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Abstract

This master’s thesis is about the use of machine learning techniques in the field of nano-
electronic circuit design. It has been developed in collaboration with eSilicon Corporation,
which is a company specialized in designing and producing Application-specific integrated
circuit (ASIC).

While specific integrated circuits require several resources to be designed. Most of them
can be classified as expenses from non-recurring engineering. This includes all costs used
only once related to the final product. For example, in our project, they mean computational
resources, such as CPU usage and memory utilization, but also hours worked by specialized
designers. All of them have tremendous costs, which can not be reused for future designs.

The study done in this thesis inverts the current situation, gathering data from the design
process to produce valuable information for upcoming designs. This information is related
to time, memory and specific attributes of the design.

In order to achieve this goal, some of the most successful and helpful machine learning
algorithms are used. Their purpose is to predict key aspects of the design and its computa-
tion before any execution is done. For example, if a designer is aware of that the result of
an execution in terms of leakage or area utilization, will not satisfy their expectations, then
he would be able to decide whether it is worth or not the execution. This implies saving
time and computational resources.

These machine learning techniques are fed with data obtained from designs. This data,
though, may present us certain drawbacks like missing values, unreliable data due to bugs,
errors during the execution and a long list of possible sources of noise and incorrect data.
Thus, it is important to preprocess all that information to obtain a trustworthy and stable
source of data.

The final outcome of this project can be seen as the combination of data preprocess
and machine learning use. This applied to the field of nanoelectronic circuit design, to get
predictions of: runtime, CPU time, RAM memory, leakage and area utilization. This can
lead to an improvement in productivity by reducing the total cost of computational resources
and time spend on them by designers.
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Chapter 1

Introduction

This project is the combination of two complex domains of knowledge, which should be
clearly distinguished:

• Application-specific integrated circuit (ASIC) design is the process of designing an
integrated circuit for a specific aim. The initial ASICs appear in the eighties in the
form of gate arrays (also known as uncommitted logic arrays), which is a logic chip
without any specific function but containing logical gates placed at regular positions
and a layer that allowed to join the elements as desired. In this kind of technology
the customization is done by changing during production the mask of the connection
layer. The amount of gates involved increased from a few thousands to hundreds of
millions in the modern designs, causing its production and especially its design to be
very challenging. Section 1.1 describes the most important steps that are followed to
produce ASICs today.

• Machine Learning has been applied in a wide scope of disciplines since its beginning
in the fifties, from class classification to image recognition in medical environments.
The early years of the discipline were prolific and most of the ideas and concepts
that were proposed set the basis of what has became one of the most popular areas
of computation. From that point on time the history of machine learning could be
summarized as a continuous rise and fall in the interest and impact that it has on
the society. In the recent years thanks to the achievements made by the improve in
the initialization of methods of deep learning plus the increase of the computational
power and the availability of new data, the whole discipline has came back, not only
neuronal networks but also a great variety of methods such as support vector machines
or ensemble methods. The methods used in this project are described in more detail
in Section 2 of this document.

1.1 ASIC design
In this section the key concepts related to ASIC design that are needed to understand the
document and the work done during the process are explained. It is also important to
highlight that it does not exist the perfect logic component in the sense that depending on
the situation a gate or a memory could be good while in another place it could be a bad
decision to use it. Thus, the whole process is a trade-off between desirable properties that
can not coexist all together at the same time. So while the design has to achieve its logic
purpose, the designer has to take care of the following variables:

• Power consumption

• Area

• Performance

8



CHAPTER 1. INTRODUCTION 9

This trade-off means that at most two variables can be optimized for a certain task, so if it
is needed a smaller area and low power consumption the resulting speed of the component
is going to be lower. This starts to give a sense of the hidden difficulty that is behind the
design of this kind of circuits.

Another aspect that is needed to be understood is the steps that have to be solved to
design an ASIC. As it can be intuitively guessed the whole design can not be done in just one
phase. To give an idea of the dimension of what is implied there are millions of components
that have to be placed and connected (to power, to each other and to the clock) having
constraints on timing, area and power consumption. This is absolutely unfeasible if treated
as a unique problem and it is also the reason because the whole ASIC is divided into blocks
and steps. All these blocks will have to get through the same steps which are explained
below.

Apart from that, even though the blocks are smaller than having the ASIC as a whole the
automation of most part of the work is needed. There are a enormous number of components
in each block, which implies millions of possibilities to complete a block. Sometimes there
are unfeasible constraints, which could add extra difficulty to the whole problem. Even with
the amount of components the design is not fully automated and it is still the designer the
one that has to change manually some parts when EDA (electronic design automation) tool
is not able to find a good solution.

In order to give a general idea of which are the steps that are involved in the design, below
a list of the most important stages that are computed along the process is provided. This is
not intended to be exhaustive; its intention is to give context to the project and an overview
of the difficulty that concerns the design.

• Import is the first step, here the net list and the constraints of the block are loaded
into the EDA tool and the timing modes are defined.

• Floorplaning is the step where the shape of the block is decided. Also meaningful
components such as pins and macros are placed, finally the starting/ending cells for
the columns and rows are determined.

• Power grid is when the power grid is specified, this implies having a high metal layer
defined and then some wires that goes through the different metal layers until they
reach the components.

• Placement takes care of placing all the standard cells and also optimizes the timing
constraints.

• Clock tree building is the step where all flip-flops are connected to the clock, it has
to take into consideration that sometimes can coexist more than one clock in the same
block.

• Routing up to this moment most of the connections were estimated. At this point
the actual local routing is done.

• Time closure is the final step, where all constrains related to timing and signal
propagation have to be satisfied.

As it can be seen from their description, each of the steps deals with certain problem of
the circuit design. This implies that only after the execution of some of them the system
has data about some features that before were unknown. For example it is obvious that the
system can not have information about the wire length before any connection is done.
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Another basic concept is run; a run is a set of steps that are executed one after another.
For example a designer could be interested in doing only up to the power grid step, so it
would only launch a job to the system with the firsts steps (import,floorplaning and power
grid), then all the computation would belong to a run. It is also need to take into account
that a run does not need to start from an import, it can also start from an step done in
another run.

1.2 Goals and motivations
The main goal of this project consists in creating a system capable of predicting metrics
before the execution of a task during the design is executed. The metrics that are predicted
in this project are explained in the following list:

• IT metrics

– Runtime is the amount of real time that an execution takes from its beginning
to its end.

– Memory is the maximum amount of memory that is used to execute a task.

– CPU time is the sum of total CPU usage that has been used, this takes into
account the possibility of parallelism.

• Design metrics

– The leakage is the power consumption even when a block is not being used.

– Area utilization is the percentage of the area occupied by components.

All these metrics have a wide range of possible values and they change from one step to
another. For example, runtime and CPU time can last from a couple of hours to a couple
of weeks. The same is applied to memory, leakage and area utilization, thus the possible
outcome is uncertain before the execution is done.

There are different reasons to predict these concrete variables:

• Reduce the cost of designing:

– Detect some anomalies during the execution. For example, if a designer launches
a run, that its prediction estimates that should take 4 hours of computation and
it has been running for more than one day. Then, it can be convenient to warn
the designer that probably something is wrong with that execution. This can save
time of the designer that is waiting for a result and also it can save computational
resources.

– An accurate prediction of the amount of memory that a certain task needs, will
allow an efficient allocation of memory. As a consequence, the system will be
able to allocate a much more precise amount of memory for every task. Memory
has a huge impact on the overall cost of the design. In fact, the total cost of the
machines has an order of magnitude of millions of Euros per year, based on prices
from different cloud computation providers.

– The design metrics predicted can be useful to decide whether an execution is
worth being launched or not. For example, let’s suppose that a designer wants
to launch a task to reduce the leakage, if there is an estimation of the expected
leakage that a circuit will have before it is really computed, then it can be decided
whether that execution is worth being done. As a consequence a lot of time and
resources can be saved.
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• Provide valuable information to the designer:

– Help organizing the work of a designer: Most of the times a designer has a few
blocks to implement, but once a process is launched he does not have any accurate
value (apart from his intuition) of the amount of time required. So having these
predictions would have a good impact on the capacity of the designers to organize
their time.

Each of the steps described in Section 1.1 are executed one after another. After the
execution of each step, the report is generated. Then, using that information in combination
with machine learning algorithms, it is possible to predict the previous described metrics
before the execution is done.

To sum up the final aim that is intended in this project is to predict runtime, CPU time,
memory, leakage and area utilization to improve the use of the resources during ASICs
design and to detect anomalies to warn designers. This is done using machine learning
algorithms fed with data from past executions. The predictions obtained are provided
between executions of different steps.

1.3 Document structure
The rest of this document is structured as follows. The first section presents the state of
the art of the machine learning techniques that have been involved in the project. Then
the data available to feed the different procedures is explained, including the preprocess
that is applied to it. After having the procedure described, the results are exposed with an
interpretation of the meaning. Finally the conclusions are explained, which will be a wrap
up of the whole project.



Chapter 2

State of the art

This chapter contains a brief introduction to some problems that are being addressed using
machine learning techniques, then a review of the machine learning methods that have been
used during the project is also presented.

Machine learning is used to handle a huge variety of problems, such as natural language
processing, financial market analysis, medical analysis, image recognition and the list can
continue while growing every day. This tells a lot in favour of the adaptability of different
algorithms, whose main idea is to find generalized properties of a data set. Then, cre-
ate a model able to predict some future behaviours based on previous examples (the data
available).

There are many different ways to classify methods that are involved in this wide field, the
simplest way is to characterize each model by the expected output that is desired, which
leaves us with the following list.

