries between arms, we will propose a
method to use these symmetries to refine the algorithm.

In the introduction, we are going to contextualize this work regarding
which fields it is placed in. Moreover, we will give light over how this work
is placed in a more general and ambitious work inside Artificial Intelli-
gence and Robotics. In the second chapter, we will describe Reinforcement
Learning (RL) in terms of which problems it tries to solve. In addition,
we will explain the general approach of RL algorithms. Chapter three will
go over several algorithms and concepts that we will need in our motion
learning process and upgrading.

The learning model and its implementation will be described in Chapter
four. Different methods will be compared at some stages of the learning
process. Being the goal of this work the understanding of a motion learning
framework, approach and algorithm, rather that the application itself, we
will devote to simple tasks.

Chapter five will be devoted to the improvement of the motion learning
model, in terms of time and resources needed to achieve our goal. We will
approach this challenge by reducing the dimensionality of our problem.
Dimensionality reduction is gaining interest within robotics, as for many
problems, some stages of the learning process require human interaction.
The amount of required human presence is proportional to the number of
dimensions. Thus, reducing the dimensionality implies needing less human

8

interaction, which leads to a great improvement concerning the amount of
time and resources needed for the robot to learn its tasks.

1.2 Global context

In this section we are going to travel through the recent years’ tendencies
and define the main field where this project is placed in. In particular,
we will briefly discuss machine learning, artificial intelligence and robotics.
The goal of this explanation is to make clear what kind of problems are
solved in each of this subjects and how they are present in today’s world.

1.2.1 Artificial Intelligence and Machine Learning

Artificial Intelligence

Artificial intelligence (AI) [5] is defined in computer science as the study
of intelligent agents : any device that perceives its environment and takes
actions that maximize its chance of success at some goal. As machines
become increasingly capable, mental abilities once thought to require in-
telligence are removed from the definition. For example, optical character
recognition is no longer perceived as an example of artificial intelligence,
due to the fact that it has become a routine technology. Typical illustration
of AI capabilities are understanding human speech, competing at a high
level in strategic game systems (such as chess), self-driving cars, military
simulations, and interpreting complex data.

AI research is divided into subfields that focus on specific problems and
approaches. The central goals of AI research include reasoning, knowledge,
planning, learning, natural language processing, perception and the ability
to move and manipulate objects. Approaches include statistical meth-
ods, computational intelligence, and traditional symbolic AI, using tools
such as versions of mathematical optimization, logic and methods based
on probability. The AI field draws upon computer science, mathematics,
psychology, linguistics, philosophy, neuroscience and so on.

9

Machine Learning

Pattern recognition and computational learning theory evolution gave birth
to the study of algorithms that can learn from data. In contrast to static
program instructions, those new algorithms are to build a model from
sample inputs. Machine learning is a subfield of AI employed in a range
of computing tasks where designing and programming explicit algorithms
with good performance is difficult or infeasible; example applications in-
clude detection of network intruders , optical character recognition and
computer vision.

Machine learning is closely related to computational statistics and math-
ematical optimization, as it also focuses on prediction-making and often
uses optimization theory and methods. Machine learning is sometimes
both confused and combined with data mining, where the latter subfield is
more focused on exploratory data analysis and performed as unsupervised
learning, although machine learning can also be unsupervised.

Machine learning tasks are typically classified into three broad categories,
depending on the nature of the learning ”signal” or ”feedback” available
to a learning system. These are:

• Supervised learning: the computer is presented with example inputs
and their desired outputs, given by a programmer, and the goal is to
learn a general rule that maps inputs to outputs.

• Unsupervised learning: no labels are given to the learning algorithm,
leaving it on its own to find structured insights in its input.

• Reinforcement learning: a computer program interacts with a dynamic
environment in which it must perform a certain goal. The program
is provided feedback in terms of rewards and punishments as it navi-
gates the problem itself. This project is inside this branch of machine
learning. We will deep dive on it in later chapters.

10

1.2.2 Robotics

Robotics [10] is the study of machines that can replace human beings in the
execution of a task, regarding both physical activity and decision making.
That includes mechanical engineering, electrical engineering, computer sci-
ence, and others. Robotics deals with the design, construction, operation,
and use of robots, as well as computer systems for their control, sensory
feedback, and information processing.

Being robotics one of the most important applications of Machine Learn-
ing, and being also such an ornate taste of the advance of human knowledge
and technology, there is always an eye on it. However, not everything said
about it is true. This realm is still crawling in his early days. Although
the progress is significant, we are a far cry from achieving anything close
to true Artificial Intelligence at a human level in many terms. On the
one hand, there are some problems which computers can solve far more
effectively and efficiently than people. On the other hand, there is a great
amount of abilities that machines struggle to learn.

Robotics is a wide subject. In order to give context of where in the whole
robot creation process is this work, we will take a quick glance at IRI’s
activity. At IRI there are four lines of research:

• Automatic control

• Kinematics and robot design

• Mobile robotics and intelligent systems

• Perception and manipulation

The automatic control line develops basic and applied research in auto-
matic control, with special emphasis on modeling, control and supervision
of nonlinear, complex and/or large-scale systems.

The kinematics and robot design group carries out fundamental research
on design, construction, and motion analysis of complex mechanisms and

11

structures, such as parallel manipulators, multi-fingered hands or cooper-
ating robots.

The mobile robotics team’s goal is to gift mobile robots the necessary skills
to aid humans in everyday life activities. These skills range from pure per-
ceptual activities such as tracking, recognition or situation awareness, to
motion skills, such as localization, mapping, autonomous navigation, path
planning or exploration.

The research of perception and manipulation group focuses on enhanc-
ing the perception, learning, and planning capabilities of robots to achieve
higher degrees of autonomy and user-friendliness during everyday manip-
ulation tasks. This work has been developed in this department with the
priceless help of Adrià Colomé.

Although creating a robot involves several assignments, we will be focusing
in the motion learning process, meaning that we will not go into informa-
tion gathering problems nor building or other tasks.

12

2 Reinforcement learning

2.1 Introduction

This work is placed in Reinforcement Learning [5], a branch of Machine
Learning inspired by behaviorist psychology, concerned with how software
agents ought to take actions in an environment so as to maximize (or min-
imize) some notion of cumulative reward (or cost). Reinforcement Learn-
ing has applications in many areas and businesses, such as Industrial con-
trol, Production control, Automotive control, Autonomous vehicles control,
Logistics, Telecommunication networks, Sensor networks, Ambient intelli-
gence, Robotics, Finance; and plays an important role in both renovating
lifelong industries and opening the door to the upcoming ones.

Due to the fact that many Reinforcement learning algorithms use dy-
namic programming techniques, the environment is usually formulated as
a Markov Decision Process (MDP). The main difference between the clas-
sical techniques and Reinforcement Learning algorithms is that the latter
do not need knowledge about the MDP and they target large MDP’s where
exact methods become infeasible.

2.2 Method

2.2.1 Markov Decision Problems

Markov Decision Processes[5] provide a mathematical framework for mod-
eling decision making in situations where outcomes are partly random and
partly under the control of a decision maker. More precisely, a Markov
Decision Process is a discrete time stochastic control process.

The basic reinforcement learning model consists of a Markov Decision Pro-
cess (MDP):

• A set S of environment and agent states

• A set A of actions of the agent

• Policies: deciding the actions to take at every state

13

• Rules that determine the scalar immediate reward of a transition
(based on what we want to achieve)

• Rules that describe what the agent observes

A reinforcement learning works in discrete time steps. At each time t, the
reinforcement learning(RL) agent is at a state st , which typically includes
the reward Rt (the reward is a measure of goodness). It then chooses an
action at from the set of actions available, which is sent to the environ-
ment. Due to that action, the environment moves to a new state st+1 and
the reward Rt+1 associated with the transition (st, at, st+1) is determined.
The goal of a RL agent is to collect as much reward as possible (or as
little, depending on the reward definition). This reward is used by a policy
search algorithm in order to learn from the past experience.

When the agent’s performance is compared to that of an agent which acts
optimally from the beginning, the difference in performance gives rise to
the notion of regret. Note that in order to act near optimally, the agent
must reason about the long term consequences of its actions: in order to
maximize my future income I would better go to school now, although
the immediate monetary reward associated with this might be negative.
Thus, reinforcement learning is particularly well-suited to problems which
include a long-term versus short-term reward trade-off.

Note: The theory of Markov decision processes does not state that S or A
are finite, but basic algorithms assume that they are finite.

2.2.2 Policy Search

In this work, we will use stochastic Policy Search (PS) [1], denoted by
π(a|s). After setting an MDP, we build a reward/cost function, which
depends on the trajectory y = (s0, a0, s1, a1, . . .), being at the action that
alters the state st of the robot and its environment to state st+1, accord-
ing to the probabilistic transition function p(st+1|st, at). In robotics, si is

14

usually the position or speed in the i-th timestep, and ai the acceleration
assignment at timestep i. This y is often called path or rollout. This re-
ward/cost function is a measure of goodness of a trajectory.

In order to perform our RL algorithm, we initialize the parameters µ and
Σ that define the initial policy: π(a|s) ∼ N(µ,Σ). We use this policy to
create Nk (fixed number, usually greater than d·Nf) trajectories, which are
perturbations of an initial demonstrated trajectory. Policy Search aims to
update the policy taking into account the reward/cost function, i.e. finding
good parameters for a given policy parametrization. PS is well suited for
robotics as it can cope with high-dimensional state and action spaces, one
of the main challenges in robot learning.

Model-free policy search is a general approach to learn policies based on
sampled trajectories. We classify model-free methods based on their policy
evaluation strategy, policy update strategy, and exploration strategy and
present a unified view on existing algorithms. Learning a policy is often
easier than learning an accurate forward model, and, hence, model-free
methods are more frequently used in practice. However, for each sampled
trajectory, it is necessary to interact with the robot, which can be time con-
suming and challenging in practice. Model-based policy search addresses
this problem by first learning a simulator of the robots dynamics from data.
Subsequently, the simulator generates trajectories that are used for policy
learning.

We have used two different policy searches:

15

1. Weighted Maximum Likelihood Policy Search (WMLPS)

2. Relative Entropy Policy Search (REPS)

These methods use the information given by the MDP in order to find a
policy that generates better trajectories according to the reward function.
Essentially, they weight the trajectories, giving more importance to the
ones with better reward.

Weighted Maximum Likelihood Policy Search

Let wk, Rk, ∀k ∈ |Nk| be the samples obtained with the old parame-
ters and the rewards of the trajectories. WLPS uses the following update
of the normal distribution parameters:

µnew =

∑Nk

k=1wke
Rk∑Nk

k=1 e
Rk

(1)

Σnew =

∑Nk

k=1(wk − µnew)(wk − µnew)TeRk∑Nk

k=1 e
Rk

(2)

In WLPS, the policy parameters are updated by iteratively maximizing the
weighted log-likelihood for the obtained sample sequence. WMLE-based
policy search methods use the reward Rk to compute a weight lk for each
sample, such that

∑N
k=1 lk = 1 and, subsequently, the mean and covariance

matrix of the upper-level policy π(θ) is updated by a weighted MLE. In
this case, the weights are computed as an exponential transformation of
the rewards lk = eRk. The rewards are always negative and the closer the
rewards are to zero, the better the trajectories are (if it is a cost function,
it is always positive, the closer to zero, the better the trajectories are).

16

Relative Entropy Policy Search

This is also a Weighted Maximum Likelihood based policy search. In gen-
eral, this policies are updated like in the previous method, with the weights
computed as lk ∝ eRk/η, being η the so called temperature parameter. In
the particular case of REPS, the policy update can be formulated as con-
strained optimization problem where we want to maximize the expected
return of the new policy under the Kullback-Leibler constraint [3]. This
problem consists in maximizing the expectation of the reward

π = argmaxEθ[R|θ] (3)

subject to: ∫
π(w)dw = 1 (4)

KL(π||q) ≤ ϵ ≈ 0.5 (5)

being π the new policy, q ∼ N(µold,Σold) the old one and KL the Kullback-

Leibler divergence: KL(π||q) =
∑

i π(i)ln
π(i)
q(i) in its discrete form. KL di-

vergence is a measure of how one probability distribution diverges from a
second expected probability distribution [6].

The main intuition behind this bound is that we can directly control the
exploration-exploitation trade-off with the parameter. On the one hand,
for a large ϵ (more greedy), the variance of the new upper level policy
will decrease quickly such that, it will give much higher importance to
high-reward samples, ignoring lower-performing ones.
always choose the sample with highest reward. On the other hand, for a
small ϵ (less greedy), the new search policy and the old search policy would
be almost identical.

This optimization is solved for our samples, due to the fact that it cannot
be solved analytically, as the reward of the trajectory generated byW , RW

17

is unknown. As a result, we get a transformation lk ∝ eRk/η, where the
parameter η is found by minimizing the dual function of the optimization
problem

g(η) = ηϵ+ η log(
N∑
k=1

1

N
eRk/η) (6)

with η > 0. This dual function comes from solving the optimization prob-
lem by means of Lagrange multipliers.

