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Abstract

Bayesian optimization has risen over the last few years as a very attractive approach to find
the optimum of noisy, expensive to evaluate, and possibly black-box functions. One of the
fields where these functions are common is in machine-learning, where one typically has to fit
a particular model by minimizing a specified form of loss. In this Master’s thesis we first focus
on reviewing the most recent literature on Gaussian Processes as well as Bayesian optimiza-
tion methods, then we benchmark said methods against several real case machine-learning
scenarios and lastly we provide open source software that will allow researchers to apply these
strategies in other problems.

Keywords: machine-learning, bayesian, optimization
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There ain’t no such thing as a free lunch.
Friedman. M. (1975)

Be brave, be bayesian.



6



Contents

1 Organization of this work 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Gaussian Process regression 11

2.1 A function space view for Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A weight space view for Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Standard Bayesian linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Kernel functions in feature space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Prediction using a Gaussian Process prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 A toy example of Gaussian Process regression . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Picking a winner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 On covariance functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Visualizing different covariance functions . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Type II Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Further theoretical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Gaussian processes as linear smoothers . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.2 Explicit basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.3 Marginalizing over hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Bayesian optimization 29

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The bayesian optimization framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 On acquisition functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Improvement-based policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Optimistic policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Information-based policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 Acquisition function portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.5 Visualizing the behaviour of an acquisition function . . . . . . . . . . . . . . . . . 32

3.3.6 Why does Bayesian Optimization work? . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Role of GP hyperparameters in optimization . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Optimizing the acquisition function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Computational costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Approximations to the analytical GP. Alternative surrogates. . . . . . . . . . . . . 37

3.6.2 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Step-by-step examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7.1 Optimizing the sine function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7.2 Optimizing the Rastrigin function . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7



8 CONTENTS

4 Experiments 49
4.1 Benchmarking rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Other strategies for hyper-parameter optimization . . . . . . . . . . . . . . . . . . 49
4.1.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.3 Bayesian optimization setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.4 Machine-learning models used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The binding affinity dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Description of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 The protein-protein interface prediction dataset . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Description of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Other datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 The breast cancer dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 The LSVT voice rehabilitation dataset . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.3 The Parkinson’s disease dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 pyGPGO: Bayesian Optimization for Python 73
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Package logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 A minimal example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Gaussian Process regression using the GaussianProcess module. . . . . . . . . . . 77
5.4.2 MCMC inference over hyperparameters using the GaussianProcessMCMC module . 78
5.4.3 Using the GPGO module for global optimization. . . . . . . . . . . . . . . . . . . . . 78
5.4.4 Optimizing parameters of a machine-learning model using the GPGO module. . . . . 79

5.5 Comparison with existing software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendices 87

A Examples code 89
A.1 drawGP.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 sineGP.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3 covzoo.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4 hyperopt.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.5 acqzoo.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.6 integratedacq.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.7 bayoptwork.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.8 sineopt.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.9 rastriginopt.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B Testing code 99
B.1 utils.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.2 modaux.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.3 testing.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Chapter 1

Organization of this work

1.1 Introduction

This Master’s thesis has three different and complimentary aims:

• The first objective of the thesis is to provide the reader with an introduction to Gaussian Process
regression and Bayesian optimization. While there are vast pieces of work for both Gaussian
Processes and Bayesian Optimization, this work aims to bridge the gap between them. I try to
cover as much literature as needed to provide the reader with enough background to understand and
implement the theoretical work presented here. Explanations are accompanied by comprehensive
coding implementations and examples that help understand the material.

• To show the Bayesian Optimization framework works in several real-world machine learning tasks.
This is done by selecting several datasets related to open computational chemistry problems, fol-
lowing said methodology and finally comparing its performance to other already existing strategies.

• Finally, to write a complete software package for users to apply Bayesian Optimization in their
research. This comes in the form of a Python (>3.5) package named pyGPGO. The code can
either be obtained through its GitHub repository https://github.com/hawk31/pyGPGO or the
Python Package Index (PyPI). The entire software package is MIT licensed. All the examples
and code snippets throughout this manual are based on this software. While certainly there are a
couple implementations of Global Optimization software in Python, the software developed here is
modular, easy to use and requires minimal dependencies, while still being feature-wise competitive.

We begin by describing the title of this thesis. Bayesian Optimization focuses on the global optimiza-
tion of a function f : Rn → R over a compact set A. The problem can be formalized as:

max
x∈A

f(x) (1.1)

Most optimization procedures (local based ones such as gradient ascent, for example) assume that
the function f is closed-form, that is, it has an analytical expression, that it is convex, with known first
or second order derivatives or cheap to evaluate. Bayesian optimization focuses on all these problems
proposing a very elegant solution. By the use of a surrogate model, a Gaussian Process, a Bayesian
optimization procedure can help find the global minimum of non-necessarily convex, expensive functions
that are expensive to evaluate. These methods shine also where there is no closed-form expression to
evaluate or derivatives.

At the same time, in machine learning (or statistical learning), we are usually interested in minimizing
a loss function L over a subset of data. These losses can take many forms, e.g. when doing regression, a
typical loss might be the mean squared error between predictions and observed values on a holdout test
set.

9
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10 CHAPTER 1. ORGANIZATION OF THIS WORK

L(y, ŷ) =
1

n

∑
i

(yi − ŷi)2
(1.2)

In binary classification, for example, a very popular choice is the logarithmic loss:

L(y, ŷ) = − 1

n
=
∑
i

(yi log(ŷi) + (1− yi) log(1− ŷi)) (1.3)

Notice in any case, that these losses are typically defined in a subset of R. In the work described here we
focus on the supervised setting of machine learning. Depending on the problem at hand, even evaluating
these losses can be very expensive from a computational point of view. This may have to do with
the machine learning algorithm used or dataset size. These machine learning algorithms typically have
hyperparameters that have to be tuned in a sensible way to get the best performance possible out of these
models. In the machine learning community it is common for practitioners to perform hyperparameter
grid lookups or randomized searches to reach reasonable solutions. However, with the advent of big-
data and more computationally hungry strategies, the training of a single model could already take
substantial resources in terms of CPU cycles or memory, that is translated in higher wall-clock waiting
times. Therefore we would like to have a more efficient and cheap way to optimize these hyperparameters.
Bayesian optimization will let us do that by proposing the next candidate hyperparameter set x to
evaluate according to several criteria.

1.2 Organization of the thesis

The whole thesis is organized in 5 self-contained chapters. First, all the theoretical work is presented,
for both Gaussian Processes and Bayesian optimization, then benchmarking of the method is presented,
and finally we describe the developed piece of software. I briefly describe the content of each chapter here:

Chapter 2 focuses on a swift but thorough introduction to regression problems using Gaussian Pro-
cesses. These are the surrogate models we will use for Bayesian Optimization in Chapter 3. We will
mostly cover the theory behind them from a functional point of view. We will also explain different
covariance functions and their role in these models. Special attention is given to different approaches
towards covariance hyperparameter treatment. Further theoretical aspects are also discussed.

Chapter 3 is about the main topic in this work, Bayesian Optimization. Once we have laid down
all the foundations of Gaussian Processes, we can start explaining the theory of Bayesian optimization
using these as surrogate models. The role of several acquisition functions, i.e. functions that will propose
the next point to evaluate will be thoroughly discussed, as well as their advantages or disadvantages.
Different modelling choices are then further presented. References on this chapter will be very diverse,
as I will try to summarize several recent publications on the field.

Chapter 4 covers experiments using the software provided alongside this manual. These are mostly
mid-sized regression or classification problems where we will compare the performance of Bayesian Op-
timization of hyperparameters with several regressors/classifiers with other strategies, such as random
search. Most of these datasets are related to the experimental sciences, in particular chemistry, and some
of them were used for other benchmarking purposes in other studies.

Chapter 5 holds no theoretical content nor testing content. It will cover technical explanations of
pyGPGO, the software developed alongside this manual. Usage examples are also provided.



Chapter 2

Gaussian Process regression

In this chapter we will focus on regression problems. Assume we have some labelled data

D = {(xi, yi) | i = 1, . . . , n} , (2.1)

where x is a vector of covariates and y denotes a continuous objective variable. We wish to learn a
predictive distribution over new values of y given x, so that we can make predictions and inference over
these. In practice, for simplicity we write that D = {X,y}, where X is our predictor matrix.

One can interpret a Gaussian Process in several ways. The most widely known is the function space
view, which is the one we will cover first here and the one we will assume for the rest for the thesis. In
this view, we consider a Gaussian Process to be a stochastic process, hence, a distribution over functions,
instead of over values. Inference takes place directly in this space. For completeness, we will also pro-
vide a weight-space view second, that might be more appealing to readers familiar with Bayesian linear
regression.

2.1 A function space view for Gaussian Processes

We start by formally defining a Gaussian Process:

Definition 1 A Gaussian Process is a collection of random variables, any finite number of which have
a joint Gaussian distribution. This process is totally defined by two functions. Its mean function:

m(x) = E [f(x)] (2.2)

and its covariance function:

k(x,x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] (2.3)

We say that f is a Gaussian Process with mean m(x) and covariance function k(x, x′) and write:

f(x) ∼ GP (m(x), k(x,x′)) (2.4)

In practice, for simplicity we will take m(x) = 0, but this can be specified otherwise. Further-
more, a Gaussian Process fulfils the marginalization property, that is to say that if the the GP specifies
(y1, y2) ∼ N (µ,Σ) then it follows that y1 ∼ N (µ1,Σ11). A Gaussian multivariate distribution is just a
finite index set of a given Gaussian Process.

Define then a covariance function, such as the squared exponential kernel, written as:

k(x,x′) = exp

(
−1

2
|x− x′|2

)
(2.5)

11
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Figure 2.1: Three sampled Gaussian Process priors using the Squared Exponential kernel.
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where |.| denotes the standard L2 norm. Most of the covariance functions that we will see here are
a function of this norm, therefore it is much more comfortable to write r = |x − x′| and therefore the
squared exponential kernel becomes:

k(r) = exp

(
−1

2
r2

)
(2.6)

It is straightforward to draw samples from a Gaussian Process. In particular, since we work with a
finite number of points, choose an arbitrary number of examples X∗ and compute the squared exponential
kernel (assuming m(x) = 0). Then the procedure is simplified to sampling from the following multivariate
Gaussian:

f∗ ∼ N (0,K(X∗, X∗)) (2.7)

We have written a very simple script to illustrate this point, which is available in Appendix A.1, pro-
ducing Figure 2.1. Most of the code examples presented throughout the rest of the text were programmed
using pyGPGO, the software developed alongside this thesis.

Before we move on, notice that the drawn functions in Figure 2.1 seem to have a characteristic length-
scale. This can be interpreted as the distance one has to move in input space before the function value
changes significantly. By default, the squared exponential kernel uses a characteristic length-scale of 1
(l = 1). To change this behaviour, it is sufficient to consider r/l instead of r in Equation 2.6. This can
be thought as an hyperparameter to optimize. We will return to this problem in Section 2.5.
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2.2 A weight space view for Gaussian Processes

In this section I will try to draw connections between Bayesian linear regression [2] and Gaussian Pro-
cesses, through the use of kernel functions.

2.2.1 Standard Bayesian linear regression

A Bayesian linear regression model with Gaussian error can be formulated as:

y = XTw + ε (2.8)

where we typically assume ε ∼ N (0, σ2
n). This noise assumption directly implies a Gaussian likelihood,

thus it can be easily proven that:

p(y|X,w) ∼ N (XTw, σ2
nI) (2.9)

Assume now a Gaussian prior on the weights w:

w ∼ N (0,Σp) (2.10)

We are interested now on the posterior distribution of w, given both X and y, and assuming the
model in Equation 2.8, that is:

p(w|y, X) =
p(y|X,w)p(w)

p(y|X)
(2.11)

One can solve this problem by means of sampling procedures like Markov Chain Monte Carlo, but in
this particular case, there is a closed-form solution. It can be proven that:

p(w|X,y) ∼ N
(

1

σnn
A−1Xy, A−1

)
(2.12)

where A = σ−2XXT + Σ−1
p . Notice that a simple MAP (maximum a posteriori) estimate of the

weights can be obtained by just computing the mean of this distribution. Now, to make predictions for
a particular test case x∗, we average over all possible parameter values, hence we get a whole predictive
distribution. Again, it can be shown that:

f∗|x∗, X,y ∼ N
(

1

σ2
n

x∗
TA−1Xy,x∗

TA−1x∗

)
(2.13)

2.2.2 Kernel functions in feature space

We have presented a very simple Bayesian approach to linear regression in the previous section. While
useful, it lacks expressiveness due to its linearity. A very simple idea is to project this data into a higher
dimension, where it may be more easily separated by a linear model of this sort. This is known as using
the kernel trick [4]. We can do this through a covariance (or kernel) function φ(x). Note by Φ(X) the
aggregation of columns after computing this kernel function in the entire dataset at hand.

The model becomes now:

f(x) = φ(x)Tw (2.14)

where we assume the same prior over w as in Equation 2.10. All the math presented in the previous
section applies here, just placing φ(x) instead of x. The predictive distribution over y becomes now, for
example:

f∗|x∗, X,y ∼ N
(

1

σ2
n

φ(x∗)
TA−1Φy, φ(x∗)

TA−1φ(x∗)

)
(2.15)
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where for simplicity we have written Φ = Φ(X) and A = σ−2
n ΦΦT + Σ−1

p . The predictive distribution
needs to invert N ×N matrix. Equation 2.15 can be rewritten as:

f∗|x∗, X,y ∼ N
(
φ∗

TΣpΦ(K + σ2
nI)−1y,φ∗Σpφ∗ − φ∗TΣpΦ(K + σ2

nI)−1ΦTΣpφ∗

)
(2.16)

where we have again simplified notation by φ∗ = φ(x∗) and K = ΦTΣpΦ. Now notice that the
entries of K for both train and test set are of the form φ(x∗

T )Σpφ(x∗). We have implicitly defined now a
covariance function of the form k(x,x′) = φ(x∗

T )Σpφ(x∗). This is in fact an inner product with respect

to Σp. That is if we define ψ(x) = Σ
1/2
p (x), then a simple dot product representation of a covariance

function is:

k(x,x′) = ψ(x)Tψ(x′) (2.17)

where Σ
1/2
p can be defined by means of a singular value decomposition. We then replace the original

feature vectors by these dot products, lifting to a higher space. In the next Section, we will perform the
same calculations detailed here, but using the function space view that will be used throughout the rest
of the text.

2.3 Prediction using a Gaussian Process prior

In this particular section, arguably the most important one in the chapter, we will learn how to incor-
porate the knowledge of training data D = {(xi, yi) |i = 1, . . . , n} into our Gaussian Process to obtain
a posterior predictive distribution. We will start considering the case that we have a noiseless function,
that is to say, when σ2

n = 0. Let us define K(X,X∗), the covariance function evaluated on train and test
points, K(X,X) the covariance function evaluated at only the training points, K(X∗, X∗) equivalently
defined for the test values. Notice the last two have to be square matrices by definition.

Let us also use the following theorem:

Theorem 1 Let x and y be jointly Gaussian:[
x
y

]
∼ N

([
µx
µy

]
,

[
A C
CT B

])
(2.18)

Then x|y ∼
(
µx + CB−1(y − µy), A− CB−1CT

)
Similarly as in Equation 2.7, assume that f and f∗ are jointly Gaussian:[

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(2.19)

We are interested now in the distribution of f∗|f . Simply applying Theorem 1, we can obtain:

f∗|f ∼ N
(
K(X∗, X)K(X,X)−1f ,K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)

)
(2.20)

This covers all the basics for a Gaussian Process regression model. Notice that now we have a com-
plete predictive distribution over test values f∗, and this provides us with plenty of choices. For example,
one could obtain an estimate of this function by drawing samples from a multivariate normal with the
computed posterior parameters, or obtain a MAP estimate using the posterior mean.

Let us now consider the scenario where observations are not noise-free, that is, each time the function
is queried it comes with i.i.d Gaussian error with mean 0 and variance σ2

n > 0. Assume now the following
prior on the noisy observations:

Cov(y) = K(X,X) + σ2
nI (2.21)
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Following the exact operations as before, but taking into account this new term, we got the following
joint distribution: [

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(2.22)

And conditioning again f∗ on y, we obtain our final predictive distribution:

f∗|y ∼ N (f∗, Cov(f∗)) (2.23)

where now:

f∗ = K(X∗, X)
(
K(X,X) + σ2

nI
)−1

y

Cov(f∗) = K(X∗, X∗)−K(X∗, X)
(
K(X,X) + σ2

nI
)−1

K(X,X∗)
(2.24)

It will probably be useful to note that a Gaussian Process model can be written in terms of a Bayesian
hierarchical model, since:

y|f ∼ N (f , σ2
nI)

f |X ∼ N (0,K(X,X))
(2.25)

In fact, one can also assume other priors, even over σ2
n. This representation may help us understand

the introduction of the marginal likelihood. This marginal likelihood in a Gaussian Process setting is
defined as:

p(y|X) =

∫
p(y|f , X)p(f |X)df (2.26)

Using the results from Equations 2.25 we can derive the integral analytically to obtain:

log p(y|X) = −1

2
yT (K + σ2

nI)−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π (2.27)

where we write K = K(X,X) for simplicity. Notice this result is equivalent to the log-density of
y ∼ N (0,K + σ2

nI). We have now all the necessary ingredients to lay down pseudo-code for the imple-
mentation of a Gaussian Process regressor, as presented in Algorithm 7. It makes use of several tricks
for computational stability, such as a Cholesky decomposition and several linear system of equations to
avoid directly inverting matrices.

Algorithm 1 Gaussian regressor pseudo-code.

1: function GaussianProcess(X, y, k, σ2
n, x∗)

2: L← chol(K + σ2
nI)

3: α← linsolve
(
LT , linsolve(L,y)

)
4: f∗ ← k∗

Tα
5: v ← linsolve(L,k∗)
6: V [f∗]← k(x∗,x∗)− vTv
7: log p(y|X)← −1

2
yTα−

∑
i logLii −

n

2
log 2π

8: end function

pyGPGO includes an implementation of a Gaussian Process regressor under the surrogates.GaussianProcess
module. The entire module along with its functionality will be detailed in Section 5.1.
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Figure 2.2: A fitted Gaussian Process regressor to samples of the sine function.

0 1 2 3 4 5 6

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Posterior mean
True function
95% confidence band

2.3.1 A toy example of Gaussian Process regression

Now that we have both the algorithm and the tools at hand, it may be interesting how a Gaussian Process
regressor behaves with a toy example. We try to approximate a simple sine function in the interval [0, 2π],
and plot both the posterior mean and a 95% confidence band using the posterior variance of the fitted
process. The code in Appendix A.2 produces Figure 2.2.

