Measurement of the 90,91,92,93,94,96Zr(n,γ) and 139La(n,γ) cross sections at n_TOF

G. Tagliente1,a, U. Abbondanno2, G. Aerts3, H. Álvarez4, F. Álvarez-Velarde5, S. Andriamonje3, J. Andrzejewski6, P. Assimakopoulos7, L. Audouin8, G. Badurek9, P. Baumann10, F. Bečvár11, E. Berthoumieux3, F. Calviño12, M. Calvián13,14, D. Cano-Ott3, R. Capote15,16, C. Carrapico17,13, P. Cennini18, V. Chepel19, E. Chiaveri10, N. Colonna1, G. Cortes20, A. Couture21, J. Cox21, M. Dahlhöf18, S. David4, I. Dillmann22, C. Domingo-Pardo23,22, W. Dritz3, I. Duran4, C. Eleftheriadis24, M. Embid-Segura25, L. Ferranti18, A. Ferrari18, R. Ferreira-Marques19, K. Fujiwara2, W. Furman25, I. Goncalves19, E. González-Romero3, F. Gramenna13, C. Guerrero3, F. Gunsing3, B. Haas26, R. Haight27, M. Heit22, A. Herrera-Martínez18, M. Ishigara28, E. Jericha4, F. Käppeler22, Y. Kadi18, D. Karadimos7, D. Karamanis7, M. Kerveno10, P. Koehler29, E. Koskinen14, M. Krička11, C. Lampoudis23,3, H. Leeb9, A. Lindote19, I. Lopes18, M. Lozano16, S. Lukic10, J. Marganiec6, S. Marrone1, T. Martinez5, C. Massimi31, P. Mastini13, A. Mengoni15,18,19, P.M. Milazzo2, C. Moreau11, M. Mosconi22, F. Neves17, H. Oberhummer3, S. O’Brien21, J. Pancin3, C. Papachristodoulou11, C. Papadopoulos32, C. Paradela4, N. Patronis3, A. Pavlik3, P. Pavlopooulos34, L. Perrot1, M.T. Pigni3, R. Plag22, A. Plompen3, A. Plukis3, A. Poche20, J. Praena13, C. Pretel20, J. Quesada16, T. Rauscher36, R. Reifarth27, C. Rubbia9, G. Rudolf10, P. Rullhusen32, J. Saltroglio17, C. Santos12, L. Sarchiapone18, I. Savvidis23, C. Stephan11, J.L. Tain3, L. Tassan-Got3, L. Tavora18, R. Terliuzzi1, G. Vannini31, P. Vaz17, A. Ventura18, D. Villamarin5, M.C. Vincente3, V. Vlachoudis18, R. Vlastou32, S. Walter22, M. Wiescher21, and K. Wissik22

The n_TOF Collaboration (www.cern.ch/nTOF)

1 Instituto Nazionale di Fisica Nucleare, Bari, Italy – 2Istituto Nazionale di Fisica Nucleare, Trieste, Italy – 3CEA/Saclay-DSM/DAPNIA, Gif-sur-Yvette, France – 4Universidad de Santiago de Compostela, Spain – 5Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Madrid, Spain – 6University of Lodz, Lodz, Poland – 7University of Ioannina, Greece – 8Centre National de la Recherche Scientifique/IN2P3-IPN, Orsay, France – 9Atominstitut der Österreichischen Universitäten, Technische Universität Wien, Austria – 10Centre National de la Recherche Scientifique/IN2P3-IRSc, Strasbourg, France – 11Charles University, Prague, Czech Republic – 12Università Politecnica di Madrid, Spain – 13Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Italy – 14Dipartimento di Fisica, Università di Padova, Italy – 15International Atomic Energy Agency (IAEA), Nuclear Data Section, Vienna, Austria – 16Universidad de Sevilla, Spain – 17Istituto Tecnologico e Nuclear (ITT), Lisbon, Portugal – 18CERN, Geneva, Switzerland – 19LIP-Physica e & Departamento de Fisica da Universidade de Coimbra, Portugal – 20Universitat Politècnica de Catalunya, Barcelona, Spain – 21University of Notre Dame, Notre Dame, USA – 22Forschungszentrum Karlsruhe GmbH (FZK), Institut für Kernphysik, Germany – 23Istituto di Fisica Corpuscular, CSIC-Universidad de Valencia, Spain – 24Aristotle University of Thessaloniki, Greece – 25Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Russia – 26Centre National de la Recherche Scientifique/IN2P3-CENBG, Bordeaux, France – 27Los Alamos National Laboratory, New Mexico, USA – 28Tokyo Institute of Technology, Tokyo, Japan – 29Oak Ridge National Laboratory, Physics Division, Oak Ridge, USA – 30National Institute of Nuclear Sciences and Technology, Tsukuba, Japan – 31Institute for Nuclear Research and Nuclear Technology, Budapest, Hungary – 32University of Athens, Greece – 33Istituto di Fisica Nucleare, University of Bologna, and Sezione INFN di Bologna, Italy – 34National Technical University of Athens, Greece – 35Saclay-DSM/CNRS, Saclay, France – 36CEC-JRC-IRMM, Geel, Belgium – 37Department of Physics - University of Basel, Switzerland – 38Università degli Studi Pavia, Pavia, Italy – 39ENEA, Bologna, Italy

Abstract. Neutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the 139La is important to monitor the s-process source during the He shell burning episodes of thermally pulsing AGB stars.