18

3 Required multi-disciplinary knowledge

3.1 Robot geometrical structure

The key feature of a robot is its geometrical structure [10] bodies(links)
interconnected by articulations (joints). A manipulator is composed by an
arm that gifts mobility, a wrist that confers dexterity, and an end-effector
that performs the task required of the robot.

Another fundamental feature of a manipulator is the kinematic chain.
From a geometrical viewpoint, a kinematic chain is termed open when
there is only one sequence of links connecting the two ends of the chain.
Alternatively, a manipulator contains a closed kinematic chain when a se-
quence of links forms a loop. We work with WAM robots, inspired in
human arms. These have an open chain, born in the base and culminate
in the end-effector, which would simulate a hand in a human arm.

Mobility is ensured by joints. These are classified in prismatic and rev-
olute joints. In an open kinematic chain, each prismatic or revolute joint
provides the structure with a single degree of freedom (DOF). A prismatic
joint creates relative translation between the two links, whereas a revolute
joint creates a relative rotation between the two links.

The degrees of freedom should be properly distributed in the mechani-
cal structure, in order to execute the given task. For the most general
task, consisting of positioning and orienting and object in a 3D-space, 6
DOFs are required: 3 for positioning the object and 3 for orienting it. A
manipulator is said to be redundant from a kinematic point of view in the
number of DOFs available exceeds the number of task variables. On the
case of the WAM, there are 7 DOFs: 3 in the first link (shoulder), 1 on the
second(elbow) and 3 on the third (wrist), with human-like kinematics.

19

3.2 Dynamic Movement Primitives

3.2.1 What are DMPs?

Dynamic movement primitives (DMPs) are a method of trajectory control
and planning. The first aim of this work was to find a way to represent
complex motor actions that can be flexibly adjusted without manual pa-
rameter tuning or having to worry about instability. They where first
presented by Auke Ijspeert in 2002 and then updated in 2013 [4].

Complex movements have long been thought to be composed of sets of
primitive action. DMPs are a proposed mathematical formalization of
these primitives. In robotics, among all Movement Primitives (MPs), they
are the most used ones. The basic idea is that given dynamical system with
well specified, stable behaviour, one may add another term that makes it
follow some interesting trajectory as it goes about its business. There are
two kinds of DMPs: discrete and rhythmic. We will only discuss discrete
DMPs, as they are the ones that we will use.

We may have two systems: an imaginary system where we plan trajec-
tories, and a real system where we carry them out. When we use a DMP
what we are doing is planning a trajectory that will be followed by the real
system. A DMP has its own set of dynamics, and by setting up your DMP
properly we can get the control signal for our actual system to follow. We
are not going to talk about the real system, but it is important to keep
the perspective that the DMP framework is for generating a trajectory to
guide the real system.

3.2.2 Building DMPs

In this section we will be using some of the work developed by Ijspeert [9].

Let y be our system state, g the goal, τ a time constant, and α and β
gain terms. The following system describes our trajectory y:

ÿ/τ = αy(βy(g − y)− ẏ/τ) (7)

20

This is system of second order differential equations. It is well known how
to solve this kind of equations both analytically and numerically. There-
fore, it is a suitable way to represent our trajectories. We usually choose
βz = αz/4 in order to make the system critically damped, so that y mono-
tonically converges towards g. Now, we add a forcing term f to modify
this trajectory:

ÿ/τ = αy(βy(g − y)− ẏ/τ) + f (8)

In order to build the nonlinear function f to get the desired behaviour, we
will use an additional nonlinear system, called canonical dynamical system:

ẋ = −αxx (9)

The use of this system allows us to define f over time, giving the prob-
lem giving the problem a well defined structure that can be solved in a
straight-forward way and easily generalizes.

In order to construct the forcing function, we need to define some more
parameters. Let y0 be the initial position of the system. Let

ϕi = exp
(
−0.5 (x− ci)

2 /di

)
,∀i ∈ [Nf] = {1, . . . Nf} (10)

be a set of Gaussians with center at ci and width di. Nf is the chosen
number of Gaussians per degree of freedom. Let wi be a set of weightings
for the given basis functions ϕi, ∀i ∈ Nf . Now, the forcing function is:

fnew(x, g) =

∑Nf

i=1 ϕiwi∑Nf

i=1 ϕi
x(g − y0) (11)

a set of Gaussians that are activated as the canonical system x converges to
its target. Their weighted summation is normalized, and then multiplied
by the x(g−y0) term, which acts as both a diminishing and spatial scaling
term.

In order to compute fnew, we have used ψT
t = Id ⊗ h(xt)

T , being hi(x) =
ϕi∑Nf
j=1 ϕj

x,∀i ∈ [Nf], and ⊗ the Kronecker product. Then,

fnew = ΨT
t w. (12)

21

If we assumed that the canonical system starts at x0 = 1 and decays to 0
(exponentially, due to the definition of x) as time goes to ∞. On the one
hand, the basis functions ψi are activated as a function of x. As the value
of x decreases from 1 to 0, each of the Gaussians are centered around dif-
ferent x values. On the other hand, these basis functions are also assigned
a weight, wi.

Incorporating the x term into the forcing function guarantees that the
contribution of the forcing term goes to zero over time, as the canonical
system does. This means that the system will eventually return to its sim-
pler point attractor dynamics and converge to the target.

22

The (g − y0) term of the forcing function handles the spacial scaling. It
does so by activating the basis functions ψi to be relative to the distance to
the goal, causing the system to cover more or less distance. DMPs are key
to our work, as they will be used in order to characterize the trajectories
of the end-effectors of our WAMs (robot arms) by means of second order
dynamical-systems.

Finally, to build the trajectories using the fitting of fnew, we solve the
ode (8), using the new forcing excitation function:

ÿnew/τ = αy(βy(g − ynew)− ẏnew/τ) + fnew (13)

When computing this step numerically, we set ynew1 = y1, ẏ
new
1 = y1 and

ÿnew1 = ÿ1 and we get along ∀i ∈ [Nt]:

ÿnewi /τ = αy(βy(g − ynewi−1)− ẏnewi−1 /τ) + fnewi−1 (14)

23

ẏnewi = ẏnewi−1 + dtÿnewi (15)

ynewi = ynewi−1 + dtẏnewi (16)

being dt the timestep.

24

3.3 Principal Component Analysis

3.3.1 Goal and intuitive view

Principal Component Analysis (PCA) is a statistical procedure used to re-
duce the dimension of a matrix, loosing as little information as possible. It
consists of an orthogonal transformation that converts a set of observations
of possibly correlated variables into a set of values of linearly uncorrelated
variables called principal components. Let d be the initial number of vari-
ables (or observations) and r the number of principal components. Then
r ≤ d, i.e. the number of principal components is less than or equal to the
smaller of the number of original variables (or the number of observations).
This transformation is defined in such a way that the first principal compo-
nent has the largest possible variance (that is, accounts for as much of the
variability in the data as possible), and each succeeding component in turn
has the highest variance possible under the constraint that it is orthogonal
to the preceding components. The resulting vectors are an uncorrelated
orthogonal basis set. PCA is sensitive to the relative scaling of the original
variables.

Although PCA is mostly used as a tool in exploratory data analysis and
for making predictive models, we will use it with a different objective. Our
goal will be to reduce the dimensionality of our learning process in order
to diminish the number of reproductions of the motion (rollouts) needed
for a sufficiently good performance.

PCA can be done by eigenvalue decomposition of a data covariance (or
correlation) matrix or singular value decomposition of a data matrix, usu-
ally after mean centering the data matrix for each attribute. The results of
a PCA are usually discussed in terms of component scores (the transformed
variable values corresponding to a particular data point), and loadings (the
weight by which each standardized original variable should be multiplied
to get the component score).

This algorithm allows us to visualize the insides of the data in a way

25

that best explains the variance in the data. We think of this in the follow-
ing way. If a multivariate dataset is visualized as a set of coordinates in a
high-dimensional space, PCA can supply the user with a lower-dimensional
picture, that is to say, a projection of this object when viewed from its most
informative viewpoint. This is done by using only the first few principal
components so that the dimensionality of the transformed data is reduced.

3.3.2 Method

Let X be a n × p matrix. We think about this matrix in the following
way: each row is an individual and each column is an active variable. This
means that we place n individuals in a vectorial space of dimension p (we
will suppose Rp. Let G be the center of gravity of the p points. Let m be
the mass of that individual and di the distance between the point i and
G. Then, we define the inertia of the cloud of points (individuals) with
respect to G as:

I =
n∑

i=1

md2. (17)

If every point has the same mass, we can see the inertia as the variance
1
n

∑n
i=1 d

2, and the center of gravity G as the mean.

We want to project the cloud of points over a subspace. Our goal is to
find the subspace over which the projection has maximum inertia. In other
words, we want to minimize the loss of inertia in the projection. We can
visualize it, for example, thinking about the shadow of a pencil. The pencil
is a cloud of points in R3 and its shadow is its projection in R2. If the light
is coming from the tip, the shadow will be very small. This means that we
loose a lot of information regarding the shape of the pencil. Nevertheless,
if the light comes from the side, the silhouette will give us much more clue
of the shape of the pencil.

To build this subspace, we first find a vector u with ∥u∥= 1 = u · u′ such
that when we project the cloud over the straight line defined by G+ {u},

26

the inertia is maximum. Now, we project using the scalar product:

Ψ =

ψ1
...
ψn

 = X · u (18)

ψi are the principal components. They are artificial variables.
The inertia of the projection is 1

nΨΨ
∑n

i=1 ψ
2
i = Ψ′NΨ, being N a matrix

of weights wi, which verify
∑n

i=1wi = 1.

N =

 w1
. . .

wn

 (19)

These weights are usually wi =
1
n ,∀i ∈ [n]. In this case, the inertia is 1

nΨΨ′

In terms of X, the inertia associated to the projection using the vector
u is:

Iu = u′X ′NXu. (20)

Now we want to maximize this expression. To do so, we calculate the
Lagrangian L = u′X ′NXu − λ(u′u − 1) and solve the equation δL

δu =
2X ′NXu− 2λu = 0 −→ X ′NXu = λu.

We want u = u1 to be an eigenvector of X ′NX with associated eigenvalue
λ = λ1, being λ1 the highest eigenvalue of Ψ′NΨ. Taking u2 the eigen-
vector which is associated to the second greatest eigenvalue λ2. The plane
{u1, u2} is a projection plane where there is maximum inertia I = λ1 + λ2.

The total inertia is:

(21)

IT =
n∑

i=1

1

n
d2(xi, G)

=
1

n

n∑
i=1

p∑
j=1

(xij − x̄j)
2

27

=
1

n

p∑
j=1

n∑
i=1

(xij − x̄j)
2 =

p∑
j=1

s2j

being s2j is the j − th variance.

We know that the covariance matrix X ′NX is symmetrical. Thus, its
eigenvectors are orthogonal. Taking eigenvectors u1, . . . , up with associ-
ated eigenvalues λ1> . . . >λp as the orthogonal base of a the projection
subspace, we will have total inertia:

IT =

p∑
i=1

λi, (22)

as diag(X ′NX) = 1
n

∑p
i=1(xij − x̄j)

2 = s2j . The inertia associated to an
eigenvector is the eigenvalue associated to it.

In order to know which principal components are significant, we use the

ratio τj =
var(xj)

IT
=

s2j∑p
i=1 si

. There are several criteria to split significant and

non significant components, such as the Kaiser rule or the Last elbow rule.
To give a common measure to each variable, we normally normalize our
data before performing PCA, i.e. we apply the transformation xij =

xij−x̄j

sj
,

var(xj) = 1,∀j ∈ [p], IT = p, λ̄i = 1. With this normalization, X ′NX is
the correlation matrix.

28

3.4 Moore-Penrose Pseudo-inverse

Let A be a m× n matrix (m>n) and b a column vector of length m. The
method of least squares is a way of solving an overdetermined system of
linear equations Ax = b. The goal of the least squares method is to mini-
mize the sum of the squares of the errors. In general, for an overdetermined
mn system Ax = b, there are solutions x minimizing ∥Ax − b∥2. These
solutions are given by the square n× n system ATAx = AT b[8].

The minimum norm least squares solution x+ can be found in terms of
the pseudo-inverse A+ of A. Let

A = V DUT , (23)

where D = diag(λ1, ..., λr, 0, ..., 0) is an mxn matrix (λi>0,∀i). Let D+ =
diag(1/λ1, ..., 1/λr, 0, ..., 0) an nxm matrix. The pseudo-inverse of A is
defined as

A+ = UD+V. (24)

The following results is the main reason for us to use the Moore-Penrose
pseudo-inverse:

The least-squares solution of smallest norm of the linear system Ax = b,
where A is an m× n matrix, is given by

x+ = A+b = UD+V T b

29

4 Implementation

In this section we will explain how we have coded the learning framework.
Some of the concepts, approaches and algorithms explained in the previous
chapters are key items of the success of this motion learning model. We
will present a framework thought for the motion learning of one WAM.
The same procedure could be implemented in parallel for two WAM arms
in order to learn the motion of each arm. In the next chapter, we will
introduce some notions concerning the improvements of the two WAM
motion learning.

4.1 Process and code

In order to make it more understandable for the reader, we will accompany
the explanation with a naive 1-dimensional example.

