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Abstract: In this paper we investigate several qualitative properties of the solutions of the

dual-phase-lag heat equation and the three-phase-lag heat equation. In the first case we assume

that the parameter τT depends on the spatial position. We prove that when 2τT − τq is strict-



ly positive the solutions are exponentially stable. When this property is satisfied in a proper

sub-domain, but 2τT − τq ≥ 0 for all the points in the case of the one-dimensional problem we

also prove the exponential stability of solutions. A critical case corresponds to the situation

when 2τT − τq = 0 in the whole domain. In that case it is known that the solutions are not

exponentially stable. We here obtain the polynomial decay of the solutions when 2τT − τq ≥ 0

on the whole domain. Last section of the paper is devoted to the three-phase-lag case when τT

and τ∗ν depend on the spatial variable. We here consider the case when τ∗ν ≥ κ∗τq and τT is

a positive constant. We will obtain the analyticity of the semigroup of solutions. Exponential

stability and impossibility of localization are consequences of the analyticity of the semigroup.
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Abstract

In this paper we investigate several qualitative properties of the solutions of the dual-
phase-lag heat equation and the three-phase-lag heat equation. In the first case we assume
that the parameter τT depends on the spatial position. We prove that when 2τT − τq is
strictly positive the solutions are exponentially stable. When this property is satisfied in a
proper sub-domain, but 2τT − τq ≥ 0 for all the points in the case of the one-dimensional
problem we also prove the exponential stability of solutions. A critical case corresponds to
the situation when 2τT − τq = 0 in the whole domain. In that case it is known that the
solutions are not exponentially stable. We here obtain the polynomial decay of the solutions
when 2τT − τq ≥ 0 on the whole domain. Last section of the paper is devoted to the three-
phase-lag case when τT and τ∗ν depend on the spatial variable. We here consider the case
when τ∗ν ≥ κ∗τq and τT is a positive constant. We will obtain the analyticity of the semigroup
of solutions. Exponential stability and impossibility of localization are consequences of the
analyticity of the semigroup.

Key words: dual-phase-lag heat equation, three-phase-lag heat equation, exponential
stability, polynomial stability, analyticity of solutions.

1 Introduction

When we combine the Fourier constitutive law for the heat flux vector with the classical energy

equation we obtain the well-known linear parabolic equation for the heat conduction. It is not

very well accepted from the physical point of view. In fact, we have that the thermal disturbances

at some point will be felt instantly anywhere for every distant. To save this drawback different

theories for the heat conduction have been established in the first part of the last century. Most

known theory is the Maxwell-Cattaneo law that proposes an hyperbolic damped equation for

the heat conduction. This theory gives rises to two hyperbolic thermoelasticity theory which

The authors are listed in alphabetical order.
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are the Lord and Shulman [15] and the Green and Lindsay [6]. Both theories are currently

being studied and many authors have dedicate their attention to them. Green and Naghdi also

proposed three theories [7–9] for the heat conduction based on the axioms of the continuum

mechanics. They established their theories in the context of the thermoelasticity, but they also

proposed some fluid theories. It is worth noting that all these theories are considered in several

articles and books [10–12, 22].

In the last decade of last century Tzou [23] proposed a modification of the Fourier constitutive

equation. He suggested a theory where the heat flux vector has a delay in its constitutive

equation. The basic equation for this theory is

q(x, t+ τq) = −κ∇T (x, t+ τT ), κ > 0. (1.1)

In this equation T is the temperature, q is the heat flux vector and τT and τq are two delay

parameters. This equation can be understood as that the temperature gradient established

across a material volume at position x and at time t+τT results in the heat flux to flow a different

instant t+ τq. This kind of proposition can be understood in terms of the microstructure of the

material. In 2007 Choudhuri [3] suggested a modification of Tzou’s constitutive equation and

he proposed the constitutive equation

q(x, t+ τq) = −κ∇T (x, t+ τT )− κ∗∇ν(x, t+ τν). (1.2)

In this equation ν is the thermal displacement suggested by Green and Naghdi in their theories

that satisfies ν̇ = T and τν is a new delay parameter proposed by this theory. One suspects

that the aim of this new theory was to establish a new model with delay in such a way that the

Taylor approximations for this theory recover the theories proposed by Green and Naghdi. It is

worth noting that these two last theories with delay are strongly based on an intuitive point of

view, however there is not an axiomatic thermomechanical foundation of them. Furthermore, if

we adjoin these equations to the classical energy equation

Ṫ + div q = 0, (1.3)

it can be proved the existence of a sequence of solutions Tn(x, t) = exp(ωnt)Ψn(x) such that the

real part of ωn tends to infinity [4]. This result says that the associated mathematical problem

is ill posed in the sense of Hadamard, which is a not suitable property for a heat conduction

theory. Therefore a big interest has been developed to understand the Taylor approximations

to the delay equations. These approximations propose some new and stimulating equations to

study from the mathematical point of view and the most natural question is to clarify when the

mathematical problems that they propose are stable and what kind of stability can be proved
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for them. In this paper we are going to consider two approximations. One for the Tzou model

which is

Ṫ + τqT̈ +
τ2
q

2

...
T = κ4T + κτT4Ṫ . (1.4)

This equation has been studied in the past. Quintanilla [19] was the first to point out the

exponential stability of the solutions of this equation when τq < 2τT and the instability when

τq > 2τT . However, it was open to clarify the kind of stability we have in the limit case τq = 2τT .