2.3.2 Picking a winner

In the previous section we have shown how to compute predictive posterior distribution for function
outputs y∗ given a new input x∗. These are given by a Gaussian distribution with a certain mean and
variance. In plenty of production settings, however, it is more common to provide a single value, or
estimate yguess that is optimal in some sense. To define a sense of optimality, define a loss function
L(ytrue, yguess). This, defines a penalty incurred by taking the decision to use yguess when the true value
is ytrue. For example, this could be the mean square or mean absolute error function. In the Bayesian
setting, there is no clear mention of a loss function in any stage. In the frequentist setting, however, a
model is usually trained by minimizing this loss. Furthermore, there is a clear separation between loss
and likelihood in the Bayesian setting, the latter used for training, with prior information. The loss
function however only captures the consequences of making a single specific choice given a true state.

Again, we would like to somehow pick a winner yguess that minimizes our loss. Without knowing
ytrue, our best choice is to minimize the expected loss, averaging with respect to our model:
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RL(yguess|x∗) =

∫
L(y∗, yguess)p(y∗|x∗,D)dy (2.28)

Our optimal value is the one that minimizes this expected loss:

yoptimal|x∗ = arg min
yguess

RL(yguess|x∗) (2.29)

It can be proven that the value yguess that minimizes Equation 2.29 for the absolute loss function is
the median of p(y∗|x∗,D). For the squared loss function, it is the mean of the same distribution. Since
in our case we are dealing with the Gaussian distribution, median and mean coincide, and the most
reasonable winner will therefore be the specific value of the posterior mean.

2.4 On covariance functions

A covariance function [11], like the squared exponential kernel that we have been using as a example
throughout the chapter encodes our assumptions of similarity between inputs from x. We assume similar
items in input space to have similar values of the target value y. Not all functions of x and x′ can be
defined as covariance function. Covariance functions (though not all) tend to satisfy different properties:

• Weak stationarity. A covariance function is said to be weakly stationary if it is a function of x−x′.
That is to say that it is invariant to translations in the input space. Most of the covariance functions
we will see fall into this category.

• Isotropy. A covariance function is said to be isotropic if it is only function of |x − x′|. Therefore,
every isotropic covariance function is stationary.

• Dot-product. Some covariance functions are functionals of the dot-product |xTx′|. These kernels,
while invariant to rotations are not invariant to translations.

There is an excellent theoretical analysis of covariance functions in [9]. We will not cover this here since
it falls beyond the scope of this thesis. However, we will start providing examples of the most common
covariance functions. All covariance functions described here are implemented in the software developed
alongside this thesis, pyGPGO, in the covfunc module. We will describe their functionality in Section 5.1.

The Squared Exponential covariance function is the one that we have been using so far. It is also
arguably the most used in practice. It takes the general form:

kSE(r) = exp

(
− r2

2l2

)
(2.30)

where l is the parameter controlling its characteristic length-scale. It is useful to define these functions
in terms of r since we can abstract this calculation to another function.

The Matérn class of covariance functions [5] takes the form:

kMatern(r) =
21−ν

Γ(ν)

(√
2νr

l

)ν
Kν

(√
2νr

l

)
(2.31)

with ν, l > 0 and Kν is a modified Bessel function of the second kind [1]. Simple functional forms can
be obtained when ν is half integer, that is ν = p+1/2 for p non-negative integer. In particular, if ν = 1/2,
we obtain the a simple exponential kernel and if we take limit ν →∞ we obtain the squared exponential
covariance function. Popular values are ν = 3/2 (once-differentiable) and ν = 5/2 (twice-differentiable).

The γ-exponential covariance function, of which the squared exponential is a special case, takes the
general form:
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kGE(r) = exp
(
−
(r
l

)γ)
(2.32)

for 0 < γ ≤ 2.

The Rational Quadratic covariance function can be written as:

kRQ(r) =

(
1 +

r2

2αl2

)−α
(2.33)

with α, l > 0. This covariance function can be seen as a scale mixture of squared exponential kernels
with different length scales.

The arcSin kernel is an example of a dot product covariance function, therefore non-stationary:

karcSin(x,x′) =
2

π
sin−1

 2xΣx′√
(1 + 2xTΣx)(1 + 2x′

T
Σx)

 (2.34)

where Σ is some semidefinite positive matrix. Normally, these are the covariance functions that are
used for the noiseless case of observation, that is, we know precisely that f(xi) = yi, i = 1 . . . n. In
general, our covariance functions will take the form:

ky(xp,xq) = σ2
fk(xp,xq) + σ2

nδpq (2.35)

where σ2
f is the signal variance, and controls the overall scale of our covariance matrix, σ2

n is the noise
variance and δpq is a Kronecker delta function. Notice we note now ky instead of k to account for noisy

observations. In practice, all covariance function internal parameters plus
{
σ2
n, σ

2
f

}
can be considered

unknowns of our particular problem. Several different treatments of hyperparameters can be considered,
for example, one may choose to fix them manually, try to optimize them in a maximum-likelihood fashion
(Section 2.5) or take the full Bayesian approach and marginalize over them (Section 2.6.3).

2.4.1 Visualizing different covariance functions

We have seen plenty of covariance function specifications in the last section. Remember that these control
the degree of similarity between input points. As an exercise, it would be good to recreate the same sine
function example that we saw before, using four different stationary different covariance functions. The
choice of parameters is the default one in pyGPGO. The script detailed in Appendix A.3 below produces
Figure 2.3.

2.5 Hyperparameter optimization

As seen in the previous sections, different covariance functions have different hyperparameters. These
control how the kernel measures similarity among different instances of x. So far, we have chosen these
hyperparameters according to those set default in pyGPGO, but one may want to choose these according
to training data. Depending on the situation, good parameter choices should lead to better models, either
in terms of accuracy or interpretability. There are several ways to select these hyperparameters, by opti-
mizing the marginal log-likelihood or via cross-validation. A full Bayesian treatment of hyperparameters
is discussed in Section 2.6.3.
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Figure 2.3: Behaviour of different stationary covariance functions with the default parameters in
pyGPGO.
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2.5.1 Type II Maximum Likelihood

This is the empirical Bayes [10] analytical approach to optimizing hyperparameters. One may quickly
notice that Gaussian Processes are non-parametric models, in the sense that apart from the quantities set
in the covariance functions, there is nothing else to optimize for. First we will provide a small background
on Bayesian model selection. Assume that we have a model Hi with parameters w, hyperparameters θ,
and we have some training data X,y. The posterior over the parameters is given by Bayes’s theorem:

p(w|y, X,θ,Hi) =
p(y|X,w,Hi)p(w|θ,Hi)

p(y|X,θ,Hi)
(2.36)

where p(y|X,w,Hi) is the likelihood, p(w|θ,Hi) our prior distribution over the parameters and
p(y|X,θ,Hi) is called the evidence or marginal likelihood. Notice that this last quantity is nothing but
the integral over parameter w space of the numerator in Equation 2.36.

We can do the same at the next level of inference for the hyperparameters. The posterior of hyper-
parameters is defined as:

p(θ|y, X,Hi) =
p(y|X,θ,Hi)p(θ|Hi)

p(y|X,Hi)
(2.37)

where now p(θ|Hi) is our prior over hyperparameters. We are interested however in optimizing the
denominator in Equation 2.37 with respect to the hyperparameters. Typically, in Bayesian inference to
perform the kind of integrals presented before, one has to resort to sampling procedures related to Markov
Chain Monte Carlo, such as the Gibbs sampler. In the case of Gaussian processes, all computations are
analytically tractable. In fact, the expression of the marginal likelihood was presented in Section 2.3. We
reproduce the expression here for completeness:

log p(y|X) = −1

2
yT (K + σ2

nI)−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π (2.38)

For typical local optimization methods to work fairly well, we may also need an specification of the
derivative of the log-marginal likelihood w.r.t. the hyperparameters.

∂

∂θj
log p(y|X,θ) =

1

2
yTK−1 ∂K

∂θj
K−1y − 1

2
tr

(
K−1 ∂K

∂θj

)
(2.39)

where
∂K

∂θj
denotes the derivative of the selected covariance function, evaluated at each pair of instances

of the training set. For optimization, one may choose to make use of this expression or not, depending
on both of the optimization algorithm (gradient ascent, L-BFGS-B...) or on the cost of evaluation of
the derivative. In pyGPGO, most of the covariance functions are implemented with a method gradK to
return the gradient.

Another toy example: Optimizing the characteristic length-scale

To illustrate the previous point, it may be a good idea to see the behaviour of the marginal log-likelihood
and its gradient when we modify the characteristic length scale l in the squared exponential covariance
function. The sine function will also serve as playground here. The code in Appendix A.4 produces
Figure 2.4.

2.5.2 Cross validation

We first lay down some very basic ideas related to model selection from a general machine learning
perspective. The concepts presented here are more useful if one plans to use Gaussian Processes purely
as a regression model. To evaluate the performance of hyperparameters of a machine-learning model θ,
in D = {X,y} one could do the following:
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Figure 2.4: Log-marginal likelihood and its gradient w.r.t to the characteristic length-scale. Notice there
seems to be an optimal point at around l = 1.4.
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• Holdout test. Consider D = {DT ,DV } as a training and validation set from your data and θ some
chosen hyperparameters to test. Train your Gaussian Process regressor onDT with hyperparameters
θ and test its performance according to some loss metric L on DV . Repeat as many times as needed
with different hyperparameter choices. Choose the set of hyperparameters yielding the lowest loss.

• k-fold cross validation. Instead of considering a single test set DV , partition D = D1, . . . ,Dk.
Train your model iteratively on k−1 partitions of the data and test on the remaining one. Consider
an average of losses for each hyperparameter choice.

When k = n, the resulting method is called jackniffe, and theoretical analyses can be provided in the
case of Gaussian Processes. The predictive log-density when leaving out training case i is simply:

log p(yi|X,y−i,θ) = −1

2
log σ2

i −
(yi − µi)2

2σ2
i

− 1

2
log 2π (2.40)

where y−i, means all target values excluding i and µi, σ
2
i are computed according to the equations

detailed in Section 2.3 considering D =
{
X−i,y−i

}
as training sets. Consequently, the likelihood when

this is computed for all training cases is given by:

LJK(X,y,θ) =

n∑
i=1

log p(yi|X,y−i,θ) (2.41)

This last quantity is sometimes called pseudo-likelihood. Notice that to compute this quantity, one
would need to fit n GPs and therefore inverting matrices for each training case. This can be avoided by
noticing that the computations in subsequent fittings are very similar, by using inversion by partitioning.
In particular, the expressions for µi and σi can be expressed in terms of the full GP:

µi = yi −
[K−1y]i
[K−1]ii

σ2
i =

1

[K−1]ii
(2.42)

We can obtain derivatives w.r.t. hyperparameters from Equation 2.41 to perform gradient-based
optimization. In particular, let us first define the derivatives of µi and σ2

i :

∂µi
∂θj

=
[Zjα]i
[K−1]ii

− αi[ZjK
−1]ii

[K−1]2ii

∂σ2
i

∂θj
=

[ZjK
−1]ii

[K−1]2ii
(2.43)
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where α = K−1y and Zj = K−1 ∂K

∂θj
. Finally, our gradient can be written as:

∂LJK

∂θj
=

n∑
i=1

(
αi[Zjα]i −

1

2

(
1 +

α2
i

[K−1]ii

)
[ZjK

−1]ii

)
[K−1]ii

(2.44)

One may ask under which circumstances the jackniffe approach might be preferable to direct marginal
likelihood optimization, since computationally they are almost identical. Some have argued [12] that the
cross-validated approach should be more robust to model mis-specification.

2.6 Further theoretical aspects

In this section, we will briefly mention other theoretical aspects of Gaussian Processes. This includes for
example, how Gaussian Process can be seen as linear smoothers, by means of a spectral analysis or how
to incorporate explicit basis functions into the model. Finally, we will discuss a full Bayesian treatment
of covariance function hyperparameters, by the use of different MCMC sampling strategies.

2.6.1 Gaussian processes as linear smoothers

As many machine learning algorithms, the main objective of a Gaussian Process regressor is to reconstruct
the underlying signal f by removing noise ε. It does this by computing a weighted average of the values
y. In particular, as seen in 2.3, it can be written as:

f(x∗) = k(x∗)
T (K + σ2

nI)−1y (2.45)

Therefore, one can see a Gaussian Process regressor as a linear smoother [3]. We can study this
smoothing in terms of spectral analysis. Again, for training points, predicted training points f are:

f = K(K + σ2
nI)−1y (2.46)

Write K using its eigenvalue decomposition K =
∑n
i=1 λiuiu

T
i , with λi and ui its i-th eigenvalue

and eigenvector respectively. Since K is a covariance matrix, its is symmetric positive semidefinite, and
therefore has positive eigenvalues. If we note γi = uTi y, then:

f =

n∑
i=1

γiλi
λi + σ2

n

ui (2.47)

For the covariance functions we have studied in section 2.4, the eigenvalues are larger for slowly
varying eigenvectors, so the more frequent items in y get smoothed-out. The effective number of degrees
of freedom in a Gaussian Process model can be defined as the number of used eigenvectors:

df(K) = tr(K(K + σ2
nI)−1) =

n∑
i=1

λi
λi + σ2

n

(2.48)

To make the explanation clearer, let us define h(x∗) = (K + σ2
nI)−1k(x∗). So for a new given point,

prediction is defined as f(x∗)
Ty, that is, a linear combination of y, with weights h(x∗). A Gaussian

Process regressor is a linear smoother, since the weight function h does not depend directly on y. While
a regular linear model defines a linear combination of the inputs, a linear smoother defines a linear
combination of the targets. This weight function depends directly on the specific location of the n
training points, by means of the matrix inversion of K + σ2

nI, therefore observations close in input space
are smoothed out.
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2.6.2 Explicit basis functions

Notice that during the entire chapter, we have considered a Gaussian Process prior with mean m(x) = 0
for simplicity reasons. One may want, however, to define a different mean value for the prior. On the
other hand, imposing m(x) = 0 is not a strong assumption, since the posterior is not constrained to be
zero as well. With an explicit mean function m(x) 6= 0, the prior becomes:

f(x) ∼ GP (m(x), k(x,x∗)) (2.49)

and the mean of the posterior predictive distribution then becomes, very naturally:

f∗ = m(X∗) + k(X∗, X)K−1 (y −m(X)) (2.50)

The variance of the posterior predictive distribution remains the same as in Equation 2.3. In practice,
however, it may not be clear how to specify a prior mean function for the process. In some cases it may
be useful to define a few parametric basis function, whose parameters β we have to estimate from training
data. Formally:

g(x) = f(x) + h(x)Tβ (2.51)

where f(x) is a regular zero-mean Gaussian Process prior, h(x) are our chosen basis functions, and β
are our parameters. For example, if we are interested in polynomial regression, then h(x) = (1, x, x2, . . . ).
One could consider optimizing β the same way as with our kernel hyperparameters, but if we assume a
Gaussian prior β ∼ N (b, B), we can solve analytically to obtain another Gaussian Process:

g(x) ∼ GP
(
h(xT b, k(x,x∗) + h(x)TBh(x∗)

)
(2.52)

Notice that now we have an extra term in the covariance function. This is caused by the uncertainty
in the parameters of the mean. Now predictions are made by substituting these parameters into Equation
2.51. An explicit version for the mean and covariance is given by:

g(X∗) = HT
∗ β̂ +KT

∗ K
−1(y −HT β̂) = f(X∗) +RT β̂ (2.53)

Cov(g∗) = K∗∗ +RT (B−1 +HK−1HT )−1R (2.54)

where H and H∗ are matrices containing the evaluation of the chosen basis functions over training
and testing points respectively, β̂ = (B−1 + HK−1HT )−1(HK−1y + B−1b) and R = H∗ − HK−1K∗.

The posterior process parameters can be interpreted as such: β̂ is a mean of the model linear parameters,
a compromise between the prior and the likelihood provided by the data. The mean of the process is
simply β̂ plus our typical Gaussian Process prediction of the residuals. The covariance matrix is just the
addition of our regular expression and a non-negative term.

Consider the limit of B−1 as it approaches O (O being a zero-filled matrix), that is when the prior is
vague. We then get a predictive distribution independent of b:

g(X∗) = f(X∗) +RT β̂ (2.55)

Cov(g∗) = K∗∗ +RT
(
HK−1HT

)−1
R (2.56)

where now β̂ =
(
HK−1HT

)−1
HK−1y.

We explore now the behaviour of the marginal log-likelihood under this model where we assume a
Gaussian prior β ∼ N (b, B). Formally:

log p(y|X, b, B) = −1

2
log |K +HTBH| − n

2
log 2π (2.57)

In the same way as before, exploring the limit B−1 → O, the prior becomes irrelevant, so we can
safely assume that b = 0, yielding:
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log p(y|X, b =0, B) = −1

2
yTK−1y +

1

2
yTCy (2.58)

− 1

2
(log |K|+ log |B|+ log |A|+ n log 2π) (2.59)

where A = B−1 +HK−1HT and C = K−1HTA−1HK−1.

2.6.3 Marginalizing over hyperparameters

In the full Bayesian framework, the covariance matrix Σθ can be defined without explicitly specifying
hyperparameters. Integrating out these considers different possible explanations of the data when making
predictions. This is typically done using MCMC techniques. Here we present several techniques for
capturing this uncertainty, based on the Metropolis-Hastings criterion and slice sampling [6]. We first
assume a prior distribution on hyperparameters:

θ ∼ ph(θ) (2.60)

And remembering now notation from Section 2.3:

f ∼ N (0,Σθ) (2.61)

We forget the conditioning on X here for simplicity. Fix the data y and consider it a function of f .
Define the conditional likelihood to be the first part of the integrand of the marginal likelihood described
in Equation 2.26, that is:

L(f) = p(data|f) = p(y|f) (2.62)

The objective here is to sample from the joint posterior under unknowns:

p(f , θ|data) ∝ L(f)p(f)ph(θ) (2.63)

Notice that we would like an unifying approach for different likelihoods L and covariance priors ph.
A simple algorithm that updates the hyperparameters for fixed latent variables f that leaves invariant
the conditional posterior:

p(θ|f) ∝ p(f)ph(θ) (2.64)

is the standard Metropolis-Hastings algorithm presented in Algorithm 2. However, the resulting
Markov chain from this algorithm can be very slow exploring the joint distribution. It has also been
shown that the samples generated by standard MH, are highly informative, which limits the amount of
space a Markov chain can cover.

Algorithm 2 Standard Metropolis-Hastings updated for fixed f .