Firstly, we put the robot in gravity compensation mode and kinestheti-
cally teach the desired trajectory.
we manually make the robot do the desired trajectory. The motion is saved
in a computer, so that we know at every time-step (0.06 seconds) the po-
sition, speed and acceleration of every join. Let Q be a matrix that stores
the time in the first column, the position of the d joints in the 2, . . . , d+ 1
columns, the speed of every joint in the d+ 2, . . . , 2d+ 1 and the acceler-
ations in the columns 2d+ 2 . . . 3d+ 1. Each row represents a time-step.

We may have noisy data. If that is the case, in order to smooth it, so
that we can work with it, we take a subsample of the initial trajectory. For
example, we might take one of every four time-steps. We must adjust the
subsampling so that we have enough information, but we can also work
with it in a proper way.

Another method to smooth the noise in our data is to filter the accel-
eration. Being K a constant and at the acceleration, we compute at =
atK + at−1(1 −K),∀t ∈ [Nt], where Nt is the number of timesteps. With

30

the trajectory matrix notation, this would be: Q(i, :) = Q(i, 2d + 2 :
3d + 1)K + Q(i − 1, 2d + 2 : 3d + 1)(1 − K). In order to simplify the
formulation, we will assume the following equalities:

yi = Q(i, 2, d+ 1) (25)

ẏi = Q(i, d+ 2, 2d+ 1) (26)

ÿi = Q(i, 2d+ 2, 3d+ 1) (27)

Once we can start working with the data, we choose gain terms αy, βy
(usually βy = αy/4, to make the ode critically damped) and the goal g
in order to start computing DMPs. Here is a reminder on how we build
DMPs, with a more numerical approach.
We compute the excitation function:

fi = ÿ/τ − αy(βy(g − y)− ẏ/τ) , ∀i ∈ [Nt]

31

and solve the canonical dynamical system:

xi = exp(−αxti) , ∀i ∈ [Nt]. (28)

being ti the time until the i− th timestep. Now, we choose the centers C
and widths D of the Gaussians, so that they are balanced:

c = [
τ

Nf + 1
, . . . ,

iτ

Nf + 1
, . . . ,

Nfτ

Nf + 1
] (29)

C = exp(
−αxc

τ
) (30)

D = (
diff(C)

0.55
)2, (31)

where diff(C) is a vector that stores Ci − Ci−1,∀i = 1 . . . Nf and the pa-
rameter 0.55 is found empirically.

Then, we calculate the set of Gaussians:

ϕi,j = exp(
(−xi − cj)

2

Dj
) , ∀i ∈ [Nt] , ∀j ∈ [Nf] (32)

32

and the function:

hi,j =
xiϕi,j∑Nf

j=1 ϕi,j
, ∀i ∈ [Nt] , ∀j ∈ [Nf]. (33)

Let A be the pseudo-inverse of h. To store the weights, we define w = Af .

W(j−1)Nf+i = wi,j , ∀i ∈ [Nf] , ∀j ∈ [d], (34)

which means

W =

 w1
...

wNf

 . (35)

Thus, the fitting of f is:

fnewi = ((Id ⊗ hi, :) W)T , ∀i ∈ [Nf] , ∀j ∈ [d] (36)

and the fitting of the trajectory, initializing withQnew(:, 1) = Q(:, 1), ynew1 =
y1, ẏ1

new = ẏ1, ÿ1
new = ÿ1 and updating ∀i = 2 . . . Nt:

• Position:

ÿi
new = τ(αz(βz(g − ynewi)− ẏi

new/τ) + fnewi−1,:)

• Speed:
ẏi

new = ẏi
new + dtÿi

new (37)

• Acceleration:
ynewi = ynewi + dtẏi

new (38)

33

For our naive example we will be working with the following trajectory:

After computing the DMPs, we compare Qnew and fnew with Q and f . We
have used αz = 12, βz =

αz

4 , Nf = 10 and αx = 2.5.

Once performed the DMPs, we start running a Policy Search algorithm.
To do so, we must specify a reward function, according to the aim. In our
example, we want the trajectory to be the closer the better to a point in
a certain time-step. Let pQ = 0.4 be the point and pt = 50 the time point
where we want pQ to be reached. In the example, the reward function is:

R = mean(−|y − pQ|−0.000015
∑

ÿ2), (39)

which takes into account how close the trajectory is to pQ at pt. It also
considers high accelerations to be high, as it may be dangerous.
We set λ = 50 to initialize our covariance matrix Σ = diag(λ). The mean
starts being µ = W . Let Nupd be the number of updates of µ and σ. Let

34

Nk be the number of samples created from each update of µ and σ.

For each update, we create Nk samples Wk, k = 1 . . . Nk. These are cre-
ated according to a (µ,Σ)−normal distribution, i.e. wk ∼ N(µ,Σ) and are
(Nfd)−weight vectors. Let W be a matrix that stores the k− th vector of
motion parameters in the k − th column. For each one of these samples,
we create a new excitation function

fnew(x) = ΨTwk (40)

being ΨT = Id ⊗ h(x) and W = [w1, . . . , wNk
]. Expressed in a more coded

way:

fnewi = ((Id ⊗ h(+i,:) W:,k)
T , ∀i ∈ 1 . . . Nf , ∀j ∈ 1 . . . d. (41)

and create a new trajectory Qnew, in the same way that we did the first
time. We evaluate the function reward, inputing Qnew and store this re-
ward, as well as the excitation function fnew.

Having evaluated the reward of the trajectories created with every sam-
ple, we update the parameters of the normal distribution: µ and Σ. To
do so, we have used both Weighted Maximum Likelihood Policy Search
(WMLPS) and Relative Entropy Policy Search (REPS). As explained in
previous chapters, REPS is usually used to palliate the greediness and in-
stability of Weighted Maximum Likelihood.

Once we have updated µnew and Σnew, we use fnew = µnew in order to
create a new trajectory Qnew. The policy update involves the reward func-
tion and the samples. This is where the algorithm is actually learning,
by giving more importance (weight) to the trajectories with less reward
(in absolute value). We also evaluate the reward function with this new
trajectory.

In the following figures, we can observe the evolution of the reward function
obtained with both methods, considering only the reward of the trajectory
created using µnew updated with the policy search method: As we can see,

35

REPS is performing better at every time-step. As mentioned earlier in
this section, it is a more stable method. Therefore, its curve is smoother
than the one provided by WMLPS. Focusing on the REPS curve, we can
see that it is not monotonous. Instead, it decreases as expected and then
grows a little bit. This might be due to numerical errors in the calculus.

This process leaves as an output, a trajectory that has learned from every
policy update, and every trajectory with its associated reward.

36

5 DOF reduction

We have presented a framework for motion learning. This model requires
several rollouts in order to find a proper policy update. Moreover, many
parameters are needed to achieve a good fitting of the initial trajectory.
When applying DMPs in learning models, we must bear in mind several
considerations:

• Reinforcement learning can be performed through simulation or with
a real robot. If we have a good simulator of the robot and its envi-
ronment, we will go through simulation. Nevertheless, when accurate
models are not available, we will have to use a real robot. In this case,
reducing the number of parameters and iterations (rollouts) is vital.

• Moreover, certain tasks might not depend on all the Degrees of Free-
dom (DoFs) of the robot. In this case, the algorithm may be exploring
motions that are meaningless to the task. Also some exploration val-
ues could generate strong oscillations, rapid accelerations and other
dangerous motions.

• In addition, complex robots usually require many parameters for a
proper trajectory representation. The number of parameters is strongly
dependent on the trajectory length. In a 7-DoF robot like the WAM
that we are using, we use over 20 Gaussian kernels per joint for a
20-second trajectory, meaning that we might have more than 140 pa-
rameters in total. The more parameters we use, the better the fitting
of the initial trajectory will be, generally speaking. However, this a
large number of parameters may result in a slower learning. In this
sense, there is a tradeoff between better exploitation (many parame-
ters) and efficient exploration (fewer parameters).

For these reasons, performing Dimensionality Reduction (DR) on the DMPs
DoF is an effective way of dealing with the setoff between exploration and
exploitation in order to help the algorithm converge faster to a likely better
solution.

37

5.1 General case

In this section, we will describe how to reduce the dimensionality of the
problem with a coordination framework for DMPs [3].

To achieve our goal, we will perform a different fitting of the excitation
function:

f(xi) = ΩΨT
i W , ∀i ∈ |Nt| (42)

being Ω a (d×r) matrix (r < d is the dimension that we want to reduce to),
ΨT

i = Ir ⊗ h(i, :) (Ir is the identity matrix of dimension r × r) and W the
matrix of samples of motion parameters, as in the previous chapter. This
representation is equivalent to having r movement primitives codifying the
d-dimensional vector fnew(x). Intuitively, the columns of Ω represent the
couplings between the robots DoF.

In order to learn the coordination matrix Ω, we need an initialization,
an updating method and an algorithm to eliminate needless DoFs from
the DMP, according to the reward. We can assume that the probability of
having certain excitation function values fi = f(xi) at a timestep, given
the sample of weights W , is p(fi|W) ∼ N(ΩΨT

i W,Σf), with Σf being the
system covariance (noise). Thus, if W ∼ N(µW ,ΣW), the probability of fi
is:

P (fi) = N(ΩΨt
iµW ,Σf + ΩΨT

i ΣWΨiΩ
T) (43)

the coordination matrix Ω can be initialized with a Principal Compo-

nent Analysis(PCA) [3]. Particularly, we will perform it over the values of
f = ΨTW , with Ψ calculated with the identity matrix of d× d dimensions
(this is the first fitting of the excitation function). To do so, we build the
(d×Nt) matrix:

38

F̄ =

 f
(1)
de (x0)− f̄

(1)
de . . . f

(1)
de (xNt

)− f̄
(1)
de

.

f
(d)
de (x0)− f̄

(d)
de . . . f

(d)
de (xNt

)− f̄
(d)
de

 (44)

being f̄de the joint average of the DMP excitation function, for the demon-

strated motion (fde). Note that F̄ is the matrix of all the Nt timesteps f
(j)
i

and d joins. Afterwards, we Perform Singular Value Decomposition (SVD)
of F̄ , so we have F̄ = UpcaΣpcaV

T
pca.

The next step in this method is to take the r eigenvectors with the high-
est singular values as the initialization of coordination matrix Ω. These
eigenvectors are the first r columns of Upca, thus Ω = [u1, . . . , ur] and their
associated singular values σ1 > . . . > σr, being Upca = [u1, . . . , ur, . . . ud]
and Σpca = diag(σ1, . . . , σr, . . . , σd). This way, we minimize the error in
the reprojection e = ∥F̄ − ΩΣ̄V T∥2Frob (with Σ̄ = diag(σ1, . . . , σr)), while
reducing the set of DoF of dimension r, which activate the robot joints
(dimension d).

Now, we are going to describe how to update the coordination matrix in
every rollout. We assume that we have performed Nk reproductions of the
motion, namely rollouts. Thus, we obtain the excitation function f

(j),k
i , for

every time-step i = 1 . . . Nt, rollout k = 1 . . . Nk and DoF j = 1 . . . d. Now,
we evaluate the trajectories attached to every excitation function with the
reward function. Then, we can associate a relative weight P k

i to each roll-
out and timestep, regarding the reward values. These weights are given
by the policy search algorithms that we are using (WMLPS and REPS).
Thus, we obtain a new matrix

F new
co =


∑Nk

k=1 f
(1),k
1 P k

1 . . .
∑Nk

k=1 f
(1),k
Nt

P k
Nt

.∑Nk

k=1 f
(d),k
1 P k

1 . . .
∑Nk

k=1 f
(d),k
Nt

P k
Nt

 (45)

This d×Nt matrix contains the excitation functions weighted by their im-
portance according to the rollout result. Then, the coordination matrix

39

can be updated by PCA. Nevertheless, we have to refit the parameters
µW ,ΣW to make the trajectory representation fit the same trajectory. Let
µ̂ and Σ̂ be the old distribution parameters.

We want to minimize the loss of information. To do so, we will mini-
mize the Kulbach-Leibler divergence between p̂ ∼ N(µ̂W , Σ̂W) and p ∼
N(MµW ,MΣWM

T), being M = (Ω̂Ψ̂T
i)

+ΩΨT
i (+ is the Moore-Penrose

pseudo-inverse operator).

Derivating KL(p̂||p) with respect to µW and ΣW and equating the deriva-
tive to zero, we obtain the following updates of the policy parameters:

µW =M+µ̂W (46)

ΣW =M+(Σ̂W + (MµW − µ̂W)(MµW − µ̂W)T)MT,+ (47)

Being this the parameter update that minimizes the KL divergence, it re-
sults in the update with the least loss of information, in terms of probability
distribution on the excitation function, i.e. we minimize the loss of inertia
of the excitation functions created with these parameters with respect to
the old parameters.

Currently, in reinforcement learning, not all the DoF affect the task the
the robot tries to learn. However, these DoF are still considered through
all the learning process, causing a slowdown in the learning process or re-
sult in motions in which a part of the trajectory may not be necessary.
Hence, the use of the coordination matrix build as we described outfits the
framework, removing unnecessary DoF. With the described framework we
achieve to reduce the dimensionality from d to r.

