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Abstract 

The frequency of occurrence of an accident scenario is one of the key aspects to take into 
consideration in the field of risk assessment. This frequency is commonly assessed by a generic 
failure frequency approach. Although every data source takes into account different variables, 
aspects such as the human factor are not explicitly detailed, mainly because this factor is 
laborious to quantify. In the present work, the generic failure frequencies are modified using 
fuzzy logic. This theory allows the inclusion of qualitative variables that are not considered by 
traditional methods and to deal with the uncertainty involved. This methodology seems to be a 
suitable tool to integrate the human factor in risk assessment since it is specially oriented to 
rationalize the uncertainty related to imprecision or vagueness. A fuzzy modifier has been 
developed in order to introduce the human factor in the failure frequency estimation. 

In order to design the proposed model, it is necessary to consider the opinion of the experts. 
Therefore, a questionnaire on the variables was designed and replied by forty international 
experts. To test the model, it was applied to two real case studies of chemical plants. New 
frequency values were obtained and together with the consequence assessment, new iso-risk 
curves were plotted allowing to compare them to the ones resulting from a quantitative risk 
analysis (QRA). Since the human factor is now reflected in the failure frequency estimation, the 
results are more realistic and accurate, and consequently they improve the final risk assessment. 

Keywords: frequency, human factor, fuzzy logic, risk, accidents. 
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1. Introduction 

Ensuring safety in the chemical industry is a very complex task. This complexity 
derives from the variety of variables that have to be considered when analysing safety 
aspects, such as process hazards, natural hazards or human errors, and their relative 
interactions. With the aim of establishing how safe a chemical plant or process is, a 
parameter called risk has to be used. Risk can be quantified by calculating and then 
combining (often multiplying) the frequency and the magnitude of all the accidents that 
could occur in a specific plant, process or equipment (Casal, 2007).  

The frequency of an accident scenario is a key aspect in the risk assessment and it is 
commonly assessed by a generic failure frequency approach. The frequencies currently 
used in the chemical industry are based on historical data of incidents and the accuracy 
of their calculations is based on the quality of the data used. There are different sources 
of generic failure frequencies, for instance the Reference Manual Bevi Risk 
Assessments (BEVI, 2009), the Failure Rate and Event Data for use within Risk 
Assessments of the Health and Safety Executive (HSE, 2012), and the Handbook of 
Failure Frequencies of the Flemish Government (2009). The differences between them 
rely on the factors considered for their calculation and on the way the failures have been 
classified.   

Although each of the aforementioned sources takes into account different variables, 
aspects such as the mechanical failures or the human factor are not explicitly detailed. 
Furthermore, the human factor is a variable, that it is commonly excluded because of 
the complexity of its quantification. However, the current management of human factors 
has been increasingly recognized as playing a vital role in the control of risk. Health and 
Safety Executive (HSE, 2012), which is one of the sources of generic frequencies, 
recognizes that it is widely accepted that the majority of accidents in the chemical 
industry are generally attributable to human as well as technical factors. In this sense, 
human actions may initiate or contribute to the accidents’ occurrence. 

Considering this, it seems necessary to introduce the human factor, and the causes 
that lead to it, in the frequency calculation. To achieve this aim, in the present paper, 
fuzzy logic has been used. This theory allows the inclusion of qualitative variables 
usually not considered by traditional methods. Therefore, using fuzzy logic the human 
factor is going to be introduced in the failure frequency estimation by the development 
of a fuzzy frequency modifier. This methodology permits to reduce the inevitable 
uncertainty involved in the calculation of the frequencies, and to obtain more accurate 
and realistic values for both the frequency and the risk. The results obtained with fuzzy 
logic will be compared with other risk assessment methods. 

2. Frequency calculation 

Evaluating the frequency of an accident is essential in risk assessment since risk is 
calculated by multiplying the frequency in which an event occurs (or will occur) by the 
magnitude of its probable consequences (Casal, 2007). Since the frequency of an event 
will be adjusted by the fuzzy frequency modifier, consequently the overall value of the 
risk will be modified. The frequency calculation strongly depends on the quality of the 
failure rate data used, which is also notoriously laborious to collect. Therefore, in many 
cases there is not sufficient information available. The uncertainty present may be 
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associated with the lack of real time and up-to-date data for equipment failure rates, the 
difficulties in the inclusion of the influence of human errors, and with the wrong 
selection of the variables to analyse. Beerens et al. (2005) established that an important 
source of uncertainty in the results of risk assessment is caused by the use of different 
data sets for failure frequencies. 

It is commonly agreed that the frequency calculation depends also on other variables 
that are not taken into account in the accident databases. There exist different variables 
that may affect the calculation of this frequency and they have to be examined in order 
include them later on the final calculation. Databases do not often consider, in a direct 
way, important factors that should be included, such as human factors, mainly because 
those kinds of factors are complex to quantify. However, these databases contain 
generic failure frequencies values that can be used as a basis and play a very important 
role in risk assessments. Hauptmanns (2011) pointed out that a typical problem present 
in this field is the fact that these assessments are often performed without discussing the 
applicability of generic reliability data. This is the case of the well know methodology 
for risk assessment QRA (Quantitative Risk Assessment) which is a powerful analysis 
approach used to help manage risk and improve safety in many industries (Arendt et al., 
2010), this methodology creates risk contours or iso-risk lines in order to represent the 
risk and relies on the frequency and consequences of the accidents. These iso-risk 
contours can be changed if a modification it is done either in the frequency of the 
accident or their consequences (Seguí et al., 2014). 