Require: Current f and θ, proposal distribution q, covariance function Σθ
1: Draw θ

′ ∼ q(θ′, θ)
2: Draw u ∼ Uniform(0, 1)

3: if u <
p(f |θ′)ph(θ

′
)q(θ, θ

′
)

p(f |θ)ph(θ)q(θ′ , θ)
then return θ

′

4: else return θ
5: end if

In the extreme limit in which there is no data L is constant, that is p(f , θ) = p(f)ph(θ), for which
both both distributions are strongly coupled, and therefore alternating sampling for f and θ does not
work. An alternative is to reparametrize the model so that the unknown variables are independent under
the prior. An independent random multivariate normal vector ν is sampled and compute:
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ν ∼ N (0, I)
f = Lν

(2.65)

where LLT = Σθ, L being a lower-diagonal matrix taken from a Cholesky decomposition of Σθ. Then
we update hyperparameters based on a fixed ν rather than f . Since the latent variable f is determined
by θ, updates will change both θ and f . This is described in Algorithm 3.

Algorithm 3 Standard Metropolis-Hastings updated for fixed ν.

Require: Current f and θ, proposal distribution q, covariance function Σθ
1: Compute ν = L−1f
2: Draw θ

′ ∼ q(θ′ , θ)
3: Compute f

′
= Lν

4: Draw u ∼ Uniform(0, 1)

5: if u <
L(f

′
)ph(θ

′
)q(θ, θ

′
)

L(f)ph(θ)q(θ′ , θ)
then return θ

′
,f ′

6: else return θ,f
7: end if

In practice, none of the two mentioned solutions are ideal for applications. Algorithm 3 is ideal in
the weak data limit, where f is almost identically distributed as the prior. In the strong data limit,
a simple Metropolis-Hastings like proposed in Algorithm 2 is ideal, since the f carries most weight
from the likelihood. Notice, that the latter, however, only updates θ but does not propose any updates
over f . A recent alternative considers using an augmented data model, introducing surrogate Gaussian
observations that will guide proposals of both hyperparameters and latent variables. The idea is to
augment the Gaussian latent model with noisy auxiliary variable g:

g|f , θ ∼ N (f , Sθ) (2.66)

where Sθ is an arbitrary parameter that can be either set manually or depending of current θ. Inte-
grating out f yields:

g|θ ∼ N (0,Σθ + Sθ) (2.67)

The original latent model on f implies a joint auxiliary distribution p(f , g|θ), conditioning on g we
obtain:

f |g, θ ∼ N (mθ,g, Rθ) (2.68)

where:

Rθ = Sθ − Sθ(Sθ + Σθ)
−1Sθ

mθ,g = RθS
−1
θ g

(2.69)

Under this surrogate modelling, the latent variables are drawn from their posterior given g. The
sampling procedure is very similar then to our previous MH sampler. It is detailed in Algorithm 4.

Our discussed Metropolis-Hastings algorithms, while efficient, require selecting a proposal distribution
q that also has to be tuned. Instead, some authors [7, 6] have proposed slice sampling as an alternative.
Slice sampling [8] is an adaptive procedure that are more robust to the choice of scale in our proposal
distribution. A procedure from this family is detailed in Algorithm 5.
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Algorithm 4 Surrogate model Metropolis-Hastings.

Require: Current f and θ, proposal distribution q, covariance function Σθ
1: Draw g ∼ N (f , Sθ)
2: Compute ν = L−1

Rθ
(f −mθ,g)

3: Draw θ
′ ∼ q(θ′ , θ)

4: Compute f
′

= LR
θ
′ ν +mθ′ ,g

5: Draw u ∼ Uniform(0, 1)

6: if u <
L(f)pg|θ′ (g)ph(θ

′
)q(θ, θ

′
)

L(f)pg|θ(g)ph(θ)q(θ′ , θ)
then return θ

′
,f
′

7: else return θ,f
8: end if

Algorithm 5 Surrogate model slice sampling.

Require: Current f and θ, scale σ, covariance function Σθ
1: Draw surrogate g ∼ N (f , Sθ)
2: Compute ν = L−1

Rθ
(f −mθ,g)

3: Center bracket v ∼ Uniform(0, 1)
4: θmin = θ − v
5: θmax = θmin + σ
6: Draw u ∼ Uniform(0, 1)
7: Compute threshold y = L(f)pg|θ(g)ph(θ)

8: Draw θ
′ ∼ Uniform(θmin, θmax)

9: Compute f
′

= LRθν +mθ′ ,g

10: if L(f
′
)pg|θ′ (g)ph(θ) > y then return f ′, θ

′

11: else if θ
′
< θ then

12: Shrink bracket min. θmin = θ
′

13: else
14: Shrink bracket max. θmax = θ

′

15: end if
16: goto 8.
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Chapter 3

Bayesian optimization

3.1 Preliminaries

In this chapter we will deal with the main topic of this master’s thesis, Bayesian Optimization. Here, we
approach global optimization from the viewpoint of Bayesian theory, as a sequential problem. For the
moment, imagine that we have a very expensive function to evaluate f : Rn :→ R. This function, for the
purposes of this work, will be the negative of a loss function in a machine learning problem, or any other
fitness function that we wish to maximize. Formally, we wish to maximize over a compact set A.

max
x∈A

f(x) (3.1)

For technical reasons, we also assume that the function is Lipschitz-continuous, that is, there exists
some constant C such that ∀x1,x2 ∈ A:

‖f(x1)− f(x2)‖ ≤ C‖x1 − x2‖ (3.2)

We are also interested in global optimization instead of local, since loss functions do not have to be
convex over hyperparameter space. That is, we can not assume that we can find a point x∗ such that:

f(x∗) ≥ f(x),∀x s.t.‖x∗ − x‖< ε (3.3)

The function we are typically interested may not have an analytical expression that we can analyse,
take derivatives etc. Most we will assume here is that we can just query the function over any point
to evaluate x ∈ A and some bounds to optimize over. This is normally called a black box function.
Moreover, the function response can be noisy. This is the case when optimizing a loss or fitness function
in machine learning on a holdout test, for example, only having an estimation of its real value.

Bayesian optimization has risen over the last few years as a very attractive method to optimize
expensive to evaluate black box functions [30, 6]. It has grabbed the attention of machine learning
researchers over simpler model hyperparameter optimization strategies, such as grid search or random
search [4]. Bayesian optimization uses prior information and evidence to define a posterior distribution
over the space of functions. The model we will use to model this posterior is Gaussian Process regression,
for which we have studied its basics in the previous chapter.

3.2 The bayesian optimization framework

Assume that we have sampled our function f to optimize a small number of times k. Notice this can be
treated as a regression problem where xk is the k-th point we have sampled and yk its (possibly noisy)
function evaluation. We can fit a Gaussian Process regression model over the set of sampled points and
evaluations. Remember from Section 2.3 that this gives us a posterior distribution over all possible values
in A. Basically, we will use this information to optimize the function efficiently. Note by
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Dn = {xi, yi, i = 1, . . . , n} . (3.4)

the set of training values.

Bayesian optimization is a sequential model-based approach for optimization. The posterior distri-
bution facilitated by the Gaussian Process allows us to define what we will call an acquisition function
α that will guide the search for the most promising point from A to evaluate each step. Once we have
sampled said point, we re-fit our Gaussian Process to update our posterior with the new information
gathered and proceed the same way until convergence. The mentioned acquisition functions are both
heuristic and myopic, in the sense that they define some behaviour given the posterior and only take the
information available at a single step of the optimization. Typically, these functions trade-off exploration
and exploitation of the target function, and their optima is close to where the posterior variance of the
Gaussian Process is large (exploration) or where its posterior mean is high (exploitation). We will choose
the next sampled point to evaluate by maximizing these acquisition functions. Algorithm 6 provides
pseudo-code to implement a basic bayesian optimization module.

Algorithm 6 Bayesian optimization framework.

1: Sample a small number of points x ∈ A. Evaluate f(x) to get Dn
2: for n = 1, 2, . . . do
3: Fit a GP regression model on Dn
4: xn+1 ← arg maxx α(x,Dn)
5: Evaluate f(xn+1) = yn+1

6: Augment data Dn+1 = {Dn, (xn+1, yn+1)}
7: end for

3.3 On acquisition functions

Thus far we have described the statistical model behind the optimization framework. The next natural
step to ask is how we can define acquisition functions depending on its behaviour or the function we
wish to maximize. In pyGPGO, the most common acquisition functions are implemented under the
Acquisition class in the acquisition module. We can classify most of them in three main groups:
improvement-based, optimistic, and information-based policies. We will start by analysing each of them:

3.3.1 Improvement-based policies

These acquisition functions’ behaviour is to favour points that are in some way likely to improve upon
the best observed value so far τ . Since any finite sample of a Gaussian Process is a multivariate Gaussian
distribution, the most straightforward idea is to use an estimation of the probability of improvement of
point evaluation ν w.r.t. τ .

αPI(x,Dn) = P (ν > τ) = Φ

(
µn(x)− τ
σn(x)

)
(3.5)

where Φ denotes the standard normal cumulative density function and µn(x) and σn(x) are the
posterior mean and standard deviation of the fitted Gaussian Process at step n. In a sense, what this
acquisition function is doing is just accumulating the posterior probability mass above τ at x. The as-
sociated utility function is just an indicator of improvement I(x, ν, θ) = I(ν > τ). While this is a very
natural acquisition function to use, it has been shown [17] that it behaves greedily if the best τ is not
known.

Another very popular acquisition function is called expected improvement. This incorporates the
amount of improvement over τ by weighing the probability of improvement over the difference ν − τ .
Formally:
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I(x, ν, θ) = (ν − τ)I(ν > τ) (3.6)

Taking the expectation yields the expected improvement acquisition function:

αEI(x,Dn) = E [I(x, ν, θ)] = (µn(x)− τ)Φ

(
µn(x)− τ
σn(x)

)
+ σn(x)φ

(
µn(x)− τ
σn(x)

)
(3.7)

where φ is in this case the standard normal density function. This acquisition function is by far
the most used, since it has been empirically studied [17] and proven convergence rates for [8]. We have
assumed that τ is the best observed value so far during the optimization procedure, but theoretical
convergence is only guaranteed when τ is the best value f can take in A. During practical research,
however, this does not seem to be a concern [32].

3.3.2 Optimistic policies

Optimistic acquisition functions have their origins in the multi-armed bandit setting [20]. These policies
behave optimistically in the face of uncertainty, as a way to tradeoff exploration and exploitation. The
most popular of methods in this class is the Gaussian process upper confidence bound (GP-UCB) [34],
with provable regret bounds. It works by taking a quantile of the posterior process, and since it is
Gaussian, we can derive the result analytically:

αUCB(x,Dn) = µn(x) + βnσn(x) (3.8)

where βn controls the quantile we may be interested in. Theoretically motivated by the multi-armed
bandits, there are guidelines to select and schedule βn dynamically. Notice that if we choose β = βn, to be
one value or another, we will be encouraging the algorithm to exploit frequently by choosing points with
high posterior mean (small β) or to explore frantically by choosing points with high posterior variance
(high β).

3.3.3 Information-based policies

These are a newer class of methods that consider the posterior distribution over an unknown minimizer
x∗. One of the most popular policies in this categories is again motivated by the multi-armed bandit
problem, Thompson sampling [18]. This very old strategy consists in randomly sampling rewards from
the posterior distribution and picking the highest one. It is a randomized acquisition function in the
sense:

xn+1 ∼ p∗(x|Dn) (3.9)

This method, however, is not as simple to implement as the previously discussed one. It is not entirely
clear how to sample in the continuous space of the Gaussian Process. There have been studies that solve
this issue by using techniques like spectral sampling [26]. We could define formally this acquisition
function:

αTS(x,Dn) = f (n)(x) (3.10)

where f (n) ∼ GP (µ(x), k(x,x′)) by spectral sampling. It has been shown, however, that this method
tends to perform greedily on high-dimensional spaces [12]. Another new approach is entropy-based [37].
They aim to reduce the uncertainty in location x∗ by choosing points likely to reduce the entropy in
p(x|Dn). The acquisition function can be defined as:

αES(x|Dn) = H(x∗|Dn)− Ey|Dn,x [H(x∗|Dn ∪ {(x, y)})] (3.11)

where H notes the differential entropy function of the posterior distribution. As with Thompson
sampling, the function is not tractable in continuous spaces. Several studies have been done approximating
this quantity, either by using simple Monte Carlo sampling [37] or a space discretization ofA [12]. A recent
paper [13] introduced predictive entropy search (PES), a method to remove the need for discretization by
rewriting Equation 3.11 as:
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αPES(x,Dn) = H(y|Dn,x)− Ex∗|Dn [H(y|Dn,x,x∗)] (3.12)

The expectation is approximated in the original paper by Monte Carlo with Thompson samples, with
simplifying assumptions. This is arguably the current state of the art in acquisition functions, according
to the results reported in [13].

3.3.4 Acquisition function portfolios

In a no free lunch fashion, it can be shown that no acquisition function will outperform the others in
every single problem. In fact, it has been proven [14] that the acquisition function to provide optimal
performance can change even in different points of the optimization procedure. It is natural, therefore,
to consider an ensemble of acquisition functions and act upon it. In general, this implies optimizing all
of these functions at each optimization step and then choosing among candidate points using a meta-
criteria. This higher order criteria can be seen as a second level acquisition function.

Earlier approaches rely on modifications of the Hedge algorithm [1], again inspired by the multi-
armed bandit problem. It is basically based on measuring past performance of points proposed by the
different acquisition functions to predict future performance (or gain), via another objective function.
However, this strategy tends to undervalue exploration, which also provides valuable information on the
target. Another more recent approach [29] is called Entropy Search Portfolio, that considers candidates
by weighing the gain of information towards the optimum. Formally it is defined as:

αESP(x,Dn) = −Ey|Dn,x [H [x∗|Dn ∪ {(x, y)}]] (3.13)

and then we try to maximize over the candidates provided by the k based acquisition functions x1:K,n.

xn = arg max
x1:K,n

αESP(x|Dn) (3.14)

In other words, this method chooses the candidate that is expected to reduce the most the entropy
about the minimizer x∗.

3.3.5 Visualizing the behaviour of an acquisition function

To demonstrate the behaviour of different acquisition functions on a step of Bayesian optimization, we
will create a small script with our sine function example. This will help us understand visually the
trade-off between exploration and exploitation in each case. The code provided in Appendix ?? produces
Figure 3.1.

3.3.6 Why does Bayesian Optimization work?

In this small section, we will consider very briefly why the Bayesian Optimization procedure is efficiently
making use of the information provided by the mean and variance posterior distribution of the GP. The
explanation is mostly visual by means of Figure 3.2. The plot shows a Gaussian Process regression model,
as well as its confidence interval, comprised from a lower confidence bound L = µ(x) − qσ(x) and an
upper confidence bound U = µ(x) + qσ(x) for a quantile q > 0.

In practice, when we are interested in doing hyperparameter search in machine-learning, the algo-
rithms are very blunt, in the sense that the most common strategies explore the entire space, either
exhaustively or randomly. The acquisition functions defined in this chapter before use information from
the Gaussian Process prior to explore efficiently the space. The specifics of each acquisition function have
already been discussed, specially their exploration/exploitation balance, but they all share some common
logic.
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Figure 3.1: Acquisition function behaviour for Expected Improvement, Probability of Improvement, GP-
UCB (β = .5) and GP-UCB(β = 1.5) in the sine function example.
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Figure 3.2: A visual explanation on why Bayesian optimization is efficient at exploring the space. It
ignores all the input space where the UCB is lower than the point with maximum LCB.
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Bayesian Optimization is efficient because it ignores all the space where the predicted upper confi-
dence bound is lower than the maximum value of the lower confidence bound. It only uses the space that
fulfills this criteria, according to the strategy selected by the chosen acquisition function. This remains
a very reasonable assumption throughout the whole optimization procedure. In practice, the framework
resembles a branch-and-bound type algorithm, but probabilistically. The procedure assumes that the true
function will lie, with high probability 1− δ within both lower and upper confidence bounds respectively.
However, there is always the probability δ of the function not fulfilling this criteria, in which case the
fit surrogate Gaussian Process will be updated with further evaluations. The code for generating this
particular representation can be consulted in Appendix A.7.

While plenty of theoretical properties are known for bandit algorithms in general, only some have
been established for Bayesian Optimization recently. In particular, for the Gaussian Process surrogate
some consistency proofs exist [23] in the one dimensional case and in the multidimensional by the use
of partitioning [16, 36]. Finite sample bounds have been provided recently for the GP-UCB acquisition
function [33], while this was only proven for the fixed hyperparameter setting. However, despite the
recent interest in theoretical properties of this framework, the gap between these and practice is still
large [32].

3.4 Role of GP hyperparameters in optimization

We already considered the role of hyperparameters in Gaussian Process regression in section 2.5. However,
one may wonder how the estimation of this parameters, one way or another may affect the optimization
procedure. So far, we have assumed that during the optimization procedure, parameters θ were given.



3.5. OPTIMIZING THE ACQUISITION FUNCTION 35

Here we will consider two ways of handling hyperparameters during the optimization procedure, the
one we presented, type II maximum likelihood estimation and approximate marginalization. For the
moment, consider a generic acquisition function α : X ×Θ → R, where θ ∈ Θ are our Gaussian Process
hyperparameters. Naturally, one wishes to marginalize the uncertainty caused by θ with the following
expression:

α(x) = Eθ|Dn [α(x, θ)] =

∫
Θ

α(x|θ)p(θ|Dn)dθ. (3.15)

The simplest way to do this is what we saw in 2.37, to optimize the marginal log-likelihood to obtain
MAP estimates θ̂MAP. Then, in each step of the optimization procedure, we simply maximize:

α̂(x) = α(x, θ̂) (3.16)

That is, we optimize the acquisition function defined by the optimal hyperparameters for the Gaussian
Process determined in each step. Again, optimizing the marginal log-likelihood is a problem of its own,
but it is common to use quasi-Newton methods such as L-BFGS-B methods.

A more Bayesian approach is to incorporate the uncertainty of θ into our model, since it may have an
important role in guiding exploration. Point estimates are in a sense winners that may not capture the
complexity of the response surface. The second approach we will be considering here, will be therefore
to marginalize out hyperparameters using Markov Chain Monte Carlo (MCMC) sampling techniques. In

practice, we will need to average M samples
{
θ

(i)
n

}M
i=1

from the posterior distribution p(θ|Dn):

Eθ|Dn [α(x, θ)] ≈ 1

M

M∑
i=1

α(x, θ(i)
n ) (3.17)

Since it is not possible to have an analytical expression for the posterior distribution p(θ|Dn), it is
common to use MCMC techniques like Hamiltonian Monte Carlo [24] to produce a sequence of samples
whose stationary distribution is the posterior we are looking for. Once M valid samples are obtained, they
are evaluated in the acquisition function and averaged. pyGPGO implements these integrated acquisition
functions using the pyMC3 software [9]. A plot of sampled Gaussian Process associated with its posterior
sampled p(θ|Dn) can be seen in Figure 3.3. Its associated script can be checked in Appendix A.6.

