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Abstract

In 1964, V. I. Arnol’d proved the existence of nearly-integrable Hamiltonian
systems which have global instabilities (global chaotic behaviour). This phe-
nomenon is nowadays termed under the name Arnol’d diffusion. One of the key
ideas that he used is to “travel” along invariant manifolds of the Hamiltonian
system. The purpose of this project is to understand the Arnol’d instability
mechanism and study new ones using different invariant objects.

Keywords: Arnol’d diffusion, Melnikov function, Near-integrable Hamilto-
nian system, splitting of separatrices.
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Introduction

“Il peut arriver que des petites différences dans les conditions initiales
en engendrent de très grandes dans les phénomènes finaux ; une petite
erreur sur les premières produirait une erreur énorme sur les derniers.
La prédiction devient impossible et nous avons le phénomène fortuit.”

– Henri Poincaré, Science et Méthode

Dynamical Systems

The first idea one could have of a dynamical system is an object which is used
in order to model a physical phenomenon whose state changes over time. Such
models are used in financial and economic forecasting, environmental modelling,
medical diagnosis, industrial equipment diagnosis, and a host of other applica-
tions. From a mathematical point of view, a continuous dynamical system is a
differential equation

ẋ = f(x),

where f : U ⊂M → N is a smooth function and M and N are manifolds. If the
system can be solved, it can be integrated to find its solutions. Then, given an
initial point it is possible to determine all its future positions. Such a collection
of points is known as a trajectory or orbit of the dynamical system, which is
given by the flux (also semigroup) φ(t; t0, z0).

Finding an orbit may require sophisticated mathematical techniques and can
be accomplished only for a small class of dynamical systems. This leads to the
search of techniques that help understand the behaviour of a system from a
qualitative point of view, even when the solutions cannot be computed. The
collection of such techniques define a field which is nowadays referred to as
qualitative theory of dynamical systems, and started with the work of Henry
Poincaré in New Methods of Celestial Mechanics (1899), which is considered
the first oeuvre in the subject. The methods developed therein laid the basis
for the local and global analysis of nonlinear differential equations, including the
use of first-return (Poincaré) maps, stability theory for fixed points and periodic
orbits and stable and unstable manifolds. More strikingly, using the example of
a periodically-perturbed pendulum, Poincaré showed that mechanical systems
with n ≥ 2 degrees of freedom may not be integrable, due to the presence of
homoclinic orbits.
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INTRODUCTION

Hamiltonian Systems

In many cases, dynamical systems have a special structure which makes them
somewhat rigid, but also gives them a bunch of very useful properties. We refer
to Hamiltonian systems, and they can be introduced in a natural way by means
of the well-known Newton’s Second Law, which describes the relation between
the forces that are exerted onto a body whose mass is m and its acceleration,
namely

ma =
∑
i∈I

Fi.

This law gives rise to a system of second-order differential equations in Rn and
so to a system of first-order equations in R2n. When the forces are “derived”
from a potential function (in a way that needs to be specified), the system
is called conservative. Under this condition, the equations of motion of the
mechanical system have many special properties, which can be easily formalised
in the setting of Hamiltonian systems.

A Hamiltonian system is a system of 2n differential equations of the form
q̇ =

∂H

∂p
(q, p, t),

ṗ = −∂H
∂q

(q, p, t),

where
H : U = Ů ⊂ R2n+1 −→ R

(q, p, t) 7−→ H(q, p, t)

is a smooth real-valued map called the Hamiltonian. The system is then said
to have n degrees of freedom, and the vectors q = (q1, q2, . . . , qn) and p =
(p1, p2, . . . , pn) are called its positions and momenta, respectively. Alternatively,
q and p are called the actions and angles, respectively. The choice of either
of these two terminologies depends on the context of the problem. The terms
position and momentum relate to a Classical Mechanics context, while the terms
action and angle are more used in Celestial Mechanics. These and other basic
definitions and results in Hamiltonian systems can be found in Chapter 1.

Given a Hamiltonian system, a first integral or conserved quantity is a smooth
function F : U → R that is constant along the solutions of the system, that is

F (φ(t, z0)) = F (z0) = constant.

The level surfaces F−1(c) ⊂ R2n, where c is a constant, are invariant sets. In
general, they are (2n − 1)−manifolds. In the (very special) case when there
are 2n − 1 independent integrals F1, F2, . . . , F2n−1, then fixing them defines
a solution curve in R2n, and in the classical sense, the problem is said to be
integrated.

There is a whole theory that focuses on the integrability of Hamiltonian sys-
tems, which we concentrate in Chapter 2. We say that a system of differential
equations in Rn is integrable by quadratures if its solutions can be computed by
a finite number of algebraic operations (including inversion of functions) and
quadratures (i.e. computation of integrals of known functions). As we shall see,
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all 1−degree-of-freedom Hamiltonian systems are integrable in this sense. For
Hamiltonian systems with more degrees of freedom, the integrability is subject
to the existence of a “large enough” set of first integrals. Liouville-Arnol’d’s
Theorem (see Theorem 2.1.4) states that if these conserved quantities satisfy
certain conditions, there exists a submanifold which is invariant under the flow
associated to any Hamiltonian defined by one of the integrals. Moreover, it gives
a topological classification of the submanifold.

Hamiltonian systems which satisfy Liouville-Arnol’d’s Theorem are called
completely integrable. A particular case occurs when the invariant submani-
fold is compact and connex. Then, it is diffeomorphic to an n−dimensional
torus

Tn = {(ϕ1, ϕ2, . . . , ϕn) : ϕi = R/2πZ}, ϕi = ϕ0
i + tωi,

where n is the number of first integrals F1, F2, . . . , Fn : U ⊂ R2n → R. We say
that the motion is quasiperiodic with frequency vector ω = (ω1, ω2, . . . , ωn) (see
Definition 2.1.1). Moreover, ω is called

� non-resonant or rationally-independent if ω · k 6= 0, for any k ∈ Zn \ {0},

� resonant or rationally-dependent if there exists k∗ ∈ Zn \ {0} such that
ω · k∗ = 0.

An important consequence of Liouville-Arnol’d’s Theorem is that it gives a
system of coordinates which is particularly suitable for studying completely-
integrable systems. These are the so-called action-angle coordinates. The ac-
tions are usually denoted by I and the angles by θ (also ϕ or φ). In Sec-
tion 2.1.2.1 we shall see that any completely-integrable Hamiltonian system in
action-angle coordinates can be written as H(ϕ, I) = H(I), so that H does not
depend on the angles.

Near-Integrable Hamiltonian Systems and Arnol’d Diffusion

Sometimes we consider Hamiltonian systems of the form

H(θ, I) = H0(I) + εH1(θ, I),

for ε � 1, θ ∈ Tn and I ∈ V ⊂ Rn. These systems, which are treated in
more detail in Chapter 3, result from a small perturbation of an integrable
Hamiltonian system. Even though the perturbation can be very small, it can
cause significant changes in the dynamics of the complete system, as is evidenced
by its equations of motion, namely{

θ̇ = ∂IH0(I) + ε∂IH1(θ, I),

İ = −ε∂θH1(θ, I).

If ε = 0, the actions are constants of motion and orbits are confined to Tn =
{I = I0}. For ε > 0, we have İ = ε, hence the actions change much more slowly
than the actions. This brings up two questions:

� when we let 0 < ε � 1, are there still some invariant n−dimensional
tori, even if slightly deformed? In the literature, such tori are said to
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persist under the perturbation, and even if in principle some tori persist,
we expect some others to disappear, for otherwise the whole system would
still be integrable;

� which of these tori I = I0 persist and which break down, and what is the
new dynamics that they originate?

The answer to the first question is affirmative. Moreover, persistent tori
correspond to those that have “sufficiently irrational” frequencies (see Defini-
tion 2.1.2). However, this “sufficiently irrational” condition becomes increasingly
difficult to satisfy as the number of degrees of freedom grows, so that other tori
are destroyed, allowing for the actions to drift indefinitely. This drift in the
actions is known as Arnol’d Diffusion, and we present it in the third chapter of
this text. We provide and study the example that Arnol’d devised to prove this
phenomenon. The system that he chose is a 5−degrees-of-freedom Hamiltonian

H(I1, I2, φ1, φ2, t; ε, µ) = H0(I1, I2) +H1(φ1, φ2; t), for ε, µ > 0,

where

H0(I1, I2) =
1

2
(I21+I22 ), and H1(φ1, φ2, t; ε, µ) = ε(cosφ1−1)(1+µ(sinφ2+cos t)).

When ε > 0 and µ = 0, this system possesses invariant tori that have coin-
cident stable and unstable manifolds, thus forming a homoclinic orbit (or sepa-
ratrix ). When we let µ > 0, the perturbation causes a break in the homoclinic
orbit, so that the phenomenon of splitting of the separatrix appears. The key
point to prove diffusion is to see that this splitting makes the stable manifold
of each torus intersect transversally the unstable manifold of a different torus,
so that the existence of a chain of intersecting manifolds is established. This
allows to prove that there are orbits that travel along different tori by closely
following these intersecting manifolds.

Diffusion in More General Near-Integrable Systems

After Arnol’d’s paper was published, the main cause of diffusion in Hamiltonian
systems was believed to be the splitting of separatrices. This arises an almost
instinctive interest in studying the splitting in more general near-integrable
Hamiltonian systems. In Chapter 4, we deal with the dynamics on a torus
originated by a high-frequency perturbation of the pendulum. The size of the
splitting of such a perturbation is given up to order one by the Melnikov function.
In [1] the value of the splitting is shown to be exponentially small with respect
to ε provided that the perturbation’s amplitude is small enough with respect to
ε. We give a similar result even when the perturbation exists in a strip whose
width is logarithmic with respect to ε. Namely, we consider a high-frequency
perturbation of the pendulum described by the Hamiltonian function

ω · I
ε

+ h(x, y, θ, ε),

where

ω · I = ω1I1 + ω2I2, and h(x, y, θ, ε) =
y2

2
+ cosx+ εpm(θ1, θ2) cosx,
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where the function m is assumed to be a 2π−periodic function of two variables
θ1 and θ2. We assume that ε is a small positive parameter and p is a positive
parameter. We also assume that the frequency is of the form ω/ε, where

ω = (1, γ), and γ =
1 +
√

5

2
.

The Hamiltonian function given above can be considered as a singular per-
turbation of the pendulum

h0 =
y2

2
+ cosx,

which has a saddle point (0, 0) and a homoclinic trajectory. For p > 3 and small
ε > 0, the invariant manifolds split. As is well known, the Melnikov function
gives a first-order approximation of the difference between the values of the
unperturbed pendulum energy h0 on the stable and unstable manifolds. We
provide an estimate of its size which shows that the splitting occurs. Indeed,
taking m to be analytic in a strip {|Im(θ1)| < r1} × {|Im(θ2)| < r1}, where

ri = bi log
1

ε
, for i = 1, 2,

we obtain the following

Proposition (Estimate for the size of the Melnikov coefficients). The maximum
of the modulus of the Melnikov function

max
(θ1,θ2)∈T2

|M(θ1, θ2; ε)| ,

taken on real arguments, can be bounded from above and from below by terms of
the form

const εp−1 exp

(
−
√
− log ε

ε
c(log(−ε log ε))

)
with different ε−independent constants, where the function c in the exponent is
defined by

c(δ) = C0 cosh

(
δ − δ0

2

)
, for δ ∈ [δ0 − log γ, δ0 + log γ],

where

C0 =
√

2πCF (γb1 + b2), CF =
1

γ + γ−1
, δ0 = log ε∗ and ε∗ =

π(γ + γ−1)

2γ2(b1γ + b2)
,

and continued by 2 log γ−periodicity onto the whole real axis. The function is
piecewise analytic and continuous.

Structure of the text

Let us end this introduction by explaining how we have structured this text.
The first two chapters review the mathematical background needed, and fix the
notation used in the remainder of the text. The third one gives a detailed de-
scription of the phenomenon of Arnol’d diffusion based on the original paper [2].
The last chapter contains some computations to see if the splitting occurs in a
particular case of a near-integrable system.
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1

Preliminaries on Hamiltonian
Systems

In this chapter we give a very shallow overview of Hamiltonian systems. It
begins with the definition of a Hamiltonian system of ordinary differential equa-
tions and gives some basic results about such systems. The second section is
devoted to studying the Poisson bracket along with some of its most impor-
tant properties. We finally dedicate the third part of the chapter to Symplectic
Hamiltonian Systems, focusing on the linear case in the first place and moving
on to the general case afterwards. Although this discussion is far from com-
plete and sometimes informal, it is intended to provide a general overview of
the subject, which will help follow the subsequent chapters. All the explanation
is based on [10, Ch. 1].

1.1 Hamilton’s Equations

The well-known Newton’s second law gives rise to systems of second-order dif-
ferential equations in Rn and so to a system of first-order equations in R2n, that
is an even-dimensional space. If the forces are derived from a potential function,
the equations of motion of the mechanical system have many special properties,
most of which follow from the fact that the equations of motion can be written as
a Hamiltonian system. The Hamiltonian formalism is the natural mathematical
structure in which to develop the theory of conservative mechanical systems.

A Hamiltonian system is a system of 2n differential equations of the form
q̇ =

∂H

∂p
(q, p, t),

ṗ = −∂H
∂q

(q, p, t),

(1.1)

where
H : U = Ů ⊂ R2n+1 −→ R

(q, p, t) 7−→ H(q, p, t)
(1.2)

7



1. PRELIMINARIES ON HAMILTONIAN SYSTEMS

is a smooth real-valued map called the Hamiltonian. The system is then said
to have n degrees of freedom, and the vectors q = (q1, q2, . . . , qn) and p =
(p1, p2, . . . , pn) are called its positions and momenta, respectively. Alternatively,
q and p are called the actions and angles, respectively. The choice of either
of these two terminologies depends on the context of the problem. The terms
position and momentum relate to a Classical Mechanics context, while the terms
action and angle are more used in Celestial Mechanics.

We introduce the 2n vector z, the 2n × 2n skew symmetric matrix and the
gradient of H by

z =

(
q
p

)
, J ≡ Jn =

(
0 Idn
− Idn 0

)
and ∇H ≡ ∇zH =



∂H

∂z1
∂H

∂z2
...

∂H

∂z2n


,

where 0 and Idn denote the n × n zero and identity matrix, respectively. The
particular case J2 is sometimes denoted by K. In this notation, System (1.1)
can be written as

ż = J∇H(t, z). (1.3)

One of the basic results from the general theory of ordinary differential equa-
tions is the existence and uniqueness theorem. This theorem states that for each
(t0, z0) ∈ U , there is a unique solution z = φ(t; t0, z0) of System (1.3) defined
for t near t0 that satisfies the initial condition φ(t0; t0, z0) = z0. The map φ
is defined on an open neighbourhood Q of (t0; t0, z0) ∈ R2n+2 into R2n. The
function φ(t; t0, z0) is smooth in all its displayed arguments, and so φ is C∞ if
the equations are C∞, and it is analytic if the equations are analytic.

When H is independent of t, so that H : U = Ů ⊂ R2n → R, the differential
equations (1.1) can be written as

q̇ =
∂H

∂p
(q, p),

ṗ = −∂H
∂q

(q, p),

(1.4)

and are autonomous. In this case, the Hamiltonian system is called conserva-
tive. It follows that φ(t− t0; 0, z0) = φ(t; t0, z0) holds, because both sides satisfy
Equation (1.3) and the same initial conditions. Usually, the t0 dependence is
dropped and only φ(t, z0) is considered, where φ(t, z0) is the solution of Equa-
tion (1.3) satisfying φ(0, z0) = z0. The solutions are pictured as parameterised
curves in U ⊂ R2n, and the set U is called the phase space. By the existence
and uniqueness theorem, there is a unique curve through each point in U , and
by the uniqueness theorem, two solution curves cannot cross in U .

A first integral (also conserved quantity) for the system in (1.3) is a smooth
function F : U → R that is constant along the solutions of (1.3), that is

F (φ(t, z0)) = F (z0) = constant.