In this risk assessment studies, it is a common practice to correct the standard values 
of frequencies, obtained from the aforementioned databases, by multiplying the value 
by different factors. As an example, when an accident can involve a potential domino 
effect, the frequency value is often multiplied by 2 (RIVM, 2009). The same happens 
with other factors such as the number of operating hours and number of tanks. 
Following this approach, in the current study the standard value of frequency will be 
multiplied by a fuzzy frequency modifier obtained through the fuzzy logic 
methodology, including in this way the effects of the human factor. The application of 
this methodology is detailed in the next section. 

3. Fuzzy methodology  

The aim of this paper is to include the human factor into the industrial risk analysis, and 
this is done through the creation of a coefficient that modifies the values of the generic 
failure frequency, based on fuzzy logic (and hence the name of “fuzzy frequency 
modifier”).  

This modifier will vary in a range from 1 to 1.5. This choice has been done taking 
into account the HSE statement, which assets that in the petrochemical industry the 
accidents attributed to human error account up to 50% (HSE, 2005). This means that in 
the best case (when there are no factors associated to human activities that can cause an 
accident), the generic failure frequency will not be changed by the fuzzy modifier, so its 
value will be equal to 1. In the worst case, when all the adopted parameters representing 
the human factor assume the maximum value (largest influence on the accident 
frequency), the fuzzy frequency modifier will get the maximum value equal to 1.5, so 
that the generic failure frequency can increase up to 50% of its initial value. 
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The first step of the methodology (Figure 1) requires the identification of variables 
that are relevant to the system (inputs and outputs). Then, the identified variables have 
to be fuzzified, which means that their values need to be converted into fuzzy numbers. 
This is known as the fuzzification process and is done using fuzzy sets (FS), linguistic 
variables and membership functions (MF). Once the inputs and outputs have been 
fuzzified, they have to be connected. This is done through the fuzzy inference process 
with the use of fuzzy rules and implication and aggregation processes. At the end, the 
process has to be inverted: from the linguistic parameter, it is necessary to obtain a crisp 
numeric value by the defuzzification process that gives the final output, which will be 
the value of the fuzzy modifier. All these steps will be further explained in detail. 

 

 
Figure 1. Fuzzy logic methodology (Gonzalez et al., 2013) 

3.1 Identification of the variables  

As the HSE guidance (HSE, 2005) states, a simple way to view human factors is to 
think about three aspects: the job, the individuals and the organization, and how they 
affects people’s health and safety-related behaviour. Based on this classification, a 
selection of the variables was made in order to create the model for this study. This 
selection considers that the overall human factor is composed of three different factors 
representative of three basic categories: Organizational Factor, Job Characteristic Factor 
and Personal Characteristic Factor. Each of these factors is further characterized by the 
influence of the basic variables shown in Figure 2 and explained next.  
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Figure 2. Human factor classification model 

3.1.1 Organizational factor 

This factor refers to the conditions provided by the company to generate a safe 
environment. This includes the communication between the different levels of the 
hierarchy, the incidents reporting culture, the conditions the company sets to recruit 
external personnel and the instructions that the organization gives to their employees in 
order to perform the job in the safest way possible. It takes into account three 
parameters: Contracting, Training and Communication & Reporting.  

3.1.2 Job characteristics factor 

The Job Characteristics Factor refers to the conditions that the company provide to the 
employees to perform their job. It concerns the management of the quantity of work 
assigned to each employee, the conditions that surround the workplace such as noise 
and air quality and the personal protection equipment that the employees need for the 
development of their daily tasks (earplugs, helmets, goggles) and the safety equipment 
of the plant (safety showers, labels). It takes into account three parameters: Workload 
Management, Environmental Conditions and Safety Equipment. 

3.1.3 Personal characteristics factor 

The Personal Characteristics Factor relates to the cognitive characteristics of the 
employees, their personal attitudes, skills, habits, attention, motivation and 
personalities, which can be strengths or weaknesses depending on the task. One of those 
elements or their combination can markedly influence the human error occurrence. It 
depends on two parameters: Skills & Knowledge and Personal Behaviour. 

 
According to Figure 1, the first step of the fuzzy logic methodology is to establish 

the inputs and outputs of the model. Next step involves the fuzzification phase. 

3.2 Fuzzification 

Fuzzification is the process of converting an input data into its symbolic representation 
by means of a fuzzy set, using a linguistic partition of the universe of the linguistic 
variables by computing the membership degree of the data to each fuzzy set (Nait-Said 
et al., 2008).  
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Design
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3.2.1 Fuzzy sets 

A fuzzy set is an extension of a crisp set used in classical logic, which divide the 
individuals into two groups: members (those that certainly belong to the set) and non-
members (those that certainly do not). The characteristic function of a crisp set assigns a 
value of either 1 or 0 to each individual, according to the membership of each individual 
to the set considered. If an object belongs into this crisp set, it is characterized by value 
1; if an object is not member the function assigns a value of 0. On the contrary, fuzzy 
logic is built around the central concept of fuzzy set. Hence, objects can belong to a 
fuzzy set with a certain membership degree (from 0 to 1), assigned by a characteristic 
function, called membership function, which will be explained in the next subsection. 