In the reference [20] the authors showed that the decay is not exponential. In this paper we

give a polynomial decay rate for the solutions. A second problem for the equation proposed by

Tzou is when we assume that the delay τT depends on the material point. From the known

results it is natural to expect the exponential decay of solutions when τq < 2τT (x) and we prove

it. However an stimulating question rises if we assume that the inequality holds in a proper

sub-domain of the solid and the equality holds in the remain. This is a nice question concerning

this equation and we will prove the exponential stability in the one-dimensional case.

The second model we consider is related with the Chouduri proposition. We consider the

equation

T̈ + τq
...
T = κ∗4T + τ∗ν4Ṫ + κτT4T̈ , (1.5)

where τ∗ν = κ + κ∗τν . In the reference [21], the authors proved the exponential stability when

τ∗ν > κ∗τq and the instability of solutions when τ∗ν < κ∗τq. More recently, in [1] the authors

proved the exponential stability in the case that τ∗ν = κ∗τq. However, several questions were

still open. For instance about the regularity of solutions. In this paper we want to prove the

analyticity of solutions in this last case. In fact, we are going to see this fact even in case that

we assume that τT and τ∗ν are functions depending on the material point. Exponential stability

and impossibility of localization are consequences of this result.

2 Stability of (1.4) for spatial dependent τT

For equation (1.4) we recall that when τq < 2τT it is exponential stable, whereas, when τq > 2τT ,

it is unstable (see [20]).

The critical case τq = 2τT was mentioned in [1] where the authors proved that the real part of

the eigenvalues of the system are all negative, but can get close to the imaginary axis arbitrarily

by spectral analysis. Hence, the decay of the energy is slow. However, no specific decay rate has

been obtained.

In this section, we consider the case of spatial dependent τT . Equation (1.4) is modified as

the following.
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Ṫ + τ1T̈ +

τ2
1

2

...
T = κ4T + κdiv(τ2(x)∇Ṫ ), in Ω× (0,∞), (2.1)

T (x, 0) = T 0(x), Ṫ (x, 0) = Ṫ 0(x), T̈ (x, 0) = T̈ 0(x), in Ω, (2.2)

T (·, t)|∂Ω = 0, for t ∈ [0,∞), (2.3)

where Ω is a bounded domain with smooth boundary ∂Ω, and

τ1 = τq, τ2(x) = τT (x).

Denoting

a(x) = 2τ2(x)− τ1.

In reference to the constant coefficient equation (1.4), we assume that a(x) ≥ 0 on Ω, and

consider the stability of (2.1)-(2.3) in three cases:

(i). a(x) is strictly positive, i.e., a(x) ≥ a0 > 0 on Ω;

(ii). the critical case a(x) ≡ 0 on Ω;

(iii). the partially critical case, i.e., a(x) > 0 only on a subdomain of positive measure Ω0 ⊂ Ω.

It is important to identify a proper state space so that the “energy” of the system (2.1)-(2.3) is

dissipative. For this purpose, we take the inner product of T + τ1Ṫ +
τ21
2 T̈ with (2.1) in L2(Ω)

to get

1

2

d

dt
‖T + τ1Ṫ +

τ2
1

2
T̈‖2 = 〈κ4T, T + τ1Ṫ +

τ2
1

2
T̈ 〉+ 〈κdiv(τ2(x)∇Ṫ ), T + τ1Ṫ +

τ2
1

2
T̈ 〉. (2.4)

Since

〈κ4T, T + τ1Ṫ +
τ2

1

2
T̈ 〉 = −〈κ∇T,∇(T + τ1Ṫ +

τ2
1

2
T̈ )〉

= −κ‖∇T‖2 − 1

2

d

dt
κτ1‖∇T‖2 − 〈κ∇T,

τ2
1

2
∇T̈ 〉

= −κ‖∇T‖2 − 1

2

d

dt
κτ1‖∇T‖2 −

d

dt
〈κ∇T, τ

2
1

2
∇Ṫ 〉+ κ

τ2
1

2
‖∇Ṫ‖2

and

〈κdiv(τ2(x)∇Ṫ ), T + τ1Ṫ +
τ2

1

2
T̈ 〉 = −〈κτ2(x)∇Ṫ ,∇(T + τ1Ṫ +

τ2
1

2
T̈ )〉

= −1

2

d

dt
κ‖τ

1
2

2 (x)∇T‖2 − κτ1‖τ
1
2

2 (x)∇Ṫ‖2 − 1

4

d

dt
κτ2

1 ‖τ
1
2

2 (x)∇Ṫ‖2,

(2.4) leads to
1

2

dE(t)

dt
= −κ‖∇T‖2 − κτ1‖a

1
2 (x)∇Ṫ‖2. (2.5)
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where the ”energy” of the system (2.1)-(2.3) is

E(t) = κτ1‖∇T‖2 + κ‖τ
1
2

2 (x)∇T‖2 +
1

2
κτ2

1 ‖τ
1
2

2 (x)∇Ṫ‖2 + κτ2
1 〈∇T,∇Ṫ 〉+ ‖T + τ1Ṫ +

τ2
1

2
T̈‖2

= κτ1(
1

2
‖∇T‖2 + ‖∇T +

τ2
1

2
∇Ṫ‖2) + κ‖a

1
2 (x)∇T‖2 +

1

2
κ‖a

1
2 (x)τ1∇Ṫ‖2

+‖T + τ1Ṫ +
τ2

1

2
T̈‖2.

Let H1
0 (Ω) = {X ∈ H1(Ω) : X|∂Ω = 0}, and hence

H := H1
0 (Ω)×H1

0 (Ω)× L2(Ω).