Clustering
Clustering algorithms are used when it is wished to group similar data together, while
keeping different data in different groups. One example could be a system that assigns
tasks to workers based on their skills and the difficulty of the task. This can be done
grouping designers by its capacity, so workers with similar skills are gathered inside the
same set. Then, tasks can easily be distributed to people depending on their ability
to perform a given job.

Regression
A brief definition for regression techniques could be all problems that have a real
number as a result. This is very interesting for many applications and together with
classification methods are the ones that cover a vaster space. In the case that someone
wants to predict some numerical value, such as score, price, weight and many others,
then a variety of regressors can be used.

Classification
There are classification techniques, that are in charge of categorizing an input to one
class. It can be the case where the output is not just providing one concrete class
but many instead, or maybe it gives a probability of membership to all of them. A
classical example would be an image recognizer, which distinguishes images based on
the appearance of dogs, cats or elephants

12
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Density estimation
Density estimation is a specific problem which instead of providing a category or a
number, what is desired is the underlying distribution function that is followed by the
data. In this kind of methods the data is thought to be a random sample belonging
to a much bigger population which follows the wished distribution that has to be
estimated.

Dimensionality reduction
Dimensionality reduction is the set of algorithms that tries to find a lower dimensional
data representation or a smaller number of inputs. Often these techniques are divided
into feature extraction and feature selection. The first one is in charge of transforming
data from high dimensional space to a lower dimension space; the most well known
technique is the linear principal component analysis (PCA). While feature selection is
in charge of reducing the number of variables used in the model.

Novelty detection
Novelty detection is the name given to all methods that deal with the detection of some
particular data. Particular data means outliers, novel data or anomalous. For example
these techniques can be very useful in systems where it is important to keep track of
processes and it is desired that no process consumes a huge amount of resources from
the system.

As it can be derived from the previous overview of problems that can be solved using
machine learning, the main goal of this project fits perfectly in the regression category.
Let’s remember that as it is explained in Section 1.2 our main aim is to predict the value of
some design metrics, in other words the expected value of the output is a real positive value.
Therefore the machine learning algorithms that are needed in this project are regressors.

It is necessary to point out that most concepts from machine learning algorithms can be
equally used to solve more than one problem. For example depending on the implementation
chosen the same concept can be used to classify or regression. For instance, decision trees
are used for both purposes. Due the nature of our problem, in this document and also in the
project itself, any reference to a machine learning technique usually refers to the regression
one.

Once the main ideas of machine learning purpose have been explained, it is important to
think about the reasons behind its use. Probably it is clear that our goal fits perfectly as it is
a very well known application, which is the prediction of real values. Another reason is that
the data available, which is explained in Section 3.1.2, includes several different experiments
(of the order of tenth thousands) and a large number of features. The use of any other
technique would make unfeasible to manage the huge amount of data that is present in this
project. Instead, in machine learning having a large volume of data is a good starting point
that helps the models to generalize better. To sum up, the whole project: data and purpose,
completely fits to be a machine learning application.

In the following sections, the different machine learning algorithms used to predict CPU
time, area utilization, runtime, leakage and memory are presented.

2.1 Linear regression
This technique belongs to a larger family of methods called Generalized Linear Models,
which expects the output to be a linear combination of the input variables. Let’s say that
y is the variable to be estimated, it can be seen as:

y = w0 + w1 ∗ x1 · · ·+ wn ∗ xn
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Where,

n is the number of input variables available

xi is the ith input

wi is the coefficient of the ith input

w0 is often called interception and adds an extra degree of freedom to the linear
expression

In this case, the method used is also known as Ordinary Least Squares, which is the simplest
one because it basically minimize the difference between the real value and the predicted
by changing the values of the coefficients. It can also be seen as fitting a linear model that
minimizes the residual sum of squares error. In a more formal way:

min||Xw − y||22

The main idea and use of this model can be easily seen in Figure 2.1. Dots represent data
points in some dimensional space, the aim of the model is to reduce the total residual square
error changing the value of w. As a result and representation of the method there is the
straight line which is the linear approximation that fits better our data.

0.05 0.00 0.05 0.10
Measured

50

100

150

200

250

300

Pr
ed

ict
ed

Linear regression
data

Figure 2.1: Linear regression example with synthetic data.

The main advantages in using this technique are the simplicity to interpret the results and
the model itself, because each coefficient has a clear relation of the impact of each variable
in the final output. Another excellent point is the lack of parameters to be tuned, the model
is based only in changing the w to obtain a result.
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This model relies on the independence of the terms. When there is a linear dependence
between inputs this model can misbehave. Another drawback is the fact that it can only
deal with linear data, so in the case that the sample data is not linear, the model can not
do much to predict it.

2.2 Multivariate Adaptive Regression Splines
Multivariate Adaptive Regression Splines is a machine learning method commonly known
as MARS. It was first described by Jerome H. Friedman [7] and it is an evolution in the use
of linear methods. The main idea is to use linear approximations to describe the data even
in cases where data does not follow a linear distribution.

In order to do so, it is needed to have more than one linear model and use each of them
to describe only a segment of the whole data set. Another way to see this method is as a
set of simple linear models that combined look like a single function. The key concept of
this method is the use of hinge functions, which have the form of

max(0, x− c)

Where c is some constant value and x is some input variable. The form max(0, c−x) is also
valid. The final form of these models is the sum of combination of constants, hinge functions
and combinations of hinge functions. Here an example of a model is given, y represents the
final output:

y =


2.5

+2 ∗max(0, x1 − 8.95)

+9.2 ∗max(0, 5.45− x2)
−4 ∗max(0, x3 − 7.67) ∗max(0, x1 − 0.61)

In this example, there are only three input variables x1, x2, x3. As it can be seen it is possible
to combine different functions, use one variable more than once and give weights to each
function. This gives a very flexible model that is able to predict non linear models, which
represents an improvement of the linear methods. This flexibility usually means a better
fit of the model, as it can be seen in the comparison of Figure 2.2 where both models are
represented with a discontinuous line. There the MARS model, on the right, is able to fit
much better the data than the linear model on the left.

Figure 2.2: Comparison between MARS regression and linear regression with synthetic
data, the left plot is for the linear one while the right plot corresponds to MARS algorithm.
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Apart from the adaptability of the model, which gives the model the chance of fitting non
linear data, another advantage of this model is its interpretation in comparison with other
more complex models. The model still gives an understandable intuition of the interaction
between variables and the importance they have.

It has some drawbacks, the most important one would be that it is still not as powerful
as other methods. Its predictions are usually not as good as the ones obtained with more
complex models.

2.3 Classification And Regression Trees
Classification And Regression Trees (CART) is a method introduced in 1984 by Leo Breiman
et al.[5] that belongs to the family of decision trees. Decision trees create a set of rules that
split data according to one variable in each partition, the rules are applied one after another
following a binary tree schema. This means that each node has a rule that divides the
sample, while the information about the prediction is provided in the leaf nodes, where the
value is given.

The easiest way to understand CART models is to see one of them as the one in Figure 2.3.
It is the three first levels of a real CART model for our project, there it can be seen how
depending on the rule on the top, it is decided one path or another for a given example. It
is possible to see how a variable can be used more than once, log memory is used twice; one
for the first split and then for the third one is also used for some branches.

It could be a problem for visualization when there is a big tree with a big depth, where
the path from the root to the leaves is long. For example, the whole tree shown in Figure 2.3
has a maximum depth of 20, which means a huge number of leaves, even after pruning them.
But in general a big advantage offered by CART (and decision trees) is that the models are
very understandable and easy to interpret.

log_memory ≤ 10.5324
mse = 657553704.584

samples = 16569
value = 30813.7879

log_memory ≤ 9.7598
mse = 214146177.894

samples = 13257
value = 21675.5418

True

log_memory ≤ 11.1524
mse = 760194964.823

samples = 3312
value = 67391.6045

False

log_memory ≤ 9.307
mse = 89888998.1784

samples = 7966
value = 14977.3255

area_utilization ≤ 22.445
mse = 231974866.416

samples = 5291
value = 31760.2121

(...) (...) (...) (...)

log_memory ≤ 10.8609
mse = 408873396.754

samples = 2411
value = 57012.652

log_memory ≤ 11.3366
mse = 640694400.245

samples = 901
value = 95164.8058

(...) (...) (...) (...)

Figure 2.3: Example of the first three levels of a CART tree corresponding to memory.
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Another advantage of this technique is that it can handle numerical and categorical data at
the same time, because the rules that are applied in each node of the tree are independent
from one to another, allowing them to split the branches using whatever variable.

They also have some disadvantages, such as being an unstable estimator. This basically
mean that small changes in the data used to create the model may result in very different
trees. This disadvantage can be taken as a good opportunity for other methods that are
more complex and rely on unstable methods to perform as it will be described in Section 2.6.

The other important drawback of this technique is the overfitting of the data. If there are
too many partitions the granularity of the model is very small so any point in the training set
is potentially a leaf, which would not characterize the general behaviour of the model. This
problem appears in Figure 2.4, which is the same data of the model shown in Figure 2.3
and with another model plotted, which is a CART with a maximum depth of five. The
discontinuous line represents the simplest model with depth two, which is the reason why
there are only four given values for the whole data set. While the bold one corresponds to
a more complex tree with five different levels, as it can be seen this produces a big overfit
with values that clearly are noise, which should receive the attention from the model.
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max_depth=2
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Figure 2.4: CART regression with predicted data from the same example as Figure 2.3.

2.4 Support Vector Regression
Support vector regression (SVR) is a support vector machines (SVM) for regression, instead
of classification. SVM was introduced in the sixties but was the contribution of the kernel
trick in 1992 [2] that had a great impact of SVM. After just five years in 1997 [6] this
technique was adapted also to the regression problem.