40

5.2 Symmetric tasks

Once described a method to reduce the number of DoF in a generic mo-
tion, we will now focus in bimanual tasks which in a part of the trajectory,
include motion symmetries between end-effectors. The goal of this section
is to pose a methodology that uses motion symmetries is bimanual tasks
in order to reduce the number of parameters.

We will operate in R3 × t, which is the euclidean space that is usually
used to describe 3-dimensional trajectories (we will consider the trajectory
points as 3-d points p = (x, y, z)). We have chosen to work in the Cartesian
coordinates instead of working in the joint space for two reasons:

• It is a more intuitive space to work in and it is easier to interpret.

• Sometimes, symmetries might be occurring in the trajectories (be-
tween end-effectors), but the joints of both WAMs may be working
in a different way in order to make the end-effector execute that mo-
tion. Therefore, we simplify our problem, as we do not have to solve
the inverse kinematic problem (given the end-effector’s trajectory, de-
termine the motion of the joints), which is more complex than the
direct kinematic problem (given the motion of the joints, determine
the end-effector’s trajectory).

However, we will give a general methodology, so that it can be applied over
any finite-dimension space, such as the joint space.

5.2.1 Method

Essentially, we propose to build linear varieties (which are easy to char-
acterize) at every rollout, such that minimize the distance between the
symmetric trajectory of a WAM (with respect to the variety) and the tra-
jectory of the other WAM

MinV

Nt∑
i=1

∥mirror(yc
(1)
i , V)− yc

(2)
i ∥ (48)

41

being yc
(j)
i the position of the trajectory of the WAM j at the timestep i in

the Cartesian space (in the same reference) and the norm is the euclidean
norm. The function mirror is the function that given a linear variety V as
a system of equations, and a point p, returns as an output the symmetric
point of p with respect to V .

In order to obtain the trajectories in the Cartesian space, we have solved
the direct kinematics problem with a Matlab function from robot library
(by Peter Corke), called fkine. We have also performed a change of refer-
ence of the second WAM reference to the first.

JointSpace2 JointSpace1

CartestianSpace2 CartesianSpace1

fkine fkine

T

(49)

being T the change of reference matrix.

Once we have the trajectories in the same Cartesian space, we compute

the curve of middle points y
(mp)
i =

y
(1)
i +y

(2)
i

2 . Let n be the dimension of the
space that we are working in (in our case, R3, n = 3). Let n −m be the
dimension of the varieties with respect to which we want to make symme-
tries (m is the number of equations that define a variety). Now, from the
curve y(mp), we take m + 1 linearly independent points p0, . . . , pm. Let X
be the matrix that stores these points:

X =


p0,1 . . . pm,1
...

...
p0,n . . . pm,n

1 . . . 1

 (50)

By solving the system XTAT = 0T , we obtain the equations (whose coeffi-
cients are stored in A) that define the m-dimensional linear variety V that
contains p0, . . . , pm. This variety will be the starting point from which we

42

Figure 1: Symmetric trajectories

will start to search the minimum.

Figure 2: Symmetric trajectories

We choose samples from the middle points curve in order to bound the
search in a logical way, given the aim of the problem. Moreover, to im-

43

Figure 3: Symmetric trajectories

prove this choice, we split the curve in m + 1 uniform parts and we take
one point from each part.

Having an initial guess and a function, we can implement a minimization
algorithm. We have implemented Gradient Descent, which is a first-order
iterative optimization algorithm. This algorithm takes steps proportional
to the negative of the gradient of the function. Let θ0 be the initial guess
and F the function that we want to minimize. Gradient Descent iterates:

θk+1 = θk − α∇F (θk) (51)

being α a constant that determines how much we advance in the gradient
direction. We have applied a criteria that makes the algorithm take bigger
steps when we are decreasing and smaller when increasing:

F (θk+1) > F (θk) =⇒ α = 1.2α (52)

F (θk+1) < F (θk) =⇒ α = 0.5α (53)

This is a simple algorithm that finds local minimums. However, it con-
verges fast and it is good enough for us. In these kind of problems, quick

44

algorithms like this are commonly used, as well as heuristics such as ran-
dom search or genetic algorithms. As we are finding local minimums, we
create diverse sets of points, i.e. initial varieties, and we perform various
Gradient Descents in order to find a good enough local minimum.

Once we have a sufficiently good solution to our problem, i.e. a linear
variety that minimizes (or is close to minimize) the distance between the
mirror trajectory of WAM1 motion and WAM2 motion; we create this
symmetric trajectory y(m) and evaluate the reward function considering
two trajectories: the one created for WAM1 with the algorithm described
in chapter 4 (implementation) with the DoF reduction that we presented
for general cases, and the y(m). This process is computed for every trajec-
tory generated in order to make WAM1 learn its task. Thus, the robot is
learning, at each rollout, from both the trajectory of the WAM1 and its
mirror motion, reducing the DoF number from d to r/2.

In R3, we consider 3 kinds of variety: points, lines and planes. Each
type is useful for a specific type of symmetry, depending on the number of
dimensions over which there is symmetry and if they are direct or inverse
symmetries.

45

6 Conclusions

We have presented a framework for motion learning and implemented it
with a WAM robot with success. In addition, we have reduced the dimen-
sionality of the problem from dimension d to r<d, exploring just in the
most significant directions. Finally, we have developed a method which
uses symmetries between trajectories in bimanual tasks (two WAM robots)
in order to reduce the number of DoFs. We have been able to reduce such
number from d to r/2 in this particular case. This symmetry model is
thought to work with any kind of symmetry and dimension.

Our next step will be to test the symmetry model with several tasks, which
may involve different kinds of symmetries and measure its performance in
terms of reward per update. Moreover, we will develop a methodology to
split trajectories based on the relationship between the trajectories of both
arms (kind of symmetry by segment of trajectory).

46

References

[1] Deisenroth, M. P., Neumann, G., & Peters, J. (2013). Introduction(pp.
4). A survey on policy search for robotics. Foundations and Trends in
Robotics, 2(12), 1-142.

[2] Colomé, Adrià and Torras, Carme. Dimensionality Reduction for Dy-
namic Movement Primitives and Application to Bimanual Manipulation
of Clothes, submitted 2016.

[3] A. Colomé and C. Torras. Dimensionality reduction and motion coordi-
nation in learning trajectories with dynamic movement primitives, 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014, Chicago, pp. 1414-1420

[4] DeWolf, Travis. Dynamic Movement Primitives Part 1: the basics
<https://studywolf.wordpress.com/2013/11/16/dynamic-movement-
primitives-part-1-the-basics/>, 2013

[5] Siciliano, B. et al (2007). Part A. AI Reasoning Methods for Robotics
(pp. 336). Handbook of robotics.

[6] Kullback, S. and Leibler, On information and sufficiency (pp. 79-80),
Annals of Mathematical Statistics, 1951.

[7] Gradient Descent. <https://en.wikipedia.org/wiki/Gradient descent>.

[8] Gerig G. Least Squares, Pseudo-Inverses, PCA
& SVD. <http://www.sci.utah.edu/∼gerig/CS6640-
F2012/Materials/pseudoinverse-cis61009sl10.pdf>. University of
Utah.

[9] Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S.
(2013). Dynamical movement primitives: learning attractor models for
motor behaviors. Neural computation, 25(2), 328-373.

[10] Siciliano, B. (2009) Chapters 1-3 (pp. 1-159) Robotics modelling, plan-
ning and control.

47

Appendix: Code

% main min_jerk

close all

clear variables

% generem traject ria

d=7;

min_jerk_trajectory;

% Not a ci i guardar par metres donats

aux = size(T);

Q = zeros(aux (1) ,3*d+1);

Q(:,1) = T;

Q(:,2:d+1) = y;

Q(:,d+2:2*d+1) = yd;

Q(:,2*d+2:3*d+1) = ydd;

plot(Q(:,2))

Nt = length(Q(:,1));

Nf = 10;

alphaz = 12;

alphax = 2.5;

betaz = alphaz /4;

%tau = 20.1;

K = 0.8;

g = Q(Nt , 2:d+1);

dt = Q(2,1)-Q(1,1);

% carreguem les dades de la trajectoria , trobem els par metres i la f i

% filtrem l’ acceleraci

[ddy_filt ,f,x,Q,Nt ,g] = ini_filt_param(Q,tau ,d,Nf ,alphax ,alphaz ,betaz ,K,g);

% calculem les gaussianes i fem el plot

% per on volem que passi

Q1 = [0.4, 0.7, 0.5, 0.45, 0.3, 0.6, 0.55];

t1 = 50;

lambda = 1;

Nk = Nf*d + 5;

% calculem gaussianes i la matriu P

[Ct ,C,D,W,p,P] = gaussianes(Q,Nf ,tau ,alphax ,x,d);

% troba els pesos , calcula la nova f i fa plots

[new_f ,w,A,new_Q ,Id ,w_aux] = pesos(P,Nf ,d,x,f,Q,Nt ,alphaz ,betaz ,g,dt ,tau ,lambda)

;

% guardem alguns par metres per a poguer fer policy (actualitzant mu i sigma amb

Maximum Likelihood)

%i policyREPS (acutalitzant amb REPS) per separat

lambda = 5000;

49

Q1ini = Q1;

t1ini = t1;

lambdaini = lambda;

Qini = Q;

new_Qini = new_Q;

wini = w;

%f_newini = f_new;

new_fini = new_f;

Pini = P;

Nupdates =100;

% genera mostres a partir de la normal i actualitza la mu i la sigma usant

% Maximum Likelyhood

[R,Rmean ,new_mu ,new_S ,W,fs ,new_f] = policy(Q1 ,t1 ,lambda ,Nk ,Q,new_Q ,dt ,Id ,alphax ,

alphaz ,betaz ,Nf ,d,w,new_f ,g,Nt ,P,tau ,Nupdates ,t1);

% policy search amb REPS

r = 1;

[RREPS ,RmeanREPS ,new_mu ,new_S ,W,fs ,dws ,new_f ,M,S] = policyREPS(Q1ini ,t1ini ,

lambdaini ,Nk ,Qini ,new_Qini ,dt ,Id ,alphax ,alphaz ,betaz ,Nf ,d,wini ,new_fini ,g,Nt

,Pini ,tau ,Nupdates ,r,t1);

figure;

plot(Rmean (2:end , 1))

hold on;

plot(RmeanREPS (2:end , 1))

title(’Rmean vs RmeanREPS ’)

legend(’Rmean’, ’RmeanREPS ’)

% main min_jerk

close all

clear all

addpath(’/Users/acolome/Desktop/MATLAB/robot’)

% read data

Qtot = load(’FullData.txt’);

Q1 = Qtot (: ,[1:8 ,16:22 ,30:36]);

Q2 = Qtot (: ,[1 ,9:15 ,23:29 ,37:43]);

time = Q1(end ,1);

d = 7;

% for i = 2:(d+1)

% figure

% plot(Q1(:,i))

% end

% no movement in the firt 15-20 timesteps

Q1 = Q1(15:end , :);

Q2 = Q2(15:end , :);

%subsampling

ss=3;

Q1 = Q1(1:ss:end , :);

%Q2 = Q2 (1:3:end , :);

50

%%%555

% for i = 2:(d+1)

% x = 1: length(Q1(:,1));

% y = Q1(x,i);

% xx = 0:.25: length(Q1(:,1));

% yy = spline(x,y,xx);

% figure

% plot(x,y,’o’,xx ,yy)

% hold on

% plot(Q1(:,i), ’LineWidth ’,2);

% end

dt1 = Q1(2,1)-Q1(1,1); %=0.0597

timelapse = Q1(end ,1)-Q1(1,1); %=8.9545

dt1 = 1/ length(Q1(:,1));

T1 = 0: dt1 :1-dt1;

Q1(:,1) = T1;

dt2 = 1/ length(Q2(:,1));

T2 = 0: dt2 :1-dt2;

Q2(:,1) = T2;

tau = 1;

dt = dt2*time;

T = T2;

yy = zeros(size(Q2));

yy(1,:) = Q1(1,:);

yy(:,1) = Q2(:,1);

x = 1: length(Q1(:,1));

xx = 1:(1/ ss):length(Q1(:,1));

for i = 2:(d+1)

y = Q1(x,i);

yy(:,i) = spline(x,y,xx);

for j = 2: length(yy(:,1))

yy(2:end ,d+i) = diff(yy(:,i)) / dt;

yy(2:end ,2*d+i) = diff(yy(:,d+i)) / dt;

% yy(:,d+i) = gradient(yy(:,i));

% yy(:,2*d+i) = gradient(yy(:,d+i));

end

% figure

% plot(x,y,’o’,xx ,yy);

% hold on

% plot(Q1(:,i), ’LineWidth ’,2);

end

%for i = (2*d+2) :(3*d+1)

for i = 1:22

figure

plot(yy(:,1), yy(:,i));

hold on

plot(Q1(:,1), Q1(:,i), ’LineWidth ’ ,2);

51

end

Q1 = yy;

%%%5

%dt = Q1(2,1)-Q1(1,1); %=0.0597

timelapse = Q1(end ,1)-Q1(1,1); %=8.9545

%dt = 1/ length(Q1(:,1));