We denote by Z = (Z1, Z2, Z3) and W = (W1,W2,W3), we can define the inner product

〈Z,W 〉H =κτ1〈∇Z1,∇W1〉+ κ〈τ
1
2

2 (x)∇Z1, τ
1
2

2 (x)∇W1〉+
1

2
κτ2

1 〈τ
1
2

2 (x)∇Z2, τ
1
2

2 (x)∇W2〉

+ κτ2
1 〈∇Z1,∇W2〉+ 〈Z1 + τ1Z2 +

τ2
1

2
Z3,W1 + τ1W2 +

τ2
1

2
W3〉,

i.e.,

‖Z‖2H = κτ1(
1

2
‖∇Z1‖2 + ‖∇Z1 +

τ2
1

2
∇Z2‖2) + κ‖a

1
2 (x)∇Z1‖2 +

1

2
κ‖a

1
2 (x)τ1∇Z2‖2

+ ‖Z1 + τ1Z2 +
τ2

1

2
Z3‖2.

Denoting Z := (Z1, Z2, Z3)T = (T, Ṫ , T̈ )T , we then convert system (2.1)-(2.3) to a first order

evolution equation on Hilbert space H,
dZ

dt
= AZ, (2.6)

Z(0) = Z0 = (T 0, Ṫ 0, T̈ 0)T , (2.7)

where the operator A is given by

AZ =


Z2

Z3

2

τ2
1

(
− Z2 − τ1Z3 + κ4Z1 + κdiv(τ2(x)∇Z2)

)
 (2.8)

and

D(A) = {Z = (Z1, Z2, Z3)T ∈ H|Z1, Z2 ∈ H2(Ω), Z3 ∈ H1
0 (Ω)}. (2.9)

Theorem 2.1. A is the infinitesimal generator of a C0−semigroup of contractions on the Hilbert

space H.
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Proof. By (2.5),

Re〈AZ,Z〉H =
1

2

d

dt
‖Z‖2H = −κ‖∇Z1‖2 − κτ1‖a

1
2 (x)∇Z2‖2 ≤ 0. (2.10)

Thus, A is dissipative. Now for F = (f1, f2, f3)T ∈ H, we look for Z = (Z1, Z2, Z3)T ∈ D(A)

such that (I −A)Z = F . Equivalently, we consider the following system

Z1 − Z2 = f1, (2.11)

Z2 − Z3 = f2, (2.12)

Z3 −
2

τ2
1

(−Z2 − τ1Z3 + κ4Z1 + κdiv
(
τ2(x)∇Z2)

)
= f3, (2.13)

Z1|∂Ω = Z2|∂Ω = Z3|∂Ω = 0. (2.14)

From (2.11), (2.12) and (2.13), we have

(1+
2

τ2
1

+
2

τ1
)Z1−

2κ

τ2
1

4Z1−
2κ

τ2
1

div(τ2(x)∇Z1) = f3+(1+
2

τ2
1

+
2

τ1
)f1+(1+

2

τ1
)f2−

2κ

τ2
1

div(τ2(x)∇f1).

(2.15)

Let φ ∈ H1
0 . Multiplying (2.15) by φ, we get the following variational equation

〈(1 +
2

τ2
1

+
2

τ1
)Z1, φ〉+ 〈2κ

τ2
1

∇Z1,∇φ〉+ 〈2κ
τ2

1

τ2(x)∇Z1,∇φ〉

= 〈f3, φ〉+ 〈(1 +
2

τ2
1

+
2

τ1
)f1, φ〉+ 〈(1 +

2

τ1
)f2, φ〉+ 〈2κ

τ2
1

τ2(x)∇f1,∇φ〉.
(2.16)

It is easy to check that the left-hand of (2.16) is a continuous and coercive bilinear form on the

space H1
0 ×H1

0 , and the right-hand side is a continuous linear form on the space H1
0 ×H1

0 . Then,

due to Lax-Milgram Lemma ([13], Theorem 2.9.1), (2.16) admits a unique solution Z1 ∈ H1
0 .

(2.16) also implies that the weak solution Z1 of (2.15) associated with the boundary conditions

(2.14) belongs to the space H2. Therefore, (Z1, Z2, Z3)T ∈ D(A) and (I − A)−1 is compact in

the energy space H. Then, thanks to Lumer-Philips Theorem ([17], Theorem 1.4.3), we conclude

that A generates a C0−semigroup of contractions on H.

Our main results for system (2.1)-(2.3) are stated in the following two theorems.

Theorem 2.2. Assume that a(x) ∈ C1(Ω). Then the semigroup eAt is

(i). exponentially stable if a(x) ≥ a0 > 0 on Ω, i.e., there exist constants M, ω > 0, such that

‖eATZ0‖H ≤Me−ωt‖Z0‖H, ∀t > 0, Z0 ∈ H;

(ii). polynomially stable of order 1
2 , if a(x) ≥ 0 on Ω, i.e., there exists a constant C > 0, such

that

‖eATZ0‖H ≤
C√
t
‖Z0‖D(A), ∀t > 0, Z0 ∈ D(A).
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Theorem 2.3. Let Ω = [0, L], Ω0 = (x1, x2) for 0 ≤ x1 < x2 ≤ L. If a(x) ∈ C2(Ω), a(x) >

0 on Ω0 and a(x) = 0 on Ω\Ω0, then the semigroup eAt is exponentially stable.

Remark 2.1. Case (i) in Theorem 2.2 extends the corresponding result for the constant coef-

ficient case 2τT > τq considered in [20]. Case (ii) in Theorem 2.2 considers the partial critical

situation which is new due to the spatial dependent τT . As a by-product, it improves the slow

decay conclusion for the critical case 2τT = τq in [20] by a specifying polynomial decay rate.

However, whether this is the best decay rate is still open.

Remark 2.2. The result in Theorem 2.3 is new and interesting. It reveals a transition pro-

cess from exponential stability to polynomial stability as a(x) changes from positive to partially

positive to zero. Unfortunately, by far, we are only able to prove it for one-dimensional problem.