The main idea behind this method is to transform data into a high dimension space, where
the regression or the classification is much clearer to be done, because a hyper plane can
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be fitted and the classes are very distant between them. In the classification case is usually
clearer to understand this transformation than in the regression problem. In Figure 2.5 the
kernel transformation from one dimension to a higher one can be seen. The hyper plane is
the red line while the discontinuous lines are called the margins. The kernel function was
good chosen because the two classes are better defined in the high dimensional space than
in the feature space.

Figure 2.5: SVM kernel transformation example in a two class classification, where the
left side represents the data in the feature space while the right side is the representation

in a higher dimensional space.

This mapping from low to high dimensions would be very expensive to be computed and
it is the reason of using the kernel trick. The trick is essentially computing the inner product
of all pair of data in the feature space, instead of computing the coordinates of the data in
the high dimension.

Therefore the selection of the kernel function has to be made carefully and it is key in the
final outcome of the model. Usually the kernel function is not defined by the user, it is only
selected from a set of well known functions, the most used are:

• Polynomial kernels

• Gaussian RBF kernels

• Laplacian RBF kernels

• Sigmoidal kernels

This technique has some parameters that have to be selected, the most obvious one is the
kernel function and its parameters. For example to use the polynomial kernel that has the
form,

k(u, v) = (〈u, v〉+ 1)d

the parameter d, which is the degree of the polynomial, has to be selected. There are still
two other important parameters to be chosen the C and the ε. C is the parameter that
penalizes the error term of the slack variables. In Figure 2.6 there are two classes, which are
stars and circles and the goal is to classify them using an SVM. Then C would multiply the
sum of c1 . . . c4, because these points are not well classified and ci represents how much cost
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would be needed to get that point to the right position in partition of the space. Obviously
this cost is desired to be the minimum. Finally the last parameter of the SVR is the ε, which
defines a no penalty range with predicts points within a distance ε from the real value.

c1

c2

c3

c4

Figure 2.6: SVM error example with four bad classified points

2.5 Artificial Neuronal Network
This technique was one of the first to be developed and the "perceptron" algorithm, which
is a name that is usually associated to it, was first introduced in 1958 [11]. But it was
not until the introduction of the backpropagation algorithm in the seventies that made the
computation efficient enough to be used.

Before explaining the main idea, it is important to define what an artificial neural net-
work (ANN) is. An ANN is a directed graph, composed by nodes and edges that connect
them, they are called neurons and connections respectively. A neuron can be seen just as a
computational node where a vector of inputs x1 . . . xi is combined with a vector of weights
w1 . . . wi and provides a value as a result. This neurons are grouped forming layers, a layer
of neurons share the vector of inputs (note, the weights for each input depends on each
neuron it is not shared) and can not be connected with one another. There are two special
layers, the initial one, which is also known as the input layer and the final one, which is the
output layer, any other layer in between these two is called hidden.

Figure 2.7 represents an ANN with one hidden layer, there the neurons are represented
with circles and connection with arrows, each arrow has its own weight in the neuron that
is connected. The red neurons represent the input layer with n different features and the
output layer represents the result of the regression after all the computation is done.
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Input 

Hidden Layer

Output
x1

xn

x2 f(x)

h1

h2

h3

h4

hm

Figure 2.7: Basic structure of an ANN with one hidden layer and n input features

The simplest function to compute the output of a neuron is:

y(x) = g(

n∑
i=1

wixi)

Where,

n is the number of inputs

wi is the weight of the neuron to the i-th input

xi is the i-th input of the neuron

g is the activation function, it is the one in charge of providing non linearity to the
output, often a logistic function or a tanh function are used

Once these concepts are explained, it is much easier to formulate the main idea of the
ANN model. The idea is to modify the weights in such a way that the error in the output
is minimized. This is an iterative problem where two algorithms are combined, the first
one is in charge of computing the responsibility of each neuron to the final error, while the
other is in charge of updating the value of the weights. The first one is the well known
backpropagation algorithm, that takes an advantage of the very well known chain rule of
the derivatives. The other important algorithm is a minimization one that updates the
weights in a clever way using a variant of a quasi-Newton method which is called L-BFGS
(Limited-Broyden–Fletcher–Goldfarb–Shanno)[10].

The method has one clear advantage which is that usually the models that are fitted using
ANN perform very good in reality. It is able to perform well even in non linear environments.
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This good performance comes with a cost, which is an important number of variables to be
tuned and a considerable amount of computation. The list of the most critical parameters
is the following one:

• Shape of the hidden layers, this means the amount of neurons to use and how many
layers are desired.

• The activation function for the neurons

• α is a parameter that penalizes complex methods. It is also known as regularization
term.

• The learning rate, which controls how quickly the update of weights is done.

Another important drawback of this method is its understandability, which is very poor.
Just by looking at the weights of an ANN it is extremely hard to conclude anything if
possible at all. This is also translated to the parameter selection where it is very difficult to
say intuitively which should be the values for the parameters.

2.6 Random forest
Random forest is a technique that, as usual, belongs to a larger family of algorithms which
is ensemble methods. The first intuition of the method came with a proposal from Tin Kam
Ho in 1995 [8]. But it was in 2001 when Leo Breiman [4] developed the actual technique
combining the out-of-bag error with measuring variable importance and bagging (introduced
by the same author in 1996 [3]).

Random forest is an averaging method in contrast with the boosting methods, this basi-
cally means that the idea behind the algorithm is to generate independent estimators and
average their results (for the case of regression, while to classify it would be voting). This
can be done because the combination of estimators is usually better than the performance
of any individual one by itself. The main reason for this to happen is that the variance of
the result is reduced due the use of multiple estimators.

In order to understand how this method internally works, it is important to understand
what is bootstrap resampling. It is a technique that consists in sampling N values with
replacement for Z∗1 . . . Z∗B , so B potentially different samples are created. Each of the Z∗b is
then used to train a predictor, keep in mind that each predictor have a different set of data.
Now let’s remember that in Section 2.3, it is explained that CART is an unstable method
(small changes in the data set lead to big changes in the model).

Let’s try to add all the concepts that can look unrelated at first sight:

• Bootstrap resampling allows having different chunks of the same data

• CART models have a high variation if the data set they use as train change

• Having several independent estimators of the same type, leads to improvement in the
prediction.

The result of combining these features is almost a random forest; the only property that is
left is the out-of-bag error (OOB). OOB consists in using the not in bootstrap selected data
as predictive data, which speeds up the whole computation. The computation of the OOB
is defined as:

Err(0.632) = 0.368e−∗ + 0.632Err∗
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Where,

Err∗ =
1

N

N∑
n=1

1

|Z−n|
∑

b∈Z−n

I[tn 6= f∗b (xn)]

Having,

I(x) is 1 if x is true, 0 otherwise

Z−n is the set of resamples that do not contain observation xn

f∗b is the model fitted to Z∗b

e−∗ =
1

N

N∑
n=1

1

|Zn|
∑
b∈Zn

I[tn 6= f∗b (xn)]

where Zn = 1, . . . , B\Z−n

The previous concepts plus this definition of the OOB is what is integrated in a random
forest model. In addition, the model is improved by giving more randomness to estimators,
this is called decorrelating trees. It consists in randomly picking a subset of features to be
selected during the creation of the CARTs. This means that at random the CART algorithm
will be able to select from only a few of the total features to be built. Naturally this decreases
the performance of the individual trees, but it increases the overall performance of the forest,
due to have a more variance in the independent estimators.

The main advantages of random forest:

• Good performance in the predictions, due the chance of predicting non linear data

• Use of OOB to speed up performance and variable selection

• It is easy to extract the feature importance for the overall forest.

The most remarkable disadvantage is that despite the use of CART models, it is impossible
to plot any clear information about the forest. So it is hard to understand why a value is
predicted or classified.



Chapter 3

Building Models

The different procedures involved in the project are detailed in this chapter. This includes
sections for data, data preprocess and machine learning methodology. The first one explains
singularities of the data that has been used, its extraction and its meaning. The second is
about transformations that are applied to inputs before an execution of the machine learning
method occurs. Finally the methodology section is about the technology used to develop
the solution, which machine learning schema has been followed and decisions that have been
taken regarding to it.

3.1 Data
One of the main issues when dealing with machine learning is obtaining accurate and reliable
data, keeping in mind that it is also important the number of experiments, usually the
more available the better it is. In this simple sentence, there are hidden several important
problems: obtaining data, accuracy of the data, bad measures or misbehaviours of the
algorithm that gathers data. Having a big amount of data of the process is fundamental
because it gives the opportunity to methods to capture the general behaviour and not getting
focused into concrete examples.

These obstacles have to be overtaken or minimized in order to have a chance to obtain
a robust and trustworthy model. The following subsections are devoted to explain the
decisions that have been taken to reduce the impact of these problems.

3.1.1 Data extraction
The first step related to data is the preparation of procedures to extract it. In our concrete
case, the nature of EDA tools is a clear advantage because they are executed inside a virtual
environment, allowing us to capture most of the events and progress done by them.

The main idea of how this is done is having a number of variables computed straight from
the design itself, while others are obtained from the report/log generated automatically by
the EDA tool after the execution of an step. After all metrics are computed, they are stored
in a server. As usual this concept is not as easy as it looks like and there are some problems.

The initial one is that there are different tools used and each of them has its own way of
generating the log with its own units, so one tool can provide the runtime in milliseconds
but another is using seconds. There is also a problem of names, each provider has its own
vocabulary to express the same concept and it can be worse if there is one tool that gives
information about some specific concept but the others do not. To solve this issue it is
needed an abstract layer that homogenizes all sources of information into one standard.

