
0

An Integrated Vector-Scalar Design on an In-order ARM
Core

MILAN STANIC, OSCAR PALOMAR, TIMOTHY HAYES, IVAN RATKOVIC, ADRIAN
CRISTAL, OSMAN UNSAL, and MATEO VALERO, Barcelona Supercomputing Center

In the low-end mobile processor market, power, energy and area budgets are signi�cantly lower than in
the server/desktop/laptop/high-end mobile markets. It has been shown that vector processors are a highly
energy-e�cient way to increase performance; however adding support for them incurs area and power
overheads that would not be acceptable for low-end mobile processors. In this work, we propose an integrated
vector-scalar design for the ARM architecture that mostly reuses scalar hardware to support the execution
of vector instructions. The key element of the design is our proposed block-based model of execution that
groups vector computational instructions together to execute them in a coordinated manner. We implemented
a classic vector unit and compare its results against our integrated design. Our integrated design improves
the performance (more than 6x) and energy consumption (up to 5x) of a scalar in-order core with negligible
area overhead (only 4.7% when using a vector register with 32 elements). In contrast, the area overhead of the
classic vector unit can be signi�cant (around 44%) if a dedicated vector �oating-point unit is incorporated. Our
block-based vector execution outperforms the classic vector unit for all kernels with �oating-point data and
also consumes less energy. We also complement the integrated design with three energy-performance e�cient
techniques that further reduce power and increase performance. The �rst proposal covers the design and
implementation of chaining logic that is optimized to work with the cache hierarchy through vector memory
instructions, the second proposal reduces number of reads/writes from/to the vector register �le while the
third idea optimizes complex memory access patterns with the memory shape instruction and uni�ed indexed
vector load.

CCS Concepts: • Computer systems organization → Single instruction, multiple data;

Additional Key Words and Phrases: vector processors, low-power, energy e�ciency, mobile processors

ACM Reference format:
Milan Stanic, Oscar Palomar, Timothy Hayes, Ivan Ratkovic, Adrian Cristal, Osman Unsal, and Mateo Valero.
0. An Integrated Vector-Scalar Design on an In-order ARM Core. ACM Transactions on Architecture and Code
Optimization 0, 0, Article 0 (0), 25 pages.
DOI: 0000001.0000001

The research leading to these results has received funding from the RoMoL ERC Advanced Grant GA no 321253 and is
supported in part by the European Union (FEDER funds) under contract TIN2015-65316-P. This research has been also
supported the Agency for Management of University and Research Grants (AGAUR - FI-DGR 2014). O. Palomar is funded
by a Royal Society Newton International Fellowship.
Current author’s a�liations: M. Stanic, ASML; O. Palomar, University of Manchester; T. Hayes, ARM. A. Cristal is also
a�liated with CSIC-IIIA and UPC.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 0 Copyright held by the owner/author(s). Publication rights licensed to ACM. XXXX-XXXX/0/0-ART0 $15.00
DOI: 0000001.0000001

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:2 M. Stanic et al.

1 INTRODUCTION
In the last 15 years, power dissipation and energy consumption have become crucial design concerns
for almost all computer systems due to several reasons: for example, technology feature size scaling
leads to higher power density and therefore to complex and costly cooling. While power dissipation
is critical for high-performance systems such as data centers due to large power usage, for mobile
systems battery life is the primary concern.

Driven with this goal, researchers have focused on improving performance in an energy-e�cient
way. Vector processors (Asanovic 1998) are energy e�cient architectures that yield high perfor-
mance whenever there is enough data-level parallelism (DLP) (Lee et al. 2011). Besides the long
and successful history of vector processors in supercomputers, vector units have been proposed in
microprocessor design (Kozyrakis and Patterson 2003), (Espasa et al. 2002), (Batten 2010). Recent
research on vector processors shows that they can be a good match even for applications from
domains such as column-store databases (Hayes et al. 2012). Knights Landing (Sodani 2015) is a
recent, second generation of the Xeon Phi processor. It is massively parallel x86 microprocessor
designed by Intel and based on the Larrabee (Seiler et al. 2009) GPU that contains a 512-bit SIMD
vector processing unit in each core. Also, SIMD multimedia extensions (Thakkar and Hu� 1999),
(Firasta et al. 2008) are often included in modern microprocessors. While vector processors and
SIMD extensions both exploit DLP, they di�er in the way the data operand elements are handled at
the execution stage. While SIMD extensions process all elements at once, vector processors execute
elements in a pipelined fashion. Although vector processors are energy e�cient, they still have
power and area overheads that are too high for mobile processors. This is mostly due to the strict
power and area budget of such systems.

This paper contributes a method to increase the performance of the low-power low-end embedded
systems in an energy-e�cient way. The energy e�ciency is attained by modifying a scalar core to
execute vector instructions on the existing infrastructure. In particular, we propose an integrated
vector-scalar design that combines scalar and vector processing mostly using existing resources
of an energy-e�cient scalar processor (in our evaluation environment it is based on the ARM
Cortex A7). In addition to a design that uses a conventional vector execution model, we also
contribute a novel block-based model of execution for vector computational instructions. We
present performance, power, area and energy evaluation results of this integrated design. The
results show that all vector designs signi�cantly reduce energy over the scalar baseline for most of
the considered kernels with a small area overhead. We report up to 5x energy reduction for our
block-based execution model over the scalar baseline. Additionally, we found that the block-based
execution model provides better results (up to 26% of energy saving) than a conventional vector unit
with dedicated units. Regarding performance gains, we report more than a 6x speed-up compared
to the scalar baseline. Moreover, our block-based execution model is up to 1.4x faster than the
conventional vector unit for �oating-point (FP) kernels.

Additionally, we also propose three techniques for an advanced integrated design that improve
energy and/or performance: (1) chaining from the memory hierarchy, (2) direct result forwarding
and (3) memory shape instructions and uni�ed indexed vector load. We propose and implement
two novel techniques that chain from the cache with the goal of further improving the performance
of our integrated design. They can be applied to a conventional vector unit as well. We design and
implement a novel result forwarding mechanism which complements the block-based execution
and does not require writing to the vector register �le. We design a vector memory unit with
support for complex memory instructions including memory shape and scatter/gather instructions.
Our results reveal that additional speed-up (up to 20%) is achieved with our chaining techniques
over the integrated design without chaining. Direct forwarding reduces energy/power consumption

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:3

Fetch

Decode

Register File

Data

Cache

Unit

L1 Inst Cache

L1

Data

Cache

Vector Memory Unit

Simple

INT ALU

Complex

INT ALU

Issue queue EXEU

CCL

VECL

Vector Register File

ACL

VMCTVMIT

AG
Data path

Control path

Fig. 1. Block diagram of the integrated design. White boxes
are present in the original scalar design, blue boxes indicate
the new hardware added in the integrated design.

vecload
vecadd
vecsub
vecload
vecload
vecadd

...
...

vecload
vecadd
vecsub
vecload
vecload
vecadd

...
...

(a) OBO

(b) BBE

id0 id1 id2 id3 id4

id0

id0 id1 id2 Id3 id4

id0

id0

id1 id2 id3 id4

id0 id1 id2 id3 id4

id1

id1

time

time

Fig. 2. An example of vector code executed with
one ALU assuming the OBO (a) and the BBE (b)
model.

of the vector register �le by more than 50% for three evaluated kernels while the vector memory
shape instruction increases speed-up of a vectorized kernel from 1.77x to 2.66x for the block-based
model of execution.

Section 2 describes our integrated design. Section 3 outlines the experimental methodology and
evaluates our integrated design regarding performance, area, power and energy. In Section 4 we
propose techniques that further improve the integrated design and we evaluate them in Section 5.
Related work is discussed in Section 6. Finally, Section 7 concludes the paper.

2 INTEGRATED DESIGN
As a baseline, we use a scalar core based on the highly energy-e�cient ARM Cortex-A7. It is an
in-order, dual-issue processor that implements the ARM v7 architecture with an 8-stage pipeline
(non-highlighted gray blocks in Figure 1).

In our proposed integrated vector-scalar design, we attempt to maximize the reuse of resources
already present in the baseline scalar core (white blocks in Figure 1) while adding support for
vector instructions. While the front-end of the pipeline is the same (fetch and decode stages, with
the obvious extension to the decode logic to support the new instructions), in the back-end we
added two structures to support the execution of vector instructions on the scalar core: a vector
register �le, and a vector memory unit (blue blocks in Figure 1). There is also additional logic that
controls the execution of vector instructions. Vector execution control logic (VECL) is added in the
issue stage to support the execution of computational vector instructions. Aliasing control logic
(ACL) exchanges information between the vector memory and the data cache unit and forces scalar
and vector memory instructions to be executed in-order. We implement support for chaining of

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:4 M. Stanic et al.

computational instructions (Russell 1978), a well-known concept in vector processors. Similar to
result forwarding in scalar processors, chaining allows starting the execution of a dependent vector
instruction as soon as the �rst element of the vector is generated by the previous computational
instruction. Chaining control logic (CCL) is responsible for the execution of chained dependent
computational instructions.