The fuzzy sets represent linguistic values, used to define a state of a variable or an 
input of the problem. The definition of these linguistic variables is a very important 
aspect of fuzzy logic models. Wang (1997) stated that the fuzzy linguistic variables are 
extensions of numerical variables in the sense that they are able to represent the 
condition of an attribute at a given interval by taking fuzzy sets as their values. This is 
because of these linguistic variables that the numerical data can be represented in more 
“human” qualitative expressions. Terms such as “small”, “large,” “medium,” “low”, 
“moderate”, or “high” can be used to integrate a range of numerical values.  

In order to include the human factor in a more comprehensive risk analysis, in the 
present paper, three linguistic variables were used for most of the inputs: Poor, Medium 
and Excellent, as seen in Table 1. However, for the final output (Fuzzy Frequency 
Modifier), five variables were used: very high, high, medium, low, very low. Table 1 
shows an example of the fuzzy sets for the training variable of the Organizational 
Factor. In the same way, fuzzy sets were created for each of the variables of the model. 

Table 1. Fuzzy sets for the training factor 
 

Training 

Poor There is neither training program in the organization nor procedures 
for employees on how to perform their work. 

Medium There is a basic training program in the organization, but no 
specific procedures on how employees have to perform their tasks. 

Excellent 
 

A full training program is established at the organization, including 
its evaluation and revision. There exist specific procedures on how 
to carry out each task. 

3.2.2 Membership functions 

The concept of fuzzy sets is strictly related to the concept of membership function. A 
membership function is a curve that defines how each point in the input space is 
mapped to a membership value between 0 and 1 (Mokhtari et al., 2011), where 0 is 
equal to 0% membership and 1 is equal to 100% membership.  

The shape of the membership functions may vary greatly and the selection of the 
most adequate one represents the last step in the fuzzification process. A number of 
parameters and equations are required for the definition of each type of membership 
function. In particular, for the creation of the fuzzy frequency modifier, three types of 
membership functions were used:  
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 Z-shape used for the lower fuzzy sets, this means for “poor” and “very low”. 
 S-shape used for upper fuzzy sets, this is for “excellent” and “very high”. 
 The Π-shape used for intermediate fuzzy sets, this means for “medium”, “low” 

and “high”. 

For each of them, different parameters are needed: for example, in the Z-shape 
membership function it is necessary to know two parameters (a and b) which locate the 
extremes of sloped portion of the curve given by the equation (1):  
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(Eq. 1) 

Once established the membership function and according to Figure 1, the next step in 
the methodology is the fuzzy inference process. 

3.3 Fuzzy Inference Process 

The Mandami model is the most common inference fuzzy process (Jang, 1997). Hence, 
once the inputs and outputs have been fuzzified, they have to be connected. This is done 
using fuzzy rules that connect various inputs (antecedents) with one output 
(consequent). This information is provided by experts or extracted from numeric data. 
Usually it is necessary to deal with more than one input variable  and therefore the 
antecedents are linked one to each other through the use of different fuzzy operators 
(i.e. not, and, or) (Ross, 2009). Each operator can be applied through different methods 
depending on the one that is chosen. Then, from the results obtained for each rule, an 
area needs to be identified. This process is known as implication and can be applied by 
different methods (Dubois and Prade, 1980). Finally, once the areas have been 
identified, they need to be joined through the aggregation process by which fuzzy sets 
of the output provided by each rule are combined in one single fuzzy set.   

For obtaining the information needed for the inference process, a specific 
questionnaire was designed and sent to 40 experts in fields of safety, human factor and 
fuzzy logic. The answers to the questionnaire provided the data required for the 
establishment of the weights and the formulation of the fuzzy rules. These steps are 
detailed in the following section. 

3.3.1 Establishment of weights 

The introduction of weights in the method is relevant since this step may significantly 
affect the failure frequency value calculated and also due to the fact that not all the 
variables may have the same importance. The mathematical method used for this 
purpose is the analytical hierarchy process (AHP) which is a tool used to facilitate the 
solution of complex problems in which numerous and conflicting information is 
involved (Saaty, 1990). To obtain the information needed, the experts had to compare 
two parameters at a time, and select the most appropriate among the available options 
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(e.g. equally important, extremely more important, etc.). For example, in Figure 3, the 
options available in the questionnaire to compare the relative importance of the 
workload management versus the environmental conditions are reported. 
 

 
Figure 3. Example of the options for the establishment of weights 
  

After applying the AHP methodology, the final weights were obtained. As it can be 
observed in Table 2, different values of the weights were obtained only for the first 
group of variables, with a higher relative importance (0.6) of training, compared to 
contracting and communication and reporting (both 0.2). This outcome will be reflected 
in the final frequencies results when the case scenarios are studied. 
 