8



1.2. THE POISSON BRACKET

The level surfaces F−1(c) ⊂ R2n, where c is a constant, are invariant sets. In
general, they are (2n − 1)−manifolds. In the (very special) case when there
are 2n − 1 independent integrals F1, F2, . . . , F2n−1, then fixing them defines
a solution curve in R2n, and in the classical sense, the problem is said to be
integrated.

A non-autonomous Hamiltonian system can always be made autonomous in
the following way. We consider a new Hamiltonian H̃ : Ũ → R with n+1 degrees
of freedom, where the extended phase space Ũ ⊂ R2n+2 is an open set. This
Hamiltonian has time as another variable (which we now call s) and there is a
new variable A, so that

H̃(q, s, p, A) ..= A+H(q, p, s). (1.5)

The equations of this new Hamiltonian system are

q̇ =
∂H

∂p
(q, p, s),

ṡ = 1,

ṗ = −∂H
∂q

(q, p, s),

Ȧ = 0.

(1.6)

The orbits of H in the energy level {(q, p, t) ∈ U | H̃(q, p, t) = 0} are equivalent
to the dynamics of H̃ in the extended phase space. We denote the flow in Ũ as
φ̃(t, q, s, p, A), so that

φ̃(0, q, s, p, A) = (q, s, p, A).

1.2 The Poisson Bracket

Many of the special properties of Hamiltonian systems are formulated in terms
of the Poisson bracket operator, hence it plays a central role in the theory of
Hamiltonian systems. Let F,G,H : U = Ů ⊂ R2n+1 → R be smooth functions,
and define the Poisson bracket of F and G by

{F,G} ..= ∇FTJ∇G =

n∑
i=1

(
∂F

∂qi
(t, q, p)

∂G

∂pi
(t, q, p)− ∂F

∂pi
(t, q, p)

∂G

∂qi
(t, q, p)

)
.

(1.7)

Clearly, {F,G} is a smooth function from U to R as well, which defines a bi-
linear, skew symmetric form. A tedious calculation shows that Jacobi’s Identity
is satisfied:

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0. (1.8)

The Poisson bracket is useful to see how a function evolves along the trajectories

9



1. PRELIMINARIES ON HAMILTONIAN SYSTEMS

of a Hamiltonian system. Consider a function F as above. We have

dF

dt
(φ(t; t0, z0), t) = (DzF )(φ(t; t0, z0), t) · dφ

dt
(t; t0, z0) +

∂F

∂t
(φ(t; t0, z0), t)

= (∇F )T (φ(t; t0, z0), t) · J · ∇H(φ(t; t0, z0), t) +
∂F

∂t
(φ(t; t0, z0), t)

= {F,G}(φ(t; t0, z0), t) +
∂F

∂t
(φ(t; t0, z0), t).

In particular,
dH

dt
(φ(t; t0, z0), t) =

∂H

∂t
(φ(t; t0, z0), t).

Moreover, if H = H(q, p), then

dH

dt
(φ(t; t0, z0)) = 0.

In general, F is a first integral for System (1.3) if, and only if

{F,H}(φ(t; t0, z0), t) = 0.

In many examples, the HamiltonianH is the total energy of a physical system,
in which case it remains constant along the trajectories. In the conservative
case when H is independent of t, a critical point z∗ = (q∗, p∗) ∈ U ⊂ R2n

of H (i.e. ∇H(z∗) = 0), is an equilibrium point of the system of differential
equations (1.4), that is z(t) = z∗.

Definition 1.2.1 (Lyapunov stability). A critical point z∗ of System (1.4) is
stable in the sense of Lyapunov (or Lyapunov-stable) if for any ε > 0 there
exists δ > 0 such that if ‖z0 − z∗‖ < δ, then

‖φ(t, z0)− z∗‖ < ε,

for any t ∈ R.

Theorem 1.2.1 (Dirichlet). If z∗ is a strict local maximum or minimum of H,
then z∗ is stable in the sense of Lyapunov.

Proof. Without loss of generality, assume that z∗ = 0 and H(0) = 0. We shall
do the case where z∗ is a strict local minimum. Then, there exists η > 0 such
that H(z) > 0 for any η satisfying 0 < ‖z‖ < η. Let ε > 0 be fixed. Let
k = min{ε, η} and m = min{H(z) | ‖z‖ < 1}, which exist since the unit ball
is a compact set. Since H(0) = 0 and H is continuous, there exists δ > 0 such
that H(z) < m for any z satisfying ‖z‖ < δ, we have |H(z)| < m. Now we have
that for any z0 whose norm is strictly less than δ and for any t ∈ R,

H(φ(t, z0)) = H(z0) < m.

Then, z∗ = 0 is stable, for otherwise there would exist z0 with ‖z0‖ < δ and
there would exist t∗ ∈ R such that

‖φ(t∗, z0)‖ = k < ε,

so |H(φ(t∗, z0))| ≥ m, which is a contradiction.

10



1.3. SYMPLECTIC HAMILTONIAN SYSTEMS

1.3 Symplectic Hamiltonian Systems

1.3.1 The Linear Case

In this section, we study Hamiltonian systems that are linear differential equa-
tions. Many of the basic facts about Hamiltonian systems and symplectic ge-
ometry are easy to understand in this simple context.

Let gl(m,F) denote the set of all m ×m matrices with entries in the field F
and Gl(m,F) the set of all nonsingular m×m matrices with entries in F. The
set Gl(m,F) is a group under matrix multiplication, and is called the general
linear group. The matrices I = Im and 0 = 0m denote the m×m identity and
zero matrices, respectively. In general, the subscript is clear from the context.

In this context, a special role is played by the 2n× 2n matrix

J =

(
0 I
−I 0

)
.

Note that J is an orthogonal skew-symmetric matrix, that is

J−1 = JT = −J.

Let z be a coordinate vector in R2n, I an interval in R and S : I → gl(2n,R)
be continuous and symmetric. A linear Hamiltonian system is a system of 2n
ordinary differential equations

ż = J
∂H

∂z
= JS(t)z = A(t)z, (1.9)

where
H = H(t, z) =

1

2
zTS(t)z.

The Hamiltonian H is a quadratic form in the zs with coefficients that are
continuous in t ∈ I ⊂ R. If S, and hence H, is independent of t, then H is an
integral for (1.9) as seen in Section 1.2.

Let t0 ∈ I be fixed. From the theory of differential equations, for each
z0 ∈ R2n, there exists a unique solutions φ(t; t0, z0) of (1.9) for all t ∈ I that
satisfies the initial condition φ(t0; t0, z0) = z0. Let Z(t, t0) be the 2n×2n funda-
mental matrix solution of (1.9) that satisfies Z(t0, t0) = I. Then, φ(t; t0, z0) =
Z(t, t0)z0.

In the case where S and A are constant, we take t0 = 0 and

Z(t) = eAt = expAt =

∞∑
i=1

Antn

n!
.

Definition 1.3.1 (Hamiltonian matrix). A matrix A ∈ gl(2n,F) is called
Hamiltonian or infinitessimally symplectic if

ATJ + JA = 0. (1.10)

The set of all 2n× 2n Hamiltonian matrices is denoted by sp(2n,F).

11
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Theorem 1.3.1 (Characterisation of Hamiltonian matrices). Let A ∈ gl(2n,R)
and α ∈ R. The following conditions are equivalent:

1. A is Hamiltonian,

2. A = JR, where R is symmetric,

3. JA is symmetric.

Moreover, if A and B are Hamiltonian, then so are AT , αA, A±B and [AB] =
AB −BA.

Proof. See [10].

The function

[·, ·] : gl(m,F)× gl(m,F) −→ gl(m,F)
(A,B) 7−→ [A,B] = AB −BA

that appears in Theorem 1.3.1 is called the Lie product. The second part of this
theorem implies that the set of all 2n× 2n Hamiltonian matrices sp(2n,F) is a
Lie algebra.

Definition 1.3.2 (Symplectic matrix with multiplier µ). A 2n× 2n matrix T
is called symplectic with multiplier µ if

TTJT = µJ,

where µ is a nonzero constant. If µ = +1, then T is simply called symplectic.
The set of all 2n× 2n symplectic matrices is denotes by Sp(2n,R).

Theorem 1.3.2. If T is symplectic with multiplier µ, then T is nonsingular
and

T−1 = µ−1JTTJ.

If T and R are symplectic with multiplier µ and ν, respectively, then TT , T−1
and TR are symplectic with multipliers µ, µ−1 and µν, respectively.

This theorem implies that Sp(2n,R) is a group, a subgroup of Gl(2n,R). In
the 2 × 2 case, a matrix is symplectic with multiplier µ if and only if it has
determinant +µ. Thus a 2×2 symplectic matrix defines a linear transformation
which is orientation-preserving (and area-preserving, if µ = +1).

Theorem 1.3.3. The fundamental matrix solution Z(t, t0) of a linear Hamil-
tonian system (1.9) is symplectic for all t, t0 ∈ I. Conversely, if Z(t, t0) is
a continuously differential function of symplectic matrices, then Z is a matrix
solution of a linear Hamiltonian system.

Corollary 1.3.4. The (constant) matrix A is Hamiltonian if and only if eAt is
symplectic for all t.

By changing variables by z = T (t)u in System (1.9), we obtain

u̇ = (T−1AT − T−1Ṫ )u, (1.11)

which, in general, is not a Hamiltonian equation.

12



1.3. SYMPLECTIC HAMILTONIAN SYSTEMS

Theorem 1.3.5. If T is symplectic with multiplier µ−1, then (1.11) is a Hamil-
tonian system with Hamiltonian given by

H(t, u) =
1

2
uT (µTTS(t)T +R(t))u,

where
R(t) = JT−1Ṫ .

Conversely, if (1.11) is Hamiltonian for every Hamiltonian system (1.9), then
U is symplectic with constant multiplier µ.

This is an example of a change of variables that preserves the Hamiltonian
character of the system of equations. The general problem of which changes of
variables preserve the Hamiltonian character is the matter of study of symplectic
transformations (see [10, Ch. 6]).

1.3.1.1 Symplectic Linear Spaces

In this section, we present a way to interpret the matrix J , which plays an
important role in our context. We address the topic from the point of view of
abstract linear algebra.

Let V be an m−dimensional vector space over the field F (here, F = R or C).
A bilinear form is a mapping B : V× V→ F that is linear in both variables. It
is skey-symmetric or alternating if B(u, v) = −B(v, u) for all u, v ∈ V, and it is
non-degenerate if B(u, v) = 0 for all v ∈ V implies u = 0.

Let B be a bilinear form and {ei}mi=1 be a basis for V. Given any vector
v ∈ V, we write v =

∑
αiei and define an isomorphism

Φ : V −→ Fm
v 7−→ a = (α1, . . . , αm).

Define sij = B(ei, ej) and S to be the m×m matrix S = (sij), the matrix of B
in the basis {ei}mi=1. Let Φ(u) = b = (β1, . . . , βm). Then,

B(u, v) =

m∑
i=1

m∑
j=1

αiβjB(ei, ej) = bTSa.

So in the coordinates defined by the basis {ei}mi=1, the bilinear form is just
bTSa, where S is the matrix (B(ei, ej))ij . If B is alternating, then S is skew-
symmetric, and if B is non-degenerate, then S is nonsingular and conversely.

Theorem 1.3.6. Let S be any skew-symmetric matrix. Then, there exists a
nonsingular matrix Q such that

R = QSQT = diag(K,K, . . . ,K, 0, . . . , 0),

where
K =

(
0 1
−1 0

)
.

Or, given an alternating form B, there is a basis for V such that the matrix of
B in this basis is R.

13



1. PRELIMINARIES ON HAMILTONIAN SYSTEMS

Note that the rank of a skew-symmetric matrix is always even. Thus, every
non-degenerate, alternating bilinear form is defined on an even dimensional
space.

A symplectic (linear) space is a pair (V, ω), where V is a 2n−dimensional
vector space over F and ω is a non-degenerate alternating bilinear form on
V. The form ω is called the symplectic form or the symplectic inner product.
Throughout the rest of this section, we shall assume that V is a symplectic space
with symplectic form ω. The standard example is F2n and ω(x, y) = xTJy. In
this example, we shall write {x, y} = xTJy and denote the space by (F2n, J) or
simply by F2n, if no confusion can arise.

A symplectic basis for V is a basis v1, . . . , v2n for V such that ω(vi, vj) = Jij ,
that is, the (i, j)−th entry of J . A symplectic basis is a basis so that the matrix
of ω is just J . The standard basis {ei}2ni=1, where ei is 1 in the i−th position and
zero elsewhere, is a symplectic basis for (F2n, J). Given two simplectic spaces
(Vi, ωi), for i = 1, 2, a (symplectic) isomorphism is a linear isomorphism

L : V1 −→ V2

x 7−→ L(x)

such that ω2(L(x), L(y)) = ω1(x, y) for all x, y ∈ V1. In other words, L preserves
the symplectic form. In this case, we say that the two spaces are symplectically
isomporphic or symplectomorphic.

Corollary 1.3.7. Let (V, ω) be a symplectic space of dimension 2n. Then, V
has a symplectic basis. Moreover, (V, ω) is symplectically isomorphic to (F2n, J),
that is all symplectic spaces of dimension 2n are isomorphic.

In view of these results, it is clear that the study of symplectic linear spaces
is really the study of one canonical example, say (F2n, J). Or put another way,
J is just the coefficients matrix of the symplectic form in a symplectic basis.

1.3.2 General Case

Differential forms play an important part in the theory of Hamiltonian systems.
It gives a natural higher-dimensional generalisation of the results of classical
vector calculus. We give a brief introduction with some, but not all, proofs
and refer the reader to [4] for another informal introduction but a more com-
plete discussion with many applications, or to [9] or [6] for a more complete
mathematical discussion. What is presented here is not meant to be a complete
development but simply an introduction to a few results that are used sparingly
later.

In this section, we introduce and use the notation of classical differential
geometry by using superscripts and subscripts to differentiate between a vector
and its dual. This convention helps sort out the multitude of different types of
vectors encountered.

14
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1.3.2.1 Exterior Algebra

Let V be a vector space of dimension m over the real number R. Let Vk denote

k copies of V, that is Vk = V×
k)
· · · × V. A function

φ : Vk −→ R
(a1, a2, . . . , ak) 7−→ φ(a1, a2, · · · , ak)

is called k-multilinear if it is linear in each argument. We sometimes refer to
a 1−multilinear map as a covector or 1−form. A k−multilinear function φ is
skey-symmetric or alternating if interchanging any two arguments changes its
sign. Thus φ is zero if two of its arguments are the same. We call an alternating
k−multilinear function a k−linear form or a k−form. Let Ak = Ak(V) be the
space of all k−forms for k ≥ 1. It is easy to verify that Ak is a vector space
when using the usual definition of addition of functions and multiplication of
functions by a scalar.

If ψ is a 2−multilinear function, then φ defined by

φ(a, b) =
ψ(a, b)− ψ(b, a)

2

is alternating and is sometimes called the alternating part of ψ. This construc-
tion is generalised as follows. Let Sk be the set of all permutations of the k
numbers 1, 2, · · · , k and let

sgn : Sk −→ {+1,−1}
σ 7−→ sgn(σ)

be the function that assigns +1 to an even permutation and −1 to an odd
permutation. So if φ is alternating,

φ(aσ(1),...,aσ(k)) = sgn(σ)φ(a1, . . . , ak).

If ψ is a k−multilinear function, then φ defined by

φ(a1, . . . , ak) =
1

k!

∑
σ∈Sk

sgn(σ)(aσ(1),...,aσ(k))

is alternating. We write φ = alt(ψ). If ψ is already alternating, then ψ = alt(ψ).
If α ∈ Ak and β ∈ Ar, then exterior product is the operator defined by

∧ : Ak × Ar −→ Ak+r

(α, β) 7−→ α ∧ β =
(k + r)!

k! r!
alt(αβ).