Quadrature methods can be used instead of MCMC techniques, yielding a weighted mixture:

Eθ|Dn [α(x, θ)] ≈
M∑
i=1

ωiα(x, θ(i)
n ) (3.18)

However, and to finish this section, in the problems that we will tackle in the experiments, it is
usually a bad idea to estimate kernel hyperparameters. Estimating these hyperparameters with few
function evaluations is a very challenging task, and can lead to disastrous results, as proven in [3, 8]. The
marginal log-likelihood surface can easily fall into traps or be very flat, as seen by the (not cherry-picked)
example in Figure 2.4. Even the more advanced MCMC or quadrature methods still suffer from this
problem [38].

3.5 Optimizing the acquisition function

We have presented many acquisition functions in this chapter and provided a simple example to demon-
strate basic functionality. However, so far, we have assumed that the acquisition function can be easily
optimized. This is however, a problem of its own. The reader may be thinking that we have, in fact,
changed one optimization problem (the one where we are interested in optimizing f) for another! (in
which we now have to optimize α). This is technically true, but bear in mind that while f is very ex-
pensive to evaluate, α is very cheap, and it is reasonable to spend a bit more computational effort in
evaluating α if it implies having to evaluate f less.
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Figure 3.3: Means of 200 posterior predictive distributions, taken from associated GPs to each posterior
sample p(θ|Dn) in the MCMC procedure. The integrated acquisition functions better take into account
the uncertainty of hyperparameters, which leads to less peaky functions.
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Maximizing α, however, is not an easy task. The acquisition function is often multi-modal and there-
fore non-convex, as it can be see again in Figure 3.1. Theoretical convergence, furthermore, is only
guaranteed when the optimal point x∗ in the acquisition function is found [36]. At the end of the day,
we encounter yet another global optimization problem that needs to be solved. From a practical point of
view, there are many approaches the community has taken to solve this problem, from discretization [32]
to adaptive-grids [2]. If gradient information is available (rarely the case), a multi-start gradient ascent
approach can be taken [22]. Evolutionary approaches like CMA-ES can also be used [11]. pyGPGO,
in the GPGO module uses by default a multi-start quasi-Newton method (L-BFGS-B) to optimize the
acquisition function, which in practice seems to work reasonably well.

Other methods have been proposed as alternatives to Bayesian Optimization in this aspect. [19, 7]
sequentially build space-partitioning trees by splitting leaves with high function values or upper confidence
bounds. This is called Simultaneous Optimistic Optimization (SOO) [38]. Though these algorithms do
not require any auxiliary information (smoothness) or optimization, it has been shown that they do not
perform quite as competitively as the Bayesian optimization framework, especially when prior knowledge
is available.

3.6 Computational costs

Remember from chapter 2 that Gaussian Process regression has analytical expressions for the mean and
variance of the posterior process. However, this exact inference is O(n3), where n is the number of train-
ing samples. This is caused by the inversion of K. pyGPGO uses a Cholesky decomposition that once
computed, can reduce the cost of predicting to O(n2). If during the search procedure, however, we change
K, for example, due to hyperparameter optimization, this O(n3) order is unavoidable for the traditional
framework. Several approaches have been explored in the literature for approximating the output of the
analytical solution. Mainly, there are two types of solutions, those that try to sparsify the process and
those that use another type of surrogate model, such as Random Forests.

3.6.1 Approximations to the analytical GP. Alternative surrogates.

One of the first solutions is the Sparse pseudo-input Gaussian Processes (SPGP) [31]. This is a straight-
forward approach to model large n using m < n pseudo-inputs to reduce the rank of the covariance matrix
to m. This method forces the interaction between the x1:n data points and test points x∗ inducing m
pseudo-inputs, achieving an approximate posterior in O(nm2 + m3). Let f and f∗ denote two sets of
latent function (them being our training and testing points respectively). The assumption is that fandf∗
are independent given a third set of variables u, that is:

p (f∗,f) =

∫
p(f∗,f ,u) du ≈

∫
q(f∗|u)q(f |u)p(u) du = q(f ,f∗) (3.19)

where u is a vector representing the function values at the pseudo-inputs. Different pseudo-input
Gaussian Process pseudo-input approximations specify their own form of q(f |u) and q(f∗|u) training
and test conditionals [25]. How to choose the locations of these pseudo-inputs is another problem, is
is usually done by maximizing the marginal log-likelihood of the SPGP [27]. Another approach uses
variational inference [35] to marginalize the pseudo-inputs to maximize the fidelity to the original Gaus-
sian Process. It has been noted, however, that the computational savings of the pseudo-input methods
impact heavily variance estimates. In the Bayesian optimization framework, this variance of the posterior
predictive distribution is heavily used to guide exploration, so this behavior is undesirable.

Another approach is named Sparse spectrum Gaussian Processes (SSGP). Using the ideas of pseudo-
input methods, these methods apply the same concept in kernel spectral space [21]. From basic spectral
analysis, Bochner’s theorem states that a stationary kernel k(x,x∗) defines a positive finite Fourier
spectrum s(ω):
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k(x) =
1

(2π)d

∫
e−iω

Txs(ω)dω (3.20)

We can normalize this spectrum to make it a valid probability density function, such as p(ω) =
s(ω)

ν
.

Now evaluating the kernel is the same as the expectation of the Fourier basis with respect to p(ω):

k(x,x∗) = νEω
[
e−iw

T (x−x∗)
]

(3.21)

Monte Carlo techniques can be used to approximate this expectation using m samples from the
spectral density, so that:

k(x,x∗) ≈
ν

m

m∑
i=1

e−iω
T
(i)xe−iω

T
(i)x∗ (3.22)

where ω(i) ∼ s(ω)/ν. The computational cost in this approach can be reduced to O(nm2 + m3). It
has been noted for this approximation method that whereas the uncertainty estimates are smoother than
with the pseudo-input methods, observations away from the observed values exhibit irregular variance
estimates. This again is undesirable behavior in the Bayesian Optimization framework.

As an alternative, several authors [15] have suggested using different surrogate models in the Bayesian
Optimization framework. Special attention has been drawn towards the Random Forest regression model,
in the context of sequential model-based algorithm configuration. Random Forests [5] are a very popular
choice in the machine-learning community with very successful results in practice. They are an ensemble
bagging tree-based method. Random Forests allow for training using sub-samples of data, giving it the
ability to scale to large evaluation budgets, where exact analytical Gaussian Process regression would be
infeasible in practice. The exploration strategy requires an uncertainty estimation for prediction at test
points to apply the Bayesian optimization framework. The empirical variance in the predictions across
trees was proposed as a substitute. This heuristic has been shown to work in practice [15].

Random Forests are known to provide very good estimates when doing interpolation of seen data (or
in its neighbourhood), they are very poor extrapolators. On points far from training data, the predictions
across all trees in the model are very similar, providing poor predictions and more importantly, provid-
ing extremely confident (but erroneous) variance estimates. While Gaussian Processes are also terrible
extrapolators, they produce reliable variance estimations far from training data, yielding sometimes bet-
ter estimates for exploration and exploitation in the framework. An example of a Random Forest with
variance estimates on the sine data is provided in Figure 3.4.

Other authors [28] have suggested the use of the t-Student process instead, claiming that it naturally
models heavy tailed behaviour. Similarly to our Gaussian Process theory, we could assume that f(x) ∼
T P (ν,m(x), k(x,x)). Since the conditional distribution of a multivariate Student-t is also multivariate
Student-t, we can marginalize new observations f∗ on f like we did in Section 2.3. That is, it can be
proven that:

p(f∗|f) =
p(f∗,f)

p(f)
∝
(

1 +
β2

β1 + ν − 2

)−ν + n

2
(3.23)

which turns out to be the kernel of another multivariate Student-t, that is:

f∗|f ∼ T
(
ν + n1,φ2,

ν + β1 − 2

ν + n1 − 2
K̃∗∗

)
(3.24)

where n1 and n are the training and total sample numbers, ν are the degrees of freedom of the Student-
t Process, β1 = yTK−1y, φ2 = KT

∗ K
−1y and K̃∗∗ = K∗∗−KT

∗ K
−1K∗. Notice that the predictive mean

is the same as the Gaussian Process case, while the predictive covariance now explicitly depends on the
observations.
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Figure 3.4: A Random Forest with variance estimates over trees trained on the sine function
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3.6.2 Parallelization

The Bayesian Optimization framework is inherently a sequential decision problem, where each candidate
point to sample is selected after fitting a Gaussian Process to the currently available data. However, and
given the parallel nature of current CPU architectures, significant speed-ups in clock time can be achieved
if they are made good use of. That implies evaluating the acquisition function in parallel. While not
entirely parallel in nature, some authors have proposed approaches based on the imputation of yet-to-run
evaluations. Given Dn = {(xn, yn)} known data and Dp = {xp} remaining to evaluate data, an idea is

to impute the latter, D̂p = {(xp, ŷp)}, and then use the typical Bayesian optimization framework on the

augmented data Dn ∪ D̂p.

Simple strategies have been proposed over time. The constant liar strategy proposes ŷp = c,∀p,
where c ∈ R is a predefined constant. Other strategies like the kriging believer uses the Gaussian Process
posterior predictive mean instead: ŷp = µn(xp). More complex approaches have been proposed instead,
for example [32] proposed the use of s fantasies sampled from each unfinished experiment (out of a total
of J) from the full GP posterior predictive distribution. Then they are averaged in a Monte Carlo fashion:

α(x,Dn,Dp) =

∫
RJ
α(x,Dn ∪ D̂p)P ( ˆy1:J ,Dn)dyp,1:J (3.25)

≈ 1

S

S∑
i=1

α(x,Dn ∪ D̂(s)
p ) (3.26)

and D̂(s)
p ∼ P (ŷ1:J ,Dn). It has demonstrated empirically that this approach works reasonably well

when α is chosen to be the Expected Improvement acquisition function. Other attempts [10] have also
been made using GP-UCB. Note that while these approaches are valid, they are not parallel per se. A true
parallel approach to Bayesian optimization would propose simultaneously a set of candidates, or would
use the information of posterior Gaussian Processes computed in another thread to make the sequential
decision.

3.7 Step-by-step examples

We have explored the basics of Gaussian Process regression and Bayesian Optimization by now. To
provide a more thorough understanding on the logic behind Algorithm 6, we will provide two different
examples in this section. While not very complex, they serve illustrative purposes on how the optimization
framework works. We hope this section will clear any practical consideration on how the procedure selects
the next point to sample, graphically.

3.7.1 Optimizing the sine function

Again, it is no surprise for the reader that we choose the sine function as our first example to provide an
intuition on how the Bayesian Optimization framework works step-by-step. We will be optimizing our
function within the boundaries x ∈ [0, 2π], where we know an optima is exactly at x∗ = π/2. This exam-
ple is particularly interesting to see how the next point is chosen balancing exploration and exploitation of
the acquisition function. Now, as in most practical cases throughout this thesis, we will use the Expected
Improvement acquisition function. The step-by-step optimization procedure for 6 complete epochs can
be checked in Figure 3.5. The code to produce these Figures can be checked in Appendix A.8.

It can be appreciated that the chosen acquisition function leverages achieves a very reasonable com-
promise between mean and variance in the first stages of optimization, but exploits heavily in steps 3
and 4. It tries to explore again in step 5, and comes back to exploit at the end of the procedure.

3.7.2 Optimizing the Rastrigin function

In this example, we will try to optimize the two-dimensional Rastrigin function:



3.7. STEP-BY-STEP EXAMPLES 41

Figure 3.5: Six complete optimization epochs in the Bayesian Optimization framework for the target sine
function in x ∈ [0, 2π].
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Figure 3.6: A 2D representation of the Rastrigin function for x, y ∈ [−1, 1].
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f(x, y|a, b) = (a− x)2 + b(y − x2)2 (3.27)

For given hyperparameters a = 1, b = 100 and in a bounding box defined by x, y ∈ [−1, 1]. A biplot
of this function can be checked in Figure 3.6. This particular version of the Rastrigin function has four
different local optima, therefore it is multimodal. We would expect our GPGO algorithm to converge to
one of these optima, while still exploring the space at earlier stages of optimization.

Given the low-dimensional space we are optimizing, we will plot the posterior mean and variance of
the Gaussian Process, as well as the acquisition function. Again, the Expected Improvement acquisi-
tion function is used. The complete step-by-step optimization procedure for 6 epochs can be seen in
Figure 3.7. For a more visually appealing explanation of the same procedure, there is a video in the as-
sociated GitHub repository of this thesis. The code to generate these figures is available in Appendix A.9.

It can be seen that during the previous steps before fitting a Gaussian Process, that a random
evaluation is reasonably close to one of the optima. This causes the acquisition function to exploit that
area in the first step. In the second step, however, it starts exploring the area that is close to a second local
optima, mostly because it is a large-variance area. It exploits in the third step, and keeps exploring the
rest of the space during the following stages, therefore efficiently balancing exploitation and exploration
as intended in the optimization procedure.
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Figure 3.7: Six complete optimization epochs in the Bayesian Optimization framework for the target
Rastrigin 2D function.
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Chapter 4

Experiments

In this chapter we will expose all the results using all implemented code for Gaussian Process regression
and Bayesian Optimization in pyGPGO. First, we start by providing some benchmarking rules, how
performance shall be evaluated across different models and datasets. In general, the models presented
here hopefully span enough diversity: support vector machines , neural networks and bagging/boosting
methods are among these candidates. Datasets come from very different research areas, spanning from
biophysics to medicine. Some datasets will span an entire section, explaining the rationale behind the
problem, while results for others will be briefly discussed. We hope to show here that Bayesian Opti-
mization works reasonably well for hyperparameter optimization of machine-learning models, and can
outperform other well known strategies in the majority of cases.

4.1 Benchmarking rules

In this section we first present other strategies for machine-learning hyperparameter optimization, followed
by an explanation of the rules used for benchmarking as well as some theoretical background of the models
explored here.

4.1.1 Other strategies for hyper-parameter optimization

Hyper-parameter optimization is usually the most tedious part in fitting a machine-learning algorithm.
In practice, we are interested in models whose loss, evaluated on an independent part of data is as low
as possible. Different hyper-parameter choices lead to different losses, therefore finding the optimal set
is of importance. In reality, we will never know that the point found is the global optimum, but from a
practical point of view, we are only interested in finding the model that works best in a production setting.

In the machine-learning community, hyper-parameter optimization is often overlooked, and in fact,
some of the most famous models (e.g. Random Forests) have been shown to be somewhat insensitive
to hyper-parameter optimization [49]. Two common strategies for finding better hyper-parameters are
presented here: grid search and random search. These two methods are used in different occasions: in
particular grid search is typically used when the search space is not too large and the model to fit is
not expensive to evaluate. Random search is more popular when it becomes impractical to explore the
search. More details of these two common strategies are presented below.

• Grid search. Also known as parameter sweep. This is simply an exhaustive search in a user
specified subset of parameter space. Search bounds have to be set manually. When multiple hyper-
parameters have to be optimized over their sets, grid search considers the Cartesian product of
all of them. This poses a problem when the number of hyper-parameters to optimize grows, also
known as the curse of dimensionality. While suffering from this problem, grid search is still widely
used for small to mid-sized problems, where function evaluations are not very expensive. Also, it
is embarrassingly parallel: function evaluations can be distributed over in a simple way.
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• Random search. Grid search is exhaustive since it considers all possible evaluations over a
Cartesian product over parameter sets. Randomized search in hyper-parameter space is also a
very popular method for the task at hand. In particular, this method has been shown to work
considerably better in high-dimensional spaces than grid search [6]. There is also evidence that
often sometimes some hyper-parameters do not affect the loss significantly.

4.1.2 Evaluation metrics

Throughout all the experiments, we will be minimizing loss functions, in some form or the other. Every
problem presented here is formulated either as a regression or classification task, therefore it is of impor-
tance to define early on what type of loss to use in each problem. For binary classification problems, we
will use the logarithmic loss, also known as binary cross-entropy, defined by:

L(y, ŷ) = − 1

n
=
∑
i

(yi log(ŷi) + (1− yi) log(1− ŷi)) (4.1)

The log-loss is very popular in the machine-learning community [7]. This particular metric does not
only take into account whether a classifier makes the right decision given a threshold c, (like the 0/1 loss
would), but also the confidence in predictions ŷ. It is also very natural since it is just the negative log-
likelihood of a Bernoulli random variable. The use of the logarithm both punishes erroneous extremely
confident positive or negative predictions.

We generalize the previous metric for multi-class classification problems. The following expression is
typically called categorical cross-entropy:

L(y, p̂) = − 1

n

n∑
i=1

m∑
j=1

yij log(p̂ij) (4.2)

where p̂ij is the predicted probability of a sample i belonging to class j, and m is the number of
classes considered. For continuous regression problems, the loss that we use is the typical mean squared
error, defined by:

L(y, ŷ) =
1

n

∑
i

(yi − ŷi)2
(4.3)

We believe that the losses proposed here are very natural choices in both classification and regression
problems.

While we have discussed the metrics to evaluate in each predictive problem, we still need to define
how these losses will be evaluated in each step. To evaluate the performance of a given hyper-parameter
optimization procedure, we have to balance both the performance in terms of loss and the number of
evaluations necessary in order to get to a satisfactory solution. In practice, this is exactly how we will
benchmark the different strategies, through a plot where the x-axis represent the number of function
evaluations, and the y-axis the best log-loss found.

Evaluating the loss function itself can lead to multiple different values depending on the test values.
One could choose an approach where this loss is evaluated on a single holdout test. This would lead
to noisy estimates, however. We choose the more stable approach of performing a shuffled k = 5 cross-
validation scheme to obtain a more reliable loss estimate. In practice, this means that we fit 5 models
with the same architecture to different train/test splits and average the loss results in each. A total of
n = 53 functions evaluations will be allowed for each strategy in all datasets. This accounts for the fact
that the Bayesian Optimization needs at least 3 function evaluations to fit a surrogate Gaussian Process
regressor in the beggining.
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4.1.3 Bayesian optimization setup

For all the tests performed with the Bayesian Optimization scheme, we choose the standard squared
exponential kernel with a starting default characteristic length-scale l = 1, signal variance σ2

f = 1 and

noise variance σ2
n = 0. These three hyper-parameters will be continuously adapted using a Type-II

Maximum Likelihood approach using gradients during the optimization process, as detailed in Section
2.5.1. Different acquisition functions will be tested in each problem: Expected Improvement, GP-UCB
(β = .5) and GP-UCB (β = 1.5). All features in all datasets are scaled by default to have zero mean and
unit variance. The random seed is fixed for all experiments for reproducibility.