23
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Another problem appears when a new metric that was not being computed is wanted to
be added to the server. Then apart from changing the abstract layer, it is needed that new
data starts getting uploaded. This is a process that requires time, because historical samples
can not have any information about it, so it is a matter of waiting the creation of new data
to slowly fill the metric.

Finally, there are some metrics that can be manually modified by a designer, if a test of
some execution is desired. For example the name of the step that has been executed can
be sometimes found to have some prefix or suffix added outside the normal procedure. The
point here is that it is easy that some names change. This should not be a problem as long
as a good standard to describe names is used.

3.1.2 Metrics information
This section is thought to be a guide where all metrics available are explained. This is
useful to give an idea of which measures appear during the design and according to this,
how accurate the reality is captured. There is a total amount of 52 variables and in order to
give a clear idea of them, they are grouped in different clusters depending of their meaning.
It can be helpful to understand each described metrics as a column of a matrix, where rows
are the different examples or samples.

The number of samples is important in a machine learning project because, usually, a big
number of examples allow a better generalization, preventing methods to get stuck with small
details. In our case, there are over 55.000 samples of raw data in total, this includes several
projects from the last couple of years, which has some drawbacks explained in Section 3.2.

Let’s remember that in this project: the runtime, CPU time, memory, leakage and area
utilization are the predicted metrics using machine learning algorithms. Thus, the rest of
described metrics here are the ones used to create the different machine learning models.

• Predicted metrics

This group is a special set of variables, which are the ones that are predicted using
machine learning algorithms. Thus, the rest of groups describe metrics used to create
the different models. In other words, this group is the expected output of the models,
while the others are their inputs.

– Runtime is the number of seconds from the beginning of the execution until the
end of it. In contrast with the CPU time this includes time spend in the scheduler
queue or time doing I/O.

– The CPU time is the sum of all seconds that the process has needed all CPUs.
So if a run was computed in parallel using 4 CPUs, the final result is the sum
of all the time while this CPUs were computing. This is the reason behind that
sometimes CPU time is larger than runtime.

– Memory is the peak of memory in mega bytes used during one computation. So
it is the real amount of memory used for an execution.

– Area utilization is a ratio between the occupied space inside a block and the
empty space still available.

– Leakage is the power consumption in milliwatts even when a block is not being
actively used.
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• General information

This group contains information about the job that is executed, it follows a hierar-
chical schema 1 to n where the project level is the root until the most defined level
which is the step. So, a step is contained inside only one run, which can have several
steps, at the same time a run is done for one particular block, which can have different
runs and so on until the project layer. All the variables described in this section are
string, with the exception of the time stamp which is an integer value.

– Project represents the name of a project. Each of them can have many different
phases.

– Phase is the second layer of the hierarchy, phases belong to one and only one
project and can have many blocks.

– The Block metric is the name for a given block, which is a logical unit that has a
function inside the overall ASIC. They are developed under one phase only and
have at least one run.

– A Run is an arbitrary name given by a designer to identify a run, it usually
contains many steps and is always attached to one block.

– Step is a name that describe the work done by the EDA tool, most of the times
is one of the names described in Section 1.1.

– The Technology variable describes the technology that is used in that project,
technology does not change inside a project.

– Tool is the result of concatenating the EDA tool used to execute an step itself
with the version used

– Time stamp is an integer number that tells the number of seconds since the UNIX
epoch at submission execution moment.

– Previous step is the name of the previous step with combination of previous run,
it is possible to get the predecessor step that generated the actual one.

– The Previous run is the name of the previous run with combination of Previous
step, it is possible to get the predecessor run that generated the actual one. Notice
that the previous of project, phase and block are not needed because they are
always the same for a run and a step.

• Area

The area set of variables contains all metrics related to the area of a block, which
are real values except the ones with the count word which are integer numbers.

– Total area is the silicon area in square millimetres occupied by a given block.

– The wire length is the sum of all the wire inside a block in meters.

– Combinatorial is the amount in square millimetres of space occupied with com-
binatorial standard cells.

– The combinatorial count is the total number of combinatorial standard cells used
inside a given block.

– Sequential is the amount in square millimetres of space occupied with flip flops.

– Sequential count is the real number of sequential standard cells in a block

– Thememory area are the square millimetres inside the block devoted to memories.

– Memory count is the number of memories used in a block
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• Timing

The timing group has several metrics, but they are grouped depending on two prob-
lems, that they are representing. There is setup and hold, the first one is a problem
generated when a path is too slow and the cycle gets propagated after the next cycle
has started. The hold problem is the opposite of the setup, so a path has its signal
propagated before it should, causing problems because it is too quickly. Inside each
of these two problems there is also another classification depending on whether the
signal described is internal or external. Internal means that the affected path is in-
side the block and it has no interaction with other blocks, and external means that
the problem is referred to paths which have interaction with other blocks. So, in
total there are two variables with all four combinations resulting in having prefixes:
holdint,holdext,setupint and setupext. For each of them the following information is
provided:

– Total FEP is the actual number of failing end points that do not satisfy the
constraint that are describing.

– TNS is the total negative slack in nanoseconds, which means how much slack
exist inside a block, so it is the addition of all the negative paths.

– The WNS is the worst negative slack, so it is a real negative number that repre-
sents the path with more nanoseconds of slack.

• Congestion

The congestion set has five variables, which are computed after dividing the block
into segments and then it is computed the amount of chunks with problems. Conges-
tion problems happen when there are too many paths trying to go through the same
tracks.

– Horizontal congestion is the absolute value of horizontal problematic segments in
a block.

– The congestion horizontal ratio is the ratio between the absolute value and the
total number of horizontal chunks.

– The variable vertical congestion represents the absolute value of vertical segments
with problems.

– Vertical congestion ratio is the ratio between the absolute value and the total
number of vertical chunks.

3.2 Preprocess data
In this section the preprocess applied to the data is detailed, it is a key aspect in any project,
where machine learning techniques are used. In our case is the part, where all the knowledge
about the process of ASIC design is translated to data. This includes the treatment done
to outliers, missing values and some distributions, the manage of categorical variables and
how information about a step or a block is used.

3.2.1 Data Treatment
This subsection is devoted to the set of transformations applied to the data. As it is in-
troduced in Section 3.1.2 the total number of samples is over 55.000 and increasing a few
hundreds per week, because there are designs that are being done in parallel to this project.
But this huge amount of examples has some problems, the main one is that they were stored
in different moments in time, using different approaches and some of them do not contain
information about all the metrics.
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The cause of this heterogeneity of the data is that beforehand it is very difficult to think
about the set of variables that can be meaningful to a project like this one. So for example,
there is the case of the congestion variables that have a 70% of missing values because they
were added a couple of months ago and there is no historical data available. This leads us
to the first problem, missing values.

Missing values

There are different approaches to solve this problem, one would be compute the value that
is missing by doing the mean of the variable and store that value as the real one. This is
useful when the metric that is missing is the only problem of the row, meaning that the
rest of the data is correct. Another solution is to discard the whole sample, because the
information provided can not be trusted.

In our case, both solutions have been applied but it has to be distinguished when one or
the other is used. The first approach is suitable for the congestion metrics, which have a 70%
of missing values, the cause has already been described but it is basically that the variable
is being computed for the new runs and it was not calculated before, so the missing values
are due to a lack of historical data of this concrete metric. In such case, it is reasonable
to fill lacking gaps with information, however the problem is determine which one. If the
mean is used, then some steps like import, floorplan and power grid would appear to have
congestion problems, because the mean is strictly positive. This information would be non
sense because the congestion can be computed once the route has been done and not before.
So it is preferable to have a zero instead of the mean, to avoid having strange values.

The other case that appears in our data set is when a huge amount of metrics of a sample
is missing, for example the timing variables is not provided for all the projects. Then it is
unfair to add the average of the column, because it would mean that the timing metrics
of one concrete project are the mean of the other projects and they are always the same,
which would make no sense at all. Unfortunately for this kind of data, the only solution is
to be deleted from the data set. This might look a little bit unnecessary but the truth is
that having a lot of examples that are not contributing to give a realistic and big picture of
the underlying process would be much worse than deleting them.

Apart from the data that contains not computed metrics, there is also the circumstance
when something during the execution fails, during the generation of the report or the user
simply stops the computation. This usually is reported as having CPU time, runtime and
memory zero. This events are also deleted because they are bad results that do not provide
information on this metrics apart from the fact that the output for other variables is not
defined.

The result of applying these techniques implies getting rid of a big amount of unnecessary
examples, reducing the total number of samples to 36.000. It is still a good amount of data
to apply machine learning and it is important to keep in mind that the data remaining has
no missing values and it could provide a good amount of useful information.

Outliers

The simplest way to understand the issue that is described here is looking at the histogram
of the runtime in Figure 3.1. There it can be clearly seen as there is only one column with
all values but one which is in the other side of the figure. The existence of this kind of values
is clearly an error, because in this case it is basically saying that there is a process that has
been running for years.
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Figure 3.1: Histogram of the runtime time without any missing value.

It is uncommon to have these extreme values, which are clearly outliers or bugs derived
from the reporting phase. But there are some of them in runtime, CPU time and memory.
In order to clean automatically these extreme values,the mean and standard deviation is
computed for each of them and then any value further than 3.5 times the standard deviation
plus the mean is deleted.

The 3.5 standard deviation is a value that tries to minimize the number of outliers in-
stances derived from a bad report. It is a number that is derived from looking at the
variables, which has a very similar form with huge outliers. This big data points push
the mean and the standard deviation to their side, so a distance mean plus 3.5 standard
deviation is not a tight bound.