Remark 2.3. The unstable case 2τT < τq in [20] suggests that the conclusion still holds if

a(x) < 0 on Ω. However, the picture for a(x) < 0 only on a subregion Ω0 ⊂ Ω is still unclear.

The proof of Theorem 2.2 and 2.3 will be presented in next two subsections. Our main tools

are the following well-known frequency domain characterization of stability for a semigroup on

Hilbert space, combined with contradiction argument in [14].

Theorem 2.4. [16] Let S(t) = eAt be a C0−semigroup of contractions in a Hilbert space H.

Suppose that

iR ⊂ ρ(A). (2.17)

Then, S(t) is exponential stable if and only if

lim|β→∞|‖(iβI −A)−1‖H <∞ (2.18)

holds.

Theorem 2.5. [2] Let H be a Hilbert space and A generates a bounded C0−semigroup in H.

Assume that

iR ⊂ ρ(A), (2.19)

sup|β|>1
1

βk
‖(iβ −A)−1‖ < +∞, for some k > 0. (2.20)

Then, there exists a positive constant C > 0 such that

‖etAZ0‖ ≤ C(
1

t
)
1
k ‖Z0‖D(A), ∀t > 0, (2.21)

for all Z0 ∈ D(A).
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2.1 Proof of Theorem 2.2

Proof. We first verify condition (2.17). Assume that it is false, i.e., there is a λ = iβ ∈ σ(A).

Then there exist λn(= iβn)→ λ and normalized Zn = (Z1n, Z2n, Z3n)T such that

‖(iβn −A)Zn‖H → 0, (2.22)

which implies
iβZ1 − Z2 = o(1), in H1

0 (Ω), (2.23)

iβ(Z1 +
τ2

1

2
Z2)− (Z2 +

τ2
1

2
Z3) = o(1), in H1

0 (Ω), (2.24)

iβ(Z1 + τ2
1Z2 +

τ2
1

2
Z3)−

(
κ4Z1 + κdiv(τ2(x)∇Z2)

)
= o(1), in L2(Ω). (2.25)

For convenience, we have omitted the subscript n here.

Thus

Re〈(iβ −A)Z,Z〉H = −Re〈AZ,Z〉H = κ‖∇Z1‖2 + κτ1‖a
1
2 (x)∇Z2‖2 = o(1). (2.26)

Hence

‖∇Z1‖2 = o(1) and ‖a
1
2 (x)∇Z2‖2 = o(1). (2.27)

Since β is finite, we get from (2.23) and (2.27) that

‖∇Z2‖ = o(1). (2.28)

Then by (2.24), we have

‖∇Z3‖2 = o(1).

By the Poincaré inequality,

‖Z3‖2 = o(1). (2.29)

We conclude that ‖Z‖H = o(1). This is a contradiction with the assumption ‖Z‖H = 1.

Thus, iR ⊂ ρ(A).

Assume that (2.18) and (2.20) are false. We can combine them in one case. Then by

the uniform boundedness theorem, there exists a sequence β → ∞ and a unit sequence Z =

(Z1, Z2, Z3)T ∈ D(A) such that

βk‖(iβI −A)Z‖H → 0, (2.30)

which implies that

βk(iβZ1 − Z2) = o(1), in H1
0 (Ω), (2.31)

βk
(
iβ(Z1 +

τ2
1

2
Z2)− (Z2 +

τ2
1

2
Z3)

)
= o(1), in H1

0 (Ω), (2.32)

βk
(
iβ(Z1 + τ1Z2 +

τ2
1

2
Z3)− κ4Z1 − κdiv(τ2(x)∇Z2)

)
= o(1), in L2(Ω). (2.33)
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From dissipation, we have

β
k
2 ‖∇Z1‖2 = o(1), and β

k
2 ‖a

1
2 (x)∇Z2‖2 = o(1). (2.34)

If a(x) ≥ 0 on Ω, from (2.31) and (2.34), we can also obtain

β
k
2
−1‖∇Z2‖ = o(1). (2.35)

Taking k = 2, we get

‖∇Z2‖ = o(1). (2.36)

By (2.32) and (2.36), we have

‖∇Z3

β
‖ = o(1). (2.37)

Take the inner product of Z3
β with (2.33) in L2(Ω), that is

〈iβ(Z1 + τ1Z2 +
τ2

1

2
Z3),

Z3

β
〉 − 〈κ4Z1,

Z3

β
〉 − 〈κdiv(τ2(x)∇Z2),

Z3

β
〉 =

o(1)

β2
. (2.38)

Integrating by parts, we rewrite (2.38) as

〈i(Z1 + τ1Z2 +
τ2

1

2
Z3), Z3〉+ 〈κ∇Z1,

∇Z3

β
〉+ 〈κτ2(x)∇Z2,

∇Z3

β
〉 =

o(1)

β2
. (2.39)

Then we can get

‖Z3‖2 = o(1). (2.40)

Since the other terms on the left-hand of (2.39) converge to zero by (2.34), (2.36) and (2.37).

Combining (2.34) and (2.40), we have ‖Z‖2H = o(1). This is a contradiction with the assumption

‖Z‖2H = 1.