2.1 Execution of Vector Computational Instructions
For executing the vector computational instructions on the existing scalar functional units (FUs),
we study two alternatives: 1) the One-By-One model of execution (OBO), in essence the classic
vector execution model, in which a vector instruction is executed to completion once it starts
execution in a functional unit, i.e. for all the operations of the vector; and 2) a novel execution model
called Block-Based Execution (BBE). In this model, for a block of consecutive vector computational
instructions, �rst all operations on the �rst element of the vectors are executed, then the operations
of the second element, and so on. Figure 2 shows an illustrating example of the di�erence between
the two execution models. For this example, we assume that vector instructions operate on FP data
by using a single FP unit and a single data cache port. The �rst vecload instruction is executed in
the same way and with exactly the same timing on both models, since the models refer only to
computational instructions. Regarding computational vector instructions, in the �rst case (OBO,
Figure 2 (a)) all operations of one vector computational instruction (vecadd) are executed, and then
we move on to the next vector instruction (vecsub). In the second case (BBE, Figure 2 (b)), several
consecutive vector computational instructions form a block of vector instructions, and we execute
one operation from each instruction of the block and repeat this for each operation in the block of
vector instructions. In the example, we execute one operation from vecadd and then one operation
from vecsub. The process ends once all operations are computed. The next subsection describes the
BBE model in more detail.

2.1.1 Block-Based Execution. In order to support this model of execution, we added simple
control logic and a small table that keeps the information of the instructions of the block. In
the design presented in this paper, the blocks of vector computational instructions are formed
dynamically in a very simple way: once a computational vector instruction is ready for execution,
the control logic examines the next instruction in the issue queue and adds it to the block if it is a
vector computational instruction. This process stops when the next instruction in the issue queue
is of another type (a scalar or vector memory instruction) or the block table is full.

The number of vector instructions that can be executed in parallel or with chaining using the
OBO model is restricted by the number of available FUs. BBE does not have this limitation, allowing
for execution of more vector instructions in parallel. Inherently, more dependent instructions can
be chained (scalar bypass logic can be reused) since one vector instruction does not occupy the
ALU for all its elements in consecutive cycles, and thus it can be interleaved with other instructions
using the same ALU. For example, vecadd and vecsub are not chained using the OBO model in Figure
2 because there is only one FP unit, while they are executed in parallel in BBE even though there is
only one FP unit. This approach also allows for forwarding/bypassing results to next instruction
and therefore reducing number of reads/writes to the vector register �le as it is shown in subsection
5.2. An important advantage of BBE over OBO or a classic vector unit is the following: while a
block of vector computational instructions is under execution, BBE allows for the execution of
subsequent scalar or vector memory instructions if they are ready for execution and there are free
functional units that can execute them. In Figure 2 (b), the second vecload instruction can start
execution just after the vecsub started with execution of the �rst operation. Evaluation of kernels

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:5

Table 1. Microarchitectural parameters.

Parameter Value Parameter Value

Instruction Width 32-bits L1 D-Cache 32KB, 64B/line, 4-cycle latency
L/S Queue 16 entries L2 Cache 256KB, 64B/line, 12-cycle latency

VMIT Entries 8 entries ALU units One simple, one complex int ALU
and one FP ALU

VRF 16 registers L1 D-Cache ports One read/one write

with FP data in subsection 3.1 also clearly shows the advantage of BBE over OBO or the classic
vector unit.

BBE has some drawbacks: the number of vector computational instructions dynamically included
in a block is sensitive to the placement of the vector instructions inside vectorized code. Smaller
blocks present less opportunities for forwarding/bypassing that can be achieved with longer blocks.
To keep the design simple, in this paper the implementation does not allow overlapping of execution
between two consecutive blocks, which is a potential solution to alleviate this problem. This means
that the �rst block needs to �nish execution before the second block can start. Another limitation
is that dealing with multi-cycle instructions and especially groups of dependent instructions with
di�erent latencies inside a block requires additional control logic support. In our model, we support
execution of multi-cycle instructions as well as execution of dependent instructions with di�erent
latencies, but restricted to the case where they are executed on di�erent ALUs. The bene�t of BBE
can be further increased if we can chain vector memory instructions in an e�cient way. The next
section describes the vector memory unit of the proposed system, and subsection 4.1 presents our
proposal to implement chaining from the memory hierarchy.

2.2 Vector Memory Unit
The vector memory unit holds and controls the execution of vector memory instructions. There are
two tables that hold the necessary information to execute vector memory instructions, as shown
in Figure 3. The vector memory instruction table (VMIT) keeps information for each instruction
(instruction, start address, stride, number of elements, current element and number of completed
operations). The vector memory control table (VMCT) controls the exchange of packets with the L1
cache. Each entry in this table has the following �elds: instruction ID, packet/request ID and a valid
bit. Additional �elds are used to identify the corresponding element(s) of the source/destination
vector register.

The address generator (AG) performs the address generation for vector memory instructions.
The information about the instruction stored in the VMIT, namely the opcode, start address,
stride, number of elements and current element, is enough to generate all requests to the cache
hierarchy. We can decode the type of vector memory instruction (unit-strided, strided or indexed)
and destination/source register from the instruction opcode �eld. The stride �eld can hold the
stride for strided memory instructions or the ID of a vector register that holds the index vector
for indexed memory instructions. We load/store whole cache lines for unit-stride vector memory
instructions with a single access.

ACL controls the proper execution of vector and scalar memory instructions. In our model, we
support a very simple aliasing policy to limit the complexity of the control logic: scalar loads wait
until all older vector stores �nish and vector loads wait until all older scalar stores �nish. We
provide more architecture-level details in the next subsection regarding the additional control logic.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:6 M. Stanic et al.

instruction start_address stride num_elem curr_elem completed

32 bits 32 bits 32 bits 8 bits 8 bits 8 bits 3 bits 8 bits 1 bit 2 bits 6 bits 6 bits

Vector Memory Instruction Table Vector Memory Control Table

...

...

...

...

...

...

instID reqID valid FLM first_elem last_elem

Fig. 3. Vector memory unit.

MUX2

ALU

Scalar
Register

File

Vector
Register

File

Ctrl signal 22

Ctrl signal 21

Ctrl signal 42
MUX3

A B

W

Inst Op Vec Reg IdReg Id

Vec Reg Elem Id

writeEnable1 writeEnable2

Ctrl signal 41
MUX4

ALU2

latch A latch B

MUX1
Ctrl signal 12

Ctrl signal 11

ALU2

memory

memory

Ctrl signal 42

Ctrl signal 41

A B

W

Fig. 4. Required control logic for a single ALU to support execution of vector computational instructions.

2.3 Implementation
As it is explained in Section 2, we added the control logic to support execution of vector instructions
(VECL, ACL, CCL). We �rst describe the hardware implementation to support VECL. We augmented
the multiplexers (MUX1 and MUX2) on each input of the ALUs to select the input from the scalar
or the vector register �les. Each multiplexer has two additional inputs: the �rst one (labelled as
âĂĲALU2âĂİ) comes from the output of the second ALU and is present in the scalar design for
bypassing, but we use it also for chaining of vector computational instructions and direct forwarding
(see Section 4.2); the second input (âĂĲmemoryâĂİ) is related to the possible implementation of
direct forwarding from the vector memory instructions (see Section 4.2); however, it would be
present already in the scalar design if it implements bypassing from memory instructions. There
are also two multiplexers (MUX3 and MUX4) at the input of the write ports (W) in the scalar and
vector registers �les in order to write a result from the appropriate source (an output of one of ALUs
or data loaded from the memory hierarchy). We need control signals for each of the multiplexers.
Figure 4 shows the required hardware for a single ALU. VECL also contains control logic including
a counter and a comparator that tracks how many elements of a vector computational instruction
have been processed and compares the current counter value with the VL register.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:7

Table 2. Vectorized kernels.

kernel benchmark access com/mem # of vec insts loop data vector/scalar
name pattern ratio per iteration count type op ratio

sphinx-a Sphinx3 strided 2:1 12 128 FP 56:1
sphinx-b Sphinx3 unit-stride 4:3 7 32 FP 10:1
sphinx-c Sphinx3 indexed 1:1 4 20.5 INT 2:1

saxpy - unit-stride 1:1 4 512 FP 53:1
h264ref h264ref unit-stride 3:1 4 16 INT 1:2
hmmer hmmer unit-stride 11:8 38 256 INT 3:1

graph500 graph500 indexed 1:3 4 28 INT 4:1
facerec Facerec stride 17:11 56 25.3 FP 6:1

Regarding ACL, we added two registers in LSQ and VMU that point to entries of the oldest
scalar and vector loads respectively and one comparator to compare scalar loads with the oldest
vector store and vector loads with the oldest scalar store. The hardware design of CCL follows
conventional implementations of chaining logic (Hennessy and Patterson 2011).

3 INTEGRATED DESIGN EVALUATION
We extended the gem5 simulator (Binkert et al. 2011) to model an in-order ARM core, a classic vector
unit (CVU) and our two models of execution: OBO and BBE. CVU can be seen as a co-processor
or accelerator to the scalar core (Espasa et al. 2002). The OBO model is very similar to the ARM’s
own VFP mode, which reuses FP registers as short vector registers (Seal 2000), when executing
vector computational instructions with FP data. There are still some di�erences that are discussed
in Section 6. Simulations are performed using system call emulation mode.

