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We present a criterion for the Cm-non-integrability near elliptic fixed points of smooth planar measure
preserving maps.

What kind of integrability?
A planar map F is Cm-locally integrable at an elliptic fixed point p if there exists a neighborhood U
of p and a first integral V ∈ Cm(U) with m ≥ 2,

i.e. V (F (x)) = V (x) such that

all the level curves {V = h}∩ U are closed curves surrounding p, which is an isolated non-degenerate
critical point of V in U .

Remember that a map is a measure preserving map if

m(F−1(B)) = m(B)

for any measurable set B, where m(B) =
∫
B ν(x, y) dxdy, and ν|U 6= 0.

Birkhoff normal form at a k-resonant elliptic point
•A fixed point p of a C1-real planar map F is elliptic when the eigenvalues of DF (p) have modulus

one, but excluding ±1.
•When the eigenvalues are not roots of unity of order ` for 0 < ` ≤ k we will say that p is not
k-resonant.
•A Ck+1-map, with a not k-resonant fixed point p, is locally Ck+1-conjugate to its Birkhoff normal

form:

FB(z) = λz

1 +

[(k−1)/2]∑
j=1

Bj(zz̄)j

 + O(|z|k+1), (1)

where z = x + iy, and [·] denotes the integer part.

Lie Symmetries
A vector field X is said to be a Lie symmetry of F if it satisfies

X(F (x)) = (DF (x))X(x) for all x ∈ U .
This implies that ẋ = X(x) is invariant under the change of variables given by F . From a dynamic
viewpoint F maps any orbit of ẋ = X(x), into another orbit of this system. In the integrable case we
have
Theorem 1. [[1], see also [2],[3]] Let F be a C2(U) orientation preserving map with an invariant
measure with density 0 6= ν ∈ C1(U) and with a first integral V ∈ C2(U). Then

(a) The vector field X = 1
ν

(
−Vy ∂∂x + Vx

∂
∂y

)
is a Lie Symmetry of F .

(b) If a connected component γh of {V (x) = h} without fixed points is invariant by F and γh ∼= S1,
then

F (x, y)|γh = ϕ(τ (h);x, y)

is conjugate to a rotation with rotation number θ(h) =
τ (h)

T (h)
.

(c) Therefore, if F |γh has rotation number θ(h) = q/p ∈ Q, with gcd(p, q) = 1, then γh ⊂ U is a
continuum of p-periodic points of F .

Main result
We present the following criterion for non-integrability of planar maps:

Theorem 2. Let F ∈ C2n+2 be a measure preserving map with a non-vanishing density ν ∈ C2n+3,
and an elliptic fixed point p, not (2n+ 1)-resonant, with Birkhoff constant is Bn = i bn ∈ iR. Assume
that there is an unbounded sequence {Nk}k, s.t. F has finitely many Nk-periodic points in U ⇒ it is
NOT C2n+4-locally integrable at p.

Proof. Suppose that F has an first integral V , then:
• F possesses a smooth Lie symmetry X = 1

ν

(
− Vy, Vx

)
because it preserves an invariant measure

with a smooth density.
• Since it has an elliptic fixed point, with non-zero purely imaginary Birkhoff constant, the rota-

tion number function θ(h) associated to each level {V = h} is continuous and non-constant (see
Proposition 3).
• If θ(h) is non constant, there should exist closed level sets such that on them F has rational rotation

numbers with all denominators bigger that some N0.
• Since there exists a Lie symmetry X , these levels have continua of real periodic points for all
N ≥ N0 in a given neighborhood of the elliptic point. Indeed, recall that by Theorem 1:
If {V = h} is invariant by X and F , without singular points of X , and diffeomorphic to S1 then
F |{V =h} is conjugated to a rotation. Moreover if its corresponding rotation number is rational,
ρ = p/q ∈ Q, then the map F has a continuum of q-periodic points.
• But we are assuming that for an unbounded sequence of natural numbers {Nk}k, F has finitely

many Nk-periodic points in U , a contradiction.

Proposition 3. If F ∈ C2n+2 is measure preserving, C2n+4-locally integrable at p, and Bn = i bn ⇒
the rotation number θ(h) associated to each curve {V = h} is not constant (hence there exists con-
tinua of all periods N ≥ N0).