1 Introduction

The neutron capture cross sections of 90,91,92,93,94,96Zr and 139La have been measured with high resolution at the n_TOF facility at CERN. The neutron capture measurement of these isotopes has a particular relevance in the nuclear astrophysics, since the Zr belongs to the first s-process peak in the solar abundance distribution at N \approx 50 while the La belongs to the second s-process peak at N \approx 82. The 90Zr and the 139La are neutron magic and are characterized, like the 91,92,93,94,96Zr, by a low neutron capture cross section and are predominately of s-process origin. The most neutron reach Zr stable isotope, 96Zr, is traditionally considered to be an r-only isotope with a small s-process admixture refs. [1,2]. Its abundance is considered to be a strong indicator in the efficiency of the 22Ne neutron source during the He shell burning episodes of thermally pulsing AGB stars.

The lanthanum acts as bottleneck between the abundant light n-capture element of the first s-process peak and the

©2008 CEA, published by EDP Sciences

Article available at http://nd2007.edpsciences.org or http://dx.doi.org/10.1051/ndata:07732
heavy elements from Sm up to Pb and Bi, it is very important for interpreting the element abundance patterns in very old, metal poor stars. Since the La abundance is completely represented by 139La it can be used to distinguish the s-process components from the products of explosive r-process nucleosynthesis, the s/r ratio is of utmost importance for the galactical chemical evolution. The major motivation of the present measurement was to reduce the uncertainties to a few percent, as required to improve the stellar s-process model.

2 Experimental set-up

The measurements were performed at the neutron time-of-flight (n_TOF) facility at CERN in a range of energy between 1 eV and 1 MeV with a pulsed neutron beam. The neutrons were generated by spallation reactions induced by a pulse of beam of 20 GeV protons impinging on a massive lead target. The low repetition rate of the proton beam driver, the extremely high instantaneous neutron flux, the low background conditions in the experimental area, together with improved neutron sensitivity of the γ-ray detectors make this facility unique for neutron induced reaction cross section measurements with high accuracy. The main characteristics of the facility and apparatus are reported in [3].

2.1 Detectors and data acquisition

The measurement is based on the detection of the γ rays emitted in the de-excitation cascade following a neutron capture event. Two C$_6$D$_6$ detectors with minimized neutron sensitivity [4], placed perpendicular to the neutron beam at a distance of about 3 cm from the beam axis, were used to detect the γ rays. The background due to in-beam γ rays was reduced by placing the detectors 9.2 cm upstream of the sample position. The light output of the detectors was calibrated by means of the 137Cs,60Co and Pu/C γ-ray sources. The calibrated neutron time of flight was used to determine the neutron energy. Measured upstream of the capture samples with low mass flux monitor consisting of a Mylar foil 1.5 μm in thickness with a layer of 200 μg/cm2 of 6Li surrounded by four silicon detectors outside the neutron beam, measuring the charged particles of the 6Li(n,α)3H reaction [14]. The data were acquired with high frequency flash ADC (FADC) using the standard n_TOF data acquisition system [5]. The raw data were recorded signal by signal for a detailed off-line analysis, which allows one to extract the required information on timing, charge, amplitude and particle identification, allowing in particular an efficient γ-n discrimination.

2.2 Samples

The characteristic of the samples are summarized in table 1. The enriched Zr samples were prepared from oxide powder, an admixture of Hf, Na, Mg, Al, Sn and Mo were also present in the Zr samples. The influence of those contaminants, although small (their total contamination was lower than 1%), can not be neglected. Additional Au reference sample as well as a natural C and 208Pb sample were used for neutron flux normalization in the measurements. The Au reference sample was used because the gold capture cross section is known with high accuracy, particularly the saturated resonance at 4.9 eV. The C and 208Pb samples were used to determine the background components related to sample scattered neutrons and in-beam γ rays.