Table 2.  Weights of the variables of the system 
 

Group 1 
 

Contracting 0.20 
Training 0.60 

Communication and 
Reporting 

0.20 

Group 2 Workload Management 0.33 
Environmental Conditions 0.33 

Safety Equipment 0.33 
Group 3 Skills and Knowledge 0.50 

Personal Behavior 0.50 
Group 4 Organizational Factor 0.33 

Job Characteristics Factor 0.33 
Personal characteristics 

Factor 
0.33 

3.3.2 Generation of the fuzzy rules 

Fuzzy rules are linguistic propositions used in fuzzy systems to connect the input with 
the output. Normally they are based on propositions following the structure if- then. The 
“if” part of a rule is called ‘antecedent part’, which states conditions on the input 
variable(s); the “then” part is called ‘consequent part’ and describes the corresponding 
state of the output variable(s). The formulation of the rules is required since the fuzzy 
inference process is based on the implication and aggregation of the rules outputs 
(Dubois and Prade, 1980). Consequently, this will provide a fuzzy number output. The 
information needed is obtained from the results of the experts’ questionnaire. These 
results allow choosing an output for each combination of the 3 input factors: 
Organizational factor, Job characteristics factor and Personal characteristics factor. In 
this way, the affection of all the variables on the different factors is obtained. 
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Figure 4. Formulation of the rules in the questionnaire 

For example, Figure 4 shows the affectation of Contracting, Training and 
Communication & Reporting on the Organization factor. A total of 90 fuzzy rules were 
obtained from the experts, which were evaluated and allowed to continue the 
methodology according to Figure 1. 

3.3.3 Implication 

Once all the rules are established, it is necessary to choose the operator to connect the 
antecedents (in this case AND), and the weights assigned to the final variables are 
determined, the next step can be carried out, which is the implication method. This step 
is a graphical process in which for each rule involved in the system, the membership 
degree of the consequent part (i.e. the output of the operators’ part) is transformed in an 
area value. The input for the implication process is a single number given by the 
antecedent, whereas the output is a fuzzy set.  

There exist different methods to carry out the implication process (Dubois and Prade, 
1980); the most commonly used and also chosen in this case for the inclusion of the 
human factor in risk analysis is the “minimum” implication method, which truncates the 
output membership function of the rule at the minimum value of membership. 

3.3.4 Aggregation 

Once the implication process is done, the last step of the inference process has to be 
carry out: the aggregation. In this process all the areas obtained by the implication 
process are combined together in one single fuzzy set, in order to obtain the fuzzy 
output of the system. It occurs only once for each output variable. Since the aggregation 
method is commutative, the order in which the rules are executed is not important. 

Similarly to the implication process, there are two methods that can be chosen to 
carry out the aggregation step: the maximum and the summation methods (Zadeh, 
1965). The maximum aggregation method gathers together the highest areas of the 
fuzzy sets of each consequent, whereas the summation aggregation method sums up all 
the areas of each consequent fuzzy sets. Several preliminary attempts with both methods 
were done, leading to the conclusion that the method, which provided the best results in 
terms of sensitivity of the model is the summation method.  

3.4 Defuzzification 

In order to complete the fuzzy logic methodology, and according to Figure 1, the final 
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step of defuzzification has to be carried out. Defuzzification is the process used to 
obtain a final crisp number that represents the final fuzzy output. The most common 
method is the centroid method (Klir and Yuan, 1995), also named centre of the area or 
centre of gravity. It gives the value within the range of output variables for which the 
area under the graph of membership function is divided into two equal subareas. 

 
The result of the defuzzification method will be the value of the final modifier, 

which will depend on the conditions of the fuzzy sets established for a specific scenario. 
In the next section, two case studies are presented, where some scenarios in a real 
chemical industry are used to test the efficacy of the fuzzy frequency modifier in a real 
specific situation. 

4. Case studies 

The corresponding data related of two real chemical industries (A and B) dedicated 
besides other activities, to the storage of flammable products. This data were applied in 
order to estimate the modified final failure frequency. The description of the companies 
are presented next, followed by the description of the method used to evaluate its 
performance. 

4.1 Definition of the scenarios 

The company A stores and distributes liquefied petroleum gas (LPG). The plant is 
spread over an area of 20000 m2, with one single access for the entrance/exit of vehicles 
and for the loading of LPG tanks. The facility also has an office building and 198 direct 
employees in the plant, 152 of whom are on fixed shifts and the remaining on rotating 
shifts. The company has also sub-contracted staff in the installation for specific 
operations. Regarding the equipment, the company has a storage area with a tank of 
213	m  of butane (tank 1) and a tank of 115	m  of propane (tank 2), both pressurized.  

 
The main activity of the second case study (company B) is the storage of flammable 

liquids and gases, their packaging and the development of gases for industrial use. The 
facility occupies an area of 7000 m2 with different work spaces but the most important 
is the storage of raw materials, for this operation the company has two LPG storage 
tanks: one of 46.6 tons (tank 1) and another (tank 2) of 24 tons containing cryogenic 
ethylene. This facility operates with 85 employees and with sub-contracted staff for 
specific operations. 

For both case studies, initial generic frequencies associated with the loss of 
containment events (LOCs) for pressurized storage tank aboveground were taken into 
account. These initial frequencies are the ones commonly used in traditional 
quantitative risk analysis. They are generally corrected depending on different factors as 
mentioned in section 1 (e.g. domino effect, working hours, etc.), according to the 
methodology described in CPR18E “The Purple Book” (2005). 
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Table 3 shows the selected events, their initial frequency and their corrected 
frequency in which the domino effect has been taken into account, multiplying the 
original frequency by two. These events can result in different kinds of final accidents 
as can be seen in Figure 5 (example referred to release scenario G.1), where, in order to 
be consistent with the used frequency values (obtained from the Bevi Risk Assessments 
Reference Manual, 2009), the event tree structure reported there has been adopted. 
Using the probability data of the event trees associated to the selected events, the final 
probability of occurrence for each accident can be obtained. 
 