Proposition 1.3.8. For all α ∈ Ak, β, δ ∈ Ar and γ ∈ As,

1. α ∧ (β + δ) = α ∧ β + α ∧ δ,

2. α ∧ (β ∧ γ) = (α ∧ β) ∧ γ,

3. α ∧ β = (−1)krβ ∧ α.
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1. PRELIMINARIES ON HAMILTONIAN SYSTEMS

Proposition 1.3.9. The space of alternate k−forms Ak has dimension
(
m
k

)
. In

particular, a basis for Ak is

{f i1 ∧ f i2 ∧ · · · ∧ f ik}1≤i1<i2<···<ik≤m.

In particular, the dimension of Vm is 1, and the space has as a basis the single
element f1 ∧ · · · ∧ fm.

Proposition 1.3.10. Let g1, . . . , gr ∈ V∗. Then, g1, . . . , gr are linearly inde-
pendent if and only if g1 ∧ · · · ∧ gr 6= 0.

A linear map L : V→ V induces a linear map Lk : Ak → Ak by the formula

Lkφ(a1, . . . , ak) = φ(La1, . . . , Lak).

If M is another linear map of V onto itself, then (LM)k = MkLk, because

(LM)kφ(a1, . . . , ak) = φ(LMa1, . . . , LMak)

= Lkφ(Ma1, . . . ,Mak)

= MkLkφ(a1, . . . , ak).

Recall that A1 = V∗ is the dual space, and L1 = L∗ is called the dual map. If
V = Rm (column vectors), then we can identify the dual space V∗ with Rm by
the isomorphism

Φ : Rm −→ V∗

f̂ 7−→ f ..= 〈f̂T , ·〉.

In this case, L is and m×m matrix, and Lx is the usual matrix product. The
product L1f is defined by

L1f(x) = f(Lx) = f̂TLx = f̂TLx = (LT f̂)Tx.

Therefore, the matrix representation of L1 is the transpose of L, that is L1(f) =

LT f̂ . The matrix representation of Lk is discussed in [4].

By Proposition 1.3.9, dimAm = 1, and so every element in Am is a scalar
multiple of a single element. Since Lm is a linear map, there is a constant `
such that Lmf = `f , for all f ∈ Am. Define the determinant of L to be this
constant `, and denote it by det(L), so

Lm = det(L)f,

for all f ∈ Am.

Proposition 1.3.11. Let L,M : V→ V be linear. Then,

1. det(LM) = det(L) det(M),

2. det(Id) = 1, where Id : V→ V is the identity map,

3. L is invertible if and only if det(L) 6= 0, in which case, det(L−1) =
det(L)−1.
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Let V = Rm and let {ei}mi=1 be the standard basis of Rm. Let L be the matrix
(Lji ), so that

Lei =

m∑
j=1

Ljiej .

Let φ be a nonzero element of Am. Then, from the definition that we have given
for the determinant, we have

det(L)φ(e1, . . . , em) = Lmφ(e1, . . . , em)

= φ(Le1, . . . , Lem)

=

m∑
j1=1

· · ·
m∑

jm=1

Lj11 · · ·Ljmm φ(ej1 , . . . , ejm

=
∑
σ∈Sm

sgn(σ)L
σ(1)
1 · · ·Lσ(m)

m φ(e1, . . . , em).

In the second-to-last sum above, the only nonzero terms are the ones with dis-
tinct es. Thus, the sum over the nonzero terms is the sum ove all permutations
of the es. From the above,

det(L) =
∑
σ∈Sm

sgn(σ)L
σ(1)
1 · · ·Lσ(m)

m ,

which is one of the classical formulae for the determinant of a matrix.

1.3.2.2 The Symplectic Form

In this section, let (V, ω) be a symplectic space of dimension 2n (see Sec-
tion 1.3.1.1). Recall that a symplectic form ω on a vector space V is a non-
degenerate, alternating bilinear form on V, and the pair (V, ω) is called a sym-
plectic space.

Theorem 1.3.12. There exitsts a basis f1, . . . , f2n for V∗ such that

ω =

n∑
i=1

f i ∧ fn+i.

The basis {f1, . . . , f2n} is a symplectic basis for the dual space V∗. By the
above,

ωn = ω ∧
n)
· · · ∧ ω = ±n!f1 ∧ f2 ∧ · · · ∧ f2n,

where the sign is (−1)n. Thus, ωn is a nonzero element of A2n. Because a
symplectic linear transformation preserves ω, it preserves ωn and, therefore, its
determinant is +1.

Corollary 1.3.13. The determinant of a symplectic linear transformation is
+1.
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1.3.2.3 Tangent and Cotangent Vectors

This section deals with the concepts of tangent vectors, which arise from the
linearisation of a curve at a point, and cotangent vectors, which arise from
the linearisation of a function at a point. The analysis of these two objects is
fundamental, since much of analysis reduces to studying maps from an interval
in R into an open set of a vector space and vice-versa.

Let O be an open set in an m−dimensional vector space V over R. Let
{ei}mi=1 be a basis for V, and f1, . . . , fm the dual basis. Let x = (x1, . . . , xm)
be coordinates in V and also in V∗ relative to the basis {ei}mi=1 and to the dual
basis f1, . . . , fm, respectively. Let I = (−1, 1) ⊂ R, and let t ∈ R. A tangent
vector at p ∈ O can be thought of as the tangent vector to a curve through p.
Two curves that have the same tangent vector at a point p are called equivalent.
Tangency, in fact, is an equivalence relation, and tangent vectors to O at p are
the equivalence classes of this relation, which we denote by {g}. The set of all
tangent vectors to O at p is called the tangent space to O at p and is denoted
by TpO, and it can be made into a vector space by using the coordinates

dg

dt
(0) =

(
dg1

dt
(0), . . . ,

dgm

dt
(0)

)
= (γ1, . . . , γm),

which are the coordinates relative to the x coordinates. The curve

ξi : R −→ V
t 7−→ p+ tei

satisfies
dξi
dt

(0) = ei = (0, . . . ,
i
^
1 , 0, . . . , 0)

in the x coordinates. The tangent vector consisting of all curves equivalent to ξi
at p is denoted by the partial derivative with respect to xi, so that the vectors

∂

∂x1
, . . . ,

∂

∂xm

form a basis for TpO. Therefore, a vector vp ∈ TpO can be written as

vp = γ1
∂

∂x1
+ · · ·+ γm

∂

∂xm
.

In classical tensor notation, one uses Einstein’s summation convention, under-
standing that a repeated index, one as a superscript and one as a subscript has
to be summed over from 1 to m, so that

vp = γi
∂

∂xi
.

A cotangent vector or covector at p can be thought as the differential of a
function at p. As in the case of tangent vectors, two smooth functions that
have the same differential at p are said to be equivalent, and this defines an
equivalence relation. Each equivalence class is now called the cotangent vector
or covector to O at p, and we denote it by {h}. In the x coordinates, we write

Dh(p) =

(
∂h(p)

∂x1
, . . . ,

∂h(p)

∂xm

)
= (η1, . . . , ηm).
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The set of all covectors at p is called the cotangent space to O at p and is
denoted by T ∗pO. It can be made into a vector space by using the coordinate
representation given above. The function

xi : O → R

defines a cotangent vector at p, which is (0, . . . ,
i
^
1 , . . . , 0). The covector con-

sisting of all functions equivalent to xi at p is denoted by dxi. The covectors
dx1, . . . , dxm form a basis of T ∗pO. A typical covector vp ∈ T ∗pO can be written
as

η1dx
1 + · · ·+ ηmdx

m = ηidx
i.

The two constructions that we have just explained are clearly parallel. In
fact, they are dual. Let g and h be as above, so h ◦ g : I ⊂ R→ R. By the chain
rule,

D(h ◦ g)(0)(1) = Dh(p) ◦Dg(0)(1),

which is a real number. Therefore, Dh(p) is a linear functional on tangents to
curves. In coordinates, if

{g} = vp =
dgi

dt
(0)

∂

∂xi
= γi

∂

∂xi
and {h} = vp =

∂h

∂xi
(p)dxi = ηidx

i,

then

vp(vp) = D(h ◦ g)(0)(1) =
dgi

dt
(0)

∂h

∂xi
(p) = γiηi.

Let p ∈ O and denote by AkpO the space of k−forms on the tangent space
TpO. A k−differential form or k−form on O is a smooth choice of a k−linear
form in AkpO for all p ∈ O. That is, a k−form can be written as

F =
∑

1≤i1<···<ik≤m

fi1,...,ik(x1, . . . , xm)dxi1 ∧ · · · ∧ dxik , (1.12)

where the functions fi1,...,ik : O → R are smooth. Because A0
pO = R, 0−forms

are simply smooth functions, and because A1
pO = T ∗pO, 1−forms are covector

fields. Given a 0−form F , dF is a 1−form. The natural generalisation is the
exterior derivative operator d which converts a k−form F as given in (1.12) into
a (k + 1)−form dF by the formula

dF =
∑
j=1

m
∑

1≤i1<···<ik≤m

∂fi1,...,ik
dxj

dxj ∧ dxi1 ∧ · · · ∧ dxik .

Lemma 1.3.14. Let F and G be smooth forms defined on an open set O. Then,

1. d(F +G) = dF + dG,

2. d(F ∧G) = dF ∧G+ (−1)deg(F )F ∧ dG,

3. d(dF ) = 0, for all F ,

4. if F is a function, then dF agrees with the standard definition of the
differential of F ,
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5. the operator d is uniquely defined by the properties given above.

A k−form F is closed if dF = 0. A k−form is exact if there is a (k−1)−form
G such that F = dG. We have the following result. Part 3 of Lemma 1.3.14
says that an exact form is closed. A partial converse is also true.

Theorem 1.3.15 (Poincaré’s Lemma). Let O be a ball in Rm and F a k−form
such that dF = 0. Then there is a (k − 1)−form g on O such that F = dg.

Remark 1.3.1. Poincaré’s Lemma contains two classical theorems. If F is a
vector field defined on a ball in R3 with ∇ × F = 0, then there is a smooth
function g such that F = ∇g, and if F is a smooth vector field defined on a ball
such that ∇ ·F = 0, then there is a smooth vector field g such that F = ∇× g.

1.3.2.4 The Symplectic Form and Darboux’s Theorem

Let O be an open set in R2n. A symplectic structure or symplectic form on O is
a closed non-degenerate 2−form. The standard symplectic structure in R2n is

Ω =

n∑
i=1

dzi ∧ dzi+n =

n∑
i=1

dqi ∧ dpi, (1.13)

where z = (z1, . . . , z2n) = (q1, . . . , qn, p1, . . . , pn) are coordinates in R2n. The
coefficient matrix of Ω is just J . By Corollary 1.3.7, there is a linear change of
coordinates so that the coefficients matrix of a non-degenerate 2−form is J at
one point. A much more powerful result is the following.

Theorem 1.3.16 (Darboux’s Theorem). If F is a symplectic structure on an
open ball in R2n, then there exists a coordinate system z such that F in this
coordinate system is the standard symplectic structure Ω.

For the proof, see [6]. A coordinate system for which a symplectic structure is
Ω is called a symplectic coordinate (for this form). A symplectic transformation
φ is one that preserves the form Ω or preserves the coefficients matrix J , that is

DφTJDφ = J.

The standard symplectic form given in (1.13) is closed, since dΩ = 0. In fact,
it is also exact, because

Ω = dα,

where

α =

n∑
i=1

qidpi = qdp.

In short, Ω is a closed non-degenerate 2−form. By Darboux’s Theorem, for any
closed, non-degenerate 2−form, there are local coordinates such that in these
coordinates, the 2−form is given by (1.13). This says that J is simply the
coefficients matrix of a closed, non-degenerate 2−form in Darboux coordinates.

The definition of symplectic structure can be generalised to differentiable
manifolds, which we include for the sake of completeness.
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Definition 1.3.3 (Symplectic manifold). Let M2n be an even-dimensional dif-
ferentiable manifold. A symplectic structure on M2n is a closed differential
2−form ω2 on M2n which is non-degenerate, that is, for any nonzero tangent
vector ξ ∈ TpM , there exists another tangent vector η ∈ TpM such that

ω2(ξ, η) 6= 0.

The pair (M2n, ω2) is called a symplectic manifold.
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2

Integrability of Hamiltonian
Systems

Differential equations, including Hamiltonian equations, are customarily classi-
fied into integrable and non-integrable. In this chapter, we give a brief survey
of integrability of Hamiltonian systems. We start with the definition of inte-
grability by quadratures before studying complete integrability and introducing
action-angle coordinates. We then switch to near-integrable Hamiltonian sys-
tems. In order to fully understand the phenomena arising from these objects, we
include a whole section on rational approximation of real numbers, and finally
we give an introduction to the techniques of KAM theory, which allows us to
understand the dynamics of these systems and which is of greatest importance
in Chapter 3. For a deeper insight on the integrability of Hamiltonian systems,
see [11].

2.1 Integrable Hamiltonian Systems

2.1.1 Quadratures

The expression integration by quadratures of a system of differential equations
in Rn is the search for its solutions by a finite number of “algebraic” operations
(including inversion of functions) and “quadratures” (i.e. calculation of integrals
of known functions). The following result connects the integration by quadra-
tures of Hamiltonian systems with the existence of a sufficiently rich set of first
integrals. Notice that even if this is a local definition, it has global implications.

2.1.1.1 Hamiltonian Systems with One Degree of Freedom

All 1−degree-of-freedom Hamiltonian systems are integrable in the sense de-
scribed above. Indeed, consider H(q, p) for (q, p) ∈ U ⊂ R2. Take (q0, p0) ∈ U .
If∇H(q0, p0) = 0, then q(t) = q0 and p(t) = p0, for any t ∈ R. Otherwise, asume
without loss of generality that ∂qH(q0, p0), and call h = H(q0, p0). Then, by
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the Implicit Function Theorem, H(q, p) = h defines a curve containing (q0, p0)
which can be locally parameterised as q = Qh(p), for p close to p0. Then,
Hamilton’s equations are {

q̇ = ∂pH(q, p),

ṗ = −∂qH(Qh(p), p).

The second equation is a one-dimensional separable differential equation. There-
fore,

−
∫ p

p0

dp̃

∂qH(Qh(p̃), p̃)
=

∫ t

t0

dt̃.

The momentum p(t) is then obtained by integrating and inverting a function.
The solution to the whole system is given by{

p(t),

q(t) = Qh(p(t)).

2.1.1.2 Hamiltonian Systems with Two Degrees of Freedom

Let X1, X2 : U ⊂ R2n → R. The Lie bracket of X1 and X2 is the operator
defined by the commutator

[X1, X2](x) = DX2(x)X1(x)−DX1(x)X2(x).

The following lemma will be needed to give the main result.

Lemma 2.1.1. If two vector fields X1 and X2 satisfy that they are linearly
independent in U ⊂ R2 and [X1, X2] = λX1, for some λ ∈ R, then ẋ = X1(x)
can be integrated by quadratures locally in U .

Proof. The idea is to construct a first integral. Recall that F is a first integral
of ẋ = X1(x) if and only if

d

dt

(
F (φtX1

(x)
)∣∣∣∣
t=0

= 0.

By the cain rule, this is equivalent to(
DF (φtX1

(x))
dφtX1

(x)

dt

)∣∣∣∣
t=0

,

that is,
DF (x)X1(x) = 0.

Call X1 = (a11, a12)T . We need to solve

a11∂x1
F + a12∂x2

F = 0. (2.1)

We add another equation in order to be able to solve (2.1). Let us choose
suitable coefficients a21, a22 and a23, and let A = (aij)

2
i,j=1, so that we obtain

the system

A

(
∂x1F
∂x2

F

)
=

(
0
a23

)
.
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Assuming that A is regular, we have(
∂x1

F
∂x2F

)
= b ..= A−1

(
0
a23

)
.

By Poincaré’s Lemma (see Theorem 1.3.15), we have

∂x2
b1 = ∂x2

b2. (2.2)

Since F cannot be constant, ∇F 6= 0, so a23 6= 0. We can assume, without loss
of generality, that a23 = 1. We now have to choose a21 and a22 satisfying

a21∂x1F + a22∂x2F = 1

such that (2.2) holds. Some calculations show that this is true if and only if

det([X1, X2], X1) = 0,

which is satisfied, since by hypothesis we have [X1, X2] = λX1, for some λ ∈
R.