T = 0: dt2 :1-dt2;

Q1(:,1) = T;

Q2(:,1) = T2;

tau = 1;

%%

Nf = 10;

alphaz = 10;

alphax = 3.5;

betaz = alphaz /4;

tau = 1;

K = 0.8;

Nt = length(Q1(:,1));

g = Q1(Nt , 2:d+1);

% translation coordinates

l1 = 0.985;

l2 = 0;

l3 = 0;

% rotation angle

theta = 0;

WAM;

[Qc1 , Qc2] = change_ref(Q1 ,Q2 ,l1 ,l2 ,l3 ,theta ,Nt ,d,wam);

% carreguem les dades de la trajectoria , trobem els par metres i la f i

% filtrem l’ acceleraci

[ddy_filt ,f,x,Q1 ,Nt ,g] = ini_filt_param(Q1 ,tau ,d,Nf ,alphax ,alphaz ,betaz ,K,g);

Qg = [1, -0.22, -0.25;

1.2, -0.3, -0.2;

1.05, -0.22, 0.5];

tg = [10, 25, 40]’;

%tgv = Q1(tg ,1);

lambda_reg = 0.1;

Nk = Nf*d + 2;

% Nk = 10;

% compute Gaussians and weights , and make the fitting of f and Q

[Ct ,C,D,W,p,P] = gaussianes(Q1 ,Nf ,tau ,alphax ,x,d);

[new_f ,w,A,new_Q1 ,Id ,w_aux] = pesos(P,Nf ,d,x,f,Q1 ,Nt ,alphaz ,betaz ,g,dt ,tau ,

lambda_reg);

52

% safe parameters to compare WMLPS and REPS

lambda = 5000;

Qgini = Qg;

tgini = tg;

lambdaini = lambda;

Q1ini = Q1;

new_Q1ini = new_Q1;

wini = w;

new_fini = new_f;

Pini = P;

Nupdates = 10;

% WMLPS

new_Q = new_Q1;

[R,Rmean ,new_mu ,new_S ,W,fs ,new_f] = policy2(Qg ,tg ,lambda ,Nk ,Q1 ,Q2 ,new_Q1 ,dt ,Id ,

alphax ,alphaz ,betaz ,Nf ,d,w,new_f ,g,Nt ,P,tau ,Nupdates ,Qc2 ,l1 ,l2 ,l3 ,theta)

% REPS with coordination matrix DoF reduction

r = 4;

[RREPS ,RmeanREPS ,new_mu ,new_S ,W,fs ,dws ,new_f ,M,S] = policyREPS2(Qgini ,tgini ,

lambdaini ,Nk ,Q1ini ,new_Q1ini ,Q2 ,dt ,Id ,alphax ,alphaz ,betaz ,Nf ,d,wini ,new_fini

,g,Nt ,Pini ,tau ,Nupdates ,r,Qc2 ,l1 ,l2 ,l3 ,theta);

figure;

plot(Rmean (2:end ,1))

hold on;

plot(RmeanREPS (2:end ,1))

title(’Rmean vs RmeanREPS ’)

legend(’Rmean’, ’RmeanREPS ’)

figure;

hold on;

plot(RREPS)

hold on;

title(’R vs RREPS’)

legend(’R’,’RREPS’,’Rnormal ’)

% initial variety

dist_min = Inf;

eix_min = [1 0 0 0];

% middle point curve

Qpm(:,1) = Qc1(:,1);

for i = 1:Nt

Qpm(i ,2:4) = (Qc1(i ,2:4) + Qc2(i,2:4)) / 2;

end

figure

plot(Qc2(:,2))

hold on

plot(Qc1(:,2))

53

hold on

plot(Qm(:,2))

hold on

plot(Qpm(:,2))

legend(’Q2’,’Q1’,’Qm’,’Qpm’)

figure

plot3(Qc1(:,2),Qc1(:,3),Qc1(:,4),’m’,’LineWidth ’ ,2)

hold on

plot3(Qc2(:,2),Qc2(:,3),Qc2(:,4),’k’,’LineWidth ’ ,2)

plot3(Qm(:,2),Qm(:,3),Qm(:,4),’g’,’LineWidth ’ ,2)

grid on

% axis equal

legend(’q1’,’q2’,’qm’)

x= -2:.1:2;

[X,Y] = meshgrid(x);

aa=eix_min (1); bb=eix_min (2); cc=eix_min (3); dd=eix_min (4);

Z=(dd - aa * X - bb * Y)/cc;

h=surf(X,Y,Z)

shading flat

h.EdgeColor=’none’

h.FaceColor=’b’

% middle point curve

Qpm(:,1) = Qc1(:,1);

for i = 1:Nt

Qpm(i ,2:4) = (Qc1(i ,2:4) + Qc2(i,2:4)) / 2;

end

function [x,xd ,xdd] = min_jerk_step(x,xd ,xdd ,goal , tau , dt)

% function [x,xd ,xdd] = min_jerk_step(x,xd ,xdd ,goal ,tau , dt) computes

% the update of x,xd ,xdd for the next time step dt given that we are

% currently at x,xd ,xdd , and that we have tau until we want to reach

% the goal

if tau <dt ,

return;

end;

dist = goal - x;

a1 = 0;

a0 = xdd * tau ^2;

v1 = 0;

v0 = xd * tau;

t1=dt;

t2=dt^2;

54

t3=dt^3;

t4=dt^4;

t5=dt^5;

c1 = (6.* dist + (a1 - a0)/2. - 3.*(v0 + v1))/tau ^5;

c2 = (-15.* dist + (3.*a0 - 2.*a1)/2. + 8.*v0 + 7.*v1)/tau ^4;

c3 = (10.* dist+ (a1 - 3.*a0)/2. - 6.*v0 - 4.*v1)/tau ^3;

c4 = xdd /2.;

c5 = xd;

c6 = x;

x = c1*t5 + c2*t4 + c3*t3 + c4*t2 + c5*t1 + c6;

xd = 5.*c1*t4 + 4*c2*t3 + 3*c3*t2 + 2*c4*t1 + c5;

xdd = 20.*c1*t3 + 12.*c2*t2 + 6.*c3*t1 + 2.*c4;

% min_jerk d joints

tau = 1; %temps final

dt = 0.01; %discretization step

% d = 7; %dimensio es diu al main

y = zeros(tau/dt ,d);

yd = zeros(tau/dt ,d);

ydd = zeros(tau/dt ,d);

dof = size(y,2);

y(1,:) = zeros(1,d); %starting position

g = ones(1,d)’; %Goal

for i=1: tau/dt -1

for j=1:d

[y(i+1,j),yd(i+1,j),ydd(i+1,j)] = min_jerk_step(y(i,j),yd(i,j),ydd(i,j),

g(j), tau -i*dt , dt);

% function [x,xd ,xdd] = min_jerk_step(x,xd ,xdd ,goal ,tau , dt) computes

% the update of x,xd ,xdd for the next time step dt given that we are

% currently at x,xd ,xdd , and that we have tau until we want to reach

% the goal

end

end

T =(0:dt:tau -dt)’;

tau = 1; %temps final

dt = 0.01; %discretization step

%d = 1; %dimensio

y = zeros(tau/dt ,d);

yd = zeros(tau/dt ,d);

ydd = zeros(tau/dt ,d);

dof = size(y,2);

y(1,:) = zeros(1,d)+randn(1,d); %starting position

g = ones(1,d)’+randn(1,d)’; %Goal

for i=1: tau/dt -1

for j=1: dof

55

[y(i+1,j),yd(i+1,j),ydd(i+1,j)] = min_jerk_step(y(i,j),yd(i,j),ydd(i,j),

g(j), tau -i*dt , dt);

% function [x,xd ,xdd] = min_jerk_step(x,xd ,xdd ,goal ,tau , dt) computes

% the update of x,xd ,xdd for the next time step dt given that we are

% currently at x,xd ,xdd , and that we have tau until we want to reach

% the goal

end

end

T =(0:dt:tau -dt)’;

function [Qc1 , Qc2] = change_ref(Q1 ,Q2 ,l1 ,l2 ,l3 ,theta ,Nt ,d,wam)

% WAM;

% change of reference transformation

T = [cos(theta) -sin(theta) 0 l1;

sin(theta) cos(theta) 0 l2;

0 0 1 l3;

0 0 0 1];

Qc1 = Q1(:,1);

Qc2 = Q2(:,1);

for t = 1:Nt

% Q2 is the trajectory of WAM2 in the Joint Space 2

q = (Q2(t,2:d+1)) ’;

T2 = fkine(wam , q);

Qc2(t,2:4) = T2(1:3 ,4); % Qc2 is Q2 in the Cartesian Space 2

aux = (T*[Qc2(t,2:4)’ ; 1]) ’;

Qc2(t,2: end) = aux (1 ,1:3); % transform from Cartesian Space 2 to 1

% Q1 is the trajectory of WAM1 in the Joint Space 1

q = (Q1(t,2:d+1)) ’;

T1 = fkine(wam , q);

Qc1(t,2:4) = T1(1:3 ,4); % Qc1 is Q1 in the Cartesian Space 1

end

end

clear L

L{1} = link([-pi/2 0 0 0 0],’standard ’);

L{2} = link([pi/2 0 0 0 0],’standard ’);

L{3} = link([-pi/2 0.045 0 0.55 0],’standard ’);

L{4} = link([pi/2 -0.045 0 0 0],’standard ’);

L{5} = link([-pi/2 0 0 0.3 0],’standard ’);

L{6} = link([pi/2 0 0 0 0],’standard ’);

L{7}= link ([0 0 0 0.06 0],’standard ’);

L{1}.m = 8.3936;

L{2}.m = 4.8487;

L{3}.m = 1.7251;

L{4}.m = 1.0912;

56

L{5}.m = 0.3067;

L{6}.m = .4278;

%L{7}.m=0.1;

L{7}.m=1.3;

L{1}.r = [0.0003506 0.1326795 0.0006286];

L{2}.r = [-.000223 -.02139 .01337];

L{3}.r = [-.0387565 .21791 0.0000252];

L{4}.r = [0.01175 -.0001 0.1359];

L{5}.r = [0.000058 0.02838 0.00019];

L{6}.r = [-0.00003 -0.01486 .0256];

L{7}.r = [-0.000 -0.0001823 -.2847];

L{1}.I = [0.095157 0.092032 0.059291 0.000246 -0.000963 -0.000095];

L{2}.I = [29327e-6 20781e-6 22807e-6 -43e-6 1349e-6 -129e-6];

L{3}.I = [56662e-6 3158e-6 56806e-6 -2321e-6 -17e-6 8e-6];

L{4}.I = [18891e-6 19341e-6 2027e-6 -1e-6 -1721e-6 18e-6];

L{5}.I = [321e-6 172e-6 351e-6 0 0 0];

L{6}.I = [604e-6 269e-6 507e-6 0 -62e-6 0];

L{7}.I = [21e-4 22e-4 42e-4 -1e-5 -1721e-5 18e-5];

L{1}.Jm = 20e-12;

L{2}.Jm = 20e-12;

L{3}.Jm = 20e-12;

L{4}.Jm = 33e-12;

L{5}.Jm = 33e-12;

L{6}.Jm = 33e-12;

L{7}.Jm = 33e-12;

L{1}.G = -20.6111;

L{2}.G = 107.815;

L{3}.G = -53.7063;

L{4}.G = 76.0364;

L{5}.G = 71.923;

L{6}.G = 76.686;

L{7}.G = 76.686;

% viscous friction (motor referenced)

L{1}.B = 1.48e-3;

L{2}.B = .817e-3;

L{3}.B = 1.38e-3;

L{4}.B = 71.2e-6;

L{5}.B = 82.6e-6;

L{6}.B = 36.7e-6;

% Coulomb friction (motor referenced)

L{1}.Tc = [.395 -.435];

L{2}.Tc = [.126 -.071];

L{3}.Tc = [.132 -.105];

L{4}.Tc = [11.2e-3 -16.9e-3];

L{5}.Tc = [9.26e-3 -14.5e-3];

L{6}.Tc = [3.96e-3 -10.5e-3];

%

% some useful poses

%

57

%qz = [0 0 0 0 0 0]; % zero angles , L shaped pose

%qr = [0 pi/2 -pi/2 0 0 0]; % ready pose , arm up

%qs = [0 0 -pi/2 0 0 0];

%qn=[0 pi/4 pi 0 pi/4 0];

wam = robot(L, ’Wam arm’, ’Barrett ’, ’dh params ’);

clear L

wam.name = ’Wam arm’;

wam.manuf = ’Barrett ’;

function [ddy_filt ,f,x,Q,Nt ,g] = ini_filt_param(Q,tau ,d,Nf ,alphax ,alphaz ,betaz ,K

,g,dt)

ddy_filt =[];

Nt=size(Q,1);

% acceleration filtering

ddy_filt = zeros(Nt , 7);

ddy_filt (1,:) = Q(1,2*d+2:3*d+1);

for i = 2:Nt

ddy_filt(i,:) = Q(i,2*d+2:3*d+1)*K + Q(i-1,2*d+2:3*d+1)*(1-K);

end

%Q(:,2*d+2:3*d+1) = ddy_filt;