Table 3. LOCs, initial and corrected frequencies 
 

Code	 Loss	of	containment	events	(LOC)	 Initial	
frequency

Corrected	
frequency	

G.1	 Instantaneous release of entire contents 5x10-7 1x10-6 

G.2	 Release of entire contents in 10 min. in a 
continuous and constant stream 

5x10-7 1x10-6 

G.3	 Continuous release of contents from a hole 
with an effective diameter of 10 mm 

1x10-5 2x10-5 

 
Initial event  Immediate ignition  Delayed ignition BLEVE occurrence VCE Consequences

 

 

 

 

   

P3 

 

 

 BLEVE + Pool fire 
     

  P1   

    P4 VCE 

      1‐ P3  +Pool fire 

       

Instantaneous 

release (G.1)        1‐ P4  Flash fire 

      +Pool fire 

       

      P4 VCE 

+ Pool fire     P2 

       

  1‐ P1    1‐ P4 Flash fire 

 

       

+ Pool fire  

 

    1‐ P2 
No consequences 

     

Figure 5. Event tree from an instantaneous release (G.1) of a LPG storage tank 

4.2 Evaluation method of the company’s performance 

An accurate analysis of the performance of the selected company is required in order to 
apply the model. With this information, it will be possible to assign linguistic variables 
to the different elements related with the human factor. In order to do so, it was decided 
to define eight questions following the HSE approach (HSE, 2011) for each variable, 
which the company’s representative has to answer by choosing among three different 
options. Figure 6 gives an example of two of the eight questions of the poll for the 
contracting variable of the organizational factor based on the document "Managing 
contractors - A guide for employers” (HSE, 2011). 
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Figure 6. Example of the poll questions for the “contracting” variable 

The three options belonging to each question represent a numeric value (a=8, b=5, 
c=2). The sum of the results for each variable (from the eight questions) is compared 
with a fixed score range. These have been established in accordance with the HSE 
classification reported for Managing contractors (HSE, 2011). Consequently, the 
linguistic variable corresponding to each variable is going to be determined (Table 4): 
“poor” (16-32), “medium” (33-47) or “excellent” (48-64).  A numerical value is 
assigned according to the range in which the result is found (see Table 4), which will be 
introduced in the fuzzy model. From here, a result for each factor will be obtained 
(organizational, job and personal characteristics), as well as for the frequency modifier. 
This will lead to obtain the modified final frequencies of the different scenarios.   

 
Table 4. Correlation between final scores, linguistic variables and numeric 

values used in the fuzzy toolbox 
 

Linguistic 
variable 

Scores 
range 

Numerical 
value 

LOW  16-19 0 

(16‐32)  20-23 1 

24-27 2 

28-32 3 

MEDIUM 33-37 4 

(33-47) 38-42 5 

 43-47 6 

48-52 7 

EXCELLENT 53-56 8 

(48-64) 57-60 9 

61-64 10 

 

5.  Results and Discussion 

Different results are presented in this section, such as the performance of the companies, 
the values of the modifier, the final modified frequencies and the new iso-risk curves 
generated in comparison with a QRA without the modified frequencies.  

1. Does the company always know who is on the site? 

(a) Yes   (b) Most of the time  (c) Occasionally 

2. Has there ever been a major incident or accident involving contractors?  

(a) No    (b) I do not know  (c) Yes  
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5.1 Companies performance 

Table 5 reports the results of the performance of both of the companies for each human 
factor variable and it contains: 

 The total scores of  each variable resulting from compiling the poll evaluation 
 The corresponding fuzzy sets (linguistic variables) obtained according to the 

ranges defined in Table 4 
 The numeric values, resulted from the correlation presented in Table 4, which 

have been introduced in the fuzzy toolbox in order to calculate the fuzzy 
modifier that will affect the initial failure frequency. 

Table 5. Poll results for the considered company. 

5.2 Fuzzy frequencies modifier values 

Thus, it is now possible to introduce the determined numerical values for each variable 
in the developed model. This phase corresponds to the final step of all the procedure. Its 
aim is to determine the value of the fuzzy frequency modifier.  

Through the analysis carried out using the AHP method (see section 3.3.1) different 
values of weights for the three variables that compose the organizational factor were 
obtained (Contracting: 0.2, Training: 0.6, Communication and Reporting: 0.2). Whereas 
for the rest of the variables no difference in weight were found. Consequently, two 
different values for the modifier have been obtained for each company, one considering 
the weights and one not (table 6). 