Theorem 2.1.2. Consider a C2 Hamiltonian H = F1 : U ⊂ R4 → R. Assume
that there exists a C2 function F2 : U → R such that

1. there exists c ∈ R such that {F1, F2} = cF1 on U ,

2. the functions F1 and F2 are linearly independent on the manifold given by

Mf
..= {x ∈ U | (F1(x), F2(x) = f ⊂ R2},

3. on Mf , either c = 0 or F1 = 0.

Then, the solutions of ẋ = J∇H(x) on Mf can be found by quadratures.

Proof. Observe that, since F1 and F2 are linearly independent on the manifold
Mf , it is moreover a submanifold Mf ⊂ U ⊂ R4, which is invariant under the
flows of F1 and F2.

Indeed, let Xi = J∇Fi, for i = 1, 2. Then Mf is invariant under the flows of
Xi if and only if DFiXj = 0, for i, j = 1, 2. This is equivalent to having

DFiJ∇Fj = {Fi, Fj} = 0.

As a consequence,Mf is invariant under the flows ofXi = J∇Fi or, equivalently,
X1 and X2 are tangent to Mf .

Let us now check the conditions of Lemma 2.1.1. The functions F1 and F2 are
linearly independent, that is, ∇F1 and ∇F2 are linearly independent as vectors,
because they are the product of the invertible matrix J by the X1 and X2, which
are linearly independent. In order to show the second hypothesis, we shall use
the equality

[J∇F1, J∇F2] = J∇{F1, F2},
which can be checked with some tedious computations. Then, we have

[X1, X2] = J∇{F1, F2} = J∇(cF1) = cJ∇F1 = cX1.

Therefore, we can apply Lemma 2.1.1, so the system ẋ = J∇F1(x) = J∇H(x),
restricted to Mf , can be integrated by quadratures.
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2.1.1.3 Higher-Dimensional Hamiltonian Sytems

Theorem 2.1.3. Consider a Hamiltonian H = F1 : U ⊂ R2n → R, and assume
that the functions F1, F2, . . . , Fn : U → R are linearly independent functions in
involution, that is, {Fi, Fj} = 0, for any i, j = 1, 2, . . . , n. Then,

1. the sets Mf = {x ∈ U | Fi(x) = fi, for any i = 1, 2, . . . , n} are invariant
n−dimensional submanifolds under the flow of ẋ = J∇H(x),

2. the trajectories of each Mf can be computed by quadratures.

2.1.2 Complete Integrability

Theorem 2.1.4 (Liouville-Arnol’d). Consider F1, F2, . . . , Fn : U ⊂ R2n → R
functions in involutions and functionally independent. Then,

1. for any c = (c1, c2, . . . , cn) ∈ F1(U)× F2(U)× · · · × Fn(U), the set

Mc
..= {z ∈ Rn : Fi(zi) = ci, i = 1, 2, . . . , n}

is a submanifold that is invariant by the flow associated to any Hamilto-
nian defined by Fi,

2. ifMc is connected and compact, thenMc ' Tn, where Tn is the n−dimensional
torus,

3. if Mc is connected but not compact, but the flows associated to the Hamil-
tonians Fis are complete, then Mc ' Tk ×Rn−k, for some 0 ≤ k ≤ n− 1,

4. the flow of any xFi = J∇Fi on Mc is “of translation type”, namely, in
suitable coordinates ϕ ∈ Tk and y ∈ Rn−k,

φt(φ, y) = (ϕ+ ω(c)t mod 2π, y + ν(c)t),

for some ω(c) ∈ Rk and ν(c) ∈ Rn−k.

In the statement of Theorem 2.1.4 we use the letter ω to refer to a real number.
See the List of Symbols for other uses of the same terminology.

Hamiltonian systems satisfying Liouville-Arnol’d’s Theorem are called com-
pletely integrable. The most interesting case is when Mc ' Tn,where

Tn = {(ϕ1, ϕ2, . . . , ϕn) : ϕi = R/2πZ} and ϕi = ϕ0
i + tωi.

Definition 2.1.1 (Quasiperiodic motion). If Mc ' Tn in Liouville-Arnol’d’s
Theorem, we say that the motion is quasiperiodic with frequency vector ω =
(ω1, ω2, . . . , ωn).

Definition 2.1.2. Using the notation above, we say that ω is

� non-resonant or rationally-independent if ω · k 6= 0, for any k ∈ Zn \ {0},

� resonant or rationally-dependent if there exists k∗ ∈ Zn \ {0} such that
ω · k∗ = 0.
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In the first case, the orbits in Mc are dense for any n ∈ N.

Remark 2.1.1. The theorem is not constructive, so the frequencies ω(c) and ν(c)
are unkown.

Example 2.1.1 (Mc ' T2).
In the non-resonant case, we have ω1k1 + ω2k2 6= 0, for any k1, k2 ∈ Z \ {0}.
Equivalently,

ω1

ω2
6= −k1

k2
,

that is to say ω1/ω2 ∈ R\Q. On the other hand, if ω is resonant, then all orbits
are periodic.

Example 2.1.2 (Mc ' T3).
Suppose ω = (

√
2,
√

3, 0). Then, the motion in T3 is given by

ϕ1 = ϕ0
1 +
√

2t, ϕ2 = ϕ0
2 +
√

3t, and ϕ3 = ϕ0
3.

Therefore,
T3 = tϕ3∈T1{(ϕ1, ϕ2, ϕ3) ∈ T3 : (ϕ1, ϕ2) ∈ T2}.

In non-resonant tori, we can say even more. Orbits are not only dense, but
they also “spread uniformly”.

Theorem 2.1.5 (H. Weyl). Let f : Tn → C be a Riemann-integrable map and
ω = (ω1, ω2, . . . , ωn) be non-resonant. Then, for any ϕ0 ∈ Tn, the time average
of the map f

f∗(ϕ) ..= lim
T→+∞

1

T

∫ T

0

f(ϕ0 + tω) dt

exists. Moreover, it coincides with the spatial average of f

f̄ ..=
1

(2π)n

∫
Tn
f(ϕ) dϕ.

Namely, for any ϕ0 ∈ Tn,
f∗(ϕ0) = f̄ .

Corollary 2.1.6. Let D ⊂ Tn be a rectangle and let f = χD. Then,

lim
T→+∞

µ(t ∈ [0, T ] : ϕ0 + tω ∈ D)

T
=
µ(D)

(2π)n
.

Remark 2.1.2. Corollary 2.1.6 is also valid for any D ⊂ Tn such that its char-
acteristic function χD is Riemann-integrable.

2.1.2.1 Action-Angle Coordinates

Liouville-Arnol’d’s Theorem (see Theorem 2.1.4) gives a coordinates system to
study completely integrable systems. WhenMc is connected and compact, these
are called action-angle coordinates. More precisely,

1. there exists a neighbourhood of Mc which is diffeomorphic to Tn × D,
where D ⊂ Rn is a small open ball,
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2. on Tn × D we can define new coordinates (by means of a symplectic
transformation) ϕ ∈ Tn (angles) and I ⊂ D (actions) such that the Is
only depend on the first integrals F1, F2, . . . , Fn. As a consequence, these
Is are also first integrals. Indeed, the Hamiltonian system is given byϕ̇ = ∂H

∂I (ϕ, I),

İ = −∂H∂ϕ (ϕ, I) = 0,

so H does not depend on ϕ and so H(ϕ, I) = H(I).

Therefore, a completely integrable Hamiltonian system in action-angle coordi-
nates has a ϕ−independent Hamiltonian. The motion in Tn ×D is given byϕ = ϕ0 + ∂IH(I0)t,

I = I0

for (ϕ, I) ∈ Tn ×D ⊂ Tn × Rn. Each set

TnI0 ..= {I = I0}

is an n−dimensional torus whose dynamics is quasi-periodic with frequencies
ω(I0) = ∂IH(I0).

2.2 Near-integrable Hamiltonian Systems

We now aim to study what happens when we slightly modify a completely
integrable Hamiltonian System. Let H0 : U → R2n → R be the corresponding
Hamiltonian. Consider

H(θ, I) = H0(I) + εH1(θ, I), (2.3)

for ε� 1, θ ∈ Tn and I ∈ V ⊂ Rn. The equations of motion are{
θ̇ = ∂IH0(I) + ε∂IH1(θ, I),

İ = −ε∂θH1(θ, I).

For ε = 0, the actions are constants of motion and orbits are confined to Tn =
{I = I0}. For ε > 0, we have İ 6= 0. In fact, İ = ε (i.e. the actions change very
slowly), so the angles move much faster than the actions.

In the light of this observation, one may consider several question. When we
let 0 < ε� 1, are there still some invariant n−dimensional tori, even if slightly
deformed? In the literature, such tori are said to persist under the perturbation.
In principle, even if some tori persist, we expect some others to disappear, for
otherwise the whole system would still be integrable. The next thing we ask
ourselves is which of these tori I = I0 persist and which break down, and what
is the new dynamics that they originate.
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When ε = 0, the phase space is foliated by n−dimensional tori whose dynam-
ics is given by

θ = θ0 + ωt.

The tori are called resonant if there exists k ∈ Zn \ {0} such that ω · k = 0, and
orbits are dense in tori of lower dimension. In the case that ω · k 6= 0, for any
k ∈ Zn \ {0}, the tori are called non-resonant. In this setting, orbits are dense.

For ε > 0, some tori persist and others disappear. The main tool to study
when each case occurs is KAM Theory, which we discuss in Section 2.2.2. The
remainder of this section is devoted to studying Diophantine approximation.

2.2.1 Diophantine Approximation of Real Numbers

This section deals with the approximation of real numbers by irrational numbers.
Let us begin with the following result.

Theorem 2.2.1 (Dirichlet’s Approximation Theorem). Let ω ∈ R and N ∈ N.
Then, there exist p, q ∈ Z, where 1 ≤ q ≤ N such that

|q · ω − p| < 1

N
. (2.4)

As a consequence, the inequality ∣∣∣∣ω − p

q

∣∣∣∣ < 1

q2

is satisfied by infinitely many p, q ∈ Z.

Proof. We need to find p, q ∈ Z such that (2.4) is satisfied. We consider the real
numbers

q · ω mod 1, for q = 0, 1, . . . , N,

so we have N +1 numbers in the interval [0, 1). Let us divide it into N intervals
as

Ik =

[
k

N
,
k + 1

N

)
, for k = 0, 1, . . . , N − 1.

By the Pigeonhole’s Principle, there is one Ik containing two numbers, say

q1ω mod 1 and q2ω mod 1.

That is, there exist k∗, q1, q2, p1, p2 ∈ Z such that

q1ω + p1, q2ω + p2 ∈ Ik∗ .

We can assume without loss of generality that q2 ≥ q1. Then,

|(q2ω − p2)− (q1ω − p1)| < 1

N
.

Therefore, taking q = q2 − q1 and p = p1 − p2, we obtain

|qω − p| < 1

N
<

1

q
,
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since q < N . This is equivalent to∣∣∣∣ω − p

q

∣∣∣∣ < 1

q2
,

which has infinitely many solutions.

Definition 2.2.1 (Diophantine number). A number ω ∈ R is Diophantine of
class (τ, γ) or belongs to D(τ, γ) there exist γ > 0 and τ ≥ 0 such that∣∣∣∣ω − p

q

∣∣∣∣ ≥ γ

q2+τ

for any p, q ∈ Z, where q 6= 0.

The set of all Diophantine numbers is often denoted by

D = ∪γ>0
τ≥0
D(τ, γ)

and is often referred to as the set of “badly approximable” numbers by rationals.

The intuition about what this set looks like is not straightforward. The first
thing to check is that D is not empty. Indeed, the golden number

1 +
√

5

2

belongs to D(τ, γ) with τ ≥ 0 and γ ≥ 1/
√

5. The following result gives a
property on the measure of D.

Lemma 2.2.2. Let τ > 0 and γ ≥ 0. Then, there exists a function m(τ) such
that

µ(Dτ,γ ∩ [0, 1]) ≥ 1−m(τ)γ.

Proof. We have

µ([0, 1] \ Dτ,γ) = µ

 ⋃
q∈N

0<p≤q

{
ω ∈ [0, 1] :

∣∣∣∣ω − p

q

∣∣∣∣ < γ

|q|2+τ

}
=
∑
q∈N

0<p≤q

µ

({
ω ∈ [0, 1] :

∣∣∣∣ω − p

q

∣∣∣∣ < γ

|q|2+τ

})

=
∑
q∈N

0<p≤q

2γ

|q|2+τ

=

∞∑
q=1

∞∑
p=1

2γ

|q|2+τ

= γ

∞∑
q=1

2q

|q|2+τ
.
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Therefore, by defining

m(τ) ..=

∞∑
q=1

2q

|q|2+τ

and taking into account that for τ > 0, the series converges, we get the desired
result.

Notice that for τ = 0, the series diverges, and D0,γ has zero measure even if
it is non-empty.

From a topological point of view, the set D is a Cantor set. The following
proposition gives the necessary properties.

Proposition 2.2.3 (D is a Cantor set). Let γ > 0 and τ ≥ 0. Then,

1. Dτ,γ is nowhere dense, that is, Dτ,γ has empty interior;

2. Dτ,γ and D are perfect sets, that is, they are closed and have no isolated
points;

3. Dτ,γ is totally disconnected, that is, all of its connected components are
points.

The complement of D also has interesting properties. We say that a number
ω ∈ R \ Q is a Liouville number if for any n ∈ N, there exist p, q ∈ Z, where
q > 1 such that

0 <

∣∣∣∣ω − p

q

∣∣∣∣ < 1

qn
.

Therefore, Liouville numbers are very well approximated by rational numbers.
As before, we this set is non-empty, since it contains at least the so-called
Liouville number

∞∑
n=1

10−n!.

Moreover, the set of Liouville numbers has zero measure, and from the point of
view of Topology, it is a Gδ−set, that is, a countable intersection of open dense
sets.

So far, we have studied the rational approximation of real numbers. This can
be generalised to higher dimensions.

Definition 2.2.2 (Diophantine vector). A vector ω ∈ Rn is Diophantine of
class (τ, γ) or belongs to Dτ,γ if there exist γ > 0 and τ ≥ 0 such that

|k · ω| ≥ γ

‖k‖n−1+τ
,

for any k ∈ Zn \ {0}.

An analogous result to Lemma 2.2.2 is valid for Diophantine vectors.

Lemma 2.2.4. For τ > 0, there exists a function m(τ, n) such that

µ (Dτ,γ ∩ [0, 1]n) ≥ 1−m(τ, n)γ.

An immediate consequence of this lemma is the following result.

Proposition 2.2.5. The set D = ∪γ>0
τ≥0
Dτ,γ has full measure.
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2.2.2 KAM Theory

In nature one often encounters systems that differ from integrable ones by small
perturbations. Thus, for example, the problem of the motion of planets around
the Sun can be regarded as a perturbation of the integrable problem of the mo-
tion of non-interacting point masses around a fixed centre of attraction. Meth-
ods for studying such systems are grouped in what is known as perturbation
theory. These methods often enable us to describe the perturbed motion almost
as completely as the unperturbed motion. The justification of various methods
in perturbation theory is rather difficult.

The Kolmogorov-Arnol’d-Moser Theory (or simply KAM Theory) is a per-
turbation theory for non-resonant quasiperiodic motions (see Definition 2.1.2)
of Hamiltonian and related systems that works over infinite time intervals.

2.2.2.1 Invariant Tori of the Perturbed System

Let us begin this section by recalling some of the basic notions underlying inte-
grable systems. Consider an unperturbed integrable Hamiltonian system with
Hamiltonian H0(I). Its phase space is foliated by invariant tori I = const. The
motion on each torus is conditionally-periodic with frequency vector ω(I) =
∂IH0. A torus on which the frequencies are rationally-independent is said to
be non-resonant. Each phase trajectory on such a torus fills it densely (and is
called a winding of the torus). The remaining tori I = const are said to be
resonant. They are foliated by tori of smaller dimension. The unperturbed sys-
tem is said to be non-degenerate if the frequencies are functionally independent,
that is

det(∂Iω) = det(∂2IH0) 6= 0.