4.1.4 Machine-learning models used

Since the shape of our objective function depends on both the dataset and the predictor, we try to span
as many different types of machine-learning models as possible to provide the most extensive evaluation
as possible. Except for rare occasions where we could not fit a model to a particular dataset for numerical
conditions, all models are evaluated in all datasets with the same number of parameters and bounds to
optimize over. We consider the following models: Support Vector Machines (SVM) with radial basis
function kernel, K-nearest neighbors (KNN), Neural Networks with a single hidden layer (MLP) and
Gradient Boosting Machines (GBM). We briefly detail how these work now.

Support Vector Machines

A SVM model [10] uses the concept of hyperplanes in high or infinite dimensional space in order for
classification or regression purposes. In particular, a good classification model is the one that places an
hyperplane that achieves maximum distance to training points of any class. Intuitively, the larger this
margin, the lower the generalization error of the model. For classification, the model can be defined via
optimization. Assume xi ∈ Rp, and yi ∈ {0, 1}, then the problem is to minimize:

min
w,b,ε

1

2
wTw + C

n∑
i=1

εi

s.t. yi(w
Tφ(xi) + b) ≥ 1− εi

εi ≥ 0, i = 1, . . . , n

(4.4)

In practice it makes more sense to minimize its dual:

min
α

1

2
αTQα− eTα

s.t. yTα = 0

0 ≤ αi ≤ C, , i = 1, . . . , n

(4.5)

where e is the unit vector, C is an hyperparameter controlling an upper bound, Q is a n×n semidefinite
positive matrix defined by Qij = yiyjK(xi,xj) and K is our defined kernel function. Finally, the decision
function is defined as:

d(x) = sgn

(
n∑
i=1

yiαiK(xi,x) + ρ

)
(4.6)

For regression problems we now consider yi ∈ R and we try to minimize:

min
w,b,γ,γ∗

1

2
wTw + C

n∑
i=1

(γi + γ∗i )

s.t. yi −wTφ(xi)− b ≤ ε+ γi

wTφ(xi) + b− yi ≤ ε+ γ∗i

γi, γ
∗
i ≥ 0 i = 1, . . . , n

(4.7)
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Table 4.1: Parameters to be optimized for all SVM models in the benchmark.

Parameter Type Bounds

C R+
[
10−5, 105

]
(log-scaled)

γ R+
[
10−5, 105

]
(log-scaled)

Table 4.2: Parameters to be optimized for all KNN models in the benchmark.

Parameter Type Bounds

k Integer {10, . . . , 50}

Likewise, we normally minimize its dual:

min
α,α∗

1

2
(α−α∗)Q(α−α∗) + εeT (α+α∗)− yT (α−α∗)

s.t. eT (α−α∗) = 0

0 ≤ αi, α∗i ≤ C, i = 1, . . . , n

(4.8)

Our decision function now becomes:

g(x) =

n∑
i=1

(αi − α∗i )K(xi,x) + ρ (4.9)

For all the testing involved in the following sections, we will use scikit-learn implementation of
Support Vector Machines, which is in turn based on LibSVM [9]. We will optimize over two hyperparame-
ters, C, the penalty parameter in the error term of Equations 4.5 and 4.8, and γ, an radial basis function
hyperparameter controlling the smoothness of the decision function. They will be optimized on the range
defined by Table 4.1.

K-nearest neighbors

In contrast to other strategies presented here, K-nearest neighbors does not approach learning by con-
structing a generalizable internal model, but simply stores training instances. Classification for an exam-
ple is then performed using a majority vote of its closest points in distance. For the case of regression,
we take the average of mentioned points target instead. Since computing a whole distance matrix for
all examples is computationally expensive (O(dn2) for n samples and d dimensions), several alternatives
have been proposed. KDTree [26] is arguably one of the most popular ones. Intuitively, it works the
following way: if we know points xi and xj are far in space, and we know point xk is close to xj , then
we know xi and xk must be far in space without explicitly having to compute their distance. It can be
proven that this can reduce the computational complexity to O(dn log n). For all benchmarking run in
this work, we optimize only parameter k, the number of neighbors to consider, over a range specified in
Table 4.2.

Gradient Boosting Machines

Boosting [44] is a machine-learning technique for simultaneously reducing the bias and variance of a
classifier or regressor. It is based on the concept of ensembles, that is, a set of weak models, such as
trees that are combined in a smart way to produce a strong model. In particular, Gradient Boosting
Machines [15] are a particular instance of models using this boosting principle. It builds its internal model
considering tree models in a stage-wise fashion and generalizes them by optimizing a given differentiable
loss function. Assuming training data {xi, yi} i = 1, . . . , n, the algorithm works by approximating a
function F̂ (x) to an original F (x), which minimizes the expected value of some loss function L (y, F (x)),
that is:
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Table 4.3: Parameters to be optimized for all GBM models in the benchmark.

Parameter Type Bounds

learning rate R+
[
10−5, 10−2

]
n estimators Integer {10, . . . , 100}
max depth Integer {2, . . . , 100}
min samples split Integer {2, . . . , 100}

F̂ (x) = arg min
F

Ex,y [L(y, F (x)] (4.10)

Gradient boosting machine defines F to be a weighted sum of weak learners hi from some class H:

F (x) =

n∑
i=1

γihi(x) + c (4.11)

We start by some constant approximation F0 and expand it iteratively:

F0(x) = arg min
γ

n∑
i=1

L(yi, γ)

Fm(x) = Fm−1(x) + arg min
f∈H

n∑
i=1

L(yi, Fm−1 + f(xi))

(4.12)

The problem comes when trying to optimize and arbitrary f for any loss L, so instead, we use gradient
descent to minimize:

Fm(x) = Fm−1(x)− γm
n∑
i=1

∇Fm−1L(yi, Fm−1(xi))

γm = arg min
γ

n∑
i=1

L
(
yi, Fm−1(xi)− γ

∂L (yi, Fm−1(xi))

∂Fm−1(xi)

) (4.13)

γ is then chosen by some univariate optimization algorithm, such as line search. The most popu-
lar variant of Gradient Boosting Machines is Gradient Boosting Trees, where we choose f to be some
tree classifier/regressor, such as CART 4.5 [32]. For the benchmarks considered in this work, we use
scikit-learn’s GBM implementation, and try to optimize the hyperparameters defined by Table 4.3.
The learning rate parameter shrinks the contribution of each tree, n estimators is the number of weak
trees to fit, max depth is the maximum depth of each weak tree, and min samples split is the minimum
required number of samples to split a node in each tree.

Multilayer perceptron

Neural networks are a popular model now, specially with the rise of Deep Learning [31] over the last
years. In this work, we will only consider neural network models with a single hidden layer, or Multilayer
Perceptron (MLP) models. The output of one layer, given some input x ∈ Rp is a function f : Rp → Rq.
Since a MLP contains only one hidden layer, the output of the whole model for either regression or binary
classification can be written as:

f(x) = G
(
b(2) +W (2)

(
s
(
b(1) +W (1)x

)))
, (4.14)

where W (1) and W (2) is a matrix of learned weights of size p× q and q × 1 respectively, b(1) and b(2)

are bias vectors and both G and s are non-linear differentiable functions. In practice, s will be a rectified
linear unit function, that is:
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Table 4.4: Parameters to be optimized for all MLP models in the benchmark.

Parameter Type Bounds
hidden layer size Integer [5, 50]
alpha R+ [0, 0.9]

s(x) = max (0,x) , (4.15)

and G(x) will be the logistic function for binary classification:

G(x) =
1

1 + exp(−x)
(4.16)

For regression, no non-linearity is applied. For c multiple classes, W (2) changes size to q × c, and
typically chooses G to be the softmax function:

G(x)j =
exp(xj)∑c
i=1 exp(xi)

, j = 1, . . . , c (4.17)

Matrices W (1), W (2) and biases b(1), b(2) are trained using backpropagation [43] through the use of
stochastic gradient descent (SGD) [8]. For this particular piece of work, we use the Multilayer Percep-
tron implementation of scikit-learn, and optimize over hyperparameters detailed in Table 4.4. In
particular, we consider the number of hidden units in the hidden layer and α, a parameter controlling L2

regularization on the learned weights.

4.2 The binding affinity dataset

We start our benchmarking with one of the most popular problems in computational chemistry, protein-
ligand binding affinity prediction. Summarizing, this is defined as a supervised learning problem where
two interacting molecules intervene, a target protein and a small drug-like molecule binding to the former.

4.2.1 Description of the problem

Docking procedures (see Figure 4.1) in structural biology typically work as follows: first, by generating
a large number of poses of the ligand (a small drug-like molecule compared to the host protein). A pose
encompasses position, orientation and conformation of said ligand. Once enough poses are generated, a
scoring function is in charge of re-ranking these, that is, its job is to find the correct pose amongst the
generated. Correct poses have more strength to the binding site of the target than incorrect ones, and
this is typically quantified by means of dissociation (Kd), inhibition constant (Ki) or free energy. These
quantities are real valued, and can normally range from 10−9 to 106 kcal/mol in studies. To account for
this very large range of affinities, one typically defines a target variable as y = − log10Kd,i and considers
it as a classical regression problem.

While many accurate and reliable algorithms exist for pose generation, the main drawback in docking
studies continues to be the scoring function itself [30]. This, therefore continues to be an important open
problem in computational chemistry. Over the years, plenty of scoring functions have been developed, for
which the most common be classified into empirical [16, 27], force-field based [20] or knowledge-based [39,
18]. These classical scoring functions do not fully account for certain physical processes that are impor-
tant for molecular recognition, therefore limiting their ability to rank for some particular protein-ligand
binding pairs. Furthermore, each scoring function assumes a particular functional relationship between
some variables characterizing the protein-ligand binding complex and their corresponding binding affinity.
For example, typical scoring functions can take the form of a weighted sum of physico-chemical proper-
ties (as in the case of a Linear Regression (LR) or Partial Least Squares (PLS) [1]). In general, these
scoring functions are evaluated from a regression perspective, reporting metrics such as mean squared
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Figure 4.1: Small illustration of the docking procedure. Ligand poses generating by a docking program
are ranked according to a given scoring function, hopefully resulting in a valid complex.

error (MSE) or Pearson’s Correlation Coefficient.

There is, however, an inherent drawback to these classical approaches: assuming a rigid functional
between complex descriptors and its affinity clearly limits a predictor’s accuracy. It is also known that
this restriction for a scoring function constitutes an additional source of error [5]. As an alternative, non-
parametric machine-learning scoring functions have been proposed. These machine learning functions,
by not assuming a given structure between the complex and its affinity can capture implicit, hard to
model directly relationships between them. This fact has sprung several machine-learning based scoring
functions, such as the case of RF-Score [3], ID-score [33], NN-score [14], SFC-Score [53] among many
others. Protein-ligand descriptors are computed for these, and examples of those are paired atom-type
atom counts, one-dimensional fingerprints computed by RDKit [29], ionic interactions or hydrogen-bonds.
Interestingly, it has been shown that in general, more specific/complex descriptors do not necessarily lead
to lower errors [4].

4.2.2 Description of the dataset

Benchmarking protein-ligand scoring functions is fairly standardized nowadays. Several benchmarking
datasets have been developed over the last years, such as the CSAR activity challenge [13] or the PDB-
bind database [51], which we will use here. They generally provide an unambiguous and reproducible
way to compare scoring function on exactly the same test set, extracted from the Protein Data Bank
in a sensible way. In particular PDBbind (v.2015) database defines several self-contained sets for use:
the general set, which contains all available affinity information for 14260 protein-ligand pairs (including
Ki,Kd and IC50). Out of this, the refined set composed of 3706 protein-ligand pairs is extracted ac-
cording to several quality criteria: in terms of resolution (< 3Å) and experimental conditions. Finally,
out of the refined set, a core set composed of 195 diverse enough protein-ligand pairs is extracted for
benchmarking purposes. In general, since the core set is a subset of the refined one, researchers train on
the set difference between the two, so as to avoid overfitting problems.

We will use the refined set of proteins here, since we would like to test according to the protocol
defined in Section 4.1.2, that is using a k = 5 cross-validation scheme, and 195 pairs is not enough to get
reliable enough results. We perform some filtering first, by avoiding protein-ligand pairs for which only
IC50 kinetic information is available, since this value largely depends on experimental conditions. We
treat Ki and Kd indifferently, as in common in research, for all the comparisons drawn here. The final
set is comprised of n = 3623 structurally unique protein-ligand pairs.
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Regarding descriptor computations, we recreate the ones used by RF-Score. They are simply paired
atom-type counts between the protein and its ligand. The following atom types were considered for both
protein and ligand:

{Pj}9j=1 = {C,N,O, F, P, S, Cl,Br, I}

{Li}9i=1 = {C,N,O, F, P, S, Cl,Br, I}

And the descriptors computed can be expressed as:

x (Z(Pj), Z(Li)) =

Kj∑
k=1

Li∑
l=1

Θ(dcutoff − dkl) (4.18)

where djk is the distance between protein atom k of type j and ligand atom l of type i. Kj is the total
number of atoms of type j from the protein and Li the total number of atoms of type i in the ligand.
Z is a function returning the atomic number of an element and Θ is a heavystep function returning 1
for distances below dcutoff and 0 otherwise. This computation would result on a Cartesian product of
81 different features, 39 of which resulted in redundant zeroes across the entire dataset, so they were
removed for a final set of 42 features. All molecular computations detailed here were performed using the
HTMD Python package [12] for atomic manipulation. The complete dataset is available in the GitHub
repository of this thesis.

4.2.3 Experiments

We detail here results for all the models and parameter ranges considered in the protocol. Figures 4.7 - 4.9
show protocol evaluations for the binding affinity dataset. It can be seen that all models benefit from the
hyper-parameter optimization procedure detailed in this master’s thesis, since all Bayesian Optimization
strategies achieve a better mean squared error in much fewer function evaluations. Interestingly, the
Bayesian Optimization approach tends to perform similarly regardless of the chosen acquisition function.
In fact, for both K-nearest neighbors and the Gradient Boosting Machine, no difference can be observed
between them.
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Figure 4.2: SVM results for the binding affinity dataset.
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Figure 4.3: K-nearest neighbors results for the binding affinity dataset.
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Figure 4.4: Gradient Boosting Machine results for the binding affinity dataset.

0 10 20 30 40 50
Number of evaluations

2.050

2.075

2.100

2.125

2.150

2.175

2.200

2.225

Be
st

 M
SE

 fo
un

d

Random search
GPGO (EI)
GPGO (UCB) = . 5
GPGO (UCB) = 1.5

Figure 4.5: MLP results for the binding affinity dataset.
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Figure 4.6: An interface between two proteins. Residues drawn in blue are defined as interficial according
to heavy-atom distance.

4.3 The protein-protein interface prediction dataset

Our second round of experiments focuses on yet another problem in computational chemistry, protein-
protein interface prediction. In this particular instance, we focus on determining whether a particular set
of residues can be considered part of an interface with another protein. Machine-learning methods can
be applied on this particular instance. We briefly describe the problem in more detail now.

4.3.1 Description of the problem

Proteins are the main catalytic agents, transporters, signal transmitters on cells. In practice, proteins
do not function on their own, they interact with other molecules to carry out their role. Particularly,
proteins can interact with other proteins, and for instance, alterations on the interface (see Figure 4.6)
can lead to disease. Hence, over the last years, protein-protein interfaces have become targets for rational
drug-design [25]. But a previous step for structural based drug design is identifying the interface itself.
Many biochemical or biophysical experimental techniques are able to identify protein-protein interfaces,
such as X-ray crystallography [45] or nuclear magnetic resonance (NMR) [17]. However, while these
methods are extremely accurate, carrying them out in practice is expensive, labor-intensive and very
time-consuming. This is the main reason why computational approaches arose, they provide inexpensive
ways of predicting these interfaces.

Computational methods for predicting protein-protein interfaces can be mainly classified in three dif-
ferent groups: (1) data-driven or knowledge-based methods, where the quality of the predictions heavily
relies on existing experimental data, either by the use of homology models [24, 52] or statistical models;
(2) methods that rely on protein-protein docking [48], that is, methods using physical and geometrical
properties to search putative conformations with low free energy or (3), co-evolution based methods that
work with the assumption that interface residues are preserved during co-evolution, typically identifying
these using multiple sequence alignments [19]. In the work presented here, we focus on (1). All methods
have strength and weaknesses, and can be combined in different ways to make more reliable predictions.

Among the data-driven approaches, we can either distinguish among sequence based methods, those
that require only the one-dimensional sequence of a target protein, and structural based methods, which
use the full three-dimensional structure of a protein. The latter methods, while typically do not dispose as
much data compared to the former, offer several advantages: rather than identifying every single residue
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on a protein, they can filter their search to the ones on the surface using quantities such as the Relative
Solvent Accessible Area [46].

In practice, machine-learning models are applied to structure-based methods. The problem of pre-
dicting interfaces is defined as a binary classification task, where we classify each residue on the surface as
either interficial or not. Typically a neighbourhood around each residue is considered, which is typically
called a surface patch, from which some properties x (descriptors) are extracted. Some recent structure-
based machine learning methods are SPPIDER [42], PINUP [34], ProMate [41] or PIER [28]. There is
also the problem of defining what an interface is, specially when benchmarking different methods: the
most common one defines a residue as interficial if any heavy-atom is within k Å distance of any heavy-
atom of the interacting protein [2]. Other definitions consider van der Waals surface distance [24] or delta
accessible surface area change upon complexation [23].

4.3.2 Description of the dataset

For the work described here, we use the PIFACE [11] database. PIFACE is a non-redundant database
extracted from the the PDB. It also provides clusters of unique extracted interfaces, in terms of struc-
tural similarity metrics. In total, it comprises 22604 non-redundant representative interfaces, from which
a random sample of 2261 is selected for the work detailed here. While there are other more common
databases used for protein-protein interface prediction, such as the protein-protein docking benchmark
(DB4) [21], we choose PIFACE mostly for (1) the number of annotated interfaces is significantly larger,
(2) it provides structural clusters that help prevent overfitting issues when training classification models
and (3) it is very clearly organized following PDB standards. Notice that while 2261 interfaces are se-
lected, our samples are composed of residues, and depending on the size of the interacting proteins, the
number of contacting ones can result to be quite large.