The result of applying this filter to clean the outliers can be seen easily in Figure 3.2.
There are less than 800 samples deleted from the combination of the three metrics, which
is less than a 5% of the amount left after the missing values are cleaned.
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Figure 3.2: Histogram of the runtime once the filter is applied.
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Transformations

This part do not deal with a problem itself, but it tries to benefit the machine learning
methods applying transformation to the data so it gets easier for it to predict the new dis-
tribution. As it can be seen in Figure 3.2, data follows some kind of exponential distribution,
which often cause problems to the prediction in any kind of methods.

In order to obtain a more comfortable distribution, like a normal, for the algorithms the
natural logarithm is applied to CPU time and runtime, the result seen in Figure 3.3 is for
the runtime. The output is stored in another column so both representations of the same
variable are available.
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Figure 3.3: On the left, there is the runtime metric filtered and without missing values and
on the right there is its transformation once the logarithm is applied.

3.2.2 Categorical data
Usually, it is a challenge to combine numerical and categorical data in a machine learning
algorithm, but inside our dataset there is important information from both, in this section
it is explain how they are used together.

The problem is clearly the categorical variables, which there are only a few of them
that a priori contain important information. Categorical data has two different ways of
getting transformed into numerical, depending on whether they have order or not. So with
distinction in mind, the following classification is obtained:

• Metrics with order

– Step

• Metrics without order

– Tool

– Technology

Any categorical metric that has a clear order, has a smooth transformation to numerical,
which consists in labelling from 0 up to n where n is the number of classes following the
order. For example, in step the numbers follow the list in Section 1.1.
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The other method for converting categorical data to numeric has a higher cost, because
it consists in adding a new column, which is a boolean metric, for each different category
inside the class. One and only one of the columns of a class have to be true per each row,
which indicates the category of the rows. For example, if a closer look is given to the tool,
then the Table 3.1 appears, the name of the tools has been hidden for confidential issues (the
preprocess of Section 3.2.1 were applied to obtain this data). This implies that 7 columns
have to be added if the information of tool wants to be taken into consideration for the
algorithm. In the case of the technology there are 8 different categories, resulting in a total
of 15 new boolean columns of zeros and ones.

Tool Number of instances
Tool1 17217
Tool2 11430
Tool3 333
Tool4 2636
Tool5 179
Tool6 1826
Tool7 1721

Table 3.1: The number of instances grouped by tool

3.2.3 Step information
The step is the piece of information that tells us exactly what task is being done by the
EDA tool, as it is described in Section 1.1. So the first intuition says that it should be a
determinant metric when trying to predict any variable. This feeling can get stronger after
looking at the runtime for each individual step, for example if only the power grid is seen
like in Figure 3.4, then it looks like the prediction can benefit from the step information.
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Figure 3.4: Histogram of the logarithm of CPU time data belonging to power grid step.

One approach to provide this information to the system would be using the describe
technique in Section 3.2.2 which would be give number to each step in the appropriate
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order. But as a result of how critical this metric looked like, instead of following that
technique, it has been tried to build specific models per each individual step. So the total
number of models is multiplied by the number of steps.

3.2.4 Block information
Another factor that would have a beneficial impact on the predicted metrics would be the
possibility of having information about the designed block. A senior designer would be able
to identify a block by its difficulty looking at its metrics, so having this knowledge somehow
translated into the system should make a difference in the performance of the models.

Unfortunately the same technique like in the step can not be applied for one main reason,
which is the generalization purpose of the application. The only information that allow a
characterization between blocks is their names, so if a model is build per each block (apart
from the enormous amount of models that we would have), then it would not be possible to
predict anything after many iterations of the design of a block were made. This is because
the name of a block is something too specific (also arbitrary) and it does not generalize at
all, so the use of that metric is not an option.

So in order to capture the essence of a block, some ratios between variables are computed,
this information would not be captured by any of the methods by itself. These divisions
have a meaning and a purpose, which basically is to enable the method to compare numbers
that just by looking at the absolute value of the involved metrics would be hidden. All
results of the following list are new columns to the data set:

ratio1 =
area

memory area

An important information is how much area of a block is occupied by memories.

ratio2 =
area memory

memory area count

This ratio is averaging the size of the memories of a block in order to give an idea of how
big (in area, not capacity) the memories of a block are.

ratio3 =
wire length

area

The concept behind this division is to know how a block is occupied by wire length, which
could be a property of certain blocks.

ratio4 =
TNS total
FEP total

This ratio is the general one for the setupint, setupext, holdint and holdext. It expresses the
average negative slack for each of the four variables, which can be very useful because the
worse negative slack and the failing points by itself hide this information to the models.

ratio5 =
area

CPU time

The idea is to express the amount of time that is required for square millimetre of area.

ratio6 =
CPU time
threads

The information provided by this ratio should basically be an approximation of the runtime
without I/O interruption and user interaction and assuming that the EDA tool implements
the algorithm fully in parallel.
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3.3 Methodology
In this part of the report are described different decisions involving machine learning, which
includes the schema to evaluate and create the models and the environment where the whole
set up is build.

3.3.1 Environment
Let’s start defining the program language, in our case the chosen one is Python, especially

with the use of Sci-kit Learn library. The alternative is usually R and their packages devoted
to machine learning, which would also be a good option. There are similarities between both
options, they provide a friendly manner to call most of the methods presented in Section 2
without having to implement them, which prevents having a potential source of errors. Apart
from the machine learning methods themselves, there is a set of other auxiliary functions that
help a lot to perform tasks like visualization, error computation and data transformation.
But there is a reason to prefer Python over R for this project, which is its flexibility when
it has to be integrated inside a system.

One particularity that is also solved easily thanks to Python is the fact that our program
has to be executed first to train the methods but they will need to be executed after they
are built to obtain predictions. It would be a waste of resources if any time a prediction is
needed, then the whole system has to be computed. So there are two clear stages in the cycle
of our program, training the methods and then applying them. Python gives the possibility
to serialize any kind of object to a byte string, store it to a file in disk and then the original
object can be reconstructed at any desired moment by doing the reverse process. Then this
is the way to proceed, any possible object that is needed further in the future is serialized
and stored, this includes methods and also objects that deal with the transformation of the
data because the exact same transformation has to be applied to all inputs, otherwise it
would be unfair.

3.3.2 Model Schema
Here the methodology behind how the machine learning techniques are built is explained.
It has been followed the train-test split of data to apply cross validation in the train data
set to obtain the parameters of the models. But before explaining with details what briefly
is stated previously, it is important to get familiar with the some of the concepts.

Train-Test data split

The data set is split in two different sub sets, in our case the train part has 60% of the total
amount of example and test has a 40%, which are the common values in machine learning
applications. The split is made at random so each sample inside the set has a probability
of being at the train or the test, independently of the metrics that contains or the position
in the data set. It has to be random to enforce the two sets to be as uniform as possible, so
the conclusions in one set should ideally be applicable to the other. This partition has to
be done to avoid the overfitting of our model.

Overfit

Overfitting is the problem that appears when a model is getting the details of the training
set, instead of its generalization. This happens when the method is trying to fit into data
by reducing the error between the model and the data points. For example in Figure 3.5 it
can clearly be seen the problem, on the left of the figure there is a graph where the model
is under fit and capture only the main behaviour of the data points, while the other one is
an extreme case, from which it is very unlikely to obtain a good prediction for a new point.
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Figure 3.5: On the left, there is an under fitted data, while on the right there is an
example of overfitting.

So, overfit is very dangerous because it can lead to have huge error in the prediction, this
is the logic behind the split between train and test. A model is trained only with a part of
the data and tested the performance with the other set. Proceeding like that the test data
has not be seen at any point by the model and it was not considered to build it, then the
error of the prediction between them should give an accurate idea of how will perform the
model in the future.

This problem is usually avoided or at least minimized having a large data set and penal-
izing the complex models. Another possible action is to change the parameters that control
the model, which are often called hyper parameters.

Parameter selection

As it is explained in Section 2 the parameter of each model has a huge impact in the way
it is build, effecting its capacity to give useful predictions. There are two general options to
select the parameters for a model:

• Exhaustive search, it is the simplest approach to the problem. Provided a set of
possible values for each different parameters for a given model, then all the possible
combinations are tried, this implies building a model for each configuration of pa-
rameters. Finally the best parameter is obtained. The computational expense grows
quickly and it can lead to an unfeasible number of models to be tried.

• Random search was proposed in 2012 [1], a distribution for each parameter is given
and a maximum number of iterations. Then using these iterations a good combination
of parameter is searched at random, building models and returning the one with the
best performance. It has the advantage that it performs quicker than the exhaustive
search, if the number of iterations is not very high and it obtains similar results in
practice

The problem of overfiting remains because it is clear that any of the proposed solutions will
increase it instead of decreasing it. Because the best selected model will be the one with
less training error, which would easily be the one that cares more about details and not the
generalization. This is because the parameter selection can not be done alone; it has to be
done with the use of another technique which is cross-validation
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Cross-validation

There are many ways of doing cross-validation, in our case the K-Fold algorithm has been
selected with K = 10, because it is proven to be the best method for real world data sets
[9].

The idea is quite simple, it takes the training subset and it is partitioned in 10 different
samples of same size where each point is taken only once. Then for each of the folds a model
is build, using the non-selected data as a training set and the selected ones as test data,
which is usually called validation data. Finally, the goodness of the model is the average
of its performance in each split. The non overfitted models are preferred over the others
because they perform better overall folds, while the overfitting ones tend to misbehave.

To sum up, the combination of all the previous concepts is necessary to obtain a reliable
model and that is exactly what it is done in this project. Once the data is preprocessed,
then it is divided into train and test, the train is used to perform a search of parameters
using cross-validation and finally the best model is obtained. The goodness of that model
is tested using the r2 error or coefficient of determination over the predicted values of the
model and the real values of the test subset.