If a(x) ≥ a0 > 0 on Ω and k = 0. Taking the inner product of Z3 with (2.33) in L2(Ω) to get

〈iβ(Z1 + τ1Z2 +
τ2

1

2
Z3), Z3〉 − 〈κ4Z1, Z3〉 − 〈κdiv(τ2(x)∇Z2), Z3〉 = o(1). (2.41)

Integrating by parts, we rewrite (2.41) as

〈i(Z1 + τ1Z2 +
τ2

1

2
Z3), Z3〉+ 〈κ∇Z1,

∇Z3

β
〉+ 〈κτ2(x)∇Z2,

∇Z3

β
〉 = o(1). (2.42)

By (2.32), we have ‖∇Z3
β ‖ = O(1). Then by (2.34), (2.42) is

〈i(Z1 + τ1Z2 +
τ2

1

2
Z3), Z3〉+ o(1)

= 〈i(Z1 + τ1Z2), Z3〉+ 〈iτ
2
1

2
Z3, Z3〉+ o(1)

= i
τ2

1

2
‖Z3‖2 + o(1) (by (2.34))

= o(1), (2.43)
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i.e.,

‖Z3‖2 = o(1). (2.44)

Combining (2.34) and (2.44), we have ‖Z‖2H = o(1). This is a contradiction with the assumption

‖Z‖2H = 1.

2.2 Proof of Theorem 2.3

Proof. The proof of (2.17) is similar to the proof in Section 2.1. We will check the condition

(2.18). Here we will use special multipliers introduced in [14].

Assume that (2.18) is false. Then by the uniform boundedness theorem, there exist a se-

quence β →∞ and a unit sequence Z = (Z1, Z2, Z3)T ∈ D(A) such that

‖(iβI −A)Z‖H → 0. (2.45)

We rewrite (2.45) as
iβZ1 − Z2 = o(1), in H1

0 (Ω), (2.46)

iβ(Z1 +
τ2

1

2
Z2)− (Z2 +

τ2
1

2
Z3) = o(1), in H1

0 (Ω), (2.47)

iβ(Z1 + τ1Z2 +
τ2

1

2
Z3)− κZ ′′1 − κ(τ2(x)Z ′2)′ = o(1), in L2(Ω). (2.48)

Therefore,

Re〈AZ,Z〉H =
1

2

d

dt
‖Z‖2H = −κ‖Z ′1‖2 − κτ1‖a

1
2 (x)Z ′2‖2 = o(1). (2.49)

Taking the inner product of a(x)Z3

β with (2.48) in L2(Ω), we get

〈iβ(Z1 + τ1Z2),
a(x)Z3

β
〉+

τ2
1

2
〈iβZ3,

a(x)Z3

β
〉 − κ〈Z ′′1 ,

a(x)Z3

β
〉 − κ〈(τ2(x)Z ′2)′,

a(x)Z3

β
〉 = o(1).

(2.50)

By (2.46) and (2.47), ‖iβ(Z1 + τ1Z2)‖ = O(1) and ‖a(x)Z3

β ‖ = o(1). Integrating by parts, we

rewrite (2.50) as

τ2
1

2
i‖a

1
2 (x)Z3‖2 + κ〈Z ′1,

(a(x)Z3)′

β
〉+ κ〈τ2(x)Z ′2,

(a(x)Z3)′

β
〉 = o(1). (2.51)

As ‖Z ′1‖ = o(1), ‖Z3‖ = O(1) and ‖β−1Z ′3‖ = ‖Z ′2‖+ o(1) = O(1), we have that

κ〈Z ′1,
(a(x)Z3)′

β
〉 = o(1). (2.52)
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As for the last term on the left-hand side of (2.50), by (2.47) and (2.49), we can obtain

κ〈τ2(x)Z ′2,
(a(x)Z3)′

β
〉 = κ〈τ2(x)Z ′2,

a′(x)Z3

β
+
a(x)Z ′3
β
〉

= κ〈τ2(x)Z ′2,
a(x)Z ′3
β
〉+ o(1)

= κ〈τ2(x)a(x)Z ′2, Z
′
2〉+ o(1)

= o(1). (2.53)

Combination of (2.51), (2.52) and (2.53) yields

‖a
1
2 (x)Z3‖2 = o(1). (2.54)

which further leads to, due to (2.47), that

‖a
1
2 (x)βZ2‖2 = o(1). (2.55)

Take q(x) ∈ C1,1([0, L];R) and q(0) = 0. It follows from the inner product of (2.48) with

q(x)(Z ′1 + τ2(x)Z ′2) in L2 that

〈iβ(Z1+τ1Z2+
τ2

1

2
Z3), q(x)(Z ′1+τ2(x)Z ′2)〉−κ〈(Z ′1+τ2(x)Z ′2)′, q(x)(Z ′1+τ2(x)Z ′2)〉 = o(1). (2.56)

For the terms on the left-hand side of (2.56), we have

〈iβ(Z1 + τ1Z2 +
τ2

1

2
Z3), q(x)(Z ′1 + τ2(x)Z ′2)〉

= 〈iβ(Z1 + τ1Z2), q(x)Z ′1〉+ 〈iβZ1, q(x)τ2(x)Z ′2〉+ 〈iβτ1Z2, q(x)τ2(x)Z ′2〉

−τ
2
1

2
〈β2Z2, q(x)(Z ′1 + τ2(x)Z ′2)〉+ o(1) (by (2.47))

= 〈Z2, q(x)τ2(x)Z ′2〉+ 〈iβτ1Z2, q(x)τ2(x)Z ′2〉 −
τ2

1

2
〈βZ2, q(x)βZ ′1〉 −

τ2
1

2
〈β2Z2, q(x)τ2(x)Z ′2〉

+o(1) (by (2.46), (2.47) and dissipation)

= 〈iβτ1Z2, q(x)τ2(x)Z ′2〉+
τ2

1

2
〈βZ2, iq(x)Z ′2〉 −

τ2
1

2
〈β2Z2, q(x)τ2(x)Z ′2〉

+o(1) (by (2.46) and ‖Z2‖ = o(1))

= 〈iβτ1Z2, q(x)τ2(x)Z ′2〉 −
τ2

1

2
〈iβZ2, q(x)Z ′2〉 −

τ2
1

2
〈β2Z2, q(x)τ2(x)Z ′2〉+ o(1). (2.57)

It turns out that the first two inner product terms on the right-hand side of (2.57) can be

combined as
1

2
〈iβτ1Z2, q(x)a(x)Z ′2〉.