Special care has to be taken with the unbalanced dataset problem [37]. Since only a few residues
of a protein are considered part of the interface (positive-cases), most of the residues are marked non-
interficial (negative-cases). In practice, this poses a problem since most classifiers would have an unfair
tendency to classify most of the instances as the majority class, therefore rendering every conclusions
useless. There are many strategies to circumvent this problem, the most simple one being balancing both
classes by undersampling the majority class. There is also theoretical evidence on why this approach is
preferable to others [50].

In terms of the descriptors used, we used a simplified version of the ones detailed in [22] for another
problem of similar characteristics: protein binding site prediction. In summary, we treat protein structures
from a computer vision perspective, as if they were 3D images. Coordinates of this 3D image are defined
to span the bounding box of the protein plus a buffer of 8Å to account for pockets located close to its
edges. The 3D image is then discretized into a grid of 1x1x1Å3 sized voxels. For each of said voxels, a
compendium of atomic-based pharmacophoric properties is defined. Voxel occupancies are defined with
respect to the atoms in the protein depending on their excluded volume and other seven atom properties:
hydrophobic, aromatic, hydrogen bond acceptor or donor, positive or negative ionizable and metallic.
These are called channels, to draw a comparison to computer vision, where an image can be represented
with three different color arrays: red, green and blue. The AutoDock 4 [40] atom types found in Table
4.5 were used with the rules of Table 4.6 to assign each atom to a specific channel. Non-protein atoms are
filtered out of the calculation. Atom occupancies were calculated by taking the simplest approximation
for the pair correlation function defined by

g(r) = exp (−βV (r)) , (4.19)

where V (r) = ε(rvdw/r)
12 is the repulsive component of a Lennard-Jones potential and rvdw is the Van

der Waals atom radius. For simplicity we take the same ε for every atom type and such that βε = 1. The
single atom occupancy estimate is therefore given by

n(r) = 1− exp
(
−(rvdw/r)

12
)
. (4.20)
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Table 4.5: AutoDock 4 atom types

Element Description

C Non H-bonding Aliphatic Carbon
A Non H-bonding Aromatic Carbon
NA Acceptor 1 H-bond Nitrogen
NS Acceptor S Spherical Nitrogen
OA Acceptor 2 H-bonds Oxygen
OS Acceptor S Spherical Oxygen
SA Acceptor 2 H-bonds Sulphur
HD Donor 1 H-bond Hydrogen
HS Donor S Spherical Hydrogen
MG Non H-bonding Magnesium
ZN Non H-bonding Zinc
MN Non H-bonding Manganese
CA Non H-bonding Calcium
FE Non H-bonding Iron

Finally, the occupancy for each property of each voxel is calculated as the maximum of the contribution
of all atoms belonging to that channel at its center. We provide a pseudo-code algorithm for the calculation
of these descriptors in Algorithm 7. For user convenience, these descriptors are implemented and available
in the HTMD [12] Python package for molecular manipulation and computing. In the work described in
[22], the main model is a 3D-convolutional neural-network, since these descriptors are three dimensional
(times 8 property channels) themselves. To simplify analyses and use the same models as with the other
datasets, we flatten said channel descriptors to two-dimensions using the average for each channel. In
practice, these represent the average prevalence of a particular property in a particular neighbourhood
of the protein. The computed dataset is available in the accompanying GitHub repository of this work.

Table 4.6: Property - atom type (AutoDock 4) correspondence used for Deepsite’s 3D descriptor compu-
tation

Property Rule

Hydrophobic atom type C or A
Aromatic atom type A
Hydrogen bond acceptor atom type NA or NS or OA or OS or SA
Hydrogen bond donor atom type HD or HS with O or N partner
Positive ionizable atom with positive charge
Negative ionizable atom with negative charge
Metal atom type MG or ZN or MN or CA or FE
Excluded volume all atom types

4.3.3 Experiments

We repeat the same experiments as with the previous dataset. In all cases, Bayesian Optimization routines
achieve better function evaluations in significantly less iterations than random search. Of particular
interest is again how robust these methods are regardless of the acquisition function choice. Given the
evidence presented here, and the size of some datasets present in computational chemistry problems
(as well as in other areas), I believe Bayesian Optimization should be the default strategy to optimize
hyperparameters of machine-learning models.
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Algorithm 7 Descriptor pseudo-code computation.

1: function Occupancy(atomCoords, centerCoords, radii, channels)
2: for each atom A in system do
3: a← atomCoordsA
4: h← channelsA
5: rvdw ← radiiA
6: for each center c in centerCoords do
7: r ← L2Dist(c,a)

8: x← rvdw

r
9: n← 1− exp(−x12)

10: for each channel p in h do
11: Oc,p ← max {n,Oc,p}
12: end for
13: end for
14: end for
15: end function

Figure 4.7: SVM results for the protein interface dataset.
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Figure 4.8: K-nearest neighbors results for the protein interface dataset.
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Figure 4.9: Gradient Boosting Machine results for the protein interface dataset.
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Figure 4.10: MLP results for the protein interface dataset.
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4.4 Other datasets

In this section, we detail more results for the same models considered throughout the chapter. We aim
to further demonstrate with other examples that Bayesian Optimization is a good default strategy for
optimizing machine-learning hyperparameters. The datasets shown here span areas different from the
ones considered in the more detailed previous examples.

4.4.1 The breast cancer dataset

This breast cancer data comes from a study by the University Medical Centre, Institute of Oncology,
Ljubljana, Yugoslavia in 1986. It was originally used in [38]. It is available as open data in the UCI
Machine Learning repository [35]. A small descriptions of the predictors used for this binary classification
problem can be found in Table 4.7. Results can be found on Figure 4.12.

Table 4.7: Description of the breast cancer dataset

Variable Values

Target no-recurrence-events, recurrence-events
age 10-19, 20-29, . . . , 90-99.
menopause less than 40, greater or equal 40, pre-menopausic
tumor size 0-4, 5-9, . . . , 55-59
invasive nodes 0-2, 3-5, . . . , 36-39
node-caps yes, no
degree malignity 1, 2, 3
breast left, right
location left-up, left-low, right-up, right-low, central
irradiation yes, no
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Figure 4.11: Benchmarking results for the breast cancer dataset.
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(b) KNN
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(c) MLP
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(d) GBM
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4.4.2 The LSVT voice rehabilitation dataset

Dataset originally used in [47], in order to demonstrate that it was possible to replicate expert assessment
in Parkinson’s disease speech rehabilitation using machine-learning techniques. Also available in the
UCI machine-repository. Each attribute (feature) corresponds to the application of a speech signal
processing algorithm which aims to characterise objectively the signal. These algorithms include standard
perturbation analysis methods, wavelet-based features, fundamental frequency-based features, and tools
used to mine non-linear time-series. We refer the reader to the original paper for more information on
the features.

4.4.3 The Parkinson’s disease dataset

The dataset was created by Max Little of the University of Oxford, in collaboration with the National
Centre for Voice and Speech, Denver, Colorado, who recorded the speech signals. The original study [36]
published the feature extraction methods for general voice disorders. This dataset is composed of a range
of biomedical voice measurements from 31 people, 23 with Parkinson’s disease. Each feature in the table
is a particular voice measure, and each row corresponds one of 195 voice recording from these individuals.
The main aim of the data is to discriminate healthy people from those with the disease. Features are
described in Table 4.8. Results can be checked in Figure 4.13.



66 CHAPTER 4. EXPERIMENTS

Figure 4.12: Benchmarking results for the LSVT Voice Rehabilitation dataset.
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(b) KNN
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(c) MLP
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(d) GBM
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4.5 Discussion

In these experiments, we have shown that Bayesian Optimization is substantially more efficient than
random search when optimizing the parameters of a machine-learning model. This can be seen by the fact
that we have undergone the same evaluation over datasets and machine-learning models of diverse enough
nature. However, random search is embarrassingly parallel over threads, and therefore can potentially
outperform the techniques discussed here when given extra computational power. Further work needs
to be done in parallelizing Bayesian Optimization strategies. This means sharing evaluation information
over threads, so that in each iteration we can fit the most precise surrogate model possible.
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Table 4.8: Features used in the Parkinson’s disease dataset

Variable Values

Target Health status of the subject
MDVP:Fo (Hz) Average vocal fundamental frequency
MDVP:Fhi (Hz) Maximum vocal fundamental frequency
MDVP:Flo (Hz) Minimum vocal fundamental frequency
MDVP:Jitter (%), MDVP:Jitter (Abs),
MDVP:RAP, MDVP:PPQ, Jitter:DDP

Several measures of variation in fundamental
frequency

MDVP:Shimmer, MDVP:Shimmer (dB),
Shimmer:APQ3, Shimmer

Several measures of variation in amplitude

NHR, HNR Two measures of ratio of noise to tonal com-
ponents in the voice

RPDE, D2 Two nonlinear dynamical complexity mea-
sures

DFA Signal fractal scaling exponent
spread1, spread2, PPE Three nonlinear measures of fundamental fre-

quency variation

Figure 4.13: Benchmarking results for the Parkinson’s disease dataset.
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Chapter 5

pyGPGO: Bayesian Optimization for
Python

In this chapter, we will explain the functionalities behind pyGPGO, the Bayesian Optimization software
developed alongside this Master’s thesis. pyGPGO aims to be minimalistic, easy to understand, modular,
complete in functionality and up-to-date with latest research. pyGPGO is under the MIT License, which
means it can be used for both academic and commercial purposes, while providing no warranty for the
user. pyGPGO is completely open-source, users can contribute to the package in any way the see fit,
either by reporting bugs, filling out missing documentation, providing new functionality or improve the
existing one.

All of pyGPGO’s code can be accessed through its associated GitHub repository, in https://github.

com/hawk31/pyGPGO. Extensive documentation for all the code in the package is available in both HTML
and PDF format at ReadTheDocs http://readthedocs.org/projects/pygpgo/. For cleanness I have
decided not to include neither in them in the present document.

In summary, pyGPGO is a Python package to perform Bayesian Optimization with minimal effort
from the user. In this final chapter we start by providing an overview of the functionality provided, this is
by no means exhaustive and users are encouraged to check the documentation for in-detail explanations.
We then explain the logic behind the implemented modules: this is done to provide some basic guidance
for the user on where to look for intended functionality. Installation details are described next.

Several real-world examples using the present software are then discussed, this section aims to help
users understand the logic behind the software in a practical way. Different examples from the ones
considered here can be found either in the Appendix of this thesis or in the GitHub repository of the
package. Finally, we compare pyGPGO with other existing software and describe several future goals
and improvements for the package.

5.1 Features

The idea behind pyGPGO stems from the fact that there are many possible choices in the Bayesian
Optimization framework, to name a few:

• Choice of surrogate model.

• Covariance function to use

• Acquisition behaviour

• Hyperparameter treatment

• ...
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In general, these many choices motivate a modular design, in an object-oriented way, so that users
can experiment with different architectural choices. Most of the available software focuses on a particular
implementation of the Bayesian optimization algorithm. pyGPGO on the other hand is completely
modular and provides extensive functionality. In particular, my software features:

• A completely modular and customizable design. Easy to setup and minimal dependencies.

• A wide range of surrogate models: Gaussian Processes, Student-t Processes, Random Forests, Extra
Random Forests and Gradient Boosting Machines.

• Most of the usual covariance functions, as well as its derivatives: squared exponential, Matérn,
γ-exponential, rational quadratic, exponential sine, and dot product.

• Many acquisition function behaviours: probability of improvement, expected improvement, upper
confidence bound and entropy-based, as well as their integrated versions.

• Type II Maximum-Likelihood of covariance function hyperparameters.

• MCMC sampling for full-Bayesian treatment of hyperparameters (via pyMC3).

To the best of my knowledge, pyGPGO is one of the most complete and simple packages for Bayesian
Optimization implemented.

5.2 Package logistics

All functionality is divided in different modules, each performing a very specific task. We briefly de-
scribe these here. Again, the user is encourage to check the provided documentation for more detailed
explanations on how to use the package.

• The covfunc module contains all the code related to covariance function calculations.

• The surrogates module implements classes corresponding to different surrogate models

• The Acquisition module lets the user specify different acquisition function strategies.

• The GPGO module implements the main Bayesian Optimization procedure.

Apart from this functionality, there is plenty of additional material in the GitHub repository of this
package:

• A folder named examples, with all the coding examples laid down throughout the course of this
master’s thesis.

• Another folder named testing with all the code used regarding benchmarking and testing of the
datasets used in Chapter 4 of this work.

• Yet another folder named datasets with all the datasets tested in Chapter 4, in .csv format.

• Finally, a folder named mthesis text, containing all the text work presented here.

5.3 Installation

pyGPGO comes in the form of a Python package. Only Python versions equal or higher than 3.5 are
currently supported. In principle, pyGPGO should work with Windows, OSX and Linux, though only
the latter has been tested. Most Unix based systems already come with Python distribution installed.
To check whether it on a bash/cmd terminal:

1 python --version
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If Python is not installed on the system, we highly recommend installing the Python distribution
Anaconda [1]. Along with the distribution, they also provide most common packages for numeric/scientific
operations. In particular, should the user choose to install the Anaconda distribution all dependencies
needed by pyGPGO are covered. After downloading the executable corresponding to your particular
system configuration from their web page, it suffices to do (for UNIX-based systems):

1 bash Anaconda3-x.x.x-Linux-x86_64.sh

Follow the instructions to install it on a local path in your system. In particular, the Anaconda
installer will ask if the user wants to prepend to the system PATH the route to the Python binaries.
Windows users have a graphical installer available in the Anaconda website.

If the user has a working Python environment in the system and does not want to use the one provided
by Anaconda, some dependencies must be fulfilled in order for pyGPGO to work. In particular, both
numpy and joblib need to be installed. Typically, one should use the packages available in the Python
Package Index (PyPI) and install them using the Python Package manager pip. From a bash terminal:

1 pip install --upgrade numpy joblib

It is recommended to install pyGPGO’s development version, which can be retrieved from the asso-
ciated GitHub repository:

1 pip install git+https://github.com/hawk31/pyGPGO

Optionally, for MCMC inference of hyperparameters, we depend on pyMC3, whose installation is
currently a bit more challenging (as of Apr 2017). It should suffice to do:

1 git clone https://github.com/pymc-devs/pymc3.git

2 cd pymc3/

3 python setup.py install

5.3.1 A minimal example

Here we go through a minimal example to show how to use pyGPGO in its most simple form. We
comment line by line using the IPython console.

1 In [1]: import numpy as np

2 ...: import matplotlib.pyplot as plt

3 ...: from pyGPGO.covfunc import squaredExponential

4 ...: from pyGPGO.surrogates.GaussianProcess import GaussianProcess

5 ...: from pyGPGO.acquisition import Acquisition

6 ...: from pyGPGO.GPGO import GPGO

After loading numpy and matplotlib, we start loading all the needed modules for our example: we
will use the squaredExponential covariance function, a GaussianProcess regressor, an Acquisition

function and GPGO, the class for Bayesian Optimization. We fix a random seed, and define the function
we are about to optimize, a plot of which is available in Figure 5.1.
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Figure 5.1: Example function for optimization with pyGPGO.
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1 In [2]: np.random.seed(20)

2 ...: def f(x):

3 ...: return -((6*x-2)**2*np.sin(12*x-4))

We now instantiate our covariance function, our regressor and our acquisition:

1 In [3]: sexp = squaredExponential()

2 ...: gp = GaussianProcess(sexp)

3 ...: acq = Acquisition(mode = ’ExpectedImprovement’)

We define our the parameters to optimize over now, as a dictionary. Note that function f takes as
parameter x. It is a continuous variable, where x ∈ [0, 1]. If we had other variables, we simply add them
to the dictionary with its type and bounds.

1 In [4]: params = {’x’: (’cont’, (0, 1))}

We now instantiate our GPGO class, passing all previous created objects:

1 In [5]: gpgo = GPGO(gp, acq, f, params)

We finally optimize for a number of iterations:

1 In [6]: gpgo.run(max_iter = 10)



5.4. EXAMPLES 77

Check the result just by calling:

1 In [7]: gpgo.getResult()

2 Out [8]: (OrderedDict([(’x’, 0.76321944301549549)]), 6.0013872547078249)

After 10 iterations, the best value for x our optimizer has found is 0.7632, with a function value of
6.001.

5.4 Examples

In this section, we will detail several examples on how to use pyGPGO for real world tasks. They will
provide extra details on how much functionality the package exposes to the end user and may serve as a
blueprint for other tasks.

5.4.1 Gaussian Process regression using the GaussianProcess module.

While pyGPGO is mainly a Bayesian Optimization package, it also exposes a very competent class for
performing Gaussian Process regression. Here we provide a simple example on how to perform Gaussian
Process Regression on noisy synthetic data. The script below produces Figure 5.3.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from pyGPGO.GPGO import GPGO

4 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

5 from pyGPGO.acquisition import Acquisition

6 from pyGPGO.covfunc import squaredExponential

7

8

9 if __name__ == ’__main__’:

10 rng = np.random.RandomState(0)

11 X = rng.uniform(0, 5, 20)[:, np.newaxis]

12 y = 0.5 * np.sin(3 * X[:, 0]) + rng.normal(0, 0.5, X.shape[0])

13

14 sexp = squaredExponential()

15 gp = GPRegressor(sexp, optimize = True, usegrads = True)

16 gp.fit(X, y)

17

18 X_ = np.linspace(0, 5, 100)

19 y_mean, y_var = gp.predict(X_[:, np.newaxis], return_std=True)

20 y_std = np.sqrt(y_var)

21 plt.plot(X_, y_mean, ’k’, lw=2, zorder=9, label = ’Posterior mean’)

22 plt.fill_between(X_, y_mean - 1.64 * y_std,

23 y_mean + 1.64 * y_std,

24 alpha=0.4, color=’blue’)

25 plt.plot(X_, 0.5*np.sin(3*X_), ’r’, lw=2, zorder=9, label = ’Original function’)

26 plt.scatter(X[:, 0], y, c=’r’, s=50, zorder=10)

27 plt.legend(loc = 0)

28 params = gp.getcovparams()

29 plt.title(’Optimal params | \$l\$={}, \$\sigma_n^2\$

30 ={},\sigma_f^2={}’.format(np.round(params[’l’],3),

31 np.round(params[’sigmaf’], 3), np.round(params[’sigman’], 3)))

32 plt.tight_layout()

33 plt.show()
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A few notes on the code, notice that we add two extra parameters to the surrogates.GaussianProcess
module: optimize=True, usegrads=True indicates to the instance that it should perform Type II max-
imum likelihood estimation of the squaredExponential instance hyper-parameters using gradient infor-

mation if available. By default all hyper-parameters are optimized, in this case,
{
l, σ2

n, σ
2
f

}
are optimized.

If we want only a subset of them to be optimized or none at all, we can specify so in the corresponding
covariance function instance.