Chapter 4

Results

The results obtained after applying the described machine learning techniques in Section 2
and the methodology described in Section 3.2 are detailed in this chapter.

It is important to highlight that any two methods compared in this document have been
trained and tested using the same two disjoint sets, so the comparison is based on the same
examples because it is intended to be as fair as possible.

The result is usually expressed using the r2 score or coefficient of determination, which is
defined as:

r2 = 1−

n∑
i=0

(yi − pi)2

n∑
i=0

(yi − ŷ)2

Where,

n is the total number of examples

yi is the true value for the ith example of metric y

pi is the predicted value for the ith example of metric y

ŷ is the mean value of the variable y

As it can be derived straight from the formula, the range of values are inside (−∞,1].
This is due the fact that the prediction can be very far from the real value, making the
denominator extremely large. Also, a value of 1 applied to a method means a perfect fit.
Often in regression a model gives good predictions when the value is above 0.8 and they are
considered excellent above 0.9, obviously this depends on the application but it is a good
general way to interpret the value.

4.1 Prediction
In order to understand the decisions taken to obtain the final results, it is necessary to
comprehend part of the intermediate outcomes that were obtained. Some of the most tran-
scendental outcomes are shown here, especially those which had an important impact in
decisions or conclusions.

35
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Any results shown here are a consequence of applying the preprocess explained in Sec-
tion 3.2.1 to the target model. This includes, filtering missing values, outlier/bug detection,
ratio computation and logarithms transformation. Apart from that, the input variables of
any model are all metrics available explained in Section 3.1.2- This is done because a priori
there is no knowledge about, which are more determinant to explain the predicted variables.

Let’s remember that in this project: runtime, CPU time, memory, leakage and area
utilization are the predicted metrics using machine learning algorithms. Thus, all plots,
tables or histograms shown in this section, can refer to any of them. For simplicity, it is not
shown every possible combination of plots, tables and histograms for the five metrics. Only
the ones worth showing are presented in this document.

4.1.1 Initial results and decisions
In this section it is introduced the early decisions that defined the project. One of the main
features of this phase is the aim of exploration about how each model performs, if there are
differences between them, which parameters of the models would be used and a long list
of possibilities that had to be explored because a priori it is impossible to determine much
about the problem.

Among the list of design projects with data available, there is one clearly distinguishable
from the rest, which is the main project. The essential variation is its size, more or less half
of our data belong to it. Also apart from that, it is an ongoing project, which implies two
interesting properties, the first one that there is new data being created every week and the
other is that any result can easily be integrated to the system and it could help the designers
from an early stage of the application.

For these reasons, it has been selected as the starting point for the project and most of
the results shown here are built from this data. There is a point where this changes and
also data from other projects are mixed together to get a much general model but for this
section it can be assumed that the data used is from the main project.

Before showing the results, there is one model called ZeroModel, which was not described
in Section 2, because it is not a machine learning algorithm. It is the simplest method, which
consists in giving the previous value of the metric as a result of the prediction. For example,
in the case of the memory, the model would simply give the value of the memory used in
the predecessor as the output for the current prediction. Another anomalous value that can
be found in the results is the ’All’ step, which is not an ASIC step, in fact all steps together
form it, so in those models all data available is used.

The first interesting results are shown in Table 4.1, Table 4.2 and Table 4.3, each different
table corresponds to one predicted variable. Also in each table appears the different machine
learning models as rows and the different steps as columns. The intersection of row and a
column gives the r2 value for the model in the given step, so each value is created by one
unique model.

There are a few conclusions that come out of these tables; one is that models seem to
predict certain metrics better than others because the models have a larger score in general
for the memory than for the CPU time. For example, the random forest has a 0.8573 r2
value for CPU time in Table 4.1 while it is increased when looking at Table 4.2 where it has
a 0.9467. Another is the difference in score between models; there are some of them that
tend to perform better than others. Regarding the results tree-based methods, which are
CART and Random Forest, have the most precise answers, for instance in the case of CPU
time they are the two only models with a higher value than 0.7.
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Models Floorplan Power grid Placement Clock tree Route All

Zero Model 0.1013 -0.6121 0.4479 0.0392 -0.4719 -0.3849
cart -62.9150 0.0296 0.4485 -0.1277 -0.0760 0.7312

Linear Model -7.9844 -8.9456 -4.5361 -3.4253 -6.1918 -1.6880
SVR -3.9785 -2.7497 0.4519 -0.8984 -1.6546 0.6440
MARS -4.8845 0.0084 0.5711 -1.6208 0.1699 0.6573

NeuralNet -0.5183 -0.0481 0.4780 0.1862 0.0130 0.3978
adaBoost -0.0008 -0.0139 0.4823 -0.0275 -1.7699 0.0675

Random Forest 0.6369 0.0418 0.5160 0.3122 0.0484 0.8573

Table 4.1: r2 score of models predicting CPU time for each different step and method

The zero model shows how the variable changes from the previous step to the current one,
so if the metric does not change independently of the process, the r2 would be 1. Having
high values, for example in ’All’ column from Table 4.2 is almost 0.7, which is quite high.
Thus, it is revealing that the memory variable does not vary from one to another. While it
explains that area utilization changes a lot, because in Table 4.3 its value is -4.0901

But the most notorious result is the fact that having specific models for steps does not lead
to a better predictions, even the work done in each of them is very different from the rest
and it should be one of the main factors to determine the resources. In the case of Random
Forest, it is extremely surprising that it performs better having all the data together as a
set than in any other specific case.

Models Floorplan Power grid Placement Clock tree Route All

Zero Model 0.0607 0.3068 0.4139 0.4255 0.1065 0.6983
cart 0.2466 0.3041 0.4294 0.3180 -0.0871 0.8692

Linear Model -6.0177 -2.9029 -4.2740 -6.6231 -0.4911 0.6706
SVR -0.1620 0.1674 0.3727 0.4456 0.1479 0.8542
MARS 0.3203 0.4495 0.5052 0.5311 -0.1060 0.8466

NeuralNet 0.0745 0.1629 0.2979 0.5099 0.0811 0.8132
adaBoost -3.1133 -0.3734 0.4502 0.3917 0.5342 0.7566

Random Forest 0.2560 0.3693 0.5191 0.5238 0.1768 0.9467

Table 4.2: r2 score of models predicting memory for each different step and method

Models Floorplan Power grid Placement Clock tree Route All

Zero Model 0.4488 0.6766 0.6195 0.5618 0.4197 -4.0901
cart 0.4660 0.6710 0.6257 0.5633 0.3794 0.8282

Linear Model -9.0514 -8.0591 -6.7264 -0.4547 -5.3856 0.6603
SVR 0.5164 0.5344 0.5268 0.1315 0.3782 0.4994
MARS 0.4090 0.7273 0.6418 0.4186 0.4004 0.8306

NeuralNet 0.4504 0.5236 0.5935 0.5119 0.2352 0.6956
adaBoost -0.7533 0.5845 0.6563 0.6208 0.6972 - 0.5617

Random Forest 0.5344 0.6598 0.5413 0.5208 0.5367 0.8720

Table 4.3: r2 score of models predicting area utilization for each different step and method
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This last conclusion is important because it clearly shows that there is no need to specialize
models for each step. Therefore, it can be saved a lot of time and resources building just one
model, which uses all data available. Then, it is decided that the data is no longer sliced
depending on the step.

This result contradicts our a priori believe that the step was one of the major factors in
resource consumption and metric prediction. But before being able to express that step is
not relevant, an alternative prediction is done, where instead of a regression a classification
is done. It is tried to classify the step value, without providing any information of it as
input. So this is meant to tell if just with data, the methods are able to determine which
step is being executed looking at the information from the previous. The result is a high
percentage of success in the classification and less than a 5% is wrongly predicted. To give
a visualization of this result, the first three layers of a CART model are shown in Figure 4.1

Figure 4.1: CART classification of steps without having information about it as inputs.

The model, where steps can be classified with high accuracy without having any infor-
mation about it, is a key point to explain the reason behind why is useless to split data
by steps. The conclusion is that the information about the steps is already implicit in the
data, so there is no need to specify further because each method has that intuition and
this specialization comes with the cost of having fewer examples per method, which have an
impact to the chances of generalize of the algorithm.

Another result worth showing is a comparison between results with or without preprocess.
Without preprocessing is defined as data with filtering missing values, otherwise algorithms
would break because they can not deal with nulls directly.

Looking at the results of Table 4.4, it seems that there is a clear relationship between
accuracy and preprocess. All scores from machine learning models improve when preprocess
is done. Especially in the case of SVR where the value is 0.2263 without preprocess and it
rises up to 0.8542 in the other scenario. Overall, the ones that are able to perform better are
still the tree-based algorithms, which are also the ones that have the smallest loss when no
preprocess is done, from 0.8692 to 0.8307 and from 0.9467 to 0.8937 for CART and random
forest, respectively. The results obtained for area utilization and leakage are very similar to
Table 4.4, so they are not shown explicitly in this report because the conclusions would be
the same.
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Models r2 without preprocess r2 with preprocess

Zero Model 0.7673 0.6983
cart 0.8307 0.8692

Linear Model 0.6489 0.6706
SVR 0.2263 0.8542
MARS 0.7163 0.8466

NeuralNet 0.6064 0.8132
adaBoost 0.5471 0.7566

Random Forest 0.8937 0.9467

Table 4.4: Comparison between performance in models with and without preprocessed
data for the memory metric

The impact of applying or not the preprocess to runtime and CPU time is more determi-
nant than in previous cases. The outcome corresponds to Table 4.6 and Table 4.5, there it
can be checked that the impact of non preprocessing the data has a huge cost in the overall
behaviour of the methods. For instance, the r2 obtained in MARS model has a value of
0.6573 with preprocess but if nothing is applied to the data the final result is a -9.0136. This
drop holds for all the other methods, thus the preprocess is an important and needed step,
even for the most robust model which is random forest that goes from an r2 of 0.8573 to a
0.5827.