By dissipation it converges to zero. Thus, (2.57) is

〈iβ(Z1 + τ1Z2 +
τ2

1

2
Z3), q(x)(Z ′1 + τ2(x)Z ′2)〉 = −τ

2
1

2
〈β2Z2, q(x)τ2(x)Z ′2〉+ o(1). (2.58)
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Then, take the real part of right hand side (2.58)

Re〈iβ(Z1 + τ1Z2 +
τ2

1

2
Z3), q(x)(Z ′1 + τ2(x)Z ′2)〉

= −τ
2
1

2
Re〈β2Z2, q(x)τ2(x)Z ′2〉+ o(1)

=
τ2

1

4
〈β2Z2, (q(x)τ2(x))′Z2〉+ o(1)

=
τ2

1

4
〈β2Z2, (q(x)τ2(x))′Z2〉+ o(1) (‖Z2‖2 = o(1)). (2.59)

On the other hand,

−κRe〈(Z ′1 + τ2(x)Z ′2)′, q(x)(Z ′1 + τ2(x)Z ′2)〉

=
1

2
κ‖
(
q′(x)

) 1
2 (Z ′1 + τ2(x)Z ′2)‖2 − 1

2
κq(x)|Z ′1 + τ2(x)Z ′2|2

∣∣L
0

=
1

2
κ‖
(
q′(x)

) 1
2 τ2(x)Z ′2‖2 −

1

2
κq(L)|Z ′1(L) + τ2(L)Z ′2(L)|2

+o(1) (by dissipation). (2.60)

Thus, (2.56) can be written as

τ2
1

4
〈β2Z2, (q(x)τ2(x))′Z2〉+

1

2
κ‖
(
q′(x)

) 1
2 τ2(x)Z ′2‖2−

1

2
κq(L)|Z ′1(L)+τ2(L)Z ′2(L)|2 = o(1). (2.61)

Let us also take the inner product of (2.48) with (q(x)τ2(x))′Z2 in L2(Ω) to get

〈iβ(Z1 + τ1Z2), (q(x)τ2(x))′Z2〉+
τ2

1

2
〈iβZ3, (q(x)τ2(x))′Z2〉

− κ〈(Z ′1 + τ2(x)Z ′2)′, (q(x)τ2(x))′Z2〉 = o(1). (2.62)

For the terms on the left-hand side of (2.62), we have

〈iβ(Z1 + τ1Z2), (q(x)τ2(x))′Z2〉

= 〈Z2 + τ1Z3, (q(x)τ2(x))′Z2〉+ o(1) (by (2.46) and (2.47))

= o(1) (‖Z2‖2 = o(1)), (2.63)

τ2
1

2
〈iβZ3, (q(x)τ2(x))′Z2〉

= −τ
2
1

2
〈iZ3, (q(x)τ2(x))′βZ2〉

= −τ
2
1

2
〈β2Z2, (q(x)τ2(x))′Z2〉+ o(1) (by (2.47)), (2.64)

and

−κ〈(Z ′1 + τ2(x)Z ′2)′, (q(x)τ2(x))′Z2〉

= κ〈τ2(x)Z ′2, (q(x)τ2(x))′Z ′2〉+ κ〈τ2(x)Z ′2, (q(x)τ2(x))′′Z2〉+ o(1) (by dissipation)

= κ〈τ2(x)Z ′2, (q(x)τ2(x))′Z ′2〉+ o(1) (‖Z2‖2 = o(1) and ‖τ2(x)Z ′2‖ = O(1)), (2.65)
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we rewrite (2.62) as

−τ
2
1

2
〈β2Z2, (q(x)τ2(x))′Z2〉+ κ〈τ2(x)Z ′2, (q(x)τ2(x))′Z ′2〉 = o(1). (2.66)

Combination of (2.61) and (2.66) yields

κ

∫ L

0
τ2(x)

(
(q(x)τ2(x))′ + q′(x)τ2(x)

)
|Z ′2|2dx− κq(L)|Z ′1(L) + τ2(L)Z ′2(L)|2 = o(1). (2.67)

Take q(x) = 1

2
√
τ2(x)

∫ x
0

1√
τ32 (t)

a(t)dt, which is a solution to the first order differential equation

τ2(x)
(
(q(x)τ2(x))′ + q′(x)τ2(x)

)
= a(x). (2.67) then becomes

κ

∫ L

0
a(x)|Z ′2|2dx− κq(L)|Z ′1(L) + τ2(L)Z ′2(L)|2 = o(1). (2.68)

The first term in (2.68) converges to zero by dissipation. Therefore,

κq(L)|Z ′1(L) + τ2(L)Z ′2(L)|2 = o(1). (2.69)

Take q(x) = 1

2
√
τ2(x)

∫ x
0

1√
τ2(t)

dt in (2.67), which is a solution to the first order differential

equation (q(x)τ2(x))′ + q′(x)τ2(x) = 1. Together with (2.69), we thus have

κ

∫ L

0
τ2(x)|Z ′2|2dx = o(1), (2.70)

i.e.,

κ‖τ
1
2

2 (x)Z ′2‖2dx = o(1). (2.71)