 

 

 

 

    Company A Company B 

   
Total 
score 

Fuzzy set 
Numerical 
value 

Total 
score 

Fuzzy set 
Numerical 
value 

Organizational 
factor 

Contracting  19 Poor 0 64 Excellent  10 

Training  25 Poor 2 64 Excellent  10 

Communication 
& Reporting 

34  Medium  4  56  Excellent  8 

Job 
characteristics 

factor 

Workload 
management 

34  Medium  4  64  Excellent  10 

Environmental 
conditions 

43  Medium  6  64  Excellent  10 

Safety 
equipment 

22  Poor  1  64  Excellent  10 

Personal 
characteristics 

factor 

Personal 
behavior 

31  Poor  3  51  Excellent  7 

Skills & 
Knowledge 

29  Poor  3  51  Excellent  7 
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Table 6. Values of the modifier for each company 
 

Variable 

Company A Company B

Value  
Value with 
weights 

Value  
Value with 
weights 

Organizational 
factor 

1.74  1.48  8.42  8.19 

Job characteristic 
factor 

2.69  2.69  8.54  8.54 

Personal 
characteristic 

factor 
3.41  3.41  5.86  5.86 

Fuzzy frequency 
modifier 

1.39  1.41  1.15  1.16 

As it can be seen, two values of fuzzy frequencies modifier have been obtained for 
each company: 1.39 without weights and 1.41 with weights for company A and 1.15 
without weights and 1.16 with weights for company B. Since the results of the AHP 
showed that the only factor with different weights is the organizational factor (with 
training variable significantly more important than the rest), the difference between the 
modifiers is not significant. However, within the same category the differences on the 
variable selected (organization factor) are more relevant.  

5.3. Final frequency values 

In the next table, the results of the different scenarios are presented: the final 
frequencies obtained by the QRA method, the final frequencies modified by the fuzzy 
frequency modifier, and the ones considering the weights of the variables. 

 
Table 7. Final fuzzy frequencies values 

 

Company  LOCs* 
Fuzzy 

modifier 
value 

Fuzzy 
modifier 
value 
with 

weights 

Accident 

QRA final frequency
(years‐1) 

Fuzzy modified final 
frequency (years‐1) 

Fuzzy modified final 
frequency with 
weights (years‐1) 

Tank 1   Tank 2  Tank 1   Tank 2   Tank 1   Tank 2  

A 

G.1  1.39  1.41 

BLEVE  4.90x10‐7  4.90x10‐7  6.71 x10‐7 6.71 x10‐7  6.81 x10‐7  6.81 x10‐7

Pool fire  7.54 x10‐7 7.54 x10‐7  1.03 x10‐6 1.03 x10‐6  1.05 x10‐6  1.05 x10‐6

Explosion  1.20 x10‐7 1.20 x10‐7  1.64 x10‐7 1.64 x10‐7  1.67 x10‐7  1.67 x10‐7

Flash fire  1.80 x10‐7 1.80 x10‐7  2.47 x10‐7 2.47 x10‐7  2.50 x10‐7  2.50 x10‐7

G.2  1.39  1.41 

Jet fire  7.00 x10‐7 5.00 x10‐7  9.59 x10‐7 6.85 x10‐7  9.73 x10‐7  6.95 x10‐7

Pool fire  7.54 x10‐7 6.50 x10‐7  1.03 x10‐6 8.91 x10‐7  1.05 x10‐6  9.04 x10‐7

Explosion  3.60 x10‐7 1.00 x10‐7  4.93 x10‐7 1.37 x10‐7  5.00 x10‐7  1.39 x10‐7

Flash fire  5.40 x10‐7 1.50 x10‐7  7.40 x10‐7 2.06 x10‐7  7.51 x10‐7  2.09 x10‐7

G.3  1.39  1.41 

Pool fire  4.00 x10‐6 4.00 x10‐6  5.48 x10‐6 5.48 x10‐6  5.56 x10‐6  5.56 x10‐6

Flash fire  1.68 x10‐5 1.68 x10‐5  2.30 x10‐5 2.30 x10‐5  2.34 x10‐5  2.34 x10‐5

 Jet fire  1.28 x10‐5 1.28 x10‐5  1.75 x10‐5 1.75 x10‐5  1.78 x10‐5  1.78 x10‐5
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B 

G.1  1.15  1.16 

Pool fire  7.90x10‐7  7.54 x10‐7  9.39 x10‐7 9.09 x10‐7  9.17 x10‐7  8.75 x10‐7

Flash fire  1.80 x10‐7 1.80 x10‐7  2.07 x10‐7 2.07 x10‐7  2.09 x10‐7  2.09 x10‐7

Explosion  1.20 x10‐7 1.20 x10‐7  1.38 x10‐7 1.38 x10‐7  1.46 x10‐7  1.46 x10‐7

BLEVE  4.90 x10‐7 4.90 x10‐7  5.64 x10‐7 5.64 x10‐7  5.67 x10‐7  5.67 x10‐7

G.2  1.15  1.16 

Jet fire  6.50 x10‐7 6.50 x10‐7  7.48x10‐7  7.48 x10‐7  7.54x10‐7  7.54 x10‐7

Pool fire  9.00 x10‐8 9.00 x10‐8  1.04 x10‐7 1.04 x10‐7  1.05 x10‐7  1.05 x10‐7

Explosion  6.00 x10‐8 6.00 x10‐8  6.90 x10‐8 6.90 x10‐8  6.96 x10‐8  6.96 x10‐8

Flash fire  5.00 x10‐7 5.00 x10‐7  5.75 x10‐7 5.75 x10‐7  5.80 x10‐7  5.80 x10‐7

G.3  1.15  1.16 

Pool fire  8.80 x10‐6 8.80 x10‐6  1.01 x10‐5 1.01 x10‐5  1.02 x10‐5  1.02 x10‐5

Flash fire  4.80 x10‐6 4.80 x10‐6  5.52 x10‐6 5.52 x10‐6  5.57 x10‐6  5.57 x10‐6

   Jet fire  4.10 x10‐6 4.10 x10‐6  4.60 x10‐6 4.60 x10‐6  4.76 x10‐6  4.76 x10‐6

* Loss of containment events (LOCs) in table 3 

According to the results shown in table 7, it can be observed that the most common 
accidental scenario is the Pool fire from the continuous release of contents from a hole 
with an effective diameter of 10 mm for both tanks (butane and propane). In this case, 
both frequencies changed from occurring 1.68 x10-5 times each year to the occurrence 
of 2.30 x10-5 times each year (2.34 x10-5 each year with weights). 