Table 1 summarizes the micro-architectural parameters used in our experiments. CVU has
two additional integer ALUs (one simple and one complex) and one FP ALU to execute vector
computational instructions. The vector register �le has 16 vector registers. We use four di�erent
maximum vector lengths (MVLs): 16, 32, 64 and 128 elements, with 32 being the default length.
Gem5’s model of the bus between the CPU and the L1 data cache is extended to model bandwidth
and bus contention. We used 16 bytes for the bus width. L2 bus bandwidth is one cache-line per
cycle. The L2 also has a simple strided hardware prefetcher. OBO has a similar con�guration to CVU
except it uses scalar ALUs to execute vector computational instructions. Broadcast logic (including
the broadcast bus) is also di�erent. The di�erences between OBO and BBE are a table that holds
vector computational instructions (four instructions) for BBE and logic that controls execution of
vector computational instructions. We used a latency of one cycle for all instructions that use the
simple int ALU, three cycles for the complex int ALU and four cycles for all instructions that use
the FP ALU.

We modi�ed McPAT (Li et al. 2009) to evaluate power, energy and area of these micro-architecture
variants. We modeled additional structures using the same approach and borrowing the parameters
from existing structures in McPAT or CACTI if it is suitable. For example, in order to model a
decoder for chaining logic from the memory hierarchy we use a decoder from decode stage with
new parameters (e.g. number of bits to compare). We assume a 40nm technology for embedded
processor with low operating power for energy, power and area evaluation.

Table 2 lists the kernels that are used to evaluate our design: saxpy microkernel, the three most
time consuming kernels from Sphinx3, one from H264ref, one from Hmmer, one from Facerec
and one from Graph500. The �rst three benchmarks are from the SPEC2006 benchmark suite.
We have chosen these applications because they represent typical mobile applications: Sphinx3

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:8 M. Stanic et al.

Fig. 5. Speed-up for CVU, OBO and BBE over the scalar baseline.

performs speech recognition, H264ref does video coding while Hmmer feature hidden markov
models which are used in machine learning. Facerec is from the SPEC2000 benchmark suite. Even
though SPEC benchmarks are typically used to evaluate general purpose processors, applications
such as speech recognition or face recognition are widely used in mobiles. For example, Facerec
contains FFT computation - a kernel found in EEMBC benchmark suite (Weiss 1999). The saxpy
microkernel is not as representative of mobile workloads but we chose it as a a paradigmatic
example of a vectorized kernel. Moreover, its simplicity and characteristics help to reason about
the results. The Graph500 (Murphy et al. 2010) benchmark is a data intensive, high performance
graph processing application but we choose this application because it is highly cache unfriendly
and it is a good example to evaluate our ideas for cache unfriendly scenarios. The vectorization
potential of the Graph500 was evaluated by Stanic at al. (Stanic et al. 2014). sphinx-a, sphinx-b,
saxpy and facerec operate on FP data while the rest of kernels use integers. Table 2 also presents
characteristics for each kernel. Our eight kernels exploit several di�erent memory access patterns.
Four kernels have a unit-stride, sphinx-a and facerec have strided while sphinx-c and graph500
have indexed memory access patterns. The ratio between computational and memory instructions
varies across kernels as well as the number of vector instructions inside a vectorized loop. Kernels
also have di�erent loop counts. There are kernels with very short loop count (sphinx-c1, facerec2,
h264ref, sphinx-b and graph5003) and kernels with a longer loop count (sphinx-a, saxpy and
hmmer). The last column shows the ratio between vector and scalar operations. Most of the kernels
have a high percentage of operations executed from vector instructions (sphinx-a, sphinx-b,
saxpy, sphinx-b and facerec). sphinx-c, hmmer and graph500 have between 66% and 80% of all
operations executed in vector instructions, while h264ref is the only kernel with dominant scalar
operations (around 66%). We tried to cover as many scenarios and aspects as possible with these
eight kernels. We extracted the input data from the applications when running the ref input data
set and used them to initialize the data structures before simulation. We extended the ARM ISA
with a set of 27 vector instructions that we used to vectorize the kernels.

3.1 Performance Evaluation
Figure 5 shows the speed-ups for CVU, OBO and BBE over the scalar baseline for all kernels. As
expected, CVU outperforms the integrated designs (OBO and BBE) for integer data (sphinx-c,
h264ref, hmmer and graph500) because it has two additional ALUs for computational vector
instructions while ALUs are shared between scalar and vector computational instructions in the

1This is the average vector length for all iterations. Most of iterations are short, the maximum count is 166.
2This is the average vector length for all iterations. Three vector lengths (4, 18 and 64) repeat cyclically.
3This is the average vector length.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:9

Table 3. Total number and number of vector loads that start earlier execution in BBE per iteration.

kernel # of vector # of early vector load
name loads per iteration executions in BBE per iteration for FP kernels.

sphinx-a 27 25
sphinx-b 3 1

saxpy 2 0
facerec 14 4

integrated designs. In the vectorized loops, there are still many scalar instructions for bookkeeping,
which then interfere with the execution of vector instructions in the integrated designs. The
integrated designs provide good speed-up over the scalar baseline for hmmer and graph500, while
there is little speed-up over the scalar for sphinx-c. The main reasons are the use of index memory
accesses, the small amount of computational vector instructions and the short vector lengths for
the majority of iterations. h264ref is an example where vectorization is ine�cient. We obtained
slow down over the scalar for all vector models. Despite this kernel has a short vector length (only
16), the main reason for slow down is that in order to vectorize this kernel, we require twice the
computational operations as the scalar version.

Regarding the FP kernels, the vector models are always faster than the scalar baseline. Speed-ups
for saxpy are extremely high. It is a very simple kernel with a unit-strided memory access pattern
and highly regular DLP. A whole cache line can be accessed with one access (16 elements per access)
and for this particular experiment the input data set �ts into L1 cache. sphinx-a and sphinx-b have
decent speed-ups. sphinx-a uses strided vector memory instructions to load data from the cache,
which prevents reaching higher speed-ups. sphinx-b uses unit-stride vector memory instructions
but it is limited by the number of iterations of the original scalar loop that has been vectorized (only
32 iterations). facerec has the smallest speed-up and the main reasons are the presence of strided
memory accesses and a short vector length in most of cases (only four or eight). CVU and OBO
have the same execution time (a consequence of having a single FP unit) while BBE outperforms
them due to the advantage of executing subsequent integer scalar (loop overhead instructions) or
vector memory instructions in parallel with the current block of vector computational instructions.
In-order execution blocks the vector instructions and subsequent instructions in CVU and OBO, but
this does not happen in BBE, as shown above in Figure 2. This di�erence is especially noticeable for
sphinx-a where the speed-up for BBE over CVU and OBO is around 1.4x for all MVLs. sphinx-b,
saxpy and facerec exploit this advantage from BBE execution inside single iteration of a vectorized
loop, while sphinx-a is a kind of kernel that is able to exploit this across multiple iterations. There
is often vector memory store instruction at the end of a vectorized loop (sphinx-b, saxpy and
facerec). This instruction needs to wait until all elements of a vector source register are computed
before it starts with execution. Then we can proceed with the next iteration. sphinx-a does not
have a vector memory store instruction in the inner loop and it is able to overlap execution of a
vector load instruction in next iteration with vector computational instructions in the previous
iteration. For this particular case, vector computational instructions are completely overlapped with
vector memory instructions across all iterations of the inner loop, yielding signi�cant speed-up of
BBE over CVU and OBO. Table 3 shows how often we are able to start earlier with vector loads
execution in BBE compared to OBO for FP kernels. Almost all vector loads in sphinx-a can start
execution earlier in BBE and we have signi�cant speed-up for sphinx-a as a direct consequence.
Sphinx-b and facerec have around one third of all vector loads that can start earlier execution
in BBE while scalar loop bookkeeping instructions are executed earlier in saxpy. We can notice
bigger di�erence for shorter MVLs between BBE and OBO as a consequence of more loop iterations
for shorter MVLs.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:10 M. Stanic et al.

Fig. 6. Normalized energy for CVU, OBO and BBE over the scalar baseline.

Fig. 7. Dynamic power.

Increasing the MVL from 16 to 32 elements provides better execution time for all kernels except
h264ref (only 16 iterations in the vectorized loop) and facerec (in most cases only four or eight
iterations in the vectorized loop). Further increasing MVL to 64 is bene�cial for sphinx-b, saxpy,
hmmer and graph500 while vector registers with 128 elements only provide marginal speed-up
for sphinx-a and saxpy. sphinx-b cannot exploit the bene�ts of MVLs beyond 32 because the
vectorized loop has only 32 iterations. sphinx-c is limited by short loop counts and does not scale
with longer MVLs.

We also analyzed the sensitivity to the latency of vector arithmetic instructions. We used four
di�erent latencies for vector arithmetic FP instructions: four, �ve, six and eight cycles. If we increase
latency from four to eight cycles, speed-up over scalar baseline is decreases by 5.9% using MVL 16
in sphinx-a, while this number is only 1.1% MVL 128. Results are similar for other kernels.

3.2 Area, Power and Energy
Table 4 shows the area and leakage numbers for the scalar baseline and the CVU, OBO and BBE
models of execution. We present results for vector registers with 32 elements. The area is computed
in mm2. Leakage is presented in watts.