% compute excitation function f

for i = 1:Nt

f(i,:) = Q(i, 2*d+2:3*d+1)/tau - alphaz *(betaz*(g - Q(i, 2:d+1)) - Q(i,

d+2:2*d+1)/tau);

end

for i = 1:Nt

x(i) = exp(-alphax*Q(i,1));

end

end

function [Ct ,C,D,W,p,P] = gaussianes(Q,Nf ,tau ,alphax ,x,d)

Ct = [];

for i = 1:Nf

Ct = [Ct;(i*tau)/(Nf+1)];

end

W = zeros(d,Nf);

C = exp(-alphax/tau*Ct); % Gaussian centers

D = abs((diff(C)/0.55) .^2); % Gaussian widths

D = [D;D(end)];

figure

hold on

for i=1:Nf

norm = normpdf(x(i), C(i), D(i));

%plot(Q(:,1), norm);

end

58

for i = 1: length(x)

for j = 1: length(C)

p(i,j) = exp((-(x(i)-C(j))^2) / (D(j)));

end

end

for i = 1: length(x)

for j = 1: length(C)

P(i,j) = x(i)*p(i,j)/sum(p(i,:));

end

end

plot(Q(:,1),P)

title(’Gaussians ’)

end

% troba els pesos , calcula la nova f i fa plots

function [new_f ,w,A,new_Q ,Id ,w_aux] = pesos(P,Nf ,d,x,f,Q,Nt ,alphaz ,betaz ,g,dt ,

tau ,lambda)

% Moore -Penrose pseudo -inverse

[u,s,v]=svd(P);

A=zeros(size(P))’;

for j=1: min(size(s))

A=A+s(j,j)/(s(j,j)^2+ lambda ^2)*v(:,j)*u(:,j)’;

end

% weights

w_aux = A*f;

for i = 1:Nf

for j = 1:d

w((j-1)*Nf + i , 1) = w_aux(i,j);

end

end

% f fitting

Id = eye(d,d);

new_f = zeros(size(f));

for i = 1: length(Q(:,1))

new_f(i,:) = (kron(Id , P(i,:))*w)’;

end

figure

plot(f, ’b’)

hold on

plot(new_f ,’r’) %, ’LineWidth ’,2)

title(’Fitting f’)

legend(’f’, ’newf’)

figure

plot(Q(:,1),x)

title(’x curve’)

%clear new_f;

59

%clear new_Q;

% trajectory fitting

new_Q (:,1) = Q(:,1);

new_Q (1 ,1:3*d+1) = Q(1 ,1:3*d+1);

for i = 2:Nt

new_Q(i,2*d+2:3*d+1) = tau*alphaz* (betaz*(g - new_Q(i-1,2:d+1)) -

new_Q(i-1,d+2:2*d+1) / tau) + new_f(i-1,:);

new_Q(i,d+2:2*d+1) = new_Q(i-1,d+2:2*d+1) + dt*new_Q(i,2*d+2:3*d+1);

new_Q(i,2:d+1) = new_Q(i-1,2:d+1) + dt*new_Q(i,d+2:2*d+1);

end

figure

for i = 2:8

plot(Q(:,i),’b’)

hold on

plot(new_Q(:,i), ’r’) %, ’LineWidth ’,2)%, ’r’)

end

%legend(’Q’, ’newQ ’)

title(’Fitting Q’)

legend(’Q’, ’newQ’)

%

figure

plot(Q(: ,16:22),’b’)

hold on

plot(new_Q (: ,16:22), ’r’) %,’LineWidth ’,2)

title(’Fitting acceleration ’)

legend(’ddQ’,’newddQ ’)

%

%

%

end

%

function [R,Rmean ,new_mu ,new_S ,W,fs ,new_f] = policy(Q1 ,t1 ,lambda ,Nk ,Q,new_Q ,dt ,

Id ,alphax ,alphaz ,betaz ,Nf ,d,w,new_f ,g,Nt ,P,tau ,Nupdates ,tg)

% per on volem que passi

% Q1 = [0.4, 0.7, 0.15, 1.5, -0.1, -0.25, 0.1];

% t1 = Q(50,1);

fs = zeros(Nt ,d,Nk);

new_mu = w;

new_S = lambda*eye(d*Nf);

R = zeros(1,Nk);

R(1) = mean(-abs(Q(tg ,2:d+1) - Q1) - 0.000015* sum((Q(:,2*d+2:3*d+1)).^2));

W = zeros(d*Nf , Nk);

hold on

iter = 1;

Rmean=zeros(Nupdates ,1);

for iter =1: Nupdates

[iter Rmean(iter)]

60

% perform Nk rollouts

for k = 1:Nk

W(:,k) = mvnrnd(new_mu , new_S)’ ; % samples

clear new_f;

clear new_Q;

% new trajectory

new_Q (:,1) = Q(:,1);

new_Q (1,2:d+1) = Q(1,2:d+1);

new_Q(1,d+2:2*d+1) = Q(1,d+2:2*d+1);

for i = 2:Nt

new_f(i,:) = (kron(Id , P(i,:))*W(:,k))’;

new_Q(i,2*d+2:3*d+1) = tau*alphaz* (betaz*(g - new_Q(i-1,2:d+1)) -

new_Q(i-1,d+2:2*d+1) / tau) + new_f(i,:);

new_Q(i,d+2:2*d+1) = new_Q(i-1,d+2:2*d+1) + dt*new_Q(i,2*d+2:22);

new_Q(i,2:d+1) = new_Q(i-1,2:d+1) + dt*new_Q(i,d+2:2*d+1);

end

%plot(new_Q (: ,2:8) ,’Color ’, Colorset (1,:));

% Evaluate Reward

R(k)= mean(-abs(new_Q(tg ,2:d+1) - Q1) - 0.000015* sum((new_Q (:,2*d+2:3*d

+1)).^2));

fs(:,:,k) = new_f;

end

% plot(new_Q (: ,2:8) ,’Color ’, Colorset (1,:));

% title(’Q vs newQ ’)

% %legend(’Q’)

new_mu=zeros(Nf*d,1);

for i = 1:Nk

new_mu = new_mu + W(:,i)*exp(R(i)) / sum(exp(R));

end

new_S=zeros(Nf*d,Nf*d);

for i=1:Nk

new_S = new_S + (W(:,i) - new_mu)*(W(:,i) - new_mu)’*exp(R(i))/sum(exp(R

));

end

% new mean trajectory

clear new_f;

clear new_Q;

new_Q (:,1) = Q(:,1);

new_Q (1,2:d+1)=Q(1,2:d+1);

new_Q(1,d+2:2*d+1)=Q(1,d+2:2*d+1);

%new_f=f_new;

for i = 2:Nt

new_f(i,:) = (kron(Id , P(i,:))*new_mu)’;

new_Q(i,2*d+2:3*d+1) = tau*alphaz* (betaz*(g - new_Q(i-1,2:d+1)) -

new_Q(i-1,d+2:2*d+1) / tau) + new_f(i-1,:);

new_Q(i,d+2:2*d+1) = new_Q(i-1,d+2:2*d+1) + dt*new_Q(i,2*d+2:3*d+1);

new_Q(i,2:d+1) = new_Q(i-1,2:d+1) + dt*new_Q(i,d+2:2*d+1);

61

end

% Reward of the mean trajectory

Rmean(iter +1) = mean(-abs(new_Q(tg ,2:d+1) - Q1) - 0.000015* sum((new_Q (:,2*d

+2:3*d+1)).^2));

end

% figure

% plot(R)

% hold on

% plot(Rmean)

% title(’Reward ’)

% legend(’R’, ’Rmean ’)

%

end

function [REPS_output ,RmeanREPS ,new_mu ,new_S ,W,fs ,dws ,new_f ,MU ,SS] = policyREPS(

Q1 ,t1 ,lambda ,Nk ,Q,new_Q ,dt ,Id ,alphax ,alphaz ,betaz ,Nf ,d,w,new_f ,g,Nt ,P,tau ,

Nupdates ,r,tg)

plot_flag =0;

dws =1;

% store parameters

SS=[];

MU=[];

% Compute Psi

Psi = zeros(r*Nf ,Nt*r);

for t = 1:Nt

Psi(: , ((t-1)*r + 1):((t-1)*r + r)) = (kron(eye(r), P(t,:)))’ ;

end

fs = zeros(Nt ,d,Nk);

new_mu = w;

new_S = lambda*eye(d*Nf);

RREPS = zeros(1,Nk);

RREPS (1) = mean(-abs(Q(tg ,2:d+1) - Q1) - 0.000015* sum((Q(:,2*d+2:3*d+1)).^2));

%0.15* sum((y).^2);

REPS_output=RREPS (1);

W = zeros(r*Nf , Nk);

%

% figure

% Colorset = varycolor (50);

% plot(Q(: ,2:8) ,’b’,’LineWidth ’,2)

% hold on

iter = 1;

% inicialize Omega

[U,S,V] = svd(new_f ’);

Om_old = U(:,1:r);

62

%inicialize mu and Sigma

f_aux = new_f ’;

z = zeros(r*Nt ,1);

for t = 1:Nt

z((t-1)*r+1 : t*r ,1) = pinv(Om_old)*f_aux(:,t);

end

Psi_aux = zeros(r*Nt ,Nf*r);

for t = 1:Nt

Psi_aux (((t-1)*r + 1):((t-1)*r + r) , :) = Psi(: , ((t-1)*r + 1):((t-1)*r +

r))’ ;

end

old_mu = pinv(Psi_aux) * z;

old_S = 1000* eye(r*Nf);

%inicialize de new_mu i new_S

new_mu = old_mu;

new_S = old_S;

% % nova traject ria

% new_Q (:,1) = Q(:,1);

% new_Q (: ,2:5) = Q(: ,2:5);

% new_Q (: ,6:9) = Q(: ,9:12);

% new_Q (: ,10:13) = Q(: ,16:19);

RmeanREPS=zeros(Nupdates +1,2);

for iter = 1: Nupdates %while(abs(Rmean(iter)) > 0.05)

[iter RmeanREPS(iter)]

RREPS = zeros(1,Nk);

% mu and Sigma

for k = 1:Nk

W(:,k) = mvnrnd(new_mu , new_S)’ ; % Sample

clear new_f;

clear new_Q;

% new trajectory

new_Q (:,1) = Q(:,1);

new_Q (:,2:d+1) = Q(:,2:d+1);

new_Q(:,d+2:2*d+1) = Q(:,d+2:2*d+1);

% fitting f

for t = 1:Nt

new_f(t,:) = (Om_old *(kron(eye(r), P(t,:))* W(:,k)))’;

end

% trajectory

for i = 2:Nt

new_Q(i,2*d+2:3*d+1) = tau*alphaz* (betaz*(g - new_Q(i-1,2:d+1)) -

new_Q(i-1,d+2:2*d+1) / tau) + new_f(i,:);

new_Q(i,d+2:2*d+1) = new_Q(i-1,d+2:2*d+1) + dt*new_Q(i,2*d+2:3*d+1);

new_Q(i,2:d+1) = new_Q(i-1,2:d+1) + dt*new_Q(i,d+2:2*d+1);

end

63

ALLQ{k}= new_Q (:,2:d+1);

if plot_flag ==1

plot(new_Q (:,2),’b’)

hold on

end

NEW_F{k} = new_f ’;

RREPS(k)= mean(-abs(new_Q(tg ,2:d+1) - Q1) - 0.000015* sum((new_Q (:,2*d

+2:3*d+1)).^2));

end

% figure

% plot(-abs(new_Q (50 ,2:8) - Q1))

% title(iter)

% figure

% plot (0.000015* sum(new_Q (: ,16:22)).^2)

% title(iter)

REPS; %-> new_mu and new_S

Fweighted=zeros(d,Nt);

for i = 1:Nk

Fweighted = Fweighted+dw(i)*NEW_F{i}/sum(dw);

end

% build coordination matrix

if iter ~= 1

Om_old = Om ;

end

%

[U,S,V] = svd(Fweighted);

% if iter ==1

Om = U(:,1:r);

% end

O_old = kron(eye(Nt),Om_old);

O = kron(eye(Nt),Om);

M = pinv(O_old*Psi ’)*O*Psi ’;

if iter ~= 1

old_mu = new_mu;

old_S = new_S;

end

% update policy

new_mu = pinv(M)*old_mu;

new_S = pinv(M) * (old_S + (M*new_mu - old_mu) * (M*new_mu - old_mu)’) *

pinv(M)’;

% new trajectory

clear new_f;

clear new_Q;

new_Q (:,1) = Q(:,1);

new_Q (1,2:d+1)=Q(1,2:d+1);

new_Q(1,d+2:2*d+1)=Q(1,d+2:2*d+1);

Id = eye(r);

64

for t = 1:Nt

new_f(t,:) = (Om *(kron(eye(r), P(t,:))* new_mu))’;

end

for i = 2:Nt

new_Q(i,2*d+2:3*d+1) = tau*alphaz* (betaz*(g - new_Q(i-1,2:d+1)) -

new_Q(i-1,d+2:2*d+1) / tau) + new_f(i-1,:);

new_Q(i,d+2:2*d+1) = new_Q(i-1,d+2:2*d+1) + dt*new_Q(i,2*d+2:3*d+1);

new_Q(i,2:d+1) = new_Q(i-1,2:d+1) + dt*new_Q(i,d+2:2*d+1);

end

% Reward

REPS_output(iter +1)= mean(-abs(new_Q(tg ,2:d+1) - Q1) - 0.000015* sum((new_Q

(:,2*d+2:3*d+1)).^2));