The new final frequencies obtained are slightly higher than the previous ones. The 
reason of this increase is the inclusion of the human factor into the calculation. In most 
of the cases, the variation is not greater than one order of magnitude, this is normal 
since the objective was to improve the frequency, not to modify it drastically.  

5.4 Risk assessment 

As mention in section 2, the QRA methodology also takes into account the magnitude 
of the consequences (i.e. jet fire, BLEVE, etc.) in order to represent the risk. Thus, the 
fuzzy modifier not only affects the frequencies of the accident, but also the overall risk. 
In order to compare the risk obtained by this methodology, the consequences of the 
accidents were calculated. Table 8 shows the magnitude of the consequences for 
different accidents (e.g. Pool fire, BLEVE) in the particular case of an instantaneous 
release for entire content (G1) of the butane tank (tank 1) from company A.  
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Table 8.  Consequences for an instantaneous release of entire content for company A 
 

 
 

 

 

 

 

 

 

 

 

 

 

In the same way, all the consequences for each loss of containment events considered 
and for all the accidents listed in table 7 were calculated. Since the difference between 
the modified final frequencies with and without weights were not significant, it was 
decided to use the modified final frequencies without the weights for the final 
calculations. Thus, with the new modified frequency values obtained and the magnitude 
of the consequences of all the accidents, the risk can be calculated. This risk is 
represented by iso-risk curves plotted in a geographical map. These curves were done 
using the RISKCURVES (TNO, 2012b). 
 

Company A ‐ Tank 

of butane data 
Leak scenario data 

Capacity of the 

tank in normal 

operation (kg): 

62.668 (50% of 

useful volume) 

BASIC CONDITIONS 

Amount release (kg): 62.668 

Flash + pull (%): 21% 

Amount initially evaporated (kg): 13.286 

Amount incorporated to the liquid pool (kg): 49.382 

EXPLOSION CONDITIONS 

Amount of gas between L.I D/5 (kg): 8.173 

Amount of gas between L.I F/1,7 (kg): 7.667 

ACCIDENT  LETHAL AREAS 

Pool fire 

Range LC100 (m): 39 

Range LC50 (m): 58 

Range LC1 (m): 76 

Flash fire 

Maximum range LEL D/5 (m): 340 

Half‐width of the frustum D/5 (m): 120 

Maximum range LEL F/1,7 (m): 387 

Half‐width of the frustum F/1,7 (m): 260 

Explosion 
Range LC100 D/5 (m): 75 

Range LC100 F/1,7 (m): 74 

BLEVE 

Range LC100 (m): 182 

RangeLC50 (m): 240 

Range LC1 (m): 375 
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   (A)     (B) 

Figure 4. Iso-risk curves for company A and B 

Figure 4 shows four iso-risk curves for each companies (A and B), the continuous 
curves lines represent the iso-risk contours resulting from a QRA without the modified 
frequencies (10-5 year-1 in a thick black line and 10-6 years-1 in a thin black line) whereas 
the non-continuous curves lines represented the iso-risk contours affected with the fuzzy 
frequency modifier (10-5 year-1 in a thick black line and 10-6 years-1 in a thin black line). 
For the company A it can be observed an increase of both the iso-risk contours (10-5 
year-1 and 10-6 years-1). Otherwise, for the company B the increase is not that high, 
especially in the 10-5 year-1 contour (each curve corresponds to one tank) where the 
change is almost insignificant (for this reason, only a continuous thick contour has been 
plotted), in any case, a major increase is noted for the 10-6 years-1 contour. 

The reason lies in the fact that for the company A, the conditions of the human 
factors considered were generally “poor” and the value of the fuzzy frequency modifier 
obtained was higher (1.39) in comparison with the company B, where the human factors 
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conditions were “excellent” and the value of the modifier was lower (1.15). Looking at 
the iso-risk curves it can be seen now that changing a little bit the frequency can 
improve the whole risk assessment in a significant way. 

6. Conclusions  

With the aim of taking in to account the human factor, a fuzzy frequency modifier was 
created using the fuzzy set theory. This allows to adjust the commonly adopted values 
of the frequencies of the various accidental events identified in risk assessment. To 
acquire the necessary data for the definition of the fuzzy rules and the weights of the 
involved variables, a questionnaire was developed to collect information from experts, 
following the fuzzy logic methodology. The methodology was tested o four case studies 
represented by companies that stores flammable and toxic products and whose safety 
characteristics were evaluated through a poll, in order to obtain the fuzzy sets required 
for the calculation of the fuzzy frequency modifier. 