The area overhead of OBO and BBE is only 4.66% compared to the scalar baseline (it is around
3.3% for vector registers with 16 elements and it goes up to 12.2% for vector registers with 128
elements). CVU without a FP unit increases the area of the baseline for 9.6%. When we include a
FP unit, the area overhead of adding CVU is signi�cant, around 44% with vector registers of 32
elements.

Energy consumption of CVU, OBO and BBE is shown in Figure 6, normalized to the scalar
baseline. It is signi�cantly lower than in the baseline for sphinx-a, sphinx-b, saxpy, hmmer and
graph500 (kernels with decent or high speed-ups over the scalar baseline), showing how adding a
vector unit is an energy-e�cient way to increase performance. As can be expected, the exceptions

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:11

Table 4. Area and leakage.

Scalar CVU OBO/BBE
w/o FP w/ FP

Area [mm2] 2.831 3.065 4.040 2.925
Leakage [W] 0.057 0.069 0.085 0.060

are facerec, h264ref and sphinx-c due to slow-down or small speed-up. Energy consumption
for sphinx-c, h264ref, hmmer and graph500 is very similar for CVU, OBO and BBE. Regarding
FP kernels, OBO and BBE clearly outperform CVU. BBE is also better than OBO for sphinx-a,
sphinx-b and facerec. If we consider di�erent MVLs, Figure 6 shows that 32 elements is the
optimal size for the vector register with respect to energy consumption.

Figure 7 presents hows dynamic power for scalar, CVU, OBO and BBE. Results are stacked for
vector models using four di�erent MVLs. OBO and BBE have slightly lower dynamic power than
CVU for integer kernels. For FP kernels, OBO has always lower dynamic power than CVU, while
BBE has the highest dynamic power for sphinx-a. This is a direct consequence of the speed-up
achieved with BBE over CVU and OBO (Figure 5) combined with its not so large reduction of
consumed energy (Figure 6). For the rest of kernels this di�erence is smaller and we observed that
the most power-consuming model changes with the MVL. OBO and BBE also have lower dynamic
power than the scalar baseline for sphinx-c and facerec for all MVLs and sphinx-b with shorter
MVLs (16 and 32) due to signi�cant savings in the front-end of processor (instruction fetch and
dispatch).

This evaluation indicates that if only performance is important and only integer data is used then
CVU should be chosen. For mobile devices, in which power and area are of the utmost importance,
one of our proposed integrated models is a good match. For FP kernels, our BBE model is clearly
the best choice from the performance, area and energy consumption perspectives.

4 ENHANCEMENT OF INTEGRATED DESIGN
In this Section, we present three techniques that improve the basic integrated design presented
and evaluated in previous sections. The techniques have negligible area overhead and increase
performance or reduce energy and/or power with respect to the basic integrated design. The �rst
technique covers the design and implementation of chaining logic that is optimized to work with
the cache hierarchy through vector memory instructions, the second technique reduces number
of reads/writes to/from the vector register �le while as a third technique we propose two vector
memory instructions: memory shape instruction and uni�ed indexed vector load. We combined
techniques in the evaluation whenever it has sense. For example, we studied the interaction of
other techniques with the chaining from the memory hierarchy.

4.1 Chaining from the Memory Hierarchy
Chaining from vector memory instructions was a feature typically implemented in classic vector su-
percomputers (Russell 1978), (Schönauer 1987). In those systems, the vector processor accessed main
memory directly. The lack of a cache hierarchy made memory access time completely predictable,
so given an instruction it was simple to determine exactly in which cycle every element would
arrive from memory. Therefore, additional control logic to support chaining from vector memory
instructions did not require substantial resources. The issues arose with vector microprocessors
with a cache hierarchy. Due to the nature of the cache hierarchy and cache misses it was di�cult to
predict when the requested data will be arrive from the cache. Processor architects considered that

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:12 M. Stanic et al.

Decoder

Bit_map_of_written_elems

Priority encoder

lastWritten

currElem

position of element
that is written to
vector register

control signal for
execution of chained

vector arithmetic
instructions

mvl = 2 ^ n

n

n

n

n

mvl

mvl

<=

Fig. 8. Chaining from memory hierarchy.

1 1 0 1 1 0 1 0

Decoder

Priority encoder

input value

3

8

decoded
value

= = = = = = = =

8

output value

2 lastWritten

bit_map

(a)

1 1 1 1 1 0 1 0

Decoder

Priority encoder

0

3

8

00100000

= = = = = = = =

8

5

5 lastWritten

bit_map

(b)

7

2

0 7

Fig. 9. An example of how to update the lastWri�en
register for chaining from the memory hierarchy.

supporting chaining from the memory hierarchy is expensive and required complex control logic,
and did not implement this feature in vector microprocessors (e.g. (Kozyrakis and Patterson 2003)).

We consider that chaining from cache can be particularly fruitful for our BBE model due to the
opportunity to chain larger number of vector arithmetic instructions in a block. Therefore, we
decided to design and evaluate support for this feature. However, this technique works not only for
BBE, but for OBO and CVU as well. Figure 8 shows the logic and structures we propose to allow
chaining from the memory hierarchy to a dependent instruction. The main idea is to track the
last written element (lastWritten) of vector register and use it in the VECL (the Vector Execution
Control Logic, as explained in Section 2). Then, the VECL can determine if the current vector
operation is ready for execution, simply by comparing the last written element and the current
operation (currElem): if lastWritten is greater than or equal to currElem then VECL can execute the
current vector operation. Otherwise it needs to wait until currElem is written in the vector register
and lastWritten updated. The most complex operation of this design is updating the lastWritten
register. Due to the presence of caches, the elements of a vector load can arrive out of order to the
vector register, so we need to track all elements that have arrived. To this purpose, we added a
bitmap. The size of the bitmap is equal to the MVL of the vector registers. In order to decode which
element is written, a decoder is added. Subsequently, a priority encoder is used to determine the
new value of the lastWritten register: the position of an element in the vector register, in which all
prior elements are written already, as well as itself, and its immediate successor is not written yet.

Figure 9 illustrates an example of how the lastWritten register is updated. Current state is
presented in Figure 9 (a). The lastWritten register has value two because, as can be seen in the
bitmap, elements 0 and 1 of the vector register are already written while element 3 has still not
arrived from the cache (i.e. element 0 and element 1 have value one and element 2 has value zero
in the bitmap). Figure 9 (b) shows what happens when element 2 in the vector register is written
and 2 is the input of the decoder to update the lastWritten. The decoded value is 00100000 and
the corresponding element in the bitmap is set to one (the light gray box). Then the content of

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:13

vecloadst VR2
vecloadst VR3
vecsubsv VR4, scalar, VR3
vecmul VR5, VR4, VR4
vecmul VR6, VR5, VR2
vecsub VR7, VR7, VR6

Fig. 10. A sequence where writing to the vector register file can be avoided.

the bitmap is send to the input of the priority encoder. Value 5 is generated since it is the last
consecutive one in the bitmap (dark gray box) before the �rst zero. Therefore, 5 is written to the
lastWritten.

In an initial design, we �rst assume that each vector register has dedicated chaining logic. This
design tracks the last written element for each vector load even though there is no ready dependent
computational vector instruction that can be chained. This decision leads to high area, power and
energy overheads. Aiming to decrease the number of chaining elements and track the last written
element only for vector loads that can be e�ectively chained from, we also propose a restricted
chaining from memory with fewer chaining elements. The chaining control logic needs to know if
it will track the last written element for a vector load, i.e. if there is any dependent computational
vector instruction that is ready for execution. Since there is a time window to resolve if there is any
ready dependent instruction between the moment a vector load starts execution and the moment
the �rst element arrives to the destination vector register, we decided to use this as a requirement
to apply chaining from memory. This means that a dependent instruction will be chained only if it
is in the issue queue and ready for execution before the �rst element arrives to the vector register.
Otherwise, the dependent instruction stalls until the vector load is completed, just like in the basic
design without support for chaining from the memory hierarchy.

4.2 Direct Forwarding
While vectorizing the kernels, we realized that there are cases in which data are computed and then
used only once. Figure 10 shows an example from Sphinx3 kernel. Instruction vecsubsv stores the
result of its computation in vector register VR4 and only the subsequent instruction vecmul uses it
as input operand. The scenario is the same for vector registers VR5 and VR6. They are only used
once as input operands by subsequent instructions. Therefore, if these instructions are chained and
we can take advantage of the fact that they are read only once, we could save three x VL writes and
four x VL reads to/from the vector register �le in this particular example. We are saving two reads
in the �rst vecmul instruction, both for vector register VR4. Moreover, forwarding from vector
memory instructions we could avoid writes and reads to vector registers VR2 and VR3 as well. It
means that we would need only to read data from vector register VR7 and to write the �nal result
there.

To further analyze the potential applicability for result forwarding without writing to the vector
register �le (direct forwarding), we examined all vectorized kernels with BBE model of execution in
mind. Table 5 shows how many vector registers are read or written per iteration (we just counted
one access per vector register of each instruction, not VL times). Numbers for vector register
reads and writes are counted for the con�guration of the functional units presented in the table
1 with enabled chaining for vector computational instructions. They are the same for all three
models of execution. Numbers related to direct forwarding are counted for BBE. Numbers related
to direct forwarding show that we can reduce the number of reads and writes by more than two for
sphinx-a, sphinx-b and hmmer, but there are also kernels that can not bene�t from this technique.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:14 M. Stanic et al.