In a non-degenerate system, the non-resonant tori form a dense set of full mea-
sure. The resonant tori forma set of measure zero which, however, is also dense.
Moreover, the sets of resonant tori with any number of independent frequencies
from 1 to n− 1 are each dense; in particular, the set of tori on which all phase
trajectories are closed is dense.

In order to state the next result, we need to introduce some notation. Let
σ > 0 be fixed and define

Tnσ ..= {θ ∈ Cn/(2πZ)n | |Im(θ)| ≤ σ}

and
Uσ ..= {I ∈ Cn | Re(I) ∈ U , |Im(θ)| ≤ σ}.

The norm of a function f in the product space Tnσ × Uσ is defined as

‖f‖Tnσ×Uσ ..= sup
(θ,I)∈Tnσ×Uσ

|f(θ, I)| .

Sometimes, we also work in the restricted spaces Tnσ−ρ and Uσ−ρ, for which the
above definitions are generalised in the obvious way ρ ∈ (0, σ). Consider now
the perturbed system with Hamiltonian

H(I, θ, ε) = H0(I) + εH1(I, θ, ε),
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where θ ∈ Tn, I ∈ U ⊂ Rn, which is analytic in Tnσ × Uσ ⊂ Cn × Cn for some
σ > 0. Assume that ∂IH0(I) = ω, for ω ∈ Dτ,γ , where γ > 0 and τ ≥ 0.

The subsequent theorem describes the fate of non-resonant tori under pertur-
bation (see [7]).

Theorem 2.2.6 (Kolmogorov, 1954). With the assumptions above, if the un-
perturbed system is non-degenerate, then there exists ρ ∈ (0, σ) and a symplectic
transformation

Φ : Tnσ−ρ × Uσ−ρ −→ Tnσ × Uσ
(r, φ) 7−→ Φ(r, φ) = (I, θ)

such that
H ◦ Φ(r, φ) = a+ ωr + P (r, φ, ε),

where P (0, 0, ε) = 0 and ∂rP (0, φ, ε) = 0.

As an immediate consequence of this theorem, we have that Hamilton’s equa-
tions can now be written as{

φ̇ = ω + ∂rP (r, φ, ε),

ṙ = −∂φP (r, φ, ε).

Therefore, if r = 0, then ∂rP (0, φ, ε) = 0, so that the n−dimensional torus
{r = 0} is invariant. Moreover, we have φ̇ = ω. In other words, after the change
of coordinates given by Φ, the motion on the invariant torus {r = 0} is the same
as the one on the unperturbed torus, namely a rotation of frequency ω.
Remark 2.2.1. In the norm of the supremum, the transformation Φ is ε−close
to the identity, that is

‖Φ− Id ‖Tnσ−ρ×Uσ−ρ = O(ε).

Theorem 2.2.6 gives a first approach to how many of the tori that are present
in the unperturbed system persist. Indeed, since the result holds for any ω ∈
Dτ,γ and

µ(Dτ,γ ∩ [0, 1]n)

µ([0, 1]n)
− 1 = O(γ),

the union of sets Sτ,γ of persistent tori with Diophantine frequency ω ∈ Dτ,γ
satisfies

µ

(
∪γ>0
τ≥0

Sτ,γ

)
µ(Tσ × Uσ)

− 1 = O(γ).

This means that for γ small, every point except for a set of measureO(γ) belongs
to one of the invariant tori given by Kolmogorov’s Theorem.

In the sixties, Arnol’d proved that the measure of the set of points not be-
longing to invariant tori is of order O(

√
ε). Around the same time, Moser gave

an improved statement asking for H to be only Dk, with k > 2n.

So far we have described the persistence of tori when we let ε > 0. The
stability given by KAM Theory shows that, under suitable regularity and non-
degeneracy assumptions, most (in the sense of measure theory) of the tori above
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persist (even if slightly deformed) under small Hamiltonian perturbations. In
other words, there are a lot of bounded (stable) motions close to the unperturbed
ones. We now wish to understand the behaviour of the rest of orbits of the
system, that is in the complement of the set of persistent tori. We shall see in
the subsequent pages that the number of degrees of freedom plays a crucial role
in the stability of these solutions.

Systems with One Degree of Freedom If n = 1, the perturbed Hamilto-
nian system is also integrable, although not in the classical sense of Liouville-
Arnol’d, for we don’t have global action-angle variables. If we consider

H(I, φ) = H0(I) + εH1(I, φ),

with (I, φ) ∈ R × T, then H is a first integral. In the lever curves H(I, φ) = h
we see the structure of KAM Theorem.

Example 2.2.1. Consider the Hamiltonian for the pendulum given by

H(I, φ) =
1

2
I2 + εV (φ) =

1

2
I2 + ε(cosφ− 1).

The equations that describe the dynamical system are{
φ̇ = I,

İ = −εV ′(φ) = ε sinφ.

The level curves have the equation (see Figure 2.1)

1

2
I2 + ε(cosφ− 1) = h.

Figure 2.1: Phase portrait of the orbits of an ordinary pendulum.

Therefore, when h > 0 is far from zero, the level curves of H are close to the
lever curves of H0. Indeed, they have the form

H = I0 +O(ε),
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with I0 =
√

2h. The point (0, 0) is a saddle and its stable and unstable manifolds
coincide along the separatrix (which is a homoclinic orbit)

H(I, φ) =
1

2
I2 + ε(cosφ− 1) = 0.

We observe that the tori close to I = 0 have disappeared. The energy level
h = 0 contains an equilibrium point of saddle type and its separatrices (i.e. the
stable and unstable manifolds, which coincide due to the integrability of H).

When h < 0 inside the separatrices of the saddle we have tori of different
topology (contractible to a point). Summing up, there is stability in the case of
one degree of freedom.

Systems with One and a Half Degrees of Freedom We now consider

H(I, φ, t; ε) = H0(I) + εH1(I, φ, t; ε),

with (I, φ, t) ∈ R× T2. We add time as a variable, obtaining the equations
φ̇ =

∂H

∂I
(I, φ, s; ε),

İ = −∂H
∂φ

(I, φ, s; ε),

ṡ = 1

in the 3−dimensional extended phase space (I, φ, s) ∈ R× T2. Denote the flow
as φ(t, I, φ, s; ε) (so that φ̃(0, I, φ, s; ε) = (I, φ, s)).

For ε = 0, the Hamiltonian is H0(I) and the system is integrable. The
3−dimensional space is foliated by 2−dimensional tori

TI0 = {(I, φ, s) ∈ R× T2 | I = I0}

and the flow in TI0 is a rotation with frequency ω̃0(I0) = (ω0(I0), 1), where
ω0(I0) = ∇H0(I0), so that

{φ̃(t, I, φ, s; 0) | (I, φ, s) ∈ TI0} = (I0, φ+ ω(I0)t, s+ t).

When ε > 0, KAM Theory gives tori TI0,ε close to TI0 for the Hamiltonian
system. We know that the invariant tori cover the whole space R×T2 except for
a set of measure

√
ε, and that the invariant curves cover the whole space R×T2

except for a set of measure
√
ε. There appears, however, a phenomenon known

as splitting of separatrices, which means that the in the zones between KAM
tori do not coincide. This phenomenon makes the system look chaotic, although
only locally. In fact, the tori (curves) are barriers to the unstable motion (see
Figure 2.2).

Higher-Dimensional Systems The previous argument does not work for
perturbations of Hamiltonian systems with more than two degrees of freedom
(neither for periodic perturbations of systems of two degrees of freedom). Sup-
pose now that θ ∈ Tn and I ∈ U ⊂ Rn. Then, the energy level has dimension
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2. INTEGRABILITY OF HAMILTONIAN SYSTEMS

Figure 2.2: The perturbed system (on the right) shows how some of the orbits
of the unperturbed one (on the left) are preserved, even if deformed, while
others disappear. In the latter case, the KAM curves (i.e. persistent tori) are
barriers to unstable motion, although there is chaos locally due to the splitting
of separatrices.

2n− 1 and the invariant tori have dimension n, so in principle, orbits may drift
in actions. That is, there can be orbits (θ(t), I(t)) such that there exists T > 0
such that

|I(T )− I(0)| > 1.

This drift in actions in usually called Arnol’d diffusion, and we devote Chapter 3
to giving a well-known example of this phenomenon in a Hamiltonian system
with two and a half degrees of freedom.

Diffusion of Slow Variables and its Exponential Estimate In generic
systems, the average velocity of the diffusion is exponentially small. Consider a
Hamiltonian

H(θ, I) = H0(I) + εH1(θ, I) (2.5)

that is analytic in θ ∈ Tn and I ∈ U ⊂ Rn. Assume that H0 is strictly convex,
that is there exists M > 0 such that∣∣vT∂2IH0(I)v

∣∣ ≥M‖v‖2,
for any v ∈ Rn.
Remark 2.2.2. Notice that strict convexity implies that the map I 7→ ω(I) =
∂IH0(I) is a global diffeomorphism.

Theorem 2.2.7 (Nekhoroshev, 1977). With the above hypotheses, there exists
ε0 > 0 such that for any ε ∈ (0, ε0), any orbit (θ(t), I(t)) of (2.5) satisfies

|I(t)− I(0)| ≤ C1ε
1
2n , for any |t| ≤ C2e

C3/ 2n
√
ε

where C1, C2 and C3 are positive ε−independent constants.
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3

Arnol’d Diffusion

In Chapter 2, we have seen how to deal with the persistence of quasiperiodic
motions (see Definition 2.1.1) under small perturbations of conservative dy-
namical systems. Indeed, integrable Hamiltonian systems have quasiperiodic
trajectories of the coordinates. If such a system is subjected to a weak nonlin-
ear perturbation, some invariant tori are deformed and survive. They meet the
non-resonance condition, that is they have “sufficiently irrational” frequencies
(see Definition 2.1.2). However, this non-resonance condition becomes increas-
ingly difficult to satisfy for systems with more degrees of freedom. In fact, we
know that in this case, other tori are destroyed, allowing for the actions to
drift indefinitely, thus giving rise to what is know as Arnol’d Diffusion (see
Section 2.2.2.1).

The purpose of this chapter is to give the famous example that Arnol’d him-
self provided to show that diffusion occurs in higher-dimensional near-integrable
systems. One of the reasons why Arnol’d’s original paper is unusual is his em-
ploying a slightly special vocabulary in which, for instance, the usual terms sta-
ble and unstable manifolds are replaced by arriving and departing whiskers. A
torus with an arriving and a departing whisker is then referred to as a whiskered
torus. We shall try to use the more modern nomenclature for the stable and
unstable manifolds, which is the most accepted one in Dynamical Systems, but
we keep the expression “whiskered torus” in order to avoid the longer option
“torus with stable and unstable manifolds”. The original exposition as Arnol’d
presented it can be found in [2]. Another reference is [3].

3.1 The Intuition Behind Arnol’d’s Model

The particular example that Arnol’d conceived was a 5−degrees-of-freedom
Hamiltonian that presented instability, namely he proved the following

Theorem 3.1.1 (Arnol’d, 1964). Let be a Hamiltonian system described by

H(I1, I2, φ1, φ2, t; ε, µ) = H0(I1, I2) +H1(φ1, φ2; t), for ε, µ > 0, (3.1)
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3. ARNOL’D DIFFUSION

where

H0(I1, I2) =
1

2
(I21+I22 ), and H1(φ1, φ2, t; ε, µ) = ε(cosφ1−1)(1+µ(sinφ2+cos t)).

Then, there exist orbits of Hamilton’s equations satisfying

|I(T )− I(0)| > 1.

The Hamiltonian (3.1) has two degrees of freedom and is 2π−periodic in time.
The system of differential equations that it defines is

φ̇1 = I1,

φ̇2 = I2,

İ1 = ε sinφ1(1 + µ(sinφ2 + cos t)),

İ2 = ε(1− cosφ1)µ cosφ2.

(3.2)

This system can be made autonomous, following the procedure outlined in Sec-
tion 1.1 Indeed, in order to get rid of the time t, we introduce the variables
s ..= t and I3, and consider the new Hamiltonian

K ..= H + I3,

whose equations for the motion are

φ̇1 = I1,

φ̇2 = I2,

ṡ = 1,

İ1 = ε sinφ1(1 + µ(sinφ2 + cos t)),

İ2 = ε(1− cosφ1)µ cosφ2,

İ3 = −∂sK.

(3.3)

In order to study the orbits, we restrict to the energy level {K = h}. There-
fore, the new action I3 is determined by

I3 = h−H(I1, I2, φ1, φ2, s)

and hence it is irrelevant in the new dynamics. As a consequence, if we denote
by Tk the k−dimensional torus, that is the direct product of k circumferences,
which can be described by the k angular coordinates (φ1, φ2, . . . , φk) mod 2π,
then the phase space of System (3.3) is the 5−dimensional direct product of R2

with the three-dimensional torus T3.

The best way to understand how instability is manifested in this system is
probably to look at a simple diagram. Notice that any such figure must be very
schematic, since three dimensions simply are not enough to show everything that
is going on. Figure 3.1 shows the phase space of System (3.2) in three cases of
increasing complexity. The last case shows the fully developed transition chain
(see Definition 3.3.3) of Arnol’d’s mechanism, in which the unstable manifold of
one whiskered torus intersects the stable manifold of another whiskered torus.

The unperturbed system is very simple, with a phase space entirely foliated
by 2−dimensional invariant tori. We then use ε and µ to perturb the system in
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3.1. THE INTUITION BEHIND ARNOL’D’S MODEL

Figure 3.1: Schematic diagram of the invariant manifolds in Arnol’d’s model in
three cases. On the left, ε = µ = 0; on the centre, ε > 0 and µ = 0, and on the
right, ε > 0 and µ > 0.

two stages. First, we see that taking ε > 0 “switches on” the hyperbolicity of the
system, that is to say, the tori develop homoclinic orbits (coincident stable and
unstable whiskers). Finally, when we take both ε > 0 and µ > 0, the homoclinic
orbits break into separate stable and unstable invariant manifolds that intersect
each other transversely (therefore breaking the integrability of the system). The
truly interesting point is that not only do the stable and unstable manifolds from
the same torus intersect each other, but they also intersect invariant manifold
attached to nearby tori (see Theorem 3.3.3). This is the crucial fact that allows
us to establish the existence of a transition chain, that is a set of invariant tori
spread over a large expanse of phase space and linked by transverse intersection
of their respective unstable and stable invariant manifolds (see Definition 3.3.3).
Very near the chain are guiding channels through which unstable orbits of the
system may travel large distances along resonances and through the thicket of
invariant tori. This behaviour is often referred to as shadowing : the unstable or-
bits shadow orbits in one stable manifold and begin shadowing those in another
as they move along the transition chain (see Lemma 3.3.8).

To be more explicit about the flow along the transition chain, consider Sys-
tem (3.2) with ε > 0 and µ > 0 of the right magnitudes so that a transition
chain is established (see Figure 3.2). We first imagine an orbit starting very
close to an invariant torus of the chain. At first swept along by the flow on the
torus, our orbit winds around the torus for a time until it is “picked up” by the
flow of the unstable invariant manifolds emanating from the torus. The orbit
then shadows an orbit in this unstable manifold until it reaches the vicinity of
a point of intersection of this manifold with the stable manifolds of a second
invariant torus. The orbit then switches to the stable manifold, following one
of its orbits until it is drawn almost to the surface of the second torus. It then
begins to wind around the second torus, and the process just described –the
flow along one link of the chain– is repeated. Moving from link to link along
the chain, our orbit may travel long distances from its initial location.

The process of switching from one invariant structure to the next may seem
mysterious, and indeed, the precise way it occurs is highly sensitive to the orbit’s
initial conditions. Yet once the transition chain’s existence is established, we
know that such orbits must exist as a consequence of the Lambda Lemma (see
Theorem 3.3.7). That the switching (precisely where and when it occurs) is so
sensitive to initial conditions makes it seem like a random process, and soon
after Arnol’d proposed this model, the instability in it was conjectured to be
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3. ARNOL’D DIFFUSION

Figure 3.2: Schematic diagram of a transition chain in Arnol’d’s model of in-
stability, with an unstable orbit traversing one “link” in the chain.

a kind of diffusion. The terminology “Arnol’d diffusion” quickly became the
standard name for the instability.