Take the inner product of Z3
β with (2.48) in L2(Ω), we have

〈iβ(Z1 + τ1Z2 +
τ2

1

2
Z3),

Z3

β
〉 − 〈κZ ′′1 ,

Z3

β
〉 − 〈κ(τ2(x)Z ′2)′,

Z3

β
〉 = o(1). (2.72)

Integrating by parts, we rewrite (2.72) as

〈i(Z1 + τ1Z2), Z3〉+ i〈τ
2
1

2
Z3, Z3〉+ 〈κZ ′1,

Z ′3
β
〉+ 〈κτ2(x)Z ′2,

Z ′3
β
〉 = o(1), (2.73)

The first term on the left-side of (2.73) converges to zero by (2.49) and (2.71). Since ‖Z
′
3
β ‖ = O(1),

which together with dissipation and (2.71), we rewrite (2.73) as

‖Z3‖2 = o(1). (2.74)

Then by (2.49), (2.71) and (2.74), we have ‖Z‖2H = o(1). This is a contradiction with the

assumption ‖Z‖2H = 1.
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3 Analyticity of (1.5) for spatial dependent τ ∗ν and τT

For (1.5) we recall that when τ∗ν > κ∗τq the problem is exponential stable, where τ∗ν is defined

κ∗τν +κ (see [21]). On the other hand, depending on the domain, it can be unstable if τ∗ν < κτq.

In [1], it was also proved that it is exponential stable by energy method when τ∗ν = κ∗τq. Here,

we will consider the spatial dependent τ∗ν (x) and τT (x).

Note that (1.5) can be written as the following system when τ∗ν (x) ≥ κ∗τq and τT = τT (x):
T̈ + τ1

...
T = κ∗4T + div(τ3(x)∇Ṫ ) + κdiv(τ2(x)∇T̈ ), in Ω× (0,∞), (3.1)

T (x, 0) = T 0(x), Ṫ (x, 0) = Ṫ 0(x), T̈ (x, 0) = T̈ 0(x), in Ω, (3.2)

T (·, t)|∂Ω = 0, for t ∈ [0,∞), (3.3)

where

τ1 = τq, τ2(x) = τT (x) and τ3(x) = τ∗ν (x).

Denoting

a(x) = τ3(x)− κ∗τq

and assuming that a(x) ≥ 0 on Ω. We would like to identify a proper state space for the system

(3.1)-(3.3) with dissipative “energy”. Taking the inner product of Ṫ + τ1T̈ with (3.1) in L2(Ω),

we have

1

2

d

dt
‖Ṫ+τ1T̈‖2 = 〈κ∗4T, Ṫ+τ1T̈ 〉+〈div(τ3(x)∇Ṫ ), Ṫ+τ1T̈ 〉+〈κdiv(τ2(x)∇T̈ ), Ṫ+τ1T̈ 〉. (3.4)

Since
〈κ∗4T, Ṫ + τ1T̈ 〉 = −〈κ∗∇T,∇(Ṫ + τ1T̈ )〉

= −1

2

d

dt
κ∗‖∇T‖2 − 〈κ∗∇T, τ1∇T̈ 〉

= −1

2

d

dt
κ∗‖∇T‖2 − d

dt
〈κ∗∇T, τ1∇Ṫ 〉+ κ∗τ1‖∇Ṫ‖2,

〈κdiv(τ3(x)∇Ṫ ), Ṫ + τ1T̈ 〉 = −〈τ3(x)∇Ṫ ,∇(Ṫ + τ1T̈ )〉

= −‖τ
1
2

3 (x)∇Ṫ‖2 − 1

2

d

dt
τ1‖τ

1
2

3 (x)∇Ṫ‖2,

and
〈κdiv(τ2(x)∇T̈ ), Ṫ + τ1T̈ 〉 = −〈κτ2(x)∇T̈ ,∇(Ṫ + τ1T̈ )〉

= −1

2

d

dt
κ‖τ

1
2

2 (x)∇Ṫ‖2 − κτ1‖τ
1
2

2 (x)∇T̈‖2,

then, (3.4) can be written as

1

2

dE(t)

dt
= −κτ1‖∇T̈‖2 − ‖a

1
2 (x)∇Ṫ‖2,
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where

E(t) = κ∗‖∇T‖2 + τ1‖τ
1
2

3 (x)∇Ṫ‖2 + κ‖τ
1
2

2 (x)∇Ṫ‖2 + 2κ∗τ1〈∇T,∇Ṫ 〉+ ‖Ṫ + τ1T̈‖2

= κ∗‖∇T + τ1∇Ṫ‖2 + τ1‖a
1
2 (x)∇Ṫ‖2 + κ‖τ

1
2

2 (x)∇Ṫ‖2 + ‖Ṫ + τ1T̈‖2.

Therefore, we define

H1 = H1
0 (Ω)× L2(Ω)× L2(Ω),

with inner product

〈Z,W 〉H1 :=κ∗〈∇Z1,∇W1〉+ τ1〈τ
1
2

3 (x)∇Z2, τ
1
2

3 (x)∇W2〉+ κ〈τ
1
2

2 (x)∇Z2, τ
1
2

2 (x)∇W2〉

+ 2κ∗τ1〈∇Z1,∇Z2〉+ 〈Z2 + τ1Z3,W2 + τ1W3〉,

i. e.,

‖Z‖2H1
= κ∗‖∇Z1 + τ1∇Z2‖2 + τ1‖a

1
2 (x)∇Z2‖2 + κ‖τ

1
2

2 (x)∇Z2‖2 + ‖Z2 + τ1Z3‖2. (3.5)

Let

Z := (Z1, Z2, Z3)T = (T, Ṫ , T̈ )T .