Table 5. Potential reduction in writes and reads to/from the vector register file.

kernel name sphinx-a sphinx-b sphinx-c saxpy h264ref hmmer graph500 facerec
#_of_vec_reg_reads 92 7 3 4 3 24 4 72
#_of_vec_reg_writes 82 6 3 4 3 17 2 48

reads with forwarding 42 3 3 3 2 10 4 60
writes with forwarding 41 3 3 3 2 9 2 36

Since there is already logic for scalar result forwarding/bypassing we decided to reuse it with
small additional logic that will allow for direct forwarding. The key idea is to somehow identify
if the result of an instruction is used in only one subsequent instruction. In many situations, the
compiler can relatively easy identify the case when a value is used only once. The second part is
annotation of identi�ed instruction. One solution to annotate the instruction is to reserve a bit in
encoding for vector computational instructions (e.g. a bit set to one). Forwarding logic detects if
the bit is set to one and forwards results to corresponding FU without writing to the vector register.
The consequence of this approach is that the ISA must be extended to allow for annotating of
vector instructions.

Direct forwarding can be applied to all three models: CVU, OBO and BBE but it is much more
suitable for BBE because it allows for execution of a larger number of vector computational
instructions in parallel and therefore, it increases the bene�t of direct forwarding. In CVU and
OBO it is only useful for chained instructions, which depends on the number and types of the
instructions executed.

4.3 Vector Memory Shape Instruction
Even though facerec is highly vectorizable, we did not obtain high speed-ups (up to 1.77x for
BBE). The main reason is that it has a complex memory access pattern to a matrix. Elements are
loaded from the matrix using three memory access patterns that are repeated in a cyclic fashion.
Each memory pattern loads 64 elements. In the �rst pattern, 64 elements are loaded using a single
strided vector memory load instruction with stride two. In the second pattern, we need four strided
vector load instructions with stride two to load all 64 elements while in the third pattern we need
16 instructions (each one loads only four elements). We realized that there is a regularity in the
accesses for the second and third case that cannot be expressed with strided memory instructions,
but it would be possible to load all the elements by providing more complex vector memory
instruction that supports this pattern: the “vector memory shape instruction” (vmshape) (Ciricescu
et al. 2003). vmshape uses a base address and three scalar values: stride, span and skip to describe a
vector. Stride has the same role like in strided vector memory instructions (spacing between each
accessed element). Span describes how many elements to access at stride spacing before applying
the second-level skip o�set. Memory shape instructions can be called 2-D strided vector memory
instruction because they are an extension of stride instructions to 2-D patterns.

In order to support the execution of vmshape, we slightly modi�ed the vector memory unit
(Figure 3). VMIT is extended with span (8 bits), skip (32 bits) and a �eld that counts the number of
elements before skip is applied (8 bits). An additional circuitry is added to increment the third �eld
and compare with span. AG is also extended to increment an address for stride or skip depending
on the output of the previously mentioned comparator.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:15

Table 6. L1 data cache hits and misses for unit-stride and indexed vector loads.

cache unit-stride load indexed load
size hits misses hits misses

small 2254 4029 65970 1361
medium 2226 4057 56325 11006

big 2223 4060 33776 33555

4.4 Unified Indexed Vector Load
We achieved decent speed-up for graph500 even though it is data-intensive, cache unfriendly
application. In the �rst part of the BFS kernel, algorithm loads all neighboring nodes of the current
node and checks if they are visited. In the current implementation we used three vector instructions
to perform this task: 1) unit-stride vector load gets indices, 2) indexed vector load gets neighboring
nodes, and 3) compare vector-scalar instruction checks if they are already visited. The indices are
used directly by the second load. Since we already implemented chaining from memory instructions,
we wanted to study how much would graph500 bene�t from merging the two load instructions.
The idea is to have a single instruction and once we receive data from the data cache for indices
(index values), automatically initiate corresponding accesses for the indexed vector load instruction
(operations that correspond to loaded indices - �nal values). Loading an array and use it as index
vector is also used in other applications (i.e. Sphinx3).

The desired scenario, in which the uni�ed indexed load would be more useful, would be if one of
the requests of the unit-stride vector load hits L1 data cache and the corresponding elements of the
indexed vector load miss L1 data cache. We pro�led graph500 using 3,000 nodes and 50,000 edges
as input parameters and three di�erent cache con�gurations: small (L1 8KB and L2 128KB), medium
(L1 16KB and L2 256KB) and big (L1 32KB and L2 256KB). Our �ndings were that unit-stride vector
load misses a lot for all cache sizes (2/3 of all requests misses L1 data cache) while miss rate for
indexed vector load depends on number of nodes and cache size (as table 6 shows). In this particular
case we will receive earlier values for indexed vector load compared to the current implementation
where the indexed vector load needs to wait until the unit-stride vector load is �nished. Figure 11
shows a simpli�ed example of how elements are loaded from the memory system using unit-stride
and indexed vector load (a) and uni�ed vector load (b). Requests to load indices (with a sequential
pattern) are blue squares and loaded indices (with) are blue cycles. Requests to load �nal values
(with an indexed pattern) are red squares and loaded �nal values are red cycles. Lets assume that
we have the desired scenario for the second element: the request for the index value hits in the
L1 while the request for the �nal value misses in the L1. The basic approach that uses separated
unit-stride and indexed vector load (Figure 11 (a)) can not start sending requests for �nal values
until all index values are loaded, while in the case of the uni�ed vector load requests for �nal values
initiate immediately after the index values are received (Figure 11 (b)). Therefore, we can see in the
presented example that the second �nal value is loaded much earlier using the uni�ed vector load
as well as all �nal values. If we assume that a hit to L1 is four and miss twelve cycles, all elements
will be loaded in 33 cycles in the �rst case, while we will need 22 cycles with the uni�ed vector
load. We further pro�led graph500 and we found that there is always at least one request inside
unit-stride vector load that hits L1 data cache. We can start with indexed load accesses for those
cases while waiting for the rest. Our pro�ling results were promising and we decided to implement
uni�ed indexed vector load instruction (see subsection 5.4).

We had several dilemmas regarding the implementation of uni�ed indexed vector load instruction.
The initial idea was to add hardware that detects packets with indices (when the unit-stride vector
load), bu�er them and initiate accesses for indexed vector load at the cache side. We realized that it

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:16 M. Stanic et al.

1st

2nd

3rd

4th

1st

2nd

3rd

4th

1st

2nd

3rd

4th

1st

2nd

3rd

4th

time

hit

time

hit

hit

hit

hit

hit

miss

miss

(a) Unit-stride + indexed vector load

1st

2nd

3rd

4th

1st

2nd

3rd

4th

1st

2nd

3rd

4th

1st

2nd

3rd

4th

time

hit

time

hit

hit

hit

hit

hit

miss

miss

(b) Unified vector load

Fig. 11. An example that shows execution of (a) unit-stride and indexed vector load and (b) unified vector
load.

would need to communicate with the TLB in some cases (e.g. if the index value is higher than the
TLB page size) in order to perform the address translation. We also realized that the indexed vector
loaded by unit-stride vector load is often used by several subsequent vector instructions and that
we will still need to transfer those values to the vector register �le. Therefore, we decided to move
the additional hardware to the vector memory unit (see subsection 2.2) where most of the existing
hardware can be reused to support execution of uni�ed indexed vector load. If the index values are
just used in the uni�ed instruction then moving hardware to the data cache size could be a good
design option.

Once the uni�ed indexed vector load instruction is dispatched to the vector memory unit, two
entries in VMIT are reserved. The �rst entry controls loading of index values, while the second
entry is responsible for getting �nal values. As additional hardware we need only two bu�ers. The
�rst bu�er holds index values that are received from the data cache. Since packets that contain index
values can return out of order due to cache misses, we need the second bu�er where each value
indicates the position in vector register for each index value in the �rst bu�er. As it is explained
above, index values are stored in a vector register. Once a corresponding element in vector register is
selected to be written, the ID number is written in the second bu�er. This information is important
for the second part of the uni�ed instruction in order to write the �nal values in the right position
in the destination vector register. The size of the bu�ers is equal to the size of vector registers.

Our current implementation supports forwarding between older stores and subsequent loads
based on addresses that are used in load instructions to get data. Since we will not have the address
of the �nal value until we receive the corresponding index value from the data cache, we decided
to apply a conservative approach during the execution of the uni�ed instruction. Our uni�ed
instruction waits all older vector stores to complete before it starts execution. Particularly, the
kernel graph500, it is possible that there is a con�ict between older vector stores and subsequent

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:17

vector loads because both access the same array. It means that subsequent vector loads could access
a value that is written by older vector stores. Therefore, our conservative approach is required. If
we are sure that there is no collision between stores and loads, a weak ordering mechanism as in
the latest NEC SX-ACE machine (Momose et al. 2014) could be applied.

5 EVALUATION OF ENHANCED INTEGRATED DESIGN
In this Section we evaluate and present results for the techniques described in the previous Section.