Models r2 without preprocess r2 with preprocess

Zero Model -0.0542 -0.3849
cart 0.3375 0.7312

Linear Model -0.6413 -1.6880
SVR -7.3369 0.6440
MARS -9.0136 0.6573

NeuralNet 0.0552 0.3978
adaBoost -0.2174 0.0675

Random Forest 0.5827 0.8573

Table 4.5: Comparison between performance in models with and without preprocessed
data for the CPU time metric

Models r2 without preprocess r2 with preprocess

Zero Model -0.1906 -0.5738
cart 0.3922 0.7217

Linear Model 0.0599 -0.9198
SVR -1.5771 0.6781
MARS -2.3020 0.5995

NeuralNet 0.1788 0.3997
adaBoost 0.3975 -0.0054

Random Forest 0.6146 0.8344

Table 4.6: Comparison between performance in models with and without preprocessed
data for the runtime metric
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The results on the preprocess of the data are the expected ones; it would not make any
sense to obtain similar models if no treatment is done to the data. Especially in the case of
runtime and CPU time it is a critical procedure to be done. Without the preprocess there is
no model able to predict anything about the desired variable. Apart from that, the results
also show that the most precise method is the random forest, which gets a performance
much precise than any other method.

Once all the intermediate results are given, it is time to detail and discuss the final results
obtained using the main project data. There is a table that gives an overview of the whole
performance and also a few figures that are useful to visualize other aspects of the model
apart from the r2.

Table 4.7 provides two important categories of conclusions:

• Model performance, there is a method that gets better results than the rest in all
desired metrics : random forest. Apart from that, there is also the CART algorithm
that gives good predictions. This outcome is not surprising because as it is explained
in Section 2 random forest is an ensemble method that uses the advantages of the
CART technique and overcomes its disadvantages to obtain a better model. Another
interesting result of the Table 4.7 is the fact that the zero model has a 0.7760 r2 value
predicting leakage is an indicator that it does not vary a lot from one step to another.

• Overall result, all random forest outcomes are very good in the sense of precision and
accuracy of prediction. The case of runtime, which it has shown to be the most difficult
one to be described, has a value of 0.83 which is a good value for most applications
included the one described in this project. Here the main point of predicting runtime is
to give information to the designer so he can decide better, for this purpose there is no
need to get the exact amount of seconds that a prediction will take. Let’s remember
that this value can vary from minutes to days. So this method provides that idea
with a huge precision. This same argument can be extrapolated to the rest of metrics,
which have great models to predict them, especially memory that has an outstanding
0.9467.

Models Memory Runtime Area utilization CPU time Leakage

Zero Model 0.6983 -0.5738 -4.0901 -0.3849 0.7760
cart 0.8692 0.7217 0.8282 0.7312 0.8389

Linear Model 0.6706 -0.9198 0.6603 -1.6880 0.6578
SVR 0.8542 0.6781 0.4994 0.6440 0.5623
MARS 0.8466 0.5995 0.8306 0.6573 0.8017

NeuralNet 0.8132 0.3997 0.6956 0.3978 0.8117
adaBoost 0.7566 -0.0054 0.5617 0.0675 0.1272

Random Forest 0.9467 0.8344 0.8720 0.8573 0.9001

Table 4.7: Computed r2 score for every metric and every model inside the main project.

In order to provide more visual results, a plot representation of the goodness of fit is provided
in Figure 4.2 and Figure 4.3 for runtime and memory, respectively. Also a histogram of the
distribution in the magnitude of the already mentioned metrics is provided in Figure 4.4
and in Figure 4.5. They are selected because they are the two extreme cases and the rest of
models lie in between.

Let’s start with the comparison of Figure 4.2 and Figure 4.3, both corresponding to a plot
that has as a x-axis the measured values and the predicted values as y-axis. This implies
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that the discontinuous line is a perfect prediction of a real value. Both are generated using
a sample of 2000 points selected at random from their respective test sets. The gray zone is
a range of ± 7.5% around the perfect fit, providing a total 15% of width.

As it can be seen, from the figures, the distribution of points is different and in the runtime
case they tend to be further from the centre line, than in the case of the memory where it
seems that most of the points are between ranges. This effect is a direct cause of the error,
which is larger in the first metric, while it is much smaller in the second. In fact, a 70.3 % of
the total points of the memory are inside the range, while in the other case this percentage
drops to almost half of it to 35%
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Figure 4.2: Plot with 2000 points of measured value and predicted value for runtime, the
diagonal represents a perfect fit between predicted and reality
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Figure 4.3: Plot of 2000 random points of predicted against real value for memory, where
the diagonal represents a perfect fit between predicted and reality

To provide another point of view of the error, there are two histograms of it: one in Figure
4.4 and other in Figure 4.5, for runtime and memory respectively. This representation has
been computed as:

xi =
|yi − pi|

yi

Where,

xi is the output that is shown in the histogram

yi is the real value of i-th number

pi is the predicted value of i-th number

This computation gives a sense of how big is the error related to the actual value. The error
decay fast in both cases; especially for memory, where the error is much smaller. In the
runtime besides the drop of the error is also notorious the existence of a tail that hardly gets
to zero, this indicated that there are some predictions where the error is quite big, because
the histogram captures errors three times larger than the actual value. This does not seem
to happen for the memory variable where the distribution decays to 0 before reaching the
1.5 error. Actually, the percentage of data with an error smaller than 10% is 35 in the case
of runtime and 70 in the case of the memory. This difference gets increased when looking
at the data that remains with an error greater than 50% of the true value, for the runtime
it is a 19.1% and just a 2.45%. This means that almost 98% of the data has an acceptable
error, which is a great result.
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Figure 4.4: Histogram of the error distribution computed as the error divided by the true
of runtime value from a total of 2000 points.
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Figure 4.5: Histogram of 2000 points, with the error distribution computed as the error
divided by the true of memory value.
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Conclusions

In the previous section it has been shown some intermediate results that are important
to understand the decisions that have been taken. All information provided is generated
using data from only one project, which is the biggest with data available. In order to give
an overview of the conclusions obtained after looking at the results, the following list is
provided:

• The step metric is not necessary to obtain good models, so there is no need to split
data based on step.

• Preprocess has been proved to be a key part of the project. Without the whole prepro-
cess, which consists in outliers filtering, missing values treatment and transformations,
there is no chance for any model to predict any metric.

• Regarding to machine learning models, random forest and CART have proved to be the
most accurate and robust. Especially random forest, which provides a high precision
in the prediction of all metrics.

• Looking at the results by metrics:

– Memory: There are excellent results for memory models, in fact, it has been
shown that it is possible to predict this variable with a low error. Thus, the
result can have a big impact in the schedule of memory allocation, which can
lead to a reduction of cost.

– Runtime: The prediction of runtime has a good precision, however it is the vari-
able with the highest error in its prediction. This is due a lack of information of
metrics, such as, input/output time or user interaction with the process. But it
is still possible to provide an approximate value for this metric, which can allow
a better organization for designers and help them to detect anomalies.

– CPU time variable is predicted with higher accuracy than runtime. This is a
consequence of the fact that CPU time is a much more stable metric that does
not have many interactions with designers. For example, it can help to detect
some misbehaviour where some processes are wasting much more CPU than they
should.

– Area utilization and leakage: The models that predict these two metrics have a
very good performance, thus there is a little error for both of them. Using that
prediction, it is possible to know before an execution whether it is going to be
worth or not, or if at least is going to improve the current solution. Also the
detection of anomalies can be a good outcome of using these predictions.

4.1.2 Final results
Having a trustworthy method able to predict any of the desired metrics inside our project is
a good starting result. But it would be encouraging if it were possible to costless generalize
this behaviour to other design projects, because this would imply having accurate prediction
from an early beginning of the design steps for any upcoming project.

The transition from a model that is based only in one project to a model that gathers
data from many has not been a problem. Even there are some minor changes to be added
they are purely functional, for example it is necessary to add information about project and
technology when fetching the previous step, otherwise the algorithm can find a previous from
another project. Thus this section focuses in the results of building a wider model using the
whole data set. In order to give an interesting visualization of the outcome obtained, the
plots, tables and figures used have the same structure and are computed the same way that
in Section 4.1.
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Table 4.8 contributes giving an overview of the behaviour of the different models for each
metric. There it can be seen that the overall performance of the model has a decrease in its
accuracy if compared with the case where data from the main project is used for the same
purpose in Table 4.7. This drop in the general accuracy of the methods is due the fact that
the data used to build them belong to many projects, even from different technologies.

So, a natural though would be that information about technology should be used somehow.
In fact it is introduced to methods following the one hot bit encode technique described in
Section 3.2.2. The result is that it barely has any impact in the performance in the models.
Such a result is very similar to the one obtained with the steps in the previous section. It is
unexpected, because it seems that the technology should make a difference between projects
but it does not.

There are two metrics that suffer a deeper decrease are runtime and leakage. In both cases
the remaining model are still acceptable, especially leakage. Runtime is the only model with
an r2 below 0.80 for all algorithms. The performance of its predictions is not very precise as
it will be discussed, but they are still able to give a valuable hint of the order of magnitude
of the final result.

On the other side, there is the memory metric, which remains with the highest r2 value,
above 0.90. It is also remarkable the good performance in CPU time and area utilization
that is obtain even in a heterogeneous data set.