RmeanREPS(iter +1,:) = [mean(REPS_output) ,2*std(REPS_output)];

MU=[MU;new_mu ’];

SS=[SS;svd(new_S) ’];

% plot(new_Q (: ,2:8) ,’Color ’, Colorset (1,:));

% title(’QREPS vs newQREPS ’);

if plot_flag ==1

close all

plot(new_Q (:,2),’k’,’LineWidth ’ ,2)

hold on

end

end

figure

plot(RmeanREPS (2:end ,1),’b’,’LineWidth ’ ,2)

hold on

plot(RmeanREPS (2:end ,1)+RmeanREPS (2:end ,2),’b’,’LineWidth ’ ,1)

plot(RmeanREPS (2:end ,1)-RmeanREPS (2:end ,2),’b’,’LineWidth ’ ,1)

title(’RmeanREPS ’)

% figure

% plot(RREPS)

% hold on

% plot(RmeanREPS)

% title(’Reward ’)

% legend(’RREPS ’, ’RmeanREPS ’)

%

end

%

function [R,Rmean ,new_mu ,new_S ,W,fs ,new_f] = policy2(Qg ,tg ,lambda ,Nk ,Q1 ,Q2 ,new_Q

,dt ,Id ,alphax ,alphaz ,betaz ,Nf ,d,w,new_f ,g,Nt ,P,tau ,Nupdates ,Qc2 ,l1 ,l2 ,l3 ,

theta)

% per on volem que passi

% Q1 = [0.4, 0.7, 0.15, 1.5, -0.1, -0.25, 0.1];

% t1 = Q(50,1);

fs = zeros(Nt ,d,Nk);

65

new_mu = w;

new_S = lambda*eye(d*Nf);

R = zeros(1,Nk);

WAM;

[Qc1 , Qc2] = change_ref(new_Q ,Q2 ,l1 ,l2 ,l3 ,theta ,Nt ,d,wam);

% middle point curve

Qpm(:,1) = Qc1(:,1);

for i = 1:Nt

Qpm(i,2:4) = (Qc1(i,2:4) + Qc2(i ,2:4)) / 2;

end

R(1) = mean(mean(-abs(Qpm(tg ,2:4) - Qg)));

W = zeros(d*Nf , Nk);

hold on

iter = 1;

Rmean=zeros(Nupdates ,1);

for iter =1: Nupdates

[iter Rmean(iter)]

% perform Nk rollouts

for k = 1:Nk

W(:,k) = mvnrnd(new_mu , new_S)’ ; % samples

clear new_f;

clear new_Q;

% new trajectory

new_Q (:,1) = Q1(:,1);

new_Q (1,2:d+1) = Q1(1,2:d+1);

new_Q(1,d+2:2*d+1) = Q1(1,d+2:2*d+1);

for i = 2:Nt

new_f(i,:) = (kron(Id , P(i,:))*W(:,k))’;

new_Q(i,2*d+2:3*d+1) = tau*alphaz* (betaz*(g - new_Q(i-1,2:d+1)

) - new_Q(i-1,d+2:2*d+1) / tau) + new_f(i,:);

new_Q(i,d+2:2*d+1) = new_Q(i-1,d+2:2*d+1) + dt*new_Q(i,2*d+2:22)

;

new_Q(i,2:d+1) = new_Q(i-1,2:d+1) + dt*new_Q(i,d+2:2*d+1);

end

%plot(new_Q (: ,2:8) ,’Color ’, Colorset (1,:));

WAM;

[Qc1 , Qc2] = change_ref(new_Q ,Q2 ,l1 ,l2 ,l3 ,theta ,Nt ,d,wam);

% middle point curve

Qpm(:,1) = Qc1(:,1);

for i = 1:Nt

Qpm(i ,2:4) = (Qc1(i ,2:4) + Qc2(i ,2:4)) / 2;

end

n = 3;

m = 1;

% break indx into 3 parts because n-m+1 = 3 (points definig the

variety)

66

indx1 = randi ([1 floor(Nt/3)], 1, 500);

indx2 = randi ([floor(Nt/3) floor (2*Nt/3)], 1, 500);

indx3 = randi ([floor (2*Nt/3) floor(Nt)], 1, 500);

[DIST , Qm] = mirr_traj(m,n,indx1 ,indx2 ,indx3 ,Nt ,d,Qc1 ,Qc2 ,Qpm);

% Evaluate Reward

R(k)= mean(mean(-abs(Qpm(tg ,2:4) - Qg)));

R(k)

fs(:,:,k) = new_f;

end

% plot(new_Q (: ,2:8) ,’Color ’, Colorset (1,:));

% title(’Q vs newQ ’)

% %legend(’Q’)

new_mu=zeros(Nf*d,1);

for i = 1:Nk

new_mu = new_mu + W(:,i)*exp(R(i)) / sum(exp(R));

end

new_S=zeros(Nf*d,Nf*d);

for i=1:Nk

new_S = new_S + (W(:,i) - new_mu)*(W(:,i) - new_mu)’*exp(R(i))/sum(

exp(R));

end

% new mean trajectory

clear new_f;

clear new_Q;

new_Q (:,1) = Q1(:,1);

new_Q (1,2:d+1)=Q1(1,2:d+1);

new_Q(1,d+2:2*d+1)=Q1(1,d+2:2*d+1);

%new_f=f_new;

for i = 2:Nt

new_f(i,:) = (kron(Id , P(i,:))*new_mu)’;

new_Q(i,2*d+2:3*d+1) = tau*alphaz* (betaz*(g - new_Q(i-1,2:d+1)) -

new_Q(i-1,d+2:2*d+1) / tau) + new_f(i-1,:);

new_Q(i,d+2:2*d+1) = new_Q(i-1,d+2:2*d+1) + dt*new_Q(i,2*d+2:3*d+1);

new_Q(i,2:d+1) = new_Q(i-1,2:d+1) + dt*new_Q(i,d+2:2*d+1);

end

WAM;

[Qc1 , Qc2] = change_ref(new_Q ,Q2 ,l1 ,l2 ,l3 ,theta ,Nt ,d,wam);

% middle point curve

Qpm(:,1) = Qc1(:,1);

for i = 1:Nt

Qpm(i,2:4) = (Qc1(i,2:4) + Qc2(i ,2:4)) / 2;

end

% Reward of the mean trajectory

Rmean(iter +1) = mean(mean(-abs(Qpm(tg ,2:4) - Qg)));

end

% figure

67

% plot(R)

% hold on

% plot(Rmean)

% title(’Reward ’)

% legend(’R’, ’Rmean ’)

%

end

function [REPS_output ,RmeanREPS ,new_mu ,new_S ,W,fs ,dws ,new_f ,MU ,SS] = policyREPS2

(Qg ,tg ,lambda ,Nk ,Q,new_Q ,Q2 ,dt ,Id ,alphax ,alphaz ,betaz ,Nf ,d,w,new_f ,g,Nt ,P,

tau ,Nupdates ,r,Qc2 ,l1 ,l2 ,l3 ,theta)

plot_flag =0;

dws =1;

% store parameters

SS=[];

MU=[];

% Compute Psi

Psi = zeros(r*Nf ,Nt*r);

for t = 1:Nt

Psi(: , ((t-1)*r + 1):((t-1)*r + r)) = (kron(eye(r), P(t,:)))’ ;

end

fs = zeros(Nt ,d,Nk);

new_mu = w;

new_S = lambda*eye(d*Nf);

RREPS = zeros(1,Nk);

WAM;

[Qc1 , Qc2] = change_ref(new_Q ,Q2 ,l1 ,l2 ,l3 ,theta ,Nt ,d,wam);

% middle point curve

Qpm(:,1) = Qc1(:,1);

for i = 1:Nt

Qpm(i,2:4) = (Qc1(i,2:4) + Qc2(i ,2:4)) / 2;

end

RREPS (1) = mean(mean(-abs(Qpm(tg ,2:4) - Qg)));

REPS_output=RREPS (1);

W = zeros(r*Nf , Nk);

%

% figure

% Colorset = varycolor (50);

% plot(Q(: ,2:8) ,’b’,’LineWidth ’,2)

% hold on

iter = 1;

% inicialize Omega

[U,S,V] = svd(new_f ’);

Om_old = U(:,1:r);

%inicialize mu and Sigma

f_aux = new_f ’;

z = zeros(r*Nt ,1);

68

for t = 1:Nt

z((t-1)*r+1 : t*r ,1) = pinv(Om_old)*f_aux(:,t);

end

Psi_aux = zeros(r*Nt ,Nf*r);

for t = 1:Nt

Psi_aux (((t-1)*r + 1):((t-1)*r + r) , :) = Psi(: , ((t-1)*r + 1):((t-1)*r +

r))’ ;

end

old_mu = pinv(Psi_aux) * z;

old_S = 1000* eye(r*Nf);

%inicialize de new_mu i new_S

new_mu = old_mu;

new_S = old_S;

% % nova traject ria

% new_Q (:,1) = Q(:,1);

% new_Q (: ,2:5) = Q(: ,2:5);

% new_Q (: ,6:9) = Q(: ,9:12);

% new_Q (: ,10:13) = Q(: ,16:19);

RmeanREPS=zeros(Nupdates +1,2);

for iter = 1: Nupdates %while(abs(Rmean(iter)) > 0.05)

[iter RmeanREPS(iter)]

RREPS = zeros(1,Nk);

% mu and Sigma

for k = 1:Nk

W(:,k) = mvnrnd(new_mu , new_S)’ ; % Sample

clear new_f;

clear new_Q;

% new trajectory

new_Q (:,1) = Q(:,1);

new_Q (:,2:d+1) = Q(:,2:d+1);

new_Q(:,d+2:2*d+1) = Q(:,d+2:2*d+1);

% fitting f

for t = 1:Nt

new_f(t,:) = (Om_old *(kron(eye(r), P(t,:))* W(:,k)))’;

end

% trajectory

for i = 2:Nt

new_Q(i,2*d+2:3*d+1) = tau*alphaz* (betaz*(g - new_Q(i-1,2:d+1)) -

new_Q(i-1,d+2:2*d+1) / tau) + new_f(i,:);

new_Q(i,d+2:2*d+1) = new_Q(i-1,d+2:2*d+1) + dt*new_Q(i,2*d+2:3*d+1);

new_Q(i,2:d+1) = new_Q(i-1,2:d+1) + dt*new_Q(i,d+2:2*d+1);

end

ALLQ{k}= new_Q (:,2:d+1);

if plot_flag ==1

69

plot(new_Q (:,2),’b’)

hold on

end

NEW_F{k} = new_f ’;

WAM;

[Qc1 , Qc2] = change_ref(new_Q ,Q2 ,l1 ,l2 ,l3 ,theta ,Nt ,d,wam);

% middle point curve

Qpm(:,1) = Qc1(:,1);

for i = 1:Nt

Qpm(i,2:4) = (Qc1(i,2:4) + Qc2(i ,2:4)) / 2;

end

n = 3;

m = 1;

% break indx into 3 parts because n-m+1 = 3 (points definig the variety)

indx1 = randi ([1 floor(Nt/3)], 1, 500);

indx2 = randi ([floor(Nt/3) floor (2*Nt/3)], 1, 500);

indx3 = randi ([floor (2*Nt/3) Nt], 1, 500);

[DIST , Qm] = mirr_traj(m,n,indx1 ,indx2 ,indx3 ,Nt ,d,Qc1 ,Qc2 ,Qpm);

RREPS(k)= mean(mean(-abs(Qpm(tg ,2:4) - Qg)));

end

% figure

% plot(-abs(new_Q (50 ,2:8) - Q1))

% title(iter)

% figure

% plot (0.000015* sum(new_Q (: ,16:22)).^2)

% title(iter)

REPS; %-> new_mu and new_S

Fweighted=zeros(d,Nt);

for i = 1:Nk

Fweighted = Fweighted+dw(i)*NEW_F{i}/sum(dw);

end

% build coordination matrix

if iter ~= 1

Om_old = Om ;

end

%

[U,S,V] = svd(Fweighted);

% if iter ==1

Om = U(:,1:r);

% end

O_old = kron(eye(Nt),Om_old);

O = kron(eye(Nt),Om);

M = pinv(O_old*Psi ’)*O*Psi ’;

if iter ~= 1

old_mu = new_mu;

old_S = new_S;

70

end

% update policy

new_mu = pinv(M)*old_mu;

new_S = pinv(M) * (old_S + (M*new_mu - old_mu) * (M*new_mu - old_mu)’) *

pinv(M)’;

% new trajectory

clear new_f;

clear new_Q;

new_Q (:,1) = Q(:,1);

new_Q (1,2:d+1)=Q(1,2:d+1);

new_Q(1,d+2:2*d+1)=Q(1,d+2:2*d+1);