5.1 Chaining from the Memory Hierarchy
Figure 12 presents the speed-ups achieved with our two proposed approaches over the scalar
baseline: full chaining support (FCS) and restricted chaining support (RCS), while Figure 13 presents
the speed-ups achieved over the same models of execution without chaining. We used 16 chaining
elements for FCS and four for RCS.

Fig. 12. Speed-up for CVU, OBO and BBE with full (FCS) and restricted (RCS) chaining support from memory
hierarchy over the scalar baseline.

There are several interesting points in these �gures. The di�erence in speed-up for FCS and
RCS is negligible or inexistent for almost all kernels in all three models, except for sphinx-a and
sphinx-b with MVL 16 for CVU and OBO. Therefore, for our target design where area and power
are the most important constraints, RCS can provide good results for the most of kernels.

Each kernel has di�erent trends and we analyze them case by case. FCS provides up to 17%
improvement in sphinx-a for CVU and OBO, while BBE does not bene�t a lot from chaining for this
kernel. BBE without chaining already has signi�cant speed-up over CVU and BBE (see subsection
3.1). This speed-up is mainly due to overlapped execution of vector memory and computational
instructions in BBE. The single L1 D-Cache port is already almost fully utilized, and therefore
chaining is not able to provide additional signi�cant performance improvements. The speed-up of
BBE over CVU and OBO is reduced from 40% to 20% with chaining. Sphinx-a does not bene�t at all
from RCS for CVU and OBO, while there is small speed-up for BBE and shorter MVLs. Applications
with strided and indexed vector loads can bene�t more from chaining because memory instructions

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:18 M. Stanic et al.

Fig. 13. Speed-up for CVU, OBO and BBE with full (FCS) and restricted (RCS) chaining support from memory
hierarchy over the same models without chaining.

have longer execution time. This is the reason why we obtained the highest speed-up with chaining
for sphinx-a. BBE bene�ts the most from FCS in sphinx-b, around 16% for MVL 16. CVU and OBO
also experience improvements higher than 10% and trends are consistent across di�erent MVLs.
We knew that unit-stride vector loads are fast (whole cache line per access) but we still expected
better results for saxpy, speed-up increases around 5% for CVU and OBO, while BBE has slightly
better results, up to 9.5% for MVL 64. The data set for saxpy is cache resident, so we decided to
perform a test to pollute the L1 data cache before saxpy starts computation. The results that are
then obtained for CVU show 20.5% of improvement for MVL 32. This means that applications
with poor cache locality can bene�t a lot from chaining from memory hierarchy, similarly to the
applications with strided and indexed memory instructions. Table 7 shows L1 data cache miss
rates for current data input sets and MVL 32. Speed-ups are the same for FCS and RCS in saxpy.
BBE increases the speed-up over CVU and OBO for sphinx-b and saxpy. FCS provides around
5% of improvement in facerec for all models, while using of RCS slightly decreases the speed-up
achieved with FCS.

Even though sphinx-c has indexed vector loads, CVU does not bene�t a lot from chaining
mainly due to the use of short vectors, while chaining provides up to 10% improvements for OBO
and BBE with MVL 128. The di�erence in execution time between CVU and OBO or BBE with
chaining is only 1.4% for MVL 128 while it was 9.5% without chaining. h264ref does not bene�t at
all from chaining. The reason is the short vector length of the loop, combined with the unit-stride
access. The vector load is able to bring all 16 elements from data cache with one access. Therefore,
chaining does not play any role in this case. We also expected higher speed-ups for hmmer, but we
observed that the execution of consecutive vector computational instructions is serialized. The
reason is that a unit-stride vector load is followed by several vector computational instructions
that are all of the same type. Since there is only one ALU for that operation that they must share,
the �rst instruction can start execution a few cycles earlier while the rest of instructions still need

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:19

Table 7. L1 data cache miss rates for MVL 32.

kernel L1 miss
name rate in %

sphinx-a 8.0
sphinx-b 25.1
sphinx-c 3.0

saxpy 7.8
h264ref 6.0
hmmer 7.2

graph500 9.8
facerec 17.2

Table 8. Total number and number of chained vector
loads per iteration.

kernel # of vector # of chained vector
name loads per iteration loads per iteration

sphinx-a 27 26
sphinx-b 3 2
sphinx-c 2 2

saxpy 2 2
h264ref 1 0
hmmer 14 9

graph500 2 1
facerec 14 4

to wait for the ALU. Adding another ALU could overcome this issue. CVU does not bene�t from
chaining in graph500 while chaining provides almost 6% of improvement for OBO and BBE. OBO
and BBE provides almost the same speed-ups with chaining as CVU for graph500.

Table 8 shows how often chaining is used. The �rst column lists the kernels. The second column
shows the number of vector loads per single iteration in vectorized kernel, while the last column
shows how many vector loads are chained. We can observe that the chaining from vector loads is
quite often used in most of the vectorized kernels, except in h264ref and facerec.

The area overhead of adding chaining logic from the memory hierarchy depends on the size of
the vector register. Area for FCS ranges from 0.4% for MVL 16 up to 2.6% for MVL 128 in OBO or
BBE. It is around 19% of total area overhead for OBO or BBE for MVL 128. This percentage is lower
for CVU since it has a larger total area. RCS contributes four times less area overhead and it is
around 5% of total area overhead for OBO or BBE for MVL 128.

Dynamic power contribution of FCS or RCS to the total dynamic power is always lower than 1%
for all kernels. Regarding energy consumption for FCS, there is up to 6% savings for sphinx-a and
saxpy in CVU, while the rest of kernels are in the range of 2%. Savings are smaller for RCS in CVU,
up to 2.8% for sphinx-b. Savings are similar for OBO and BBE. Some kernels have higher energy
consumption over models without chaining for higher MVLs and RCS but it is 1.6% in the worst
case for sphinx-a with MVL 128 in BBE.

All these numbers suggest that chaining from memory hierarchy is fruitful for most of the
kernels in terms of performance and energy savings with small area overheads. The contribution
of chaining logic to the total dynamic power is also negligible.

5.2 Direct Forwarding
We evaluated this technique in terms of energy and power in McPAT and results are presented
in Figure 14. Using this technique does not a�ect the performance results. Obtained results show
that we can save more than 50% of energy/power of the vector register �le in sphinx-a, sphinx-b
and hmmer. h264ref, saxpy and facerec have decent savings between 33% and 16%. Depending
on the size of vector register, savings at the CPU level range from 2.5% for short vector registers
(16 elements) up to 11% for MVL of 128 elements for sphinx-b.

The results presented in this subsection show the bene�t of applying this technique between
vector arithmetic instructions. It would be possible to achieve even further savings in the vector
register �le if this technique is combined with chaining from the memory hierarchy to provide
direct forward for vector memory instructions as well. This idea is more challenging because it
will require more complex logic to implement it and the proposed solution should not a�ect the
performance results. We leave this for future work.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:20 M. Stanic et al.

Fig. 14. Normalized energy/power consumption for
BBEmodel with direct forwarding over the samemodel
without direct forwarding.

Fig. 15. Speed-up for CVU, OBO and BBE over the
scalar baseline when using vmshape.

5.3 vmshape Instruction
Figure 15 shows the speed-ups for CVU, OBO and BBE over the scalar baseline for facerec with
vmshape. We presented results both with and without chaining from the memory hierarchy.
vmshape increases speed-up from 1.63x to 2.4x for CVU and OBO using MVL 64 while the speed-up
is increased from 1.77x to 2.66x for BBE. Chaining from the memory hierarchy also additionally
improves performance (from 2.4x to 2.68x for CVU and OBO). It is also interesting that performance
scales better with increased MVL from 16 to 64 elements compared to the implementation without
support for vmshape (Figure 5). We also modeled the additional hardware in McPAT and results
show negligible area overheads (less than 0.2%) while energy savings are almost proportional to
the achieved speed-up (from 9% for MVL 16 up to 18% for longer MVLs).

5.4 Unified Indexed Vector Load
Figure 16 shows the speed-ups for the vectorized version of graph500 using the uni�ed vector load
over the version with the indexed vector load. Results are presented with and without chaining from
the memory hierarchy for all three models of execution: CVU, OBO and BBE. The uni�ed vector load
instruction increases speed-up only up to 1.08x for CVU without chaining from memory. Results
are similar with chaining from the memory hierarchy. We pro�led execution of both vectorized
versions and we found that the uni�ed vector load completes execution faster than the indexed
vector load. The speed-up per single instruction goes from 1.1x to 1.22x. Since the rest of the kernel
is the same, overall speed-up goes only up to 1.08x. We also noticed that loading all neighboring
nodes and their current state (visited or not visited) takes a few hundreds cycles (300-400) for 30
neighboring nodes on average. Therefore, the bene�t of having a single instruction and saving
some cycles in the front-end of the processor is also small in this particular example. The area
overhead of the additional hardware is small, less than 0.3% in the worst case when two bu�ers
with 128 elements are added. Energy savings are also small and proportional to the speed-ups, less
than 4.1%, while dynamic power increases up to 8%.

Even though current results are not promising, the uni�ed indexed vector load could be further
improved. For example, if the index vector is used only in the uni�ed vector load instruction,
we could avoid writing to the vector register. We also noticed that a cache line that holds only
neighbors of one node (index values) is accessed only once. We could avoid caching these lines in
L1 or L2 and provide a small victim cache or streaming bu�er for those lines. Therefore, L1 and/or
L2 caches would not be polluted with cache lines that are used only once.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:21

Fig. 16. Speed-up with the unified vector load over the indexed vector load in graph500 for CVU, OBO and
BBE.