We rewrite (3.1)-(3.3) as a first order evolution equation on Hilbert space H1
dZ

dt
= A1Z,

Z(0) = Z0,

where the operator A1 is given by

A1Z =


Z2

Z3

1

τ1

(
κ∗4Z1 + div(τ3(x)∇Z2) + κdiv

(
τ2(x)∇Z3

)
− Z3

)


and

D(A1) = {Z = (Z1, Z2, Z3)T ∈ H|Z1 ∈ H2(Ω), Z2, Z3 ∈ H1
0 (Ω)}. (3.6)

From (3.4),

Re〈A1Z,Z〉H1 =
1

2

d

dt
‖Z‖2H1

= −‖a
1
2 (x)∇Z2‖2 − κτ1〈τ2(x)∇Z3,∇Z3〉 ≤ 0. (3.7)

It was proved in [1] that exponential stability of the system (3.1)-(3.3). Similar to Section

2, we can prove that eA1t is a C0−semigroup of contractions in H1.

Theorem 3.1. If τ2(x), τ3(x) ∈ C1(Ω) are strictly positive on Ω̄, and a(x) ≥ 0 on Ω. The

semigroup eA1t is analytic and exponentially stable.
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Remark 3.1. It is worth noting that the analyticity of solutions implies the exponential stability

of solutions and the impossibility of localization of solutions.

We will use the following theorem to prove Theorem 3.1.

Theorem 3.2. [5, 18] Let S(t) = eAt be a C0−semigroup of contractions in a Hilbert space H1.

Suppose that

iR ⊂ ρ(A). (3.8)

Then, S(t) is analytic if and only if

lim|β→∞|‖β(iβI −A)−1‖H1 <∞ (3.9)

holds.

Proof. 1. We first check the condition (3.8).

Assume that (3.8) is false. Suppose that iβ ∈ σ(A1), then there exists a normalized Zn =

(Z1n, Z2n, Z3n)T such that,

‖(iβI −A1)Zn‖H1 → 0. (3.10)

For convenience, we will write Zn as Z.

Thus

Re〈A1Z,Z〉H1 = −‖a
1
2 (x)∇Z2‖2 − κτ1‖τ

1
2

2 (x)∇Z3‖2 = o(1). (3.11)

Then we can rewrite (3.10) as
iβ(Z1 + τ1Z2)− (Z2 + τ1Z3) = o(1), in H1

0 (Ω), (3.12)

iβ
(
τ

1
2

2 (x)∇Z2

)
−
(
τ

1
2

2 (x)∇Z3

)
= o(1), in L2(Ω), (3.13)

iβ(Z2 + τ1Z3)− κ∗4Z1 − div(τ3(x)∇Z2)− κdiv
(
τ2(x)∇Z3

)
= o(1), in L2(Ω).(3.14)

From (3.11), since a(x) ≥ 0, we have

‖τ
1
2

2 (x)∇Z3‖ = o(1). (3.15)

By (3.13), (3.15) and the fact β is finite,

‖τ
1
2

2 (x)∇Z2‖ = o(1). (3.16)

Moreover, it follows from τ2(x) ≥ C > 0 on Ω, that

‖∇(Z2 + τ1Z3)‖ = o(1). (3.17)

Together with (3.12), we obtain

‖∇(Z1 + τ1Z2)‖ = o(1). (3.18)
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Therefore, we obtain ‖Z‖H1 = o(1). This is a contradiction with the assumption that ‖Z‖H1 = 1.

Then we have proved iR ⊂ ρ(A1).

2. We now check the condition (3.9).

Assume that (3.9) is false. Then by the uniform boundedness theorem, there exist a sequence

β →∞ and a unit sequence Z = (Z1, Z2, Z3)T ∈ D(A1) such that

‖(iI − 1

β
A1)Z‖H1 → 0. (3.19)

We can write (3.19) as

i(Z1 + τ1Z2)− 1

β
(Z2 + τ1Z3) = o(1), in H1

0 (Ω), (3.20)

i
(
τ

1
2

2 (x)∇Z2

)
− 1

β

(
τ

1
2

2 (x)∇Z3

)
= o(1), in L2(Ω), (3.21)

i(Z2 + τ1Z3)− 1

β
κ∗4Z1 −

1

β
div(τ3(x)∇Z2)− 1

β
κdiv

(
τ2(x)∇Z3

)
= o(1), inL2(Ω).(3.22)

From (3.19) and (3.11),

Re〈(iI− 1

β
A1)Z,Z〉H1 = − 1

β
Re〈A1Z,Z〉H1 =

1

β
‖a

1
2 (x)∇Z2‖2 +

1

β
‖τ

1
2

2 (x)∇Z3‖2 = o(1), (3.23)

which implies that

‖τ
1
2

2 (x)∇Z2‖ = o(1) (3.24)

due to (3.21).

Since τ2(x) > C > 0 on Ω, then we have

1

β
‖∇(Z2 + τ1Z3)‖ = o(1), (3.25)

with (3.20), we can get

‖∇(Z1 + τ1Z2)‖ = o(1). (3.26)

Taking inner product of (3.22) with Z3, we can obtain

i〈Z2, Z3〉+iτ1‖Z3‖2+
1

β
κ∗〈∇Z1,∇Z3〉+

1

β
〈τ3(x)∇Z2,∇Z3〉+

1

β
κ〈τ2(x)∇Z3,∇Z3〉 = o(1). (3.27)

From the above estimates, all four other inner product terms in (3.27) converge to zero. Hence

‖Z3‖2 = o(1). (3.28)

Then we can obtain

‖Z2 + τ1Z3‖ = o(1). (3.29)

Therefore, we obtain ‖Z‖H1 = o(1) again. This is a contradiction with the assumption that

‖Z‖H1 = 1.
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