5.4.2 MCMC inference over hyperparameters using the GaussianProcessMCMC

module

The presented previous approach optimizes the marginal likelihood, in an empirical Bayes fashion in
order to estimate hyperparemeters. As an alternative, pyGPGO also supports MCMC inference over
hyperparameters via pyMC3, another Python package for Bayesian Inference. At the moment, both the
NUTS [3] (No-U-Turn Sampler), a Hamiltonian Monte Carlo approach is available, as well as Variational
Inference using ADVI [4] (Automatic Differentiation Variational Inference). The following example uses
our module to fit a GP to some data and perform inference using the sampled posterior distributions.
The code presented below generates Figure 5.4.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from pyGPGO.surrogates.GaussianProcessMCMC import GaussianProcessMCMC

4 from pyGPGO.covfunc import squaredExponential

5

6

7 if __name__ == ’__main__’:

8 np.random.seed(1337)

9 sexp = squaredExponential()

10 gp = GaussianProcessMCMC(sexp, niter=2000, init=’MAP’)

11

12 X = np.linspace(0, 6, 7)[:, None]

13 y = np.sin(X).flatten()

14 gp.fit(X, y)

15 gp.posteriorPlot()

5.4.3 Using the GPGO module for global optimization.

In this example, we will try to optimize a variant of the Franke function [2] given by:

f(x, y) =
3

4
exp

(
− (9x− 2)2

4
− (9y − 2)2

4

)
+

3

4
exp

(
− (9x+ 1)2

49
− (9y + 1)2

10

)
+

1

2
exp

(
− (9x− 7)2

4
− (9y − 3)2

4

)
−

1

4
exp

(
−(9x− 4)2 − (9y − 7)2

)
(5.1)

A contour plot of said function can be checked in Figure 5.2. Optimum is around {x = 0.2, y = 0.2}.
We use the Matérn (ν = 3/2) covariance function and a simple Gaussian Process disregarding hyperpa-
rameter treatment.
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1 import numpy as np

2 from pyGPGO.covfunc import matern32

3 from pyGPGO.acquisition import Acquisition

4 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

5 from pyGPGO.GPGO import GPGO

6

7 from mpl_toolkits.mplot3d import Axes3D

8 import matplotlib.pyplot as plt

9 from matplotlib import cm

10

11 def f(x, y):

12 # Franke’s function (https://www.mathworks.com/help/curvefit/franke.html)

13 one = 0.75 * np.exp(-(9*x-2)**2/4 - (9*y - 2)**2/4)

14 two = 0.75 * np.exp(-(9*x+1)**2/49 - (9*y + 1)/10)

15 three = 0.5 * np.exp(-(9*x - 7)**2/4 - (9*y -3)**2/4)

16 four = 0.25 * np.exp(-(9*x -4)**2 - (9*y-7)**2)

17 return one + two + three - four

18

19

20 def plotFranke():

21 x = np.linspace(0, 1, num=1000)

22 y = np.linspace(0, 1, num=1000)

23 X, Y = np.meshgrid(x, y)

24 Z = f(X, Y)

25

26 fig = plt.figure()

27 ax = fig.gca(projection=’3d’)

28

29 surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,

30 linewidth=0)

31 fig.colorbar(surf, shrink=0.5, aspect=5)

32 plt.show()

33

34 if __name__ == ’__main__’:

35 plotFranke()

36

37 cov = matern32()

38 gp = GaussianProcess(cov)

39 acq = Acquisition(mode=’ExpectedImprovement’)

40 param = {’x’: (’cont’, [0, 1]),

41 ’y’: (’cont’, [0, 1])}

42

43 np.random.seed(1337)

44 gpgo = GPGO(gp, acq, f, param)

45 gpgo.run(max_iter=10)

5.4.4 Optimizing parameters of a machine-learning model using the GPGO

module.

While pyGPGO can optimize any function the user specifies, the main topic of this main thesis was the
application of these algorithms to optimize the hyperparameters of machine-learning algorithms. We
provide a very simple way of how to do so using scikit-learn, arguably the most complete machine-
learning package for Python. The example generates synthetic data and tries to optimize a Support
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Vector Machine classifier parameters (C, γ), using cross-validation. A plot of the generated data can be
checked in Figure 5.5.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from matplotlib.colors import ListedColormap

4 from sklearn.datasets import make_moons

5 from sklearn.svm import SVC

6 from sklearn.model_selection import cross_val_score

7

8

9 from pyGPGO.GPGO import GPGO

10 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

11 from pyGPGO.acquisition import Acquisition

12 from pyGPGO.covfunc import squaredExponential

13

14

15 def evaluateModel(C, gamma):

16 clf = SVC(C=C, gamma=gamma)

17 return np.average(cross_val_score(clf, X, y))

18

19

20 if __name__ == ’__main__’:

21 np.random.seed(20)

22 X, y = make_moons(n_samples = 200, noise = 0.3)

23

24 cm_bright = ListedColormap([’#fc4349’, ’#6dbcdb’])

25

26 fig = plt.figure()

27 plt.scatter(X[:, 0], X[:, 1], c = y, cmap = cm_bright)

28 plt.show()

29

30 sexp = squaredExponential()

31 gp = GaussianProcess(sexp, optimize = True, usegrads = True)

32 acq = Acquisition(mode = ’UCB’, beta = 1.5)

33

34 params = {’C’: (’cont’, (1e-4, 1e4)),

35 ’gamma’: (’cont’, (1e-4, 10))

36 }

37

38 gpgo = GPGO(gp, acq, evaluateModel, params)

39 gpgo.run(max_iter = 50)

40 gpgo.getResult()

5.5 Comparison with existing software

pyGPGO is, to the best of my knowledge, one of the most complete packages in Python for performing
Bayesian optimization. It implements plenty of functionality, e.g different surrogate regressors, several
strategies for hyperparameter treatment while being completely modular and open-source. A complete
comparison of features against other popular packages of the Python eco-system can be checked in Table
5.1.
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Figure 5.2: Franke’s function contour plot.
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Figure 5.3: Gaussian Process regression of noisy inputs with pyGPGO.
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Figure 5.4: Posterior sampled distributions of hyperparameters using MCMC.
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Figure 5.5: Synthetic data generated for our sklearn optimization example.
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5.6 Future work

pyGPGO, while a very complete software for Bayesian Optimization still remains in development. In
particular, there are several improvements that will be tackled on:

• Improvements over covariance functions: support for complex kernel structures, such as linear
combinations of such, with automatic gradient computation.

• Support for more diverse acquisition functions: predictive entropy search, hedge or Thompson-like.

• A wider choice of surrogate models: Sparse-input or warped Gaussian Processes.

• GPU support for MCMC sampling.

• Overall speed improvements and code optimization.

In conclusion, pyGPGO, like any other piece of software, is never finished work. Being open-sourced,
anyone can either contribute to the code base available through its GitHub repository or download the
project and modify it in any way they see fit. pyGPGO’s MIT License also allows for it to be used in
mostly any kind of software, either academic or commercial.
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Appendix A

Examples code

A.1 drawGP.py

1 import numpy as np

2 from numpy.random import multivariate_normal

3 from covfunc import squaredExponential

4 import matplotlib.pyplot as plt

5

6 if __name__ == ’__main__’:

7 np.random.seed(93)

8 # Equally spaced values of Xstar

9 Xstar = np.arange(0, 2 * np.pi, step = np.pi/16)

10 Xstar = np.array([np.atleast_2d(x) for x in Xstar])[:, 0]

11 sexp = squaredExponential()

12 # By default assume mean 0

13 m = np.zeros(Xstar.shape[0])

14 # Compute squared-exponential matrix

15 K = sexp.K(Xstar, Xstar)

16

17 n_samples = 3

18 # Draw samples from multivariate normal

19 samples = multivariate_normal(m, K, size = n_samples)

20

21 # Plot values

22 x = Xstar.flatten()

23 plt.figure()

24 for i in range(n_samples):

25 plt.plot(x, samples[i], label = ’GP sample {}’.format(i + 1))

26 plt.xlabel(’x’)

27 plt.ylabel(’y’)

28 plt.title(’Sampled GP priors from Squared Exponential kernel’)

29 plt.grid()

30 plt.legend(loc = 0)

31 plt.show()

A.2 sineGP.py

89
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1 import numpy as np

2 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

3 from pyGPGO.covfunc import squaredExponential

4 import matplotlib.pyplot as plt

5

6 if __name__ == ’__main__’:

7 # Build synthetic data (sine function)

8 x = np.arange(0, 2 * np.pi + 0.01, step=np.pi / 2)

9 y = np.sin(x)

10 X = np.array([np.atleast_2d(u) for u in x])[:, 0]

11

12 # Specify covariance function

13 sexp = squaredExponential()

14

15 # Instantiate GaussianProcess class

16 gp = GaussianProcess(sexp)

17 # Fit the model to the data

18 gp.fit(X, y)

19

20 # Predict on new data

21 xstar = np.arange(0, 2 * np.pi, step=0.01)

22 Xstar = np.array([np.atleast_2d(u) for u in xstar])[:, 0]

23 ymean, ystd = gp.predict(Xstar, return_std=True)

24

25 # Confidence interval bounds

26 lower, upper = ymean - 1.96 * np.sqrt(ystd), ymean + 1.96 * np.sqrt(ystd)

27

28 # Plot values

29 plt.figure()

30 plt.plot(xstar, ymean, label=’Posterior mean’)

31 plt.plot(xstar, np.sin(xstar), label=’True function’)

32 plt.fill_between(xstar, lower, upper, alpha=0.4, label=’95% confidence band’)

33 plt.grid()

34 plt.legend(loc=0)

35 plt.show()

A.3 covzoo.py

1 from pyGPGO.covfunc import *

2 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

3 import matplotlib.pyplot as plt

4

5 if __name__ == ’__main__’:

6 # Build synthetic data (sine function)

7 x = np.arange(0, 2 * np.pi + 0.01, step=np.pi / 2.05)

8 y = np.sin(x)

9 X = np.array([np.atleast_2d(u) for u in x])[:, 0]

10

11 # Covariance functions to loop over

12 covfuncs = [squaredExponential(), matern(), gammaExponential(), rationalQuadratic()]

13 titles = [r’Squared Exponential ($l = 1$)’, r’Matern ($\nu = 1$, $l = 1$)’,

14 r’Gamma Exponential ($\gamma = 1, l = 1$)’, r’Rational Quadratic ($\alpha = 1, l = 1$)’]
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15 plt.figure()

16 #plt.rc(’text’, usetex=True)

17 for i, cov in enumerate(covfuncs):

18 gp = GaussianProcess(cov, optimize=True, usegrads=False)

19 gp.fit(X, y)

20 xstar = np.arange(0, 2 * np.pi, step=0.01)

21 Xstar = np.array([np.atleast_2d(u) for u in xstar])[:, 0]

22 ymean, ystd = gp.predict(Xstar, return_std=True)

23

24 lower, upper = ymean - 1.96 * np.sqrt(ystd), ymean + 1.96 * np.sqrt(ystd)

25 plt.subplot(2, 2, i + 1)

26 plt.plot(xstar, ymean, label=’Posterior mean’)

27 plt.plot(xstar, np.sin(xstar), label=’True function’)

28 plt.fill_between(xstar, lower, upper, alpha=0.4, label=’95\% confidence band’)

29 plt.grid()

30 plt.title(titles[i])

31 plt.legend(loc=0)

32 plt.show()

A.4 hyperopt.py

1 import numpy as np

2 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

3 from pyGPGO.covfunc import squaredExponential

4 import matplotlib.pyplot as plt

5

6

7 def gradient(gp, sexp):

8 alpha = gp.alpha

9 K = gp.K

10 gradK = sexp.gradK(gp.X, gp.X, ’l’)

11 inner = np.dot(np.atleast_2d(alpha).T, np.atleast_2d(alpha)) - np.linalg.inv(K)

12 return (.5 * np.trace(np.dot(inner, gradK)))

13

14

15 if __name__ == ’__main__’:

16 x = np.arange(0, 2 * np.pi + 0.01, step=np.pi / 2)

17 X = np.array([np.atleast_2d(u) for u in x])[:, 0]

18 y = np.sin(x)

19

20 logp = []

21 grad = []

22 length_scales = np.linspace(0.1, 2, 1000)

23

24 for l in length_scales:

25 sexp = squaredExponential(l=l)

26 gp = GaussianProcess(sexp)

27 gp.fit(X, y)

28 logp.append(gp.logp)

29 grad.append(gradient(gp, sexp))

30

31 plt.figure()
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32 plt.subplot(1, 2, 1)

33 plt.plot(length_scales, logp)

34 plt.title(’Marginal log-likelihood’)

35 plt.xlabel(’Characteristic length-scale l’)

36 plt.ylabel(’log-likelihood’)

37 plt.grid()

38 plt.subplot(1, 2, 2)

39 plt.plot(length_scales, grad, ’--’, color=’red’)

40 plt.title(’Gradient w.r.t. l’)

41 plt.xlabel(’Characteristic length-scale l’)

42 plt.grid()

43 plt.show()

A.5 acqzoo.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

4 from pyGPGO.acquisition import Acquisition

5 from pyGPGO.covfunc import squaredExponential

6 from pyGPGO.GPGO import GPGO

7

8

9 def plotGPGO(gpgo, param, index, new=True):

10 param_value = list(param.values())[0][1]

11 x_test = np.linspace(param_value[0], param_value[1], 1000).reshape((1000, 1))

12 y_hat, y_var = gpgo.GP.predict(x_test, return_std=True)

13 std = np.sqrt(y_var)

14 l, u = y_hat - 1.96 * std, y_hat + 1.96 * std

15 if new:

16 plt.figure()

17 plt.subplot(5, 1, 1)

18 plt.fill_between(x_test.flatten(), l, u, alpha=0.2)

19 plt.plot(x_test.flatten(), y_hat)

20 plt.subplot(5, 1, index)

21 a = np.array([-gpgo._acqWrapper(np.atleast_1d(x)) for x in x_test]).flatten()

22 plt.plot(x_test, a, color=colors[index - 2], label=acq_titles[index - 2])

23 gpgo._optimizeAcq(method=’L-BFGS-B’, n_start=1000)

24 plt.axvline(x=gpgo.best)

25 plt.legend(loc=0)

26

27

28 if __name__ == ’__main__’:

29 def f(x):

30 return (np.sin(x))

31

32 acq_1 = Acquisition(mode=’ExpectedImprovement’)

33 acq_2 = Acquisition(mode=’ProbabilityImprovement’)

34 acq_3 = Acquisition(mode=’UCB’, beta=0.5)

35 acq_4 = Acquisition(mode=’UCB’, beta=1.5)

36 acq_list = [acq_1, acq_2, acq_3, acq_4]

37 sexp = squaredExponential()



A.6. INTEGRATEDACQ.PY 93

38 param = {’x’: (’cont’, [0, 2 * np.pi])}

39 new = True

40 colors = [’green’, ’red’, ’orange’, ’black’]

41 acq_titles = [r’Expected improvement’, r’Probability of Improvement’, r’GP-UCB $\beta = .5$’,

42 r’GP-UCB $\beta = 1.5$’]

43

44 for index, acq in enumerate(acq_list):

45 np.random.seed(200)

46 gp = GaussianProcess(sexp)

47 gpgo = GPGO(gp, acq, f, param)

48 gpgo._firstRun(n_eval=3)

49 plotGPGO(gpgo, param, index=index + 2, new=new)

50 new = False

51

52 plt.show()

A.6 integratedacq.py

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from pyGPGO.surrogates.GaussianProcessMCMC import GaussianProcessMCMC

4 from pyGPGO.acquisition import Acquisition

5 from pyGPGO.covfunc import squaredExponential

6 from pyGPGO.GPGO import GPGO

7

8

9 if __name__ == ’__main__’:

10 sexp = squaredExponential()

11 gp = GaussianProcessMCMC(sexp)

12

13 def f(x):

14 return np.sin(x)

15

16 np.random.seed(200)

17 param = {’x’: (’cont’, [0, 6])}

18 acq = Acquisition(mode=’IntegratedExpectedImprovement’)

19 gpgo = GPGO(gp, acq, f, param)

20 gpgo._firstRun(n_eval=7)

21

22 plt.figure()

23 plt.subplot(2, 1, 1)

24

25 Z = np.linspace(0, 6, 100)[:, None]

26 post_mean, post_var = gpgo.GP.predict(Z, return_std=True, nsamples=200)

27 for i in range(200):

28 plt.plot(Z.flatten(), post_mean[i], linewidth=0.4)

29

30 plt.plot(gpgo.GP.X.flatten(), gpgo.GP.y, ’*’, label=’Sampled data’, markersize = 10, color=’red’)

31 plt.grid()

32 plt.legend()

33

34 xtest = np.linspace(0, 6, 200)[:, np.newaxis]
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35 a = [-gpgo._acqWrapper(np.atleast_2d(x)) for x in xtest]

36 plt.subplot(2, 1, 2)

37 plt.plot(xtest, a, label = ’Integrated Expected Improvement’)

38 plt.grid()

39 plt.legend()

A.7 bayoptwork.py

1 import numpy as np

2 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

3 from pyGPGO.covfunc import squaredExponential

4 import matplotlib.pyplot as plt

5

6 if __name__ == ’__main__’:

7 # Build synthetic data (sine function)

8 x = np.arange(0, 2 * np.pi + 0.01, step=np.pi / 1.5)

9 y = np.sin(x)

10 X = np.array([np.atleast_2d(u) for u in x])[:, 0]

11

12 # Specify covariance function

13 sexp = squaredExponential()

14 # Instantiate GPRegressor class

15 gp = GaussianProcess(sexp)

16 # Fit the model to the data

17 gp.fit(X, y)

18

19 # Predict on new data

20 xstar = np.arange(0, 2 * np.pi, step=0.01)

21 Xstar = np.array([np.atleast_2d(u) for u in xstar])[:, 0]

22 ymean, ystd = gp.predict(Xstar, return_std=True)

23

24 # Confidence interval bounds

25 lower, upper = ymean - 1.96 * ystd, ymean + 1.96 * ystd

26

27 # Plot values

28 plt.figure()

29 plt.plot(xstar, ymean, label=’Posterior mean’)

30 plt.plot(xstar, lower, ’--’, label=’Lower confidence bound’)

31 plt.plot(xstar, upper, ’--’, label=’Upper confidence bound’)

32 plt.axhline(y=np.max(lower), color=’black’)

33 plt.axvspan(0, .68, color=’grey’, alpha=0.3)

34 plt.plot(xstar[np.argmax(lower)], np.max(lower), ’*’, markersize=20)

35 plt.axvspan(3.04, 7, color=’grey’, alpha=0.3, label=’Discarded region’)