It is worth commenting on one of the sketchiest parts of the argument outlined
in [2], namely the use of what Arnol’d calls obstructing sets, which in turn lies
on the concept of complementation.

Definition 3.1.1 (Complementing manifold at a point). Let M be a smooth
submanifold of the space X. Let TMx be the tangent plane to M at the point
x. The manifold N complements M at the point x ∈M ∩N if

TMx + TNx = TXx.

Definition 3.1.2 (Obstructing set). With the same terminology as above, we
say that the set Ω obstructs the manifoldM at the point x ∈M if every manifold
N which complements M at x is intersected by Ω.

Once the transverse intersection between the departing whisker of one torus
and arriving whisker of another torus has been established, the concept of ob-
structing set is crucial in guaranteeing that trajectories moving very close along-
side the departing whisker will transfer over so as to move closely alongside the
arriving whisker of the next torus in the chain. In order to verify this process, a
special versions of the so-called Lambda Lemma is needed (see Theorem 3.3.7).

In the remaining sections of this chapter we shall explain Arnol’d’s proof in
detail. The study of the system is done in three steps, corresponding to those
in Figure 3.1.

3.2 The Unperturbed System

Let us fix ε = 0. The third and fourth equations in System (3.3) give I1 = ω1 and
I2 = ω2, with ω1, ω2 constant values. These equations define a three-dimensional
torus

Tω = {(I1, I2, φ1, φ2, s) ∈ R2 × T3 | I1 = ω1, I2 = ω2} ' T3,
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3.3. THE PERTURBED SYSTEM

where ω = (ω1, ω2, 1). The dynamics in this torus is described by the system
φ̇1 = ω1,

φ̇2 = ω2,

ṡ = 1,

(3.4)

which can be explicitly solved to give

(φ1(t), φ2(t), s(t)) = (φ01, φ
0
2, s

0) + (ω1, ω2, 1)t.

Therefore, the motion in Tω corresponds to a rigid rotation with frequency ω.

A way to find the instability that we seek is by seeing what occurs near
surviving tori, that is, near resonance. For instance, if ω2 ∈ Q, the equation
I1 = ω1 = 0 gives a four-dimensional manifold foliated by a family of resonant
tori.

3.3 The Perturbed System

3.3.1 Two Uncoupled Subsystems

We now assume ε > 0 and µ = 0. Then the original Hamiltonian

H(I1, I2, φ1, φ2, s; ε, µ) =
1

2
(I21 + I22 ) + ε(cosφ1 − 1) (3.5)

can be split into two part, each one corresponding to one of the systems{
İ1 = ε sinφ1,

φ̇1 = I1,
and

{
İ2 = 0,

φ̇2 = I2.
(3.6)

The motion in the second subsystem is given by (φ2(t), I2(t)) = (φ02+ω2t, ω2).
For the first system, the change of (φ1, I1) in time is that of an ordinary pendu-
lum, which has a hyperbolic equilibrium point at (0, 0). Moreover, the equation
I2 = ω2 defines a four-dimensional manifold containing several tori. Some are
3−dimensional persistent tori which correspond to the rotation orbits in the
pendulum and are described by

1

2
I21 + ε(cosφ1 − 1) = c > 1, I2 = ω2, and (φ1, φ2, s) ∈ T3.

Other tori are destroyed, giving rise to 2−dimensional whiskered tori of the form

Tω2
= {(I1, I2, φ1, φ2, s) ∈ R2 × T3 | I1 = 0, I2 = ω2, φ1 = 0} ' T2,

for any ω2 ∈ T. The motion in these tori is given by

φ2 = φ02 + ω2t, s = s0 + t.

The three-dimensional arriving and departing whiskers (i.e. stable and unstable
manifolds) form a homoclinic orbit (see Figure 3.3).

The following proposition gives an explicit expression for the whiskers of the
2−dimensional whiskered tori. Before we state it, we need to give a definition.
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3. ARNOL’D DIFFUSION

Figure 3.3: The phase portrait on the left is that of an ordinary pendulum.
Persistent tori (given by KAM Theory) are the ones outside of the homoclinic
orbit. The gap between surviving tori has size O(

√
ε). The phase portrait on

the right corresponds to an ordinary rotation.

Definition 3.3.1 (Higher-dimension stable and unstable invariant manifolds).
Let Λ be an invariant set contained in the phase space X. The stable manifold
of Λ is the set

W s(Λ) = {p ∈ X | there exists ps0 ∈ Λ such that lim
t→+∞

|φt(p)− φt(ps0| = 0},

and the unstable manifold of Λ is the set

Wu(Λ) = {p ∈ X | there exists pu0 ∈ Λ such that lim
t→−∞

|φt(p)− φt(pu0 | = 0}.

Proposition 3.3.1 (Whiskered torus). The manifold

Tω2
= {(I1, I2, φ1, φ2, s) ∈ R2 × T3 | I1 = 0, I2 = ω2, φ1 = 0} (3.7)

is a two-dimensional whiskered torus of System (3.3) if ω2 ∈ R\Q. The whiskers
are 3−dimensional and are defined by

H(1)(I1, I2, φ1, φ2, s; ε, µ) =
1

2
I21 + ε(cosφ1 − 1) = 0 (3.8)

and
H(2)(I1, I2, φ1, φ2, s; ε, µ) =

1

2
I22 =

1

2
ω2
2 , (3.9)

which is equivalent to

I1 = ±2
√
ε sin

(
φ1
2

)
and I2 = ω2. (3.10)

Or, alternatively, 
I1(t) = ±2

√
ε arccosh(

√
ε(t− t0)),

φ1(t) = ± arccot(− sinh(
√
ε(t− t0))),

φ2(t) = φ02 + ω(t− t0),

(3.11)

where I1(t0) = ±
√
ε, φ1(t0) = ±π and φ2(t0) = φ02.

Proof. The fixed points are of the form (0, πk), for k ∈ Z. To see their stability,
we compute

Df(I1, φ1)|(0,πk) =

(
0 ε cosφ1
1 0

)∣∣∣∣
(0,πk)

=

(
0 ε(−1)k

1 0

)
,

42



3.3. THE PERTURBED SYSTEM

so that the eigenvalues are ±
√
ε for even k and ±i

√
ε for odd k.

In order to compute the homoclinic orbit, we notice that the points (I1, φ1)
satisfy H(I1, φ1) = H(0, 0), so the orbit is given by H(1) = 0 and H(2) = 1

2ω
2,

that is

I1 = ±
√

2ε(1− cosφ1 = ±

√
4ε sin2

(
φ1
2

)
= ±2

√
ε sin

(
φ1
2

)
, and I2 = ω.

Since I1 = φ̇1, we have

±
∫

1

sin
(
φ1

2

) dφ1 = 2
√
ε

∫
dt.

Imposing for instance φ1(0) = π, this can be solved to give

φ1(t) = 4 arccot e∓2
√
εt.

Then,

I1(t) = ±2
√
ε sin

(
φ1
2

)
= ±2

√
ε arccosh(

√
εt).

Thus, the whiskers satisfy

lim
t→∞

I1(t) = 0, lim
t→∞

φ1(t) = 0, lim
t→∞

φ2(t) ∈ {φ02 + ω(t− t0)},

so that if

zh(t) = (I1(t), ω2, φ1(t), φ02+ω2t, s0+t) and zω2
= (0, ω2, 0, φ

0
2+ω2t, s

0+t)

satisfy
lim

t→±∞
‖zh(t)− zω2(t)‖ = 0,

then, there is a homoclinic orbit.

This proof gives, in addition, the existence of a homoclinic orbit for the
whiskered torus.

3.3.2 Complete System

We now consider the whole system, that is, we assume 0 � µ � ε � 1. In
[1,2] it is proved that for the majority of non-resonant conditions, the quantities
I1(t) and I2(t) change little in the course of the whole infinite interval of time
(−∞,∞). This is in fact a consequence of KAM Theory (see Section 2.2.2). It
turns out, however, that close to the resonant manifold I1 = 0, there is a zone
of nonstability.

Of course, for µ 6= 0, the homoclinic orbit of the torus defined in (3.7) splits
into two whiskers which intersect each other.

Proposition 3.3.2. The manifold Tω2
is a whiskered torus of System (3.3) if

µ is sufficiently small.
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3. ARNOL’D DIFFUSION

Proof. The assertion can be proved by the standard method of contractive map-
pings. It is convenient to use to conical metric

‖f(x)‖ = max

{
f(x)

x

}
.

Definition 3.3.2 (Transition torus). A transition torus T is a whiskered torus
such that the images of an arbitrary neighbourhood of an arbitrary point ξ of
one of its arriving whiskers obstruct the departing whisker at an arbitrary point
η of the latter.

Definition 3.3.3 (Transition chain). A transition chain is a collection of tori
T1, T2, . . . , Tn, . . . such that the departing whisker Y +

s of every preceding torus
Ts complements the arriving whisker of the following torus Y −s+1 at some point
of their intersection xs ∈ Y +

s ∩ Y −s+1.

It turns out that the following lemma holds.

Lemma 3.3.3 (Existence of a transition chain). Assume A < ω < B. Then,
there exists κ = κ(ε, µ,A,B) > 0 such that the departing whisker Y +

ω of the
torus Tω intersects the arriving whiskers Y −ω , of all tori Tω̃ for which |ω − ω̃| ≤
κ = κ(ε, µ,A,B).

Proof. The proof of this lemma requires certain calculations. The nonperturbed
whiskers have the equations (3.8) and (3.9). Assume α > 0 (for instance, α =
π/2). It is easy to see that for |φ1| < 2π − α, the equations of the perturbed
departing whisker Y +

ω can be written in the form

H(1) = ∆+
1 (φ1;φ2, t;ω) and H(2) =

1

2
ω2 + ∆+

2 (φ1;φ2, t;ω), (3.12)

where the functions ∆+
k = O(µ) are 2π−periodic with respect to φ2 and t, and

are equal to 0 for φ1 = 0. In exactly the same way, the arriving whisker Y −ω ,
for |φ1 − 2π| < 2π − α has equations

H(1) = ∆−1 (φ1;φ2, t; ω̃) and H(2) =
1

2
ω̃2 + ∆+

2 (φ1;φ2, t; ω̃). (3.13)

We shall look for the intersection of the whiskers Y +
ω and Y −ω̃ on the plane

φ1 = π. The statement of this lemma is an assertion concerning the solvability
with respect to φ2 and t of the system of equations

∆+
1 (π;φ2, t;ω) = ∆−1 (π;φ2, t; ω̃),

1

2
ω2 + ∆+

2 (π;φ2, t;ω) =
1

2
ω̃2 + ∆−2 (π;φ2, t; ω̃).

(3.14)

The solvability of this system can be deduced from an approximate expression
for ∆±k . Indeed, in accordance with Equations (3.12) and (3.13), the quantities
∆±k represent the increments of H(k) in the perturbed motion of System (3.2).
Therefore, the derivatives of H(k) are exactly the Poisson bracket {H,H(k)}.
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Consequently, ∆±k is exactly equal to the following integrals extended over the
perturbed trajectories:

∆±k =

∫ 0

∓∞
{H,H(k)} d(t− t0), (3.15)

where the Poisson bracket is integrated along the nonperturbed trajectory de-
scribed in (3.11). We then derive the estimate

∆±k = µδ±k +O(µ2).

Taking now

δk = δ+k (π;φ02, t
0, ω)− δ−k (π;φ02, t

0, ω) =

∫ +∞

−∞
{H,H(k)} d(t− t0),

it is obvious that the solvability of System (3.16) depends basically on the
solvability with respect to φ02 and t0 of the ystem

δ1 +O(µ) = 0,

1

2
(ω2 − ω̃2) + µδ2 +O(µ2) = 0.

(3.16)

An easy calculation gives the result

δ1 = −2ε

∫ +∞

−∞
u
∂B

∂t
dt and δ2 = 2εω

∫ +∞

−∞
u
∂B

∂φ2
dt, (3.17)

where

u =
1

cosh2(
√
ε(t− t0))

, B = B(φ2, t) and φ2 = φ02 + ω(t− t0).

By Proposition 3.3.4, for B = sin(φ2) + cos t we have

δ1 =
2π sin t0

sinh

(
π

2
√
ε

) and δ2 =
2πω cosφ02

sinh

(
ωπ

2
√
ε

) .
The intersection between the two whiskers of the same torus can be found by

imposing ω̃ = ω, where ω is fixed, so that we obtain

2π sin t0

sinh

(
π

2
√
ε

) +O(µ) = 0,

µ
2πω cosφ02

sinh

(
ωπ

2
√
ε

) +O(µ2) = 0.

(3.18)

By the Implicit Function Theorem, we can find a solution of this system for
|µ| < µ0, where µ0 is fixed.
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We now suppose ω̃ 6= ω in order to find the heteroclinic connection between
two different tori of frequencies ω and ω̃. If we restrict to order O(µ), the second
equation in System (3.16) yields

ω̃2

2
=
ω2

2
+ µ

2πω cosφ02

sinh

(
ωπ

2
√
ε

) .
Therefore, the new frequency ω̃ satisfies

ω̃2

2
∈

ω2

2
− µ 2πω cosφ02

sinh

(
ωπ

2
√
ε

) , ω2

2
+ µ

2πω cosφ02

sinh

(
ωπ

2
√
ε

)
 ,

so we can assume that ω̃ is of the form

ω̃ = aµ+ ω, (3.19)

where a ∈ R. Then, the original system (3.16) becomes

2π sin t0

sinh

(
π

2
√
ε

) +O(µ) = 0,

µ
2πω cosφ02

sinh

(
ωπ

2
√
ε

) − aµ(2ω + aµ) +O(µ2) = 0.

(3.20)

Notice that we can simplify µ in the second equation in System (3.21). For
µ = 0, the second equation gives

φ02 = arccos

(
1

2ω
2aω sinh

(
ωπ

2
√
ε

))
.

In order for φ02 to be well defined, we need to impose a condition for the argument
of the arcosine. This gives an interval for a so that the system has a solution.
Namely,

a ∈
[
− sinh−1

(
ωπ

2
√
ε

)
, sinh−1

(
ωπ

2
√
ε

)]
.

Let us fix a0 belonging to this interval. In order to find the values of µ that allow
the intersection between different tori to occur, we use the Implicit Function
Theorem again. Hence we obtain a solution to the system

2π sin t0

sinh

(
π

2
√
ε

) +O(µ) = 0,

2πω cosφ02

sinh

(
ωπ

2
√
ε

) − a0(2ω + a0µ) +O(µ) = 0,

(3.21)
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for µ satisfying |µ| < µ̃0. Therefore, Equation (3.19) gives an intersection
between whiskers of different tori provided that

|ω̃ − ω| = |a0µ| ≤
µ̃0

sinh

(
ωπ

2
√
ε

) ≤ κ,
where κ = κ(ε, µ,A,B) > 0.

Lemma 3.3.4. For B = sin(φ2) + cos t, the equations in (3.17) can be written
as

δ1 =
2π sin t0

sinh

(
π

2
√
ε

) and δ2 =
2πω cosφ02

sinh

(
ωπ

2
√
ε

) .
Proof. For the given B, we have

δ1 = −2ε

∫ +∞

−∞

− sin t

cosh2(
√
ε(t− t0))

dt

= 2ε
1√
ε

∫ +∞

−∞

sin

(
s√
ε

+ t0
)

cosh2 s
ds

= 2ε
1√
ε

∫ +∞

−∞

sin

(
s√
ε

)
cos t0

cosh2 s
ds+ 2ε

1√
ε

∫ +∞

−∞

cos

(
s√
ε

)
sin t0

cosh2 s
ds

=
√
ε sin t0

∫ +∞

−∞

e
is√
ε + e

−is√
ε

cosh2 s
ds

=
√
ε sin t0

∫ +∞

−∞

e
is√
ε

cosh2 s
ds−

√
ε sin t0

∫ −∞
+∞

e
ir√
ε

cosh2(−r)
dr

= 2
√
ε sin t0

∫ +∞

−∞

e
is√
ε

cosh2 s
ds, (3.22)

where we have used that cosh(−r) = cosh(r). Let now the map f be defined as

f(s) =
e
is√
ε

cosh2 s
.