Id = eye(r);

for t = 1:Nt

new_f(t,:) = (Om *(kron(eye(r), P(t,:))* new_mu))’;

end

for i = 2:Nt

new_Q(i,2*d+2:3*d+1) = tau*alphaz* (betaz*(g - new_Q(i-1,2:d+1)) -

new_Q(i-1,d+2:2*d+1) / tau) + new_f(i-1,:);

new_Q(i,d+2:2*d+1) = new_Q(i-1,d+2:2*d+1) + dt*new_Q(i,2*d+2:3*d+1);

new_Q(i,2:d+1) = new_Q(i-1,2:d+1) + dt*new_Q(i,d+2:2*d+1);

end

WAM;

[Qc1 , Qc2] = change_ref(new_Q ,Q2 ,l1 ,l2 ,l3 ,theta ,Nt ,d,wam);

% middle point curve

Qpm(:,1) = Qc1(:,1);

for i = 1:Nt

Qpm(i,2:4) = (Qc1(i,2:4) + Qc2(i ,2:4)) / 2;

end

% Reward

REPS_output(iter +1)= mean(mean(-abs(Qpm(tg ,2:4) - Qg)));

RmeanREPS(iter +1,:) = [mean(REPS_output) ,2*std(REPS_output)];

MU=[MU;new_mu ’];

SS=[SS;svd(new_S) ’];

% plot(new_Q (: ,2:8) ,’Color ’, Colorset (1,:));

% title(’QREPS vs newQREPS ’);

if plot_flag ==1

close all

plot(new_Q (:,2),’k’,’LineWidth ’ ,2)

hold on

end

end

figure

plot(RmeanREPS (2:end ,1),’b’,’LineWidth ’ ,2)

hold on

plot(RmeanREPS (2:end ,1)+RmeanREPS (2:end ,2),’b’,’LineWidth ’ ,1)

plot(RmeanREPS (2:end ,1)-RmeanREPS (2:end ,2),’b’,’LineWidth ’ ,1)

title(’RmeanREPS ’)

% figure

71

% plot(RREPS)

% hold on

% plot(RmeanREPS)

% title(’Reward ’)

% legend(’RREPS ’, ’RmeanREPS ’)

%

end

%% REPS

%input: Ekl =0.5

% REWARDS: Vector fila amb els rewards de les trajectories

% regularization: valor per regularitzar el rang de Sw , prendre

%0.001 , per exemple.

% SAMPLES: matriu on cada columna s un vector w de pesos d’una

% mostra. s a dir , cada columna s w-N(mw ,Sw)

%output:

% new_mu: mitja ponderada

%new_S: nova covarian a

%fmincon options

%dw: pesos

Ekl =0.5;

REWARDS= (RREPS -min(RREPS))/(max(RREPS)-min(RREPS));

SAMPLES=W;

regularization =1;

options = optimset(

fmincon);options.Display=’off’;options.Algorithm=’active-set’;ndatause=size(REWARDS,2);dualFunctionActual

= (eta_) dualfunction(eta_ , REWARDS , Ekl);

eta2 = fmincon(dualFunctionActual ,0.01 ,[], [], [], [], 0.0005 , 100,[],

options);

if or(eta2 ==100, eta2 ==0.0005)

warning(’Eta in its boundary ’)

eta2

end

dw=exp((REWARDS -max(REWARDS)*ones(size(REWARDS)))/eta2)’;

Z=(sum(dw)*sum(dw) - sum(dw .^ 2))/sum(dw);

% parameter distribution update

new_mu=sum(bsxfun(times, SAMPLES’, dw)’,2)./sum(dw);summ=0;for

ak=1:ndatausesumm=summ+dw(ak)*((SAMPLES(:,ak)-new_mu)*(SAMPLES(:,ak)-new_mu)’);endnew_S=summ./(Z+0.000000001);new_S=new_S+eye(size(new_S))*regularization;

function [Sc ,Sjerk]= rolloutcost(Ye ,Ydde ,npi ,Ppi ,Rpi)

r4=WAMarm4;

for i=1: size(Ye ,1)

Taa=fkine(r4 ,Ye(i ,1:4) ’)*[0;0;0.3;1];

Qaa=Taa (1:3 ,1);

%Xex=[Xex;Qaa ’];

if i<size(Ye ,1)

Ct(i)=circlecost(Qaa ,Ppi ’,npi ,Rpi);

72

else

Ct(i)=0;

end

if i>50

%Cs=norm(Ydde(i+1,:)-Ydde(i,:))^2/0.002;

Ca(i)=norm(Ydde(i,:))^2;

else

Ca(i)=0;

end

end

for i=1: size(Ye ,1)

Sc(i,1)=-(Ct(i));

Sjerk(i,1)=-(Ca(i))/5000000;

end

% r4=WAMarm4;

% length_traj =0;

% Qaa_all =[];

% for i=1: size(Ye ,1)

% Taa=fkine(r4 ,Ye(i,1:4) ’)*[0;0;0.3;1];

% Qaa=Taa (1:3 ,1);

% Qaa_all =[Qaa_all;Qaa ’];

% %Xex=[Xex;Qaa ’];

% if i<size(Ye ,1)

% Ct(i)=circlecost(Qaa ,Ppi ’,npi ,Rpi);

% else

% Ct(i)=0;

% end

% if i>1

% jump=norm(diff(Qaa_all(i-1:i,:)));

% length_traj=length_traj+jump;

% end

%

%

% if i>50

% %Cs=norm(Ydde(i+1,:)-Ydde(i,:))^2/0.002;

% Ca(i)=norm(Ydde(i,:))^2;

% else

% Ca(i)=0;

% end

% end

% for i=1: size(Ye ,1)

% Sc(i,1)=-(Ct(i));

% Sjerk(i,1)=-(Ca(i))/5000000;

% end

% close all

% plotcircles2

% Sc(end ,1)=Sc(end ,1)

% length_traj -2*pi*Rpi

function ColorSet=varycolor(NumberOfPlots)

% VARYCOLOR Produces colors with maximum variation on plots with multiple

% lines.

%

% VARYCOLOR(X) returns a matrix of dimension X by 3. The matrix may be

73

% used in conjunction with the plot command option ’color ’ to vary the

% color of lines.

%

% Yellow and White colors were not used because of their poor

% translation to presentations.

%

% Example Usage:

% NumberOfPlots =50;

%

% ColorSet=varycolor(NumberOfPlots);

%

% figure

% hold on;

%

% for m=1: NumberOfPlots

% plot(ones (20,1)*m,’Color ’,ColorSet(m,:))

% end

%Created by Daniel Helmick 8/12/2008

error(nargchk (1,1,nargin))%correct number of input arguements ??

error(nargoutchk (0, 1, nargout))%correct number of output arguements ??

%Take care of the anomolies

if NumberOfPlots <1

ColorSet =[];

elseif NumberOfPlots ==1

ColorSet =[0 1 0];

elseif NumberOfPlots ==2

ColorSet =[0 1 0; 0 1 1];

elseif NumberOfPlots ==3

ColorSet =[0 1 0; 0 1 1; 0 0 1];

elseif NumberOfPlots ==4

ColorSet =[0 1 0; 0 1 1; 0 0 1; 1 0 1];

elseif NumberOfPlots ==5

ColorSet =[0 1 0; 0 1 1; 0 0 1; 1 0 1; 1 0 0];

elseif NumberOfPlots ==6

ColorSet =[0 1 0; 0 1 1; 0 0 1; 1 0 1; 1 0 0; 0 0 0];

else %default and where this function has an actual advantage

%we have 5 segments to distribute the plots

EachSec=floor(NumberOfPlots /5);

%how many extra lines are there?

ExtraPlots=mod(NumberOfPlots ,5);

%initialize our vector

ColorSet=zeros(NumberOfPlots ,3);

%This is to deal with the extra plots that don ’t fit nicely into the

%segments

Adjust=zeros (1,5);

for m=1: ExtraPlots

Adjust(m)=1;

end

74

SecOne =EachSec+Adjust (1);

SecTwo =EachSec+Adjust (2);

SecThree =EachSec+Adjust (3);

SecFour =EachSec+Adjust (4);

SecFive =EachSec;

for m=1: SecOne

ColorSet(m,:)=[0 1 (m-1)/(SecOne -1)];

end

for m=1: SecTwo

ColorSet(m+SecOne ,:) =[0 (SecTwo -m)/(SecTwo) 1];

end

for m=1: SecThree

ColorSet(m+SecOne+SecTwo ,:)=[(m)/(SecThree) 0 1];

end

for m=1: SecFour

ColorSet(m+SecOne+SecTwo+SecThree ,:) =[1 0 (SecFour -m)/(SecFour)];

end

for m=1: SecFive

ColorSet(m+SecOne+SecTwo+SecThree+SecFour ,:) =[(SecFive -m)/(SecFive) 0

0];

end

end

function [DIST] = dist_fun(eix , Nt , d, Qc1 , Qc2)

for i = 1:Nt

dist(i) = norm(mirror(Qc1(i ,2:4) , eix) - Qc2(i ,2:4))^2;

end

DIST = sum(dist)+(norm(eix) -1)/10^2;

end

function [g] = dualfunction(eta , batch_return , epsilon)

n_batch = length(batch_return);

g=epsilon*eta+eta*(log(sum(exp((batch_return - max(batch_return))./eta))/n_batch

)) +max(batch_return);

if imag(g)>1e-15

warning(’Dual function with imaginary part’)

end

function [EIX] = desc_grad(n, m, Qc1 , Qc2 , Nt , d, eix0)

% n=space dimension

% m= number of eqs (n-dimension of the variety)

Nc = (n+1)*m; % number of components of the matrix eix

75

theta = eix0;

THETA (1,:) = theta;

pert = 0.00001; %perturbation

theta_min = theta;

dist_ref=dist_fun(theta ,Nt , d, Qc1 , Qc2);

alpha = 0.5;

for k = 2:150

theta = THETA(k-1,:);

[k dist_fun(theta , Nt , d, Qc1 , Qc2) alpha];

dist_old=dist_ref;

for j = 1:Nc

pert_j = zeros(1,Nc);

pert_j(j) = pert;

deriv(1,j) = (dist_fun(theta+pert_j ,Nt , d, Qc1 , Qc2) - dist_ref) /

pert;

end

THETA(k,:) = theta - alpha*deriv;

dist_ref=dist_fun(THETA(k,:),Nt , d, Qc1 , Qc2);

if(dist_fun(THETA(k,:), Nt , d, Qc1 , Qc2)<dist_fun(theta_min , Nt , d, Qc1 ,

Qc2))

theta_min = THETA(k,:);

end

if dist_ref < dist_old

alpha = 1.2* alpha;

end

if dist_ref > dist_old

alpha = 0.5* alpha;

end

if abs(dist_ref -dist_old)<1e-4

break

end

end

EIX = theta_min;

end

function [DIST , Qm] = min_traj(m,n,indx1 ,indx2 ,indx3 ,Nt ,d,Qc1 ,Qc2 ,Qpm)

% initial variety

dist_min = Inf;

eix_min = [1 0 0 0];

% several initial varieties

for i = 1:3

pbase = [Qpm(indx1(i) ,2:4) ,-1; Qpm(indx2(i) ,2:4) ,-1; Qpm(indx3(i) ,2:4) ,-1]’;

%l.i. check

M = pbase;

Z = zeros(n+1,1);

lam = null(M);

76

if (isempty(lam))

eix0 = (null(pbase ’))’; % equations defining eix0

[EIX] = desc_grad(n, m, Qc1 , Qc2 , Nt , d, eix0);

if(dist_fun(EIX , Nt , d, Qc1 , Qc2) < dist_min)

dist_min = dist_fun(EIX , Nt , d, Qc1 , Qc2);

eix_min = EIX;

end

end

end

[DIST] = dist_fun(eix_min , Nt , d, Qc1 , Qc2)

Qm = Qc2(:,1);

for i = 1:Nt

Qm(i,2:4) = mirror(Qc1(i,2:4), eix_min);

end

function [q] = mirror(p, eix)

S = size(eix);

n = S(2) -1;

m = S(1);

A = eix(:, 1:n);

b = eix(:, n+1);

x = zeros(n-m+1,n);

A_aux = [A ; rand(1,n)];

b_aux = [b ; rand (1)];

x(1,:) = pinv(A)*b;

i = 2;

while i <= n-m+1

%add equation

A_aux = [A ; rand(1,n)];

b_aux = [b ; rand (1)];

y = pinv(A_aux)*b_aux;

%check l.i.

M = [x(1:(i-1) ,:)’ y];

Z = zeros(n,1);

lam = pinv(M)*Z;

% if l.i. add to base

if isequal(lam , zeros(i,1))

x(i,:) = y’;

i = i+1;

end

end

% base of vectors vectors (not points)

for i = 2:(n-m+1)

v(i-1,:) = x(i,:)-x(1,:);

end

% find w orthogonal to all vectors in the base and with p+w in the variety

% i.e. A(p+w) = b;

77

M = A;

for i = 1:(n-m)

M = [M ; v(i,:)];

end

bp = b-A*p’;

bp = [bp ; zeros(n-m,1)];

w = pinv(M)*bp;

% q is the symmetric point of p wrt. eix

q = p + 2*w’;

78