If we look at the performance of each method, it is more obvious that the best model
is the one created by random forest than it was before, which has the highest r2 for every
metric. The second model remains being CART, so the tree-based approach is key in this
project. Apart from that, it is necessary to highlight that there are neuronal networks and
adaBoost, which have a very irregular performance with values that can go from -1.3123 to
0.6956 and from -1.4172 to 0.7148 for neuronal networks and adaBoost, respectively.

Models Memory Runtime Area utilization CPU time Leakage

Zero Model 0.7059 -0.3950 -1.5968 -0.2820 0.6483
cart 0.8667 0.6393 0.6393 0.7340 0.7772

Linear Model -1.0475 -6.7189 0.6603 -5.4087 0.3495
SVR 0.8333 0.6781 0.5281 0.5323 -9.7340
MARS 0.8072 0.5995 0.4282 0.5419 0.3704

NeuralNet -1.3123 -0.5753 0.6956 -0.4013 0.0492
adaBoost 0.7148 -1.4172 0.5617 0.1184 -0.1276

Random Forest 0.9188 0.7643 0.8520 0.8348 0.8154

Table 4.8: r2 value for metrics and models using all data available.

Now let’s get into a visual result of the models, as in the previous section, the same kind
of plot and histograms are shown in Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9. Plots
correspond to predicted values against real values, so the discontinuous line means perfect
fit, while the histograms are the distribution of the magnitude on the error computed the
same way as in Section 4.1.

To obtain a better visualization both plots in Figure 4.7 and Figure 4.6 are created just
using 2000 points selected at random. As it can be seen, the disparity of the points is
much higher for the runtime metric, especially at the beginning of the plot where data is
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distributed with a high relative error with respect to perfect fit. Figure 4.7 has most of
the points inside the gray zone, which means that they are not further than ± 7.5% of the
actual value that should be obtained. In fact, there is about 75.15% of values within that
range, while in the case of runtime the majority is outside it, exactly a 39.25% of the data
is inside the gray zone and the rest is outside.

Another outcome that can be seen is that error distribution is not uniform along the
x-axis, causing that at the beginning most of the points tend to be over predicted and for
bigger measured values, it seems to be the other way around. This behaviour seems to be
applicable for both metrics.
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Figure 4.6: Plot with 2000 points of measured value and predicted value for runtime, the
diagonal represents a perfect fit between predicted and reality

The histograms represented in Figure 4.8 and Figure 4.9,show how big the error is with
respect the real value that is predicted for runtime and memory metrics, respectively. Each
column of the histograms represents a 10% of error. This allow us to conclude about how
big is the error distributed among points, so when compared, the error of the first one is
clearly much larger than in the second. Apart from that, the error decay is much better in
the second one, where it looks like the error fades up before getting errors of 150% of the
real value, this behaviour does not exist for runtime until the 300% of error.

In fact, in the memory metric only a 36.1% of the total data has an error bigger than 10%,
this means that almost two thirds, of the predicted values has an error less than 10 percent.
For the runtime metric, the error tends to persist more and 70.2% of samples have an error
greater than 10%. The decay is important and there is only a 27.25% of predictions that
have an error greater than 50%. But it is still large if compared to the same percentage in
the memory case, where only 5.7% of data has an error of 50%.
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Figure 4.7: Plot of 2000 random points of predicted against real value for memory, where
the diagonal represents a perfect fit between predicted and reality
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Figure 4.8: Histogram of the error distribution computed as the predicted error divided
by the true of runtime value, only 2000 random points are considered.
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Figure 4.9: Histogram with the distribution of the predictive error divided by the true
value of memory value from a total of 2000 points.

Conclusions

In this section it has been shown the results of applying the machine learning techniques
described in Section 2 to predict the metrics explained in Section 1.2. This is done using all
data available and not only a single project. To give an overview of the conclusions obtained
after looking at the results, the following list is provided:

• The use of data from many projects, instead of data from only one project has a
negative impact in the accuracy of the models. All algorithms for all variables tend
to increase their error, this is a normal consequence of mixing several projects and
not having specialized models. But it is still an encouraging outcome, because it
generalizes the behaviour of models making them applicable to new projects, due to
their project independent property.

• The technology variable has, surprisingly, no impact in the final results.

• Random forest is the best model to predict runtime, CPU time, memory, leakage and
area utilization, which are all the desired metrics.

• For CPU time, leakage, memory and area utilization the exact same conclusions and
results as the ones described in conclusion subsection from Section 4.1.1 are obtained,
but with a lower precision. In the case of runtime, the error tends to be large, despite
it still can be used as an indicator of the order of magnitude.

4.1.3 Feature importance
In this section results are shown regarding to which are the variables that have an important
impact in the prediction of CPU time, runtime, memory, leakage and area utilization. All
data has been used, so it is not only from one project and the results are related to the
random forest algorithm.
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To compute the feature importance of a random forest, the mean decrease accuracy algo-
rithm is used. The main idea is quite simple; it determines whether a variable is important
if the decrease in accuracy is high when the values of that variable are changed at random.
This is done for all trees inside a random forest in the OOB space. The sum of the total
variable importance is always 1. In this document, just the five with higher value are shown.

Memory

The feature importance for the memory can be seen in Table 4.9, there it can be seen that
the logarithm of the memory has a huge impact with a 0.752. It implies that it has much
more importance than the rest of variables combined. Then, it can be conclude that the
previous memory determines a lot the memory that a process will need in the future. But
as it is proved in the previous section, this does not imply that it is sufficient to predict the
next memory as the one from the current step. This is what does the Zero model proposed
and it has a worse performance than the random forest, even though it has a good result
with an 0.70 r2 value, as it can be seen in Table 4.8.

Variable name Feature importance
Log memory 0.752

Area utilization 0.026
Ratio Area/CPU 0.016
Log CPU time 0.016
Wire length 0.012

Table 4.9: Top five variables importances for memory metric

Runtime and CPU time

The results of feature importance for runtime and CPU time are very similar, in fact, only the
result for runtime are shown in Table 4.10, because the same conclusions and similar values
are obtained. From there it can be seen that instead of having one factor that determines
a lot the final value, there are four metrics that have a decent importance. The first two
are the logarithm of CPU time and the logarithm of runtime with a total combination of
0.24. Then, the third factor is the number of clocks inside a block with a 0.86, followed by
a ratio between area and CPU time that has a 0.073. From this it can be conclude that the
computation of ratios help models to improve their precision and also that the needed time
to compute the previous step is determinant to predict the next time metric. The number
of clock sinks gives a sense of how much work will have to be done inside a block, because
the more clock sinks, the more difficult is to execute every step.

Variable name Feature importance
Log CPU time 0.144
Log runtime 0.097

Number of clock sinks 0.086
Ratio Area / CPU time 0.073
Number of std. cells 0.052

Table 4.10: Top five variables importances for runtime metric
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Leakage and area utilization

Leakage and area utilization share from the second to the fifth feature importance as the
Table 4.11, with different values and order. The first variable for both variables are them-
selves. They present a mix behaviour between the results obtained for memory and for
runtime/CPU time. They have a big first factor with almost 0.45 of importance, followed
by two variables that have a value above 0.1. In the case of leakage these variables are area
utilization and a ratio. Once again, it can be seen the influence of ratios in the performance
of the models.

Variable name Feature importance
Leakage 0.446

Area utilization 0.123
Ratio Area memory/Number of memories 0.115

Area 0.062
Area memory 0.034

Table 4.11: Top five variables importances for leakage metric
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Conclusion

5.1 Result
The use of machine learning techniques to predict metrics related to nanoelectronic circuit
design has been proved successfully. In fact, the good results obtained can have a direct
impact on the process of designing ASIC, because there is information regarding metrics of
the circuit and its computation that can be predicted before its execution.

An example of this impact is the memory prediction that can be used for automated
processes such as memory reservation in the system where many jobs are sent. Currently,
the amount of memory needed for an execution is a priori unknown, as a consequence of
this fact, the quantity of memory allocated for a process can not be done precisely. This
situation implies having memory assigned to tasks that will never use it, thus there is a
potential waste of memory.

An accurate prediction of memory gives more precise information about the real needs of
the underlying process than the current method. If provided to the system scheduler, then
a lot of memory can be saved because only the needed one would be allocated for each task.
Such use can have a huge impact in the total amount of required memories for a company,
which would be a reduction in the costs of designing circuits.

Predictions regarding to design metrics such as area utilization and leakage allow the
designer to decide beforehand if an execution is worth or not. For example, if he wants
to satisfy a constrain in leakage and the prediction says that it is not going to achieve the
desired value, then the computation may not be worth. This can save an enormous amount
of time and computational resources.

At the moment, all prediction’s information is embedded in an existence application where
the reports of the different executions can be consulted by the designers, this allows them
to see how models perform and get familiar with them.

5.2 Future work
There are many possibilities to keep expanding the use of machine learning in the ASIC
design field:

• Expand the number of metrics we predict, not just area utilization and leakage, but
all other design metrics. to detect anomalies. Each metric has its own ML model.

51
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• Predict total amount of resources for a project, another application can be to determine
the number of CPU time, memory and working hours of designers that are needed to
produce a whole project. For this purpose, data should be different and more project
cases are required, but it would have a major impact in the resource planning for
electronic designs. In order to predict future projects, it could be used data at block
level because the number of projects is small. The total number of blocks is higher
and should work nicely with machine learning techniques.

Apart from other predictions, it is still possible to improve the existing solution by getting
more detailed information about the design process that is not being captured at the current
moment. For example, by having a sense of how much time a process waits for input, outputs
or user interactions can have a positive impact on the prediction of the runtime metric.

Some techniques from data mining can be used to analyze relationships between metrics.
For example, how EDA parameters like number of threads affect IT metrics like runtime or
memory.

Another possibility can be embedding the whole model into the designers’ flow and provide
the predictions just before the execution is launched directly in the same application.
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