Then, the integral in (3.22) can be dealt with using the Residue Formula, ac-
cording to which ∫

γ

f(z) dz = 2πi

k∑
i=1

Res(f, ci),

where γ is a closed curve containing the k poles of the map f and Res(f, ci) is
the residue of f at the i−th pole ci. Furthermore, each of the residues can be
computed as

Res(f, ci) =
1

(ni − 1)!
lim
s→ci

dni−1

dsni−1
((s− ci)nif(s)) ,
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where ni is the order of the pole ci.

In our case, the map f has one pole of order two at c = πi
2 . Therefore,

Res(f, c) = lim
s→c

d

ds

(
(s− c)2f(s)

)
= lim
s→c

d

ds

 (s− c)2e
is√
ε

−(s− c)2 − 1

3
(s− c)4 − · · ·


= lim
s→c

d

ds

 e
is√
ε

−1− 1

3
(s− c)2 − · · ·



= lim
s→c

i√
ε
e
is√
ε

(
−1− 1

3
(s− c)2 − · · ·

)
− e

is√
ε

(
−2

3
(s− c)− · · ·

)
(
−1− 1

3
(s− c)2 − · · ·

)2

=
−i√
ε
e
ic√
ε

=
−i√
ε
e
−π
2
√
ε .

We now choose a suitable curve γ that allows us to compute the desired integral.
In particular, let γ be the boundary of the closed rectangle of vertices (R, 0),
(R, πi), (−R, πi) and (−R, 0), where R > 0 is a constant, and let γi be each
of the four segments that form γ, starting with the one lying on the x−axis
and taking the counterclockwise orientation. Using the value obtained for the
residue Res(f, c), we obtain

4∑
i=1

∫
γi

f(z) dz = 2πi
−i√
ε
e
−π
2
√
ε =

2π√
ε
e
−π
2
√
ε .

In particular, if we let R tend to infinity, we have

lim
R→+∞

∫
γ2

f(z) dz = lim
R→+∞

∫
γ4

f(z) dz = 0,

lim
R→+∞

∫
γ3

f(z) dz =

∫ −∞
+∞

e
iπi+σ√

ε

cosh2(πi+ σ)
dσ

= −
∫ +∞

−∞

e
−π√
ε e

iσ√
ε

cosh2(σ)
dσ

= −e
−π√
ε lim
R→+∞

∫
γ1

f(z) dz,

where we have used that

cosh(πi+ σ) =
eπi+σe−πi−σ

2
=
−eσ + (−eσ)−1

2
= − cosh(σ).

Therefore, (
1− e

−π√
ε

)
lim

R→+∞

∫
γ1

f(z) dz =
2π√
ε
e
−π
2
√
ε ,
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and so

δ1 = 2
√
ε sin t0

∫ +∞

−∞

e
is√
ε

cosh2 s
ds = 2

√
ε sin t0 lim

R→+∞

∫
γ1

f(z) dz

= 2
√
ε sin t0

2π√
ε

e
−π
2
√
ε

1− e
−π√
ε

=
2π sin t0

sinh
(

π
2
√
ε

) .
Similarly,

δ2 = 2εω

∫ +∞

−∞

cos(φ02 + ω(t− t0))

cosh2(
√
ε(t− t0))

dt

= 2εω

∫ +∞

−∞

cos

(
φ02 +

ωs√
ε

)
cosh2 s

dt

= 2
√
εω

∫ +∞

−∞

cosφ02 cos

(
ωs√
ε

)
cosh2 s

ds− 2
√
εω

∫ +∞

−∞

sinφ02 sin

(
ωs√
ε

)
cosh2 s

ds

=
√
εω cosφ02

∫ +∞

−∞

e
iωs√
ε + e

−iωs√
ε

cosh2 s
ds

=
√
εω cosφ02

∫ +∞

−∞

e
iωs√
ε

cosh2 s
ds−

√
εω cosφ02

∫ −∞
+∞

e
iωr√
ε

cosh2 r
dr

= 2
√
εω cosφ02

∫ +∞

−∞

e
iωs√
ε

cosh2 s
ds.

This integral can be computed by following the exact same steps as before and
taking into account that there is a factor ω multiplying the exponent of the
numerator. Indeed, if we call f̃ the new integrand, then f̃ has the same pole of
order two, and we obtain

Res(f̃ , c) =
−ωi√
ε
e
−ωπ
2
√
ε .

Let us now take each γi as before. Then,

lim
R→+∞

∫
γ2

f(z) dz = lim
R→+∞

∫
γ4

f(z) dz = 0,

lim
R→+∞

∫
γ3

f(z) dz =

∫ −∞
+∞

e
iω πi+σ√

ε

cosh2(πi+ σ)
dσ

= −
∫ +∞

−∞

e
−ωπ√
ε e

iωσ√
ε

cosh2(σ)
dσ

= −e
−ωπ√
ε lim
R→+∞

∫
γ1

f(z) dz.

Therefore,(
1− e

−ωπ√
ε

)
lim

R→+∞

∫
γ1

f(z) dz = 2πiRes(f̃ , c) = 2πi
−ωi√
ε
e
−ωπ
2
√
ε =

2πω√
ε
e
−ωπ
2
√
ε ,
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which gives∫ +∞

−∞

e
iωs√
ε

cosh2 s
ds = lim

R→+∞

∫
γ1

f(z) dz =
2πω√
ε
e
−ωπ
2
√
ε

1

1− e
−ωπ√
ε

=
πω

√
ε sinh

(
ωπ
2
√
ε

) .
Hence, we finally obtain

δ2 = 2
√
εω cosφ02

∫ +∞

−∞

e
iωs√
ε

cosh2 s
ds = 2

√
εω cosφ02

πω
√
ε sinh

(
ωπ
2
√
ε

) =
2πω2 cosφ02

sinh
(
ωπ
2
√
ε

) .

Assume ω1 < A < B < ωs. For the proof of instability (see Theorem 3.3.10),
it is sufficient to construct a transition chain of tori Tω1

, Tω2
, . . . , Tωs , as the one

given by Lemma 3.3.3. Next we need a Lambda Lemma in order to prove the
shadowing property. Such a lemma can be found in [5]. The authors study the
existence and parameter dependence of invariant manifolds of lower-dimensional
tori for families of maps, when the normal behaviour has both a hyperbolic and
a central part. Once the existence of these invariant manifolds is established, a
very general version of the lemma for (partially hyperbolic) tori is given. Due
to the technicalities of the paper, we shall omit most of the details and certainly
all of the proofs.

We consider maps Fν(w) defined onMδ
..= Bmδ ×B

p
δ ×Tn×Bqδ , whereMδ ⊂

M ..= Rm×Rp×T n×Rq and ν ∈ Bsµ ⊂ Rs. Suppose that Fν(w) is of the form

Fν(w) = (A−(θ)x,A+(θ)y, θ + ω(x, y, r), B(θ)r) + f(x, y, θ, r) (3.23)

with some extra conditions. The stable manifold is then obtained for not neces-
sarily invertible maps. The results for the unstable one readily follow from the
stable one under suitable invertibility conditions. Existence of invariant stable
and unstable manifolds W s,u of dimension m + n and p + n, respectively, is
obtained. These invariant manifolds are given by W s = {(y, r) = γs(x, θ)} and
Wu = {(x, r) = γu(y, θ)}, for certain functions γs,u.

The proof of the lemma has two main parts. We first choose a normal form
of F around the invariant torus.

Lemma 3.3.5. Let F : Mδ →M be a map of the form (3.23) satisfying certain
hypotheses. If δ is small enough, there exists a change of variables C that
is C2−close to the identity, defined in a neighbourhood of T0 such that F̃ =
C−1 ◦ F ◦ C takes the same form (3.23), that is

F̃ (w) = (Ã−(θ)x, Ã+(θ)y, θ + ω̃(x, y, r), B̃(θ)r) + f̃(w).

The result then follows from the following proposition. A concept that is used
is that of a p−dimensional disc, by which we mean the image of a p−dimensional
ball intoM by a C1 map.

Proposition 3.3.6. Let F satisfy certain hypotheses. Assume that ω0 = ω(0, 0, 0)
is non-resonant. Let p0 ∈Wu and Γ be a C1 (p+ q)−dimensional manifold that
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is transverse to W s on q0. Then, there exists a p−dimensional disc contained
in Γ, given by q(z) = (x(z), z, θ(z), r(z)), for any z ∈ Bζ0 = {‖z‖ < ζ0} ⊂ Rp,
where q(0) = q0, such that for any ε > 0 there exists j ∈ N satisfying

{F j(q(z)) | z ∈ Bζ0} ∩B(p0, ε) 6= ∅.

Furthermore, there exists j0 such that D(F j(q(z)))(Rp) is ε−close to a subspace
of TWu if j > j0.

Theorem 3.3.7 (Lambda lemma). Let Fν satisfy certain hypotheses. Let ω0 be
non-resonant. Let γ be a (p+q)−dimensinoal C1 manifold intersecting transver-
sally W s at q0. Then,

Wu = ∪∞n=0F
n(γ).

Moreover, there exist p−dimensional submanifolds D of γ such that if Dn is the
connected component of Fn(D)∪B(0, δ) containing Fn(q0), then for any ε > 0
there exists n0 such that TDn is ε−close to (a subset of) TWu if n > n0.

The Lambda Lemma provides a way to see that arbitrary neighbourhoods of
different tori are connected. Indeed, it is a consequence of

Lemma 3.3.8 (Shadowing Lemma). Let {T1, T2, . . . , Tn, . . . } be a sequence of
transition tori. Given {εi}∞i=1 a sequence of strictly positive numbers, there
exists a point P and an increasing sequence of numbers {Ti}∞i=1 such that

φTi(P ) ∈ Nεi(Ti),

where Nεi(Ti) is a neighbourhood of size εi of the torus Ti.

Proof. Let x ∈W s
Ti . We can find a closed ball B1 centred at x such that

φT1
(B1) ⊂ Nεi(T1). (3.24)

By the Lambda Lemma, we know that

W s
T2 ∩B1 6= ∅.

Hence, we can find a closed ball B2 ⊂ B1, centred at a point in W s
T2 satisfy-

ing (3.24) and
φT2(B2) ⊂ Nε2(T2).

Proceeding by induction, we can find a decreasing sequence of closed balls B1 ⊃
B2 ⊃ · · · ⊃ Bi−1 ⊃ Bi such that

φTj (Bi) ⊂ Nεj (Tj), for any i ≤ j.

Since the balls are compact, their intersection is nonempty. Hence a point P in
the intersection satisfies the required property.

This shadowing property readily gives the following

Theorem 3.3.9 (Arbitrary neighbourhoods of different tori are connected).
Let T1, T2, . . . , Tn, . . . be a transition chain. Then an arbitrary neighbourhood
of the torus T1 is connected with an arbitrary neighbourhood of the torus Ts by
trajectories of the given dynamical system.
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The instability close to the resonant manifold then follows.

Theorem 3.3.10 (Nonstability close to the resonant manifold I1 = 0). Assume
0 < A < B. For every ε > 0 there exists µ0 > 0 such that, for 0 < µ < µ0,
System 3.2 is nonstable, that is, there exists a trajectory which connects the
region I2 < A with the region I2 > B.

52



4

Transversality of Manifolds
for Near-Integrable
Hamiltonian Systems with
More General Perturbations

In this chapter, we consider nearly-integrable systems (see Chapter 2), which
appear when one considers a perturbation of an integrable Hamiltonian

H(I, ϕ, ε) = H0(I) + εH1(I, ϕ),

where ε is a small parameter, I = (I1, I2, . . . , In) and ϕ = (ϕ1, ϕ2, . . . , ϕn)
(see (2.3)). Recall that the values of the actions I such that the unperturbed
frequencies

ωk(I) =
∂H0

∂Ik

are rationally dependent are called resonances (see Definition 2.1.2). Such sys-
tems provide a realistic model for the motion near a resonance only in the case
of two degrees of freedom. If one considers simple resonances of systems with
more than two degrees of freedom, one can choose all the angles except one to
be the fast variables.

Autonomous models with perturbations that depend on time in a quasiperi-
odic way appear in several problems of Celestial Mechanics. For instance, the
motion of a spacecraft in the Earth-Moon system can be modelled assuming
that the Earth and the Moon revolve in circles around their common centre of
masses (this gives an autonomous model), and the main perturbations (differ-
ence between the circular and the real motion of the Moon, effect of the Sun,
etc.) are modelled as a time-dependent quasiperiodic function.

After Arnol’d’s paper [2] saw the light, the main cause of the stochastic be-
haviour in Hamiltonian systems was considered to be the phenomenon of the
splitting of separatrices. Indeed, Arnol’d used this fact to show existence of in-
stability for a near-integrable Hamiltonian system with a 2−harmonic periodic
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perturbation. However, the main problem studying systems near a resonance
is that the splitting is of separatrices is exponentially small with respect to ε.
Namely, for a Hamiltonian of the form

H

(
x, y,

t

ε

)
= H0(x, y) +H1

(
x, y,

t

ε

)
,

where the Hamiltonian system of H0 has a saddle and an associated homoclinic
orbit, and the perturbation of H1 is a periodic function of time with zero mean
value, Neishtadt’s Theorem (see [8]) implies that the splitting can be bounded
from above by O

(
exp

(
− const

ε

))
. For this estimate to be valid, all the functions

have to be real analytic in x and y, whereas C1−dependence on time is enough.

The aim of the present chapter is to study the size of the above-mentioned
splitting in more general near-integrable Hamiltonian systems. Working on the
most general case is extremely difficult, for it requires dealing with manifolds
for infinitely many harmonics. In fact, there is no know result for such a system
if one assumes analiticity. Hence we shall restrict to a general perturbation of
a well-known Hamiltonian system. Namely, we study the dynamics on a torus
originated by a high-frequency perturbation of the pendulum.

The size of the splitting of such a perturbation is given up to order one by the
Melnikov function. In [1] the value of the splitting is shown to be exponentially
small with respect to ε provided that the perturbation’s amplitude is small
enough with respect to ε. We give a similar result even when the perturbation
exists in a strip whose width is logarithmic with respect to ε (see Section 4.2).

4.1 High-Frequency Perturbations of an Ordinary
Pendulum

Consider a high-frequency perturbation of the pendulum described by the Hamil-
tonian function

ω · I
ε

+ h(x, y, θ, ε), (4.1)

where

ω · I = ω1I1 + ω2I2, and h(x, y, θ, ε) =
y2

2
+ cosx+ εpm(θ1, θ2) cosx, (4.2)

with symplectic form dx ∧ dy + dθ1 ∧ dI1 + dθ2 ∧ dI2. We assume that ε is a
small positive parameter and p is a positive parameter. We also assume that
the frequency is of the form ω/ε, where

ω = (1, γ), and γ =
1 +
√

5

2
.

The number γ is the golden mean number, which is the “most irrational” num-
ber. The reason why we choose this particular frequency is merely pragmatic.
Indeed, as is well-known, γ is closely related to the Fibonacci sequence. This
fact will allow us to obtain certain estimates that would be more difficult to
infer otherwise (see Section 4.2.1).
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PENDULUM

The function m is assumed to be a 2π−periodic function of two variables θ1
and θ2. Thus, it can be represented as a Fourier series

m(θ1, θ2) =
∑

k1,k2∈Z
mk1,k2e

i(k1θ1+k2θ2). (4.3)

We assume that, for some positive numbers r1 and r2,

sup
k1,k2∈Z

∣∣∣mk1,k2e
r1|k1|+r2|k2|

∣∣∣ <∞, (4.4)

and that there are positive numbers a and k0 such that

|mk1,k2 | ≥ ae−r1|k1|−r2|k2|, (4.5)

for all |k1| / |k2|, which are continuous fraction convergents of γ with |k2| ≥ k0.
In fact, k1 and k2 are consecutive Fibonacci numbers, that is

k1 = ±Fn+1 and k2 = ∓Fn.