Proof. Suppose that θ(h) is constant. We will prove that F is globally C2n+2-conjugate to the linear
map L(q) = DF (p) q.
• F possesses a smooth Lie symmetryX = 1

ν

(
−Vy, Vx

)
of class C2n+3 with a non-degenerate center

at p, in fact
DF (p) = eτpDX(p), where τp = lim

h→hp
θ(h)T (h).

• The new vector field Y (x, y) = T (x, y)X(x, y), is also a Lie Symmetry of F of class C2n+2(U),
having an isochronous center at p with period function T (h) ≡ 1. Hence,

F (q) = ϕY (τ, q).

with τ constant (not depending on h).

• The isochronous center Y linearizes. Since DF (p) = eτDY (p), we prove that the “Bochner”-type
map

Φ(q) =

∫ 1

0
e−DY (p) sϕY (s, q) ds,

is a C2n+2-conjugation between F and the linear map L(q) = DF (p) q.

But F is also C2n+2-conjugated to the Birkhoff normal form, which is non linear, a contradiction.

The Cohen map case
We have applied Theorem 2 to prove the local non-integrability of a variety of maps, in particular the
Cohen’s one

F (x, y) =

(
y,−x +

√
y2 + 1

)
.

It seems that the non-integrability of the Cohen map was
first conjectured by Cohen and communicated by C. de
Verdière to Moser in 1993. Rychlik and Torgesson shown
that it has not first integrals given by algebraic functions
[5]. Inspired by Lowther [4], we have:

Theorem 4. The Cohen map is not C6-locally integrable at its fixed point
(√

3/3,
√

3/3
)
.

We need to prove that for an unbounded sequence {Nk} the Cohen map has finitely manyNk-periodic
points. We will use the following result:
Theorem 5. Let G : CN → CN be a polynomial map. Let Gd denote the homogenous map cor-
responding to the maximum degree d terms of G. If y = 0 is the unique solution in CN of the
homogeneous system Gd(y) = 0, then G(y) = 0 has finitely many solutions.

The Cohen map writes as the equation xn+2 = −xn +
√
x2
n+1 + 1. Their solutions are contained in

(xn + xn+2)2 − x2
n+1 − 1 = 0.

Therefore the N -periodic orbits satisfy the system
(x1 + x3)2 − x2

2 − 1 = 0,

(x2 + x4)2 − x2
3 − 1 = 0,

...
(xN−1 + x1)2 − x2

N − 1 = 0,

(xN + x2)2 − x2
1 − 1 = 0.

Applying Theorem 5, we will prove that, for some unbounded sequence of values of N , x = 0 is the
unique solution of the linear systems.

x1 + x3 = ±x2,
x2 + x4 = ±x3,

...
xN−1 + x1 = ±xN ,
xN + x2 = ±x1,

⇔ ANx = 0 withAN (ε1, . . . , εN ) =



1 ε1 1 0 0 · · · 0
0 1 ε2 1 0 · · · 0
0 0 1 ε1 1 · · · 0

0 0 0 · · · 1 εN−2 1
1 0 0 · · · 0 1 εN−1
εN 1 0 · · · 0 0 1


,

with εj ∈ {−1, 1}, for each j = 1, . . . , N .

Lemma 6. For every choice of εj ∈ {−1, 1}, with j = 1, . . . , n, and for all N 6= 3̇,

det(AN (ε1, . . . , εN )) ≡ FN mod 2,

where FN are the Fibonacci numbers.
Recall that FN are:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

and modulus 2,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .

Hence
Corollary 7. For all N 6= 3̇, the Cohen map has finitely many N -periodic points.

Proof of Theorem 4. Suppose that F is integrable, then:

• F possesses a Lie symmetry because it is measure preserving.

•At the fixed point
(√

3/3,
√

3/3
)
, B1 = 135/256i 6= 0.

• Since there exists a Lie symmetry, there should exists level sets with continua periodic points for
all N ≥ N0. But we have proved that for all N 6= 3̇, G has finitely many N -periodic points,
a contradiction.
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[2] Cima, Gasull, Mañosa. Non-integrability of measure preserving maps via Lie symmetries. J. Diff. Eq. 259 (2015).
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