Three accidental events represented by the loss of containment from pressurized 
tanks were selected and their initial frequencies were estimated according to generic 
references. The probability data of the different accidental events contained in the 
corresponding event trees were also established. Those initial frequencies were first 
corrected by traditional methods and then, the fuzzy modifier was applied. Three 
different results were achieved: a final frequency obtained by traditional methods 
following the methodology of “The purple book” (2005) and the “Reference Manual 
BEVI Risk Assessment Guide” (2009), a modified final frequency using the fuzzy 
modifier value, and a modified final frequency taking into account the specific weights 
assigned by the experts to the single variables.  

The new frequencies obtained are higher than those derived from the generic 
databases, in accordance with the safety culture characteristics of the studied company. 
Consequently, the results obtained using the modifier are expected to represent more 
realistic values of the accident frequencies, since they include the specific influence of 
the human factor. In order to obtain the overall risk and compare it with the QRA 
methodology, the consequences of the accidents were obtained with these values, it was 
possible to represent the risk in form of iso-risk contours for both companies. 

Finally, the relatively higher result of the frequencies obtained, especially for 
company A, was reflected in an increase of the iso-risk contours, this implies a more 
conservative approach leading to the increase of safety measures and therefore a 
reduction of potential accidents. In addition, the recognized successful application of 
fuzzy logic in a number of other different areas proves that this theory can be a very 
useful tool, even in the risk assessment field, allowing the adoption of improved and 
adequate safety measures where required. 

 
 
References 
 

Beerens, H. I., J. G. Post, and P. A. M. Uijt de Haag., 2006. The Use of Generic 
Failure Frequencies in QRA: The Quality and Use of Failure Frequencies and How to 
Bring them up-to-Date. Journal of Hazardous Materials 130, 265–70.  



18 
 

Casal, Joaquim., 2007. Evaluation of the effects and consequences of major 
accidents in industrial plants. Elsevier Science. The Netherlands 

Dubois, Didier J., and Henry Prade., 1980. Fuzzy Sets and Systems: Theory and 
Applications. Academic Press. NY.  

Flemish Government. 2009. Handbook of failure frequencies for drawing up a safety 
report. Environment, Nature and Energy Policy Unit. 
http://www.lne.be/themas/veiligheidsrapportage/rlbvr/bestandenrlbvr/tr/vr_rlbvr_rl_hbf
f_EN.pdf  (Oct. 10, 2012). 

J.R. González, J.R., R.M. Darbra, R.M., J. Arnaldos, J., 2013. Using Fuzzy Logic to 
Introduce the Human Factor in the Failure Frequency Estimation of Storage Vessels in 
Chemical Plants. Chemical Engineering Transactions 32, 193-198. 

Hauptmanns, Ulrich., 2011. The Impact of Differences in Reliability Data on the 
Results of Probabilistic Safety Analyses. Journal of Loss Prevention in the Process 
Industries 24, 274–280.  

Health and Safety Executive (HSE). 2005. Human Factors in the management of 
major accident hazards.  
http://www.hse.gov.uk/humanfactors/topics/toolkitintro.pdf (Nov. 17, 2012). 

Health and Safety Executive (HSE). 2011. Managing contractors – A guide for 
employers. 
 http://www.hse.gov.uk/pubns/priced/hsg159.pdf (Nov. 16, 2012). 

Health and Safety Executive (HSE). 2012. Failure Rate and Event data for use within 
Risk Assessments.  
http://www.hse.gov.uk/landuseplanning/failure-rates.pdf (Dec. 03, 2012). 

Jang, J. 1997. Fuzzy inference systems. Prentice- Hall. NJ. 
Klir, George Jri, and Bo Yuan., 1995. Fuzzy Sets and Fuzzy Logic: Theory and 

Aplications. Prentice-Hall. NJ. 
Mokhtari, Hadi, Isa Nakhai Kamal Abadi, and Ali Cheraghalikhani., 2011. A Multi-

Objective Flow Shop Scheduling with Resource-Dependent Processing Times: Trade-
off between Makespan and Cost of Resources. International Journal of Production 
Research 49, 5851–5875.  

Nait-Said, R., F. Zidani, and N. Ouzraoui., 2008. Fuzzy Risk Graph Model for 
Determining Safety Integrity Level. International Journal of Quality, Statistics, and 
Reliability, 1–12.  

TNO, 2012b. TNO Safety Software. RISKCURVES Version 7. User and Reference 
Manual. 

RIVM. 2009. Reference Manual Bevi Risk Assessment, version 3.2. 
http://www.rivm.nl/en/RIVM (Nov. 02, 2012). 

Ross, Timothy J., 2009. Fuzzy logic with engineering applications. John Wiley & 
Sons. United Kingdom. 

Saaty, Thomas L., 1994. How to Make a Decision: The Analytic Hierarchy Process. 
Interfaces 24, 19–43.  

Seguí, X., Darbra, R.M., Vílchez, Juan A., and Arnaldos, J., 2014. Methodology for 
the quantification of toxic dispersions originated in warehouse fires and its application 



19 
 

to the QRA in Catalonia (Spain). Journal of Loss Prevention in the Process Industries 
32. 404-414. 

Wang, L.X., 1997. A Course in fuzzy systems and control. Prentice-Hall. NJ 
Zadeh, L.A., 1965. Fuzzy Sets. Information and Control 8, 338–353.  

 