Fibonacci numbers are defined by the recurrence

F0 = 1, F1 = 1 and Fn+1 = Fn + Fn−1, for alln ≥ 1.

We call the corresponding terms in the perturbation to be resonant or Fibonacci
terms.

The upper bound (4.4) implies that the function m is analytic on the strip
{|Im θ1| < r1} × {|Im θ2| < r2}. Equation (4.5) implies that this function
cannot be prolonged analytically onto a larger strip. Let us choose α ∈ (0, 1].
Estimate (4.4) implies that

|m(θ1, θ2)| ≤ Kε−2α (4.6)

on the strip
{|Im θ1| ≤ r1 − εα} × {|Im θ2| ≤ r2 − εα}. (4.7)

Formula (4.5) implies that the upper bound in (4.6) cannot be improved. The
value of the splitting depends essentially on the width of these strips.

The Hamiltonian function defined in (4.1) can be considered as a singular
perturbation of the pendulum

h0 =
y2

2
+ cosx. (4.8)

The unperturbed system has a saddle point (0, 0) and a homoclinic trajectory
given by

x0(t) = 4 arctan(et), and y0(t) = ẋ0(t). (4.9)
The complete system given by Hamiltonian (4.1) has a whiskered torus T : (0, 0, θ1, θ2).
The whiskers are three-dimensional hypersurfaces in the four-dimensional ex-
tended phase space (x, y, θ1, θ2). These invariant manifolds are close to the
unperturbed pendulum separatrix.

For p > 3 and small ε > 0, the invariant manifolds split. In fact, the value of
the splitting is predicted by the Melnikov function

M(θ1, θ2; ε) =

∫ ∞
∞

{h0, h}
(
x0(t), y0(t), θ1 +

t

ε
, θ2 + γ

t

ε

)
dt, (4.10)

which gives a first-order approximation of the difference between the values of
the unperturbed pendulum energy h0 on the stable and unstable manifolds.
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4.2 Size of the Melnikov function in a Strip of
Logarithmic Size With Respect to ε

As is know, the size of the splitting of separatrices when perturbing a Hamil-
tonian system is given up to order one by the Melnikov function. Hence, an
accurate estimate of its size becomes principal in order to show that the split-
ting occurs. Here we consider that the perturbative function m defined in (4.2)
is analytic in a strip {|Im(θ1)| < r1} × {|Im(θ2)| < r1}, where

ri = bi log
1

ε
, for i = 1, 2.

The result that we obtain is the following

Proposition 4.2.1. The maximum of the modulus of the Melnikov function

max
(θ1,θ2)∈T2

|M(θ1, θ2; ε)| , (4.11)

taken on real arguments, can be bounded from above and from below by terms of
the form

const εp−1 exp

(
−
√
− log ε

ε
c(log(−ε log ε))

)
with different ε−independent constants, where the function c in the exponent is
defined by

c(δ) = C0 cosh

(
δ − δ0

2

)
, for δ ∈ [δ0 − log γ, δ0 + log γ], (4.12)

where

C0 =
√

2πCF (γb1 + b2), CF =
1

γ + γ−1
, δ0 = log ε∗ and ε∗ =

π(γ + γ−1)

2γ2(b1γ + b2)
,

and continued by 2 log γ−periodicity onto the whole real axis. The function is
piecewise analytic and continuous.

We devote the rest of this chapter to proving this proposition. Section 4.2.1
presents some results on the approximation of the golden number γ by rational
numbers and Section 4.2.2 gives upper bounds that are used to justify the size
of the Fourier coefficients of the Melnikov function.

4.2.1 Rational Approximation of the Golden Number

The best approximation of the golden number is given in terms of Fibonacci
numbers, which is defined by the recurrent formula

F0 = 1, F1 = 1 and Fn+1 = Fn + Fn−1,

for any n > 1. It is easy to check that

Fn−1 =
γn − (−1)nγ−n

γ + γ−1
(4.13)
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and

Fn − γFn−1 =
(−1)n

γn
=

(−1)n

Fn + γ−1Fn−1
.

For large values of n this implies

Fn − γFn−1 = (−1)n
CF
Fn−1

+O
(

1

F 3
n−1

)
, (4.14)

where
CF =

1

γ + γ−1
.

The estimate of the following lemma is not sharp, but is sufficient for our
purposes. The proof can be found in [1].

Lemma 4.2.2. If N ∈ N is not a Fibonacci number, then

|k − γN | > γCF
N

,

for any integer k.

4.2.2 Exponentially Small Upper Bounds

The proof of the following lemma is standard, and provides a tool to show
Proposition 4.2.1.

Lemma 4.2.3. Let F (θ1 + s/ε, θ2 + γs/ε) be a 2π−periodic function of the
variables θ1 and θ2 that is analytic in the product of strips |Im(θ1)| ≤ r1,
|Im(θ1)| ≤ r2 and |Im(s)| ≤ ρ, where ri = bi log 1

ε for i = 1, 2. Assume that
|F | ≤ A for these values of the variables. Then,

|Fk1,k2 | ≤ A exp

(
log ε(|k1| b1 + |k2| b2)− ρ |k1 + γk2|

ε

)
.

Consider now the 2 log γ−periodic function cρ,b1,b2(δ) defined on the interval
[log ε∗ − log γ, log ε∗ + log γ] by

cρ,b1,b2(δ) = C0 cosh

(
δ − log ε∗

2

)
, (4.15)

where

C0 = 2

√
(γb1 + b2)ρ

γ + γ−1
and ε∗ =

ρ(γ + γ−1)

γ2(b1γ + b2)
,

and continued by 2 log γ−periodicity. The following lemma gives the exponen-
tially small upper bound for the function F for real values of the variables.

Lemma 4.2.4. Let F satisfy the condition of Lemma 4.2.3. If γ is the golden
mean number

γ =
1 +
√

5

2
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and the mean value of the function F is zero, then

|F (θ1, θ2)| ≤ const A exp

(
−
√
− log ε

ε
cρ,b1,b2(log(−ε log ε))

)
(4.16)

on the real values of its arguments. The constant depends continuously on b1
and b2 on b1 > 0 and b2 > 0.

Proof. If the arguments of the function F are real, then

|F (θ1, θ2)| ≤
∑

|k1|+|k2|6=0

|Fk1,k2 |

≤ A
∑

|k1|+|k2|6=0

exp

(
log ε(|k1| b1 + |k2| b2)− ρ |k1 + γk2|

ε

)
, (4.17)

due to the estimate in Lemma 4.2.3. In order to estimate the last sum in
(4.17)we separate it into two parts. The first one contains non-resonant terms,
that is all the terms such that |k1 + γk2| ≥ 1/2. We then obtain the upper
estimate ∑

|k1+γk2|≥1/2

(
log ε(|k1| b1 + |k2| b2)− ρ |k1 + γk2|

ε

)
< exp

(
− ρ

2ε

) ∑
|k1|+|k2|6=0

exp (log ε(|k1| b1 + |k2| b2))

=
2(eb1 log ε + e−b2 log ε − e(b1+b2) log ε)e−

ρ
2ε

(1− eb1 log ε)(1− eb2 log ε)
. (4.18)

For the resonant terms we have |k1 + γk2| < 1/2. Obviously, for every k2
there exists exactly one integer k1 = k1(k2) such that this inequality holds.
Since the coefficients of the sum (4.17) are even with respect to (k1, k2) we can
assume that k2 is positive and multiply the estimates by 2 in the end. The sum
of the resonant terms with k2 ≥ ε−1 can be estimated as∑

k2≥ε−1

exp

(
log ε(|k1| b1 + |k2| b2)− ρ |k1 + γk2|

ε

)
≤

∑
k2≥ε−1

exp(log ε(|k1| b1 + |k2| b2))

≤
∑

k2≥ε−1

exp

(
− log ε

(
b1
2
− (γb1 + b2)k2

))

≤ e−
b1
2 log εe(γb1+b2)

log ε
ε

1− e(γb1+b2) log ε
. (4.19)

We now estimate the resonant terms with 1 ≤ k2 < ε−1. The number of such
terms is large, but finite. We shall show that all of them, except for at most 4,
can be estimated by O(e−

√
− log ε
ε C1), where

C1 > max
δ
cρ,r1,r2(δ).
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Let B denote the following expressions from the exponent of the right-hand
side of (4.17), obtained after substituting |k1| = γk2:

B(k2, ε) ..= − log ε(γb1 + b2)k2
√
ε+

ρ |k1 + γk2|√
ε

.

It is sufficient to provide an appropriate lower bound for this function.

If k2 is not a Fibonacci number, then by Lemma 4.2.2, we obtain

B(k2, ε) ≥ − log ε(γb1 + b2)k2
√
ε+

ργCF
k2
√
ε

≥ 2
√
− log ε(γb1 + b2)ργCF

= γC0

√
− log ε

≡ C1

√
− log ε.

If k2 is a Fibonacci number, then we use (4.14), so

|k1 + γk2| =
1

|k1 + γ−1k2|
≥ 1

γk2 + 1 + γ−1k2
=

CF
k2 + CF

and we obtain

B(k2, ε) ≥ − log ε(γb1 + b2)k2
√
ε+

ρCF
(k2 + CF )

√
ε
.

Provided that ε is small, 0 < ε < ε0, there are two positive numbers K1 and
K2 such that the right hand side of the last inequality is larger than C1 for
k2 outside of the interval (K1/

√
ε,K2/

√
ε). Moreover, this interval contains at

most two Fibonacci numbers, which means that the inequality

B(k2, ε) ≥
√
− log εC1 (4.20)

holds for all except for at most two terms. For these exceptional terms, we have

B(k2, ε) ≥ − log ε(γb1 + b2)k2
√
ε+

ρCF
k2
√
ε
−
√
ε

ρC2
F

K1(K1 + CF
√
ε)
,

and it is convenient to rewrite

B(k2, ε) ≥
√
− log εC0 cosh

(
log(k2

√
ε)− log

√
ρCF

γr1 + r2

)
−O(

√
ε).

The above O(
√
ε) term affects only the constant in front of estimate (4.16), since

the terms in the sum of (4.17) are of the form exp(−B(k2, ε)/
√
ε). Since k2 is a

Fibonacci number, we have k2 = Fn for some n and taking into account (4.13),
we obtain

B(k2, ε) ≥
√
− log εC0 cosh

(
1

2
log ε+ n log γ + log

γ + 1

γ + 2
− log(k2

√
ε)− log

√
ρCF

γr1 + r2

)
−O(
√
ε).

The envelope of this family of curves is the function cρ,b1,b2(δ) defined by equa-
tion (4.15). Thus, in the sum of the resonant terms there is one leading term

59



4. TRANSVERSAL MANIFOLDS FOR GENERAL PERTURBATIONS

which is exponentially larger than the others except in the neighbourhoods of
ε = ε∗γn, when the index of the leading term changes, and there are two terms
of the same order. Moreover, we have established that for all resonant terms
with k2 < ε−1,

B(k2, ε) ≥ cρ,b1,b2(log(−ε log ε))−O(
√
ε).

Together with estimates (4.18), (4.19) and (4.20) completes the proof.

4.2.3 Recapitulation

The subsequent proof has two main parts. The first one consists in comput-
ing the exact expression for the Fourier coefficients of the Melnikov function
in (4.10). In order to bound these coefficients, we take into account the es-
timate in (4.4) for the coefficients of the perturbation m and notice that the
coefficients of the Melnikov function with the biggest size correspond to those
whose indices are consecutive Fibonacci numbers. The Fourier coefficients that
are not related to Fibonacci numbers can be estimated to be exponentially small
with respect to the Fibonacci ones for small values of ε. This can be shown by
repeating the proof of Lemma 4.2.4.

Proof of Proposition 4.2.1. Taking into account the explicit formula (4.9) for
x0(t) and y0(t) we easily obtain that

M(θ1, θ2; ε) = εp
∫ ∞
−∞

y0(t) sin(x0(t))m

(
θ1 +

t

ε
, θ2 + γ

t

ε

)
dt

= −εp
∫ ∞
−∞

4 sinh t

cosh3 t
m

(
θ1 +

t

ε
, θ2 + γ

t

ε

)
dt.

Then, the Fourier coefficients of the Melnikov function are given by

Mk1,k2(ε) =

(
−εp

∫ ∞
−∞

4 sinh t

cosh3 t
ei(k1+γk2)

t
ε dt

)
mk1,k2 .

Computing the integral by residues we obtain

Mk1,k2(ε) = − 2πiεp(k1 + γk2)2

ε2 sinh
(
π(i1+γk2)

2ε

)mk1,k2 . (4.21)

Taking into account the bound in (4.4), we have that for ε small, the coefficients
in (4.21) have the same order as

const εp−2(k1 + γk2)2 exp

(
−r1 |k1| − r2 |k2| −

π(k1 + γk2)

2ε

)
.

Since the convergents of γ are quotients between successive terms of the Fi-
bonacci sequence, the most resonant terms correspond to |k1| = Fn+1 and
|k2| = Fn, so that

−r1 |k1| − r2 |k2| = −r1Fn+1 − r2Fn = −(r1γ + r2)Fn.
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Therefore, we can bound these coefficients from below and above by terms of
the form

const
εp−2

F 2
n

exp

(
− πCF

2εFn
− (r1γ + r2)Fn

)
, ri = bi log

1

ε
. (4.22)

Let us take A =
πCF

2
and B = (b1γ+b2). Then, the argument of the exponential

in (4.22) can be written as

− πCF
2εFn

− (r1γ + r2)Fn = −
√
−AB log ε

ε

(√
A

−Bε log ε

1

Fn
+

√
−Bε log ε

A
Fn

)

= −2

√
−AB log ε

ε
cosh

(
log

(√
A

−Bε log ε

1

Fn

))

= −2

√
−AB log ε

ε
cosh

(
1

2
log

A

B
− 1

2
log
(
−ε log εF 2

n

))
.

Calling now

C0 = 2
√
AB =

√
2πCF (b1γ + b2) and φ0 =

A

B
=

πCF
2(b1γ + b2)

,

we finally obtain that the exponents in (4.22) can be written as

−C0

√
− log ε

ε
cosh

(
1

2
log
(
−ε log εF 2

n

)
− 1

2
log φ0

)
.

For a fixed 0 < ε� 1, the largest coefficient corresponds to the minimal value
of the hyperbolic cosine or, equivalently, minimises∣∣log(−ε log εF 2

n)− log φ0
∣∣ .

This happens when Fn is closest to

F ∗(ε) =

√
φ0

−ε log ε
. (4.23)

Let us denote the closest number to F ∗(ε) by Fn(ε). We have that the index of
the biggest term in the Fourier series of the Melnikov function grows as√

1

−ε log ε
,

and it changes when F ∗(ε) crosses the value given by (4.23). The largest terms
correspond to

(k1, k2) = ±(Fn(ε)+1,−Fn(ε)).

Except when F ∗(ε) lies exactly in the centre of an interval [Fn, Fn+1], there is
only one Fibonacci number closest to F ∗(ε) and then, the two terms

(Fn(ε)+1,−Fn(ε)) and (−Fn(ε)+1, Fn(ε))
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dominate the Fourier series. Otherwise, there are four dominating terms.

We now use that Fn = CF (γn+1 + (−1)nγ−n−1) in order to write

log(−ε log εF 2
n) = log(−ε log ε) + 2 logCF + log(γn+1(1 + (−1)nγ−2(n+1)))2

= log(−ε log ε) + 2 logCF + 2(n+ 1) log γ + 2 log(1 + (−1)nγ−2(n+1)).
(4.24)

When we simultaneously increase n by 1 and decrease log(−ε log ε) by 2 log γ,
the value of (4.24) is repeatedly reached, up to order O(γ−2n−2) = O(F−2n ) =
O(ε log ε). Thus we obtain that the Fourier coefficientsMk1,k2(ε) given in (4.21)
can be estimated from below and from above by

const εp−1 exp

(
−
√
− log ε

ε
c(log(−ε log ε)

)
,

where the function c is the one defined in (4.12).
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