6 RELATEDWORK
In this section we discuss di�erences between our integrated design and several works that combine
vector and scalar processing. We also discuss alternatives to vectors and justify design decisions.

An important characteristic of most microprocessor vector architectures is that the vector
processing unit is designed as an extension or co-processor to a scalar core, but there are few works
that combine vector and scalar processing on the same substrate. Quintana et al. (Quintana et al.
1999) added a vector unit to a superscalar core. Since their research focused on high performance,
this processor design resembles a classic vector with multiple lanes and direct L2 access which is
completely di�erent from our design. This work also does not include any evaluation of power and
energy of the proposed design, even though their approach requires additional hardware that is
idle most of the time in scalar intensive applications. Gebis et al. (Gebis 2008) proposed the �rst
integrated solution that combines scalar and vector processing (ViVA). However, ViVA adds support
only for vector memory instructions while regular scalar instructions are used for computation. We
have observed the advantages of using vector computation instructions, e.g. the energy reduction
due to reduced front-end activity. Soliman (Soliman 2011) proposed a low-complexity vector core
that has a common execution data-path for executing scalar/vector instructions, but using the
scalar register �le limits the design to support only short vector (up to 8 elements). PTX (Compute
2010) supports vector instructions, but they are transformed to scalar instructions for Nvidia SIMT
microarchitectures, which behave like many independent scalar units. This can be seen an instance
of using scalar hardware to execute vector instructions.

Combined vector-scalar design is also proposed in CELL and power processors (Gschwind et al.
2006), (Gschwind 2006), (Gschwind 2016). Cell and power processors target high-performance
and it is crucial for them to have parallel hardware that can exploit available DLP and provide
high performance. Since they realized the importance of coupling closely vector-scalar processing,
support for scalar execution is added in the parallel hardware (SIMD vector unit). In our work we
are targeting the low-end embedded market, where power, energy and area are important design
concerns. So we used the opposite approach: we added minimal hardware to support execution of
traditional vector instructions (not SIMD) on a scalar in-order core.

The Imagine processor (Khailany et al. 2001) implements a somewhat similar model of execution
to our BBE. They called it compound stream operations. They perform multiple computational
operations on each stream element. Our BBE model is more �exible, as instructions in the block

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:22 M. Stanic et al.

can be independent. The Imagine targets streaming applications with little data reuse, while our
approach is more general. Their model of execution is implemented on speci�c accelerators while
BBE works on a general purpose core and does not have any speci�c constraint. It can use regular
vectorized code and execute in a block-based fashion without additional support from the compiler.
The SCALE processor (Krashinsky et al. 2004) also implements a kind of block-based execution at
the level of virtual processor (VP). VP instructions (RISC-like) are grouped into atomic instruction
blocks (AIBs), which is the unit of work issued to a VP at one time. Albeit the common use of the
term “block", our BBE blocks are completely distinct from AIBs. In our case, it is a block of vector
instructions that is dynamically formed during execution. Like for the Imagine, BBE can execute
regular vector code without additional compiler support.

BERET (Gupta et al. 2011) and DySER (Govindaraju et al. 2011) are architectures that provide
recon�gurable datapaths to accelerate critical subgraphs of computation within a loop iteration,
while XLOOPS (Srinath et al. 2014) deals with inter-iteration loop dependence patterns. Govindaraju
et al. (Govindaraju et al. 2013) tuned a compiler to generate optimized code for DySER that can
be seen as an alternative to SIMD. DySER, BERET and XLOOPS are accelerators, in which critical
subgraphs or loops are executed on dedicated additional hardware that has own functional units,
while we use existing functional units in our integrated design. They also extensively modi�ed
compiler to provide support for corresponding execution model, while our blocks are formed
dynamically during execution. We just needed small support in a compiler for direct forwarding
technique.

We would like to emphasize that we use traditional vector execution (Cray-I inspired) in our
integrated design rather than SIMD implementations found in commodity processors such as
Intel/AMD X86, Cell, Power, etc. SIMD processing units operate in parallel requiring multiple
functional units and thus they are less e�cient solutions in area and energy for embedded systems.
Additionally, even when focusing on high-performance, execution of vector instructions in a
pipelined form is still a relevant design point. For example the modern NEC SX-ACE vector processor
(2013) has 16 vector pipelines in each core; each pipeline can execute up to four operations per
cycle but each vector register has 256 elements; thus each instruction is pipelined serially in the
functional units unlike SIMD-based architectures.

NEON is a SIMD unit incorporated in ARM processors. We predict that area overhead of NEON
unit would be similar or higher to CVU in the case of 128-bit SIMD FP unit. Regarding performance,
NEON should provide better performance for cache-friendly applications with unit-stride access
and short vectors: NEON is able to process two or four operations in parallel, while we chose to
provide a single vector lane. The advantages of our design would be apparent in applications with
long vectors (due to the smaller code size and reduced dynamic instruction count, resulting in less
front-end activity) and irregular memory access patterns - strided or indexed memory accesses
(NEON only supports vectors that are stored consecutively in memory and therefore code with
indexed or strided memory access pattern cannot be vectorized). Cache-unfriendly applications
would also bene�t greatly from using long vectors because vector memory instructions are able to
hide long latencies.
OBO mode of execution is similar to the ARM’s VFP mode (Seal 2000) for FP computation

but there are still some di�erences. Our OBO model supports longer vector lengths while VFP is
restricted to shorter vector lengths. Also, we provide support for gather/scatter vector memory
instructions. We applied chaining for computational vector instructions as well as chaining from
memory hierarchy. Moreover, the execution of vector instructions with integer data is also di�erent,
since our model uses scalar ALUs.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:23

Our baseline is an energy-e�cient in-order ARM core and we wanted to improve it in terms
of energy and performance. Since vector processors are by default energy-e�cient (Lemuet et al.
2006), we added support for vector instructions. We did not consider adding multiple lanes due
to the following reasons: (1) we wanted to do minimal changes to the existing scalar processor
in order to keep the area/power envelope and reuse the existing processor resources in the most
e�cient way; (2) adding one additional lane increases area of scalar baseline by 44%; adding four
lanes will more than double the area of the processor and it is not acceptable in highly constrained
low-end devices.

Early vector processors had single lane architectures (CRAY-1) and they were successful compared
to others at that era such as IBM370. E�ciency was the factor. By analogy, in-order processors are
overwhelmingly used in the embedded domain because they are more energy-e�cient compared
to bulky out-of-order architectures. Recent work demonstrates that single-lane vector units o�er
signi�cant performance gains over commodity processors (Hayes et al. 2012). It shows quite clearly
that the advantages come from a reduction of fetch/decode/rename/commit and consolidating
memory requests together. Our results in the paper also con�rmed that we can achieve good
speed-ups over scalar baseline.

As we mentioned above, chaining from the memory hierarchy was popular in classic vector
machines (Russell 1978), (Schönauer 1987). Since access time to the memory hierarchy was constant,
it was not so di�cult to implement it. To the best of our knowledge there is no published work that
discusses how to implement chaining from memory hierarchy with caches.

Regarding direct forwarding, it can be seen as a extreme case of short-lived registers (Ponomarev
et al. 2003), (Hu and Martonosi 2000) because we are using each produced value only once. Short-
lived registers or values are used only for a short period of time after they are written, meaning that
the destination registers targeted by these values are renamed by the time the results are written
back. Writing to the register �le is avoided by caching in a small dedicated register �le (Ponomarev
et al. 2003) or by using a small structure which sits between the functional units and the register
�le that bu�er and �lter accesses to the register �le (Hu and Martonosi 2000).

7 CONCLUSION
Using a vector processor is one of the most energy e�cient ways of achieving high performance for
a wide number of applications that contain signi�cant DLP. Power dissipation, energy consumption
and area are critical concerns in processor design, especially for embedded systems in the low-end
market. In this paper, we propose the integrated vector-scalar design. The integrated design allows
for execution of vector computational instructions mostly reusing resources of an ARM in-order
core. We implement two models to execute vector computational instructions: one-by-one and
block-based execution models. To provide additional performance improvements, we propose and
implement chaining from the memory hierarchy with relatively small area and power overheads.
We also implement restricted chaining from the memory hierarchy that minimizes area overhead
and provides the same performance improvements for the most of the evaluated kernels compared
to the �rst approach. The key advantages are that our integrated design (a) apply vector-scalar
processing automatically in hardware, (b) gain the advantages of a vector ISA, and (c) apply several
energy-performance e�cient techniques to reduce power and increase performance in a mobile
CPU.