Table 1. Samples characteristics. The Zr samples where in the ZrO$_2$ form.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Diam. (mm)</th>
<th>Mass (g)</th>
<th>Enrich. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90Zr</td>
<td>22</td>
<td>2.721</td>
<td>97.7</td>
</tr>
<tr>
<td>91Zr</td>
<td>22</td>
<td>1.407</td>
<td>89.9</td>
</tr>
<tr>
<td>92Zr</td>
<td>22</td>
<td>1.351</td>
<td>91.4</td>
</tr>
<tr>
<td>93Zr</td>
<td>22</td>
<td>6.595</td>
<td>91.4</td>
</tr>
<tr>
<td>94Zr</td>
<td>22</td>
<td>2.015</td>
<td>19.98</td>
</tr>
<tr>
<td>96Zr</td>
<td>22</td>
<td>3.401</td>
<td>58.5</td>
</tr>
<tr>
<td>139Zr</td>
<td>20</td>
<td>1.934</td>
<td>99.71</td>
</tr>
</tbody>
</table>

Fig. 1. Capture yield of the La sample and total background. Bottom: Individual background components [8].
Finally, systematic uncertainties are significantly reduced by the improved n_TOF set-up, which exhibits much lower neutron sensitivity by the use of low-mass carbon fibre cans for the liquid scintillator detectors. In addition, the use of FADCs provides an efficient way for n/γ-discrimination.

4 Results

Resonances observed were analyzed in terms of R-matrix parameters in the Reich-Moore approximation with the code SAMMY [8]. Due to the high energy resolution of the n_TOF facility many new resonances were found. The resonance parameters measured at n_TOF are for all the Zr samples in general 10–20% smaller than previously reported while for the La sample are 10% lower than that reported in [9] and a few percent lower than that reported in [10]. A possible explanation for these systematic differences can be due to a more reliable evaluation of the PHWT, an accurate treatment of the corrections for self shielding, multiple scattering and the effect of neutron energy resolution, and the use of the well tested R-matrix code SAMMY. Figure 2 shows the comparison of the neutron capture kernels $k_{\gamma}^{\text{tot}}/k_{\text{tot}}$ for the ^{90}Zr resonances with those reported in the Mughabghab compilation [11].

4.1 Maxwellian averaged capture cross section

In order to study the s-process abundances, the Maxwellian averaged cross sections (MACS) are required over a range of thermal energies. The MACS were calculated folding the capture cross section with a maxwellian distribution of the neutron fluence in a wide energy range (1 eV–550 keV).

Since the n_TOF data cover part of this spectrum, only the partial contribution to MACS can be accurately determined. To calculate the MACS in the full energy range the JENDL cross section were renormalized with respect to the n_TOF data.

Figure 3 shows the comparison between the MACS calculated for the ^{90}Zr with n_TOF data and the JENDL 3.3 library and figure 4 shows the comparison of MACS calculated for the ^{139}La with n_TOF data and the one calculated from an FZK with activation method [15] and Musgrove data. In table 2 the values calculated for the MACSs are compared with recommended values derived from previous data [13]. The MACS calculated on the present experimental data except for the ^{94}Zr result lower than those reported in literature, although apart for the ^{96}Zr the new values are within the error bars of the previous data.

Table 2. MACS calculated wit n_TOF data compared with recommended values of the previous data.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>n_TOF</th>
<th>Bao et al. [13]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{90}Zr</td>
<td>18.1 ± 1</td>
<td>21 ± 2</td>
</tr>
<tr>
<td>^{91}Zr</td>
<td>51.6 ± 2</td>
<td>60 ± 8</td>
</tr>
<tr>
<td>^{92}Zr</td>
<td>29.7 ± 2</td>
<td>33 ± 4</td>
</tr>
<tr>
<td>^{94}Zr</td>
<td>27.6 ± 1</td>
<td>26 ± 1</td>
</tr>
<tr>
<td>^{96}Zr</td>
<td>7.5 ± 0.4</td>
<td>10.7 ± 0.5</td>
</tr>
<tr>
<td>^{139}La</td>
<td>32.4 ± 3</td>
<td>38.4 ± 2.7</td>
</tr>
</tbody>
</table>

5 Conclusions

The (n,γ) cross sections of the $^{90,91,92,93,94,96}\text{Zr}$ and ^{139}La have been measured over a wide neutron energy range using the innovative features of the n_TOF CERN facility. The capture kernel presented in this work are for all sample except for ^{94}Zr weaker than what reported in the previous measurements and
in the libraries evaluated data. This result can be explained in terms of the optimized performance of the facility, experimental set-up, data acquisition and the more accurate data analysis tools, as the PHWT and SAMMY code. The new capture cross section have led to an improvement of the MACS which were calculated with more accuracy and the values found results lower than the values recommended from the literature. Furthermore some other nuclear quantities has been calculated as the level density, which implication for the 139La are published in [8].

This work was supported by the EC under contract FIKW-CT-2000-00107 and by funding agencies of the participating institutes.

References