Our integrated design has several advantages. It has a small area and power overheads (only
4.66% when using a vector register with 32 elements) while at the same time the BBE model provides
even better FP performance results (up to 1.4x) compared to CVU. As a result, not only a signi�cant
reduction of energy over the scalar is achieved (up to 5x), as expected due to the energy e�ciency

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

0:24 M. Stanic et al.

of vector architectures, but the integrated design also consumes less energy than CVU (up to 26% of
reduction). Direct forwarding is applied to BBE and it provides additional power/energy saving in
the vector register �le (up to 57%). We propose other three energy-performance e�cient techniques
that reduce power and increase performance in our integrated design. Generally speaking, our three
advanced techniques (chaining from the memory hierarchy, vector memory shape instruction and
uni�ed vector load) provide improvements for applications with indexed or strided memory access
patterns including 2-D strided access (Sphinx3, Graph500 and Facerec). One of them (chaining from
the memory hierarchy) also provides improvements for applications with poor temporal cache
locality such as saxpy. Applications in which often the result of one instruction is only consumed
by one of the subsequent instructions will bene�t from direct forwarding.

Obviously, not all aspects of the integrated design are perfect and there are a few open issues.
In our future work, we will work on an evaluation of BBE’s control logic at the circuit level to
accurately study the complexity/power/performance trade-o�s of its design. An implementation at
the circuit level will determine if the changes to the hardware a�ect the critical path and maximum
operating frequency. Another concern is that CVU, OBO and BBE are sensitive to the order of the
instructions in the program because they are all in-order. This could be partially relieved with
decoupling (Espasa and Valero 1996) , but careful power evaluation should be performed to ensure
it does not compromise the savings achieved with the proposed architecture.

REFERENCES
Krste Asanovic. May, 1998. Vector Microprocessors. Ph.D. Dissertation. University of California, Berkeley.
Christopher Francis Batten. 2010. Simpli�ed vector-thread architectures for �exible and e�cient data-parallel accelerators.

Ph.D. Dissertation. Cambridge, MA, USA. Advisor(s) Asanovic, Krste.
Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R.

Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill,
and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (aug 2011), 1–7.

Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat, Jim Norris, Michael Schuette, and Ali Saidi. 2003. The
Recon�gurable Streaming Vector Processor (RSVP). In Proceedings of the 36th annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 141–150.

NVIDIA Compute. 2010. PTX: Parallel Thread Execution ISA Version 2.3. 1 (2010).
Roger Espasa, Federico Ardanaz, Joel Emer, Stephen Felix, Julio Gago, Roger Gramunt, Isaacspecialis Hernandez, Toni Juan,

Geo� Lowney, Matthew Mattina, and André Seznec. 2002. Tarantula: A Vector Extension to the Alpha Architecture. In
Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA ’02). 281–292.

Roger Espasa and Mateo Valero. 1996. Decoupled vector architectures. In Proceedings of the Second International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 281–290.

Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shihjong Kuo. 2008. Intel AVX: New Frontiers in Performance
Improvements and Energy E�ciency. White Paper. (2008).

Joseph James Gebis. 2008. Low-complexity vector microprocessor extension. Ph.D. Dissertation. Berkeley, CA, USA. Advisor(s)
Patterson, David A.

Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. 2011. Dynamically specialized datapaths for
energy e�cient computing. In 2011 IEEE 17th International Symposium on High Performance Computer Architecture
(HPCA). 503–514.

Venkatraman Govindaraju, Tony Nowatzki, and Karthikeyan Sankaralingam. 2013. Breaking simd shackles: Liberating
accelerators by exposing �exible microarchitectural mechanisms. In Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques (PACT).

Michael Gschwind. 2006. Chip multiprocessing and the cell broadband engine. In Proceedings of the 3rd conference on
Computing frontiers. ACM, 1–8.

Michael Gschwind. 2016. Workload acceleration with the IBM POWER vector-scalar architecture. IBM Journal of Research
and Development 60, 2-3 (2016), 14–1.

Michael Gschwind, H. Peter Hofstee, Brian Flachs, Martin Hopkins, Yukio Watanabe, and Takeshi Yamazaki. 2006. Synergistic
processing in Cell’s multicore architecture. IEEE micro 26, 2 (2006), 10–24.

Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott Mahlke, and David August. 2011. Bundled execution of recurring traces
for energy-e�cient general purpose processing. In Proceedings of the 44th Annual IEEE/ACM International Symposium on

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

An Integrated Vector-Scalar Design on an In-order ARM Core 0:25

Microarchitecture (MICRO). 12–23.
Timothy Hayes, Oscar Palomar, Osman Unsal, Adrian Cristal, and Mateo Valero. 2012. Vector Extensions for Decision

Support DBMS Acceleration. In Proceedings of the 45th Annual ACM/IEEE International Symposium on Microarchitecture
(MICRO). 166–176.

John L. Hennessy and David A Patterson. 2011. Computer architecture: a quantitative approach (5th ed.). Elsevier.
Zhigang Hu and Margaret Martonosi. 2000. Reducing register �le power consumption by exploiting value lifetime. In

Proceedings of WCED in conjunction with ISCA, Vol. 27.
Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Mattson, Jinyung Namkoong, John D. Owens, Brian Towles, Andrew

Chang, and Scott Rixner. 2001. Imagine: Media Processing with Streams. IEEE Micro 21, 2 (2001), 35–46.
Christos Kozyrakis and David Patterson. 2003. Overcoming the limitations of conventional vector processors. In Proceedings

of the 30th Annual International Symposium on Computer Architecture (ISCA). 399–409.
Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian Pharris, Jared Casper, and Krste Asanovic. 2004.

The Vector-Thread Architecture. In Proceedings of the 31st Annual International Symposium on Computer Architecture
(ISCA). 52–64.

Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart, Christopher Batten, and Krste Asanović. 2011.
Exploring the tradeo�s between programmability and e�ciency in data-parallel accelerators. In Proceedings of the 38th
Annual International Symposium on Computer Architecture (ISCA). 129–140.

Christophe Lemuet, Jack Sampson, Jean-Francois Collard, and Norm Jouppi. 2006. The potential energy e�ciency of vector
acceleration. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing (SC). Article 77.

Sheng Li, Jung Ho Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P. Jouppi. 2009. McPAT: An integrated power, area,
and timing modeling framework for multicore and manycore architectures. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 469–480.

Shintaro Momose, Takashi Hagiwara, Yoko Isobe, and Hiroshi Takahara. 2014. The brand-new vector supercomputer,
SX-ACE. In Proceedings of the 2014 International Supercomputing Conference (ISC). Springer, 199–214.

Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010. Introducing the graph 500. Cray UserâĂŹs
Group (CUG) (2010).

Dmitry Ponomarev, Gurhan Kucuk, Oguz Ergin, and Kanad Ghose. 2003. Reducing datapath energy through the isolation
of short-lived operands. In Proceedings of the 12th International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 258–268.

Francisca Quintana, Jesus Corbal, Roger Espasa, and Mateo Valero. 1999. Adding a vector unit to a superscalar processor. In
Proceedings of the 13th international conference on Supercomputing (ICS). 1–10.

Richard M. Russell. 1978. The CRAY-1 computer system. Commun. ACM 21 (Jan. 1978), 63–72.
Willi Schönauer. 1987. Scienti�c computing on vector computers. Elsevier Science Inc.
David Seal. 2000. ARM Architecture Reference Manual (2nd ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA.
Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Pradeep Dubey, Stephen Junkins, Adam Lake, Robert Cavin, Roger

Espasa, Ed Grochowski, Toni Juan, Michael Abrash, Jeremy Sugerman, and Pat Hanrahan. 2009. Larrabee: A Many-Core
x86 Architecture for Visual Computing. IEEE Micro 29, 1 (2009), 10–21.

Avinash Sodani. 2015. Knights landing: 2nd generation intel "xeon phi" processor. In Proceedings of Hot Chips: A Symposium
on High Performance Chips.

Mostafa I. Soliman. 2011. LcVc: Low-complexity vector-core for executing scalar/vector instructions. In Computer Engineering
Conference (ICENCO), 2011 Seventh International. 19–24.

Shreesha Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu, Zhiru Zhang, and Christopher Batten. 2014. Architectural specializa-
tion for inter-iteration loop dependence patterns. In Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 583–595.

Milan Stanic, Oscar Palomar, Ivan Ratkovic, Milovan Duric, Ozan Unsal, Adrian Cristal, and MR Valero. 2014. Evaluation
of vectorization potential of Graph500 on Intel’s Xeon Phi. In High Performance Computing & Simulation (HPCS), 2014
International Conference on. IEEE, 47–54.

Shreekant Thakkar and Tom Hu�. 1999. Internet Streaming SIMD Extensions. Computer 32 (December 1999), 26–34. Issue
12.

Alan R. Weiss. 1999. Benchmarking, Selection and Debugging of Microcontrollers. In Proceedings of the 1999 IEEE International
Conference on Computer Design (ICCD ’99).

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0. Publication date: 0.

	Abstract
	1 Introduction
	2 Integrated Design
	2.1 Execution of Vector Computational Instructions
	2.2 Vector Memory Unit
	2.3 Implementation

	3 Integrated Design Evaluation
	3.1 Performance Evaluation
	3.2 Area, Power and Energy

	4 Enhancement of Integrated Design
	4.1 Chaining from the Memory Hierarchy
	4.2 Direct Forwarding
	4.3 Vector Memory Shape Instruction
	4.4 Unified Indexed Vector Load

	5 Evaluation of Enhanced Integrated Design
	5.1 Chaining from the Memory Hierarchy
	5.2 Direct Forwarding
	5.3 vmshape Instruction
	5.4 Unified Indexed Vector Load

	6 Related Work
	7 Conclusion
	References