36 plt.text(3.75, 0.75, ’max LCB’)

37 plt.grid()

38 plt.legend(loc=0)

39 plt.show()

A.8 sineopt.py
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1 import numpy as np

2 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

3 from pyGPGO.covfunc import squaredExponential

4 import matplotlib.pyplot as plt

5

6 if __name__ == ’__main__’:

7 # Build synthetic data (sine function)

8 x = np.arange(0, 2 * np.pi + 0.01, step=np.pi / 2)

9 y = np.sin(x)

10 X = np.array([np.atleast_2d(u) for u in x])[:, 0]

11

12 # Specify covariance function

13 sexp = squaredExponential()

14

15 # Instantiate GaussianProcess class

16 gp = GaussianProcess(sexp)

17 # Fit the model to the data

18 gp.fit(X, y)

19

20 # Predict on new data

21 xstar = np.arange(0, 2 * np.pi, step=0.01)

22 Xstar = np.array([np.atleast_2d(u) for u in xstar])[:, 0]

23 ymean, ystd = gp.predict(Xstar, return_std=True)

24

25 # Confidence interval bounds

26 lower, upper = ymean - 1.96 * np.sqrt(ystd), ymean + 1.96 * np.sqrt(ystd)

27

28 # Plot values

29 plt.figure()

30 plt.plot(xstar, ymean, label=’Posterior mean’)

31 plt.plot(xstar, np.sin(xstar), label=’True function’)

32 plt.fill_between(xstar, lower, upper, alpha=0.4, label=’95% confidence band’)

33 plt.grid()

34 plt.legend(loc=0)

35 plt.show()

A.9 rastriginopt.py

1 import os

2 from collections import OrderedDict

3

4 import numpy as np

5 import matplotlib.pyplot as plt

6

7 from pyGPGO.GPGO import GPGO

8 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

9 from pyGPGO.acquisition import Acquisition

10 from pyGPGO.covfunc import squaredExponential

11

12

13 def rastrigin(x, y, A=10):

14 return (2 * A + (x ** 2 - A * np.cos(2 * np.pi * x)) + (y ** 2 - A * np.cos(2 *

np.pi * y)))↪→
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15

16

17 def plot_f(x_values, y_values, f):

18 z = np.zeros((len(x_values), len(y_values)))

19 for i in range(len(x_values)):

20 for j in range(len(y_values)):

21 z[i, j] = f(x_values[i], y_values[j])

22 plt.imshow(z.T, origin=’lower’, extent=[np.min(x_values), np.max(x_values),

np.min(y_values), np.max(y_values)])↪→

23 plt.colorbar()

24 plt.show()

25 plt.savefig(os.path.join(os.getcwd(),

’mthesis_text/figures/chapter3/rosen/rosen.pdf’))↪→

26

27

28 def plot2dgpgo(gpgo):

29 tested_X = gpgo.GP.X

30 n = 100

31 r_x, r_y = gpgo.parameter_range[0], gpgo.parameter_range[1]

32 x_test = np.linspace(r_x[0], r_x[1], n)

33 y_test = np.linspace(r_y[0], r_y[1], n)

34 z_hat = np.empty((len(x_test), len(y_test)))

35 z_var = np.empty((len(x_test), len(y_test)))

36 ac = np.empty((len(x_test), len(y_test)))

37 for i in range(len(x_test)):

38 for j in range(len(y_test)):

39 res = gpgo.GP.predict([x_test[i], y_test[j]])

40 z_hat[i, j] = res[0]

41 z_var[i, j] = res[1][0]

42 ac[i, j] = -gpgo._acqWrapper(np.atleast_1d([x_test[i], y_test[j]]))

43 fig = plt.figure()

44 a = fig.add_subplot(2, 2, 1)

45 a.set_title(’Posterior mean’)

46 plt.imshow(z_hat.T, origin=’lower’, extent=[r_x[0], r_x[1], r_y[0], r_y[1]])

47 plt.colorbar()

48 plt.plot(tested_X[:, 0], tested_X[:, 1], ’wx’, markersize=10)

49 a = fig.add_subplot(2, 2, 2)

50 a.set_title(’Posterior variance’)

51 plt.imshow(z_var.T, origin=’lower’, extent=[r_x[0], r_x[1], r_y[0], r_y[1]])

52 plt.plot(tested_X[:, 0], tested_X[:, 1], ’wx’, markersize=10)

53 plt.colorbar()

54 a = fig.add_subplot(2, 2, 3)

55 a.set_title(’Acquisition function’)

56 plt.imshow(ac.T, origin=’lower’, extent=[r_x[0], r_x[1], r_y[0], r_y[1]])

57 plt.colorbar()

58 gpgo._optimizeAcq(method=’L-BFGS-B’, n_start=500)

59 plt.plot(gpgo.best[0], gpgo.best[1], ’gx’, markersize=15)

60 plt.tight_layout()

61 plt.savefig(os.path.join(os.getcwd(),

’mthesis_text/figures/chapter3/rosen/{}.pdf’.format(item)))↪→

62 plt.show()

63

64

65 if __name__ == ’__main__’:

66 x = np.linspace(-1, 1, 1000)
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67 y = np.linspace(-1, 1, 1000)

68 plot_f(x, y, rastrigin)

69

70 np.random.seed(20)

71 sexp = squaredExponential()

72 gp = GaussianProcess(sexp)

73 acq = Acquisition(mode=’ExpectedImprovement’)

74

75 param = OrderedDict()

76 param[’x’] = (’cont’, [-1, 1])

77 param[’y’] = (’cont’, [-1, 1])

78

79 gpgo = GPGO(gp, acq, rastrigin, param, n_jobs=-1)

80 gpgo._firstRun()

81

82 for item in range(7):

83 plot2dgpgo(gpgo)

84 gpgo.updateGP()
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Appendix B

Testing code

B.1 utils.py

1 import os

2

3 import numpy as np

4 import pandas as pd

5 from sklearn.metrics import log_loss, mean_squared_error

6 from sklearn.model_selection import train_test_split, KFold

7 from sklearn.preprocessing import StandardScaler

8

9 from pyGPGO.GPGO import GPGO

10 from pyGPGO.surrogates.GaussianProcess import GaussianProcess

11 from pyGPGO.acquisition import Acquisition

12 from pyGPGO.covfunc import squaredExponential

13

14

15 class loss:

16 def __init__(self, model, X, y, method=’holdout’, problem=’binary’):

17 self.model = model

18 self.X = X

19 self.y = y

20 self.method = method

21 self.problem = problem

22 sc = StandardScaler()

23 self.X = sc.fit_transform(self.X)

24 if self.problem == ’binary’:

25 self.loss = log_loss

26 elif self.problem == ’cont’:

27 self.loss = mean_squared_error

28 else:

29 self.loss = log_loss

30

31 def evaluateLoss(self, **param):

32 if self.method == ’holdout’:

33 X_train, X_test, y_train, y_test = train_test_split(self.X, self.y,

random_state=93)↪→

34 clf = self.model.__class__(**param, problem=self.problem).eval()

35 clf.fit(X_train, y_train)

36 if self.problem == ’binary’:

99
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37 yhat = clf.predict_proba(X_test)[:, 1]

38 elif self.problem == ’cont’:

39 yhat = clf.predict(X_test)

40 else:

41 yhat = clf.predict_proba(X_test)

42 return (- self.loss(y_test, yhat))

43 elif self.method == ’5fold’:

44 kf = KFold(n_splits=5, shuffle=False)

45 losses = []

46 for train_index, test_index in kf.split(self.X):

47 X_train, X_test = self.X[train_index], self.X[test_index]

48 y_train, y_test = self.y[train_index], self.y[test_index]

49 clf = self.model.__class__(**param, problem=self.problem).eval()

50 clf.fit(X_train, y_train)

51 if self.problem == ’binary’:

52 yhat = clf.predict_proba(X_test)[:, 1]

53 elif self.problem == ’cont’:

54 yhat = clf.predict(X_test)

55 else:

56 yhat = clf.predict_proba(X_test)

57 losses.append(- self.loss(y_test, yhat))

58 return (np.average(losses))

59

60

61 def cumMax(history):

62 n = len(history)

63 res = np.empty((n,))

64 for i in range(n):

65 res[i] = np.max(history[:(i + 1)])

66 return (res)

67

68

69 def build(csv_path, target_index, header=None):

70 data = pd.read_csv(csv_path, header=header)

71 data = data.as_matrix()

72 y = data[:, target_index]

73 X = np.delete(data, obj=np.array([target_index]), axis=1)

74 return X, y

75

76

77 def evaluateDataset(csv_path, target_index, problem, model, parameter_dict,

method=’holdout’, seed=20, max_iter=50):↪→

78 print(’Now evaluating {}...’.format(csv_path))

79 X, y = build(csv_path, target_index)

80

81 wrapper = loss(model, X, y, method=method, problem=problem)

82

83 print(’Evaluating EI’)

84 np.random.seed(seed)

85 sexp = squaredExponential()

86 gp = GaussianProcess(sexp, optimize=True, usegrads=True)

87 acq_ei = Acquisition(mode=’ExpectedImprovement’)

88 gpgo_ei = GPGO(gp, acq_ei, wrapper.evaluateLoss, parameter_dict, n_jobs=1)

89 gpgo_ei.run(max_iter=max_iter)

90
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91 # Also add UCB, beta = 0.5, beta = 1.5

92 print(’Evaluating UCB beta = 0.5’)

93 np.random.seed(seed)

94 sexp = squaredExponential()

95 gp = GaussianProcess(sexp, optimize=True, usegrads=True)

96 acq_ucb = Acquisition(mode=’UCB’, beta=0.5)

97 gpgo_ucb = GPGO(gp, acq_ucb, wrapper.evaluateLoss, parameter_dict, n_jobs=1)

98 gpgo_ucb.run(max_iter=max_iter)

99

100 print(’Evaluating UCB beta = 1.5’)

101 np.random.seed(seed)

102 sexp = squaredExponential()

103 gp = GaussianProcess(sexp, optimize=True, usegrads=True)

104 acq_ucb2 = Acquisition(mode=’UCB’, beta=1.5)

105 gpgo_ucb2 = GPGO(gp, acq_ucb2, wrapper.evaluateLoss, parameter_dict, n_jobs=1)

106 gpgo_ucb2.run(max_iter=max_iter)

107

108 print(’Evaluating random’)

109 np.random.seed(seed)

110 r = evaluateRandom(gpgo_ei, wrapper.evaluateLoss, n_eval=max_iter + 1)

111 r = cumMax(r)

112

113 return np.array(gpgo_ei.history), np.array(gpgo_ucb.history),

np.array(gpgo_ucb2.history), r↪→

114

115

116 def plotRes(gpgoei_history, gpgoucb_history, gpgoucb2_history, random, datasetname,

model, problem):↪→

117 import matplotlib

118 import matplotlib.pyplot as plt

119 x = np.arange(1, len(random) + 1)

120 fig = plt.figure()

121 plt.plot(x, -random, label=’Random search’, color=’red’)

122 plt.plot(x, -gpgoei_history, label=’GPGO (EI)’, color=’blue’)

123 plt.plot(x, -gpgoucb_history, label=r’GPGO (UCB) $\beta=.5$’, color=’yellow’)

124 plt.plot(x, -gpgoucb2_history, label=r’GPGO (UCB) $\beta=1.5$’, color=’green’)

125 plt.grid()

126 plt.legend(loc=0)

127 plt.xlabel(’Number of evaluations’)

128 if problem == ’binary’:

129 plt.ylabel(’Best log-loss found’)

130 else:

131 plt.ylabel(’Best MSE found’)

132 datasetname = datasetname.split(’.’)[0]

133 plt.savefig(os.path.join(os.path.abspath(’.’),

’testing/results/{}/{}.pdf’.format(model.name, datasetname)))↪→

134 plt.close(fig)

135 return None

136

137

138 def evaluateRandom(gpgo, loss, n_eval=20):

139 res = []

140 for i in range(n_eval):

141 param = gpgo._sampleParam()

142 l = loss(**param)



102 APPENDIX B. TESTING CODE

143 res.append(l)

144 print(’Param {}, loss: {}’.format(param, l))

145 return (res)

B.2 modaux.py

1 from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor,

AdaBoostClassifier, AdaBoostRegressor, \↪→

2 GradientBoostingClassifier, GradientBoostingRegressor

3 from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor

4 from sklearn.neural_network import MLPClassifier, MLPRegressor

5 from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor

6 from sklearn.svm import SVC, SVR

7 from collections import OrderedDict

8

9 d_rf = OrderedDict()

10 d_rf[’n_estimators’] = (’int’, (10, 50))

11 d_rf[’min_samples_split’] = (’cont’, (0.1, 0.5))

12 d_rf[’max_features’] = (’cont’, (0.1, 0.5))

13

14 d_knn = OrderedDict()

15 d_knn[’n_neighbors’] = (’int’, (10, 50))

16

17 d_mlp = OrderedDict()

18 d_mlp[’hidden_layer_size’] = (’int’, (5, 50))

19 d_mlp[’alpha’] = (’cont’, (1e-5, 0.9))

20

21

22 d_svm = OrderedDict()

23 d_svm[’C’] = (’cont’, (-4, 5))

24 d_svm[’gamma’] = (’cont’, (-4, 5))

25

26 d_tree = OrderedDict()

27 d_tree[’max_features’] = (’cont’, (0.1, 0.99))

28 d_tree[’max_depth’] = (’int’, (4, 30))

29 d_tree[’min_samples_split’] = (’cont’, (0.1, 0.99))

30

31 d_ada = OrderedDict()

32 d_ada[’n_estimators’] = (’int’, (5, 200))

33 d_ada[’learning_rate’] = (’cont’, (1e-5, 1))

34

35 d_gbm = OrderedDict()

36 d_gbm[’learning_rate’] = (’cont’, (10e-5, 1e-1))

37 d_gbm[’n_estimators’] = (’int’, (10, 100))

38 d_gbm[’max_depth’] = (’int’, (2, 100))

39 d_gbm[’min_samples_split’] = (’int’, (2, 100))

40

41

42

43 class Tree:

44 def __init__(self, problem=’binary’, max_features=0.5, max_depth=1,

min_samples_split=2):↪→
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45 self.problem = problem

46 self.max_features = max_features

47 self.max_depth = int(max_depth)

48 self.min_samples_split = min_samples_split

49 self.name = ’Tree’

50

51 def eval(self):

52 if self.problem == ’binary’:

53 mod = DecisionTreeClassifier(max_features=self.max_features,

max_depth=self.max_depth, min_samples_split=self.min_samples_split,

random_state=20)

↪→

↪→

54 else:

55 mod = DecisionTreeRegressor(max_features=self.max_features,

max_depth=self.max_depth, min_samples_split=self.min_samples_split,

random_state=20)

↪→

↪→

56 return mod

57

58

59 class Ada:

60 def __init__(self, problem=’binary’, n_estimators=50, learning_rate=1):

61 self.problem = problem

62 self.n_estimators = int(n_estimators)

63 self.learning_rate = learning_rate

64 self.name = ’Ada’

65

66 def eval(self):

67 if self.problem == ’binary’:

68 mod = AdaBoostClassifier(n_estimators=self.n_estimators,

learning_rate=self.learning_rate, random_state=20)↪→

69 else:

70 mod = AdaBoostRegressor(n_estimators=self.n_estimators,

learning_rate=self.learning_rate, random_state=20)↪→

71 return mod

72

73

74 class GBM:

75 def __init__(self, problem=’binary’, learning_rate=0.1, n_estimators=100,

max_depth=3, min_samples_split=2,↪→

76 min_samples_leaf=1, min_weight_fraction_leaf=0.0, subsample=1.0,

max_features=1.0):↪→

77 self.problem = problem

78 self.learning_rate = learning_rate

79 self.n_estimators = int(n_estimators)

80 self.max_depth = int(max_depth)

81 self.min_samples_split = int(min_samples_split)

82 self.min_samples_leaf = int(min_samples_leaf)

83 self.min_weight_fraction_leaf = min_weight_fraction_leaf

84 self.subsample = subsample

85 self.max_features = max_features

86 self.name = ’GBM’

87

88 def eval(self):

89 if self.problem == ’binary’:
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90 mod = GradientBoostingClassifier(learning_rate=self.learning_rate,

n_estimators=self.n_estimators, max_depth=self.max_depth,

min_samples_split=self.min_samples_split,

min_samples_leaf=self.min_samples_leaf,

min_weight_fraction_leaf=self.min_weight_fraction_leaf,

subsample=self.subsample, max_features=self.max_features,

random_state=20)

↪→

↪→

↪→

↪→

↪→

↪→

91 else:

92 mod = GradientBoostingRegressor(learning_rate=self.learning_rate,

n_estimators=self.n_estimators, max_depth=self.max_depth,

min_samples_split=self.min_samples_split,

min_samples_leaf=self.min_samples_leaf,

min_weight_fraction_leaf=self.min_weight_fraction_leaf,

subsample=self.subsample, max_features=self.max_features,

random_state=20)

↪→

↪→

↪→

↪→

↪→

↪→

93 return mod

94

95

96 class SVM:

97 def __init__(self, problem=’binary’, C=0, gamma=0, kernel=’rbf’):

98 self.problem = problem

99 self.C = 10**C

100 self.gamma = 10**gamma

101 self.kernel = kernel

102 self.name = ’SVM’

103

104 def eval(self):

105 if self.problem == ’binary’:

106 mod = SVC(kernel=self.kernel, C=self.C, gamma=self.gamma,

probability=True, random_state=20)↪→

107 else:

108 mod = SVR(kernel=self.kernel, C=self.C, gamma=self.gamma)

109 return mod

110

111

112 class RF:

113 def __init__(self, problem=’binary’, n_estimators=10, max_features=0.5,

114 min_samples_split=0.3, min_samples_leaf=0.2):

115 self.problem = problem

116 self.n_estimators = int(n_estimators)

117 self.max_features = max_features

118 self.min_samples_split = min_samples_split

119 self.min_samples_leaf = min_samples_leaf

120 self.name = ’RF’

121

122 def eval(self):

123 if self.problem == ’binary’:

124 mod = RandomForestClassifier(n_estimators=self.n_estimators,

125 max_features=self.max_features,

126 min_samples_split=self.min_samples_split,

127 min_samples_leaf=self.min_samples_leaf,

128 n_jobs=-1,

129 random_state=20)

130 else:

131 mod = RandomForestRegressor(n_estimators=self.n_estimators,
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132 max_features=self.max_features,

133 min_samples_split=self.min_samples_split,

134 min_samples_leaf=self.min_samples_leaf,

135 n_jobs=-1,

136 random_state=20)

137 return mod

138

139

140 class KNN:

141 def __init__(self, problem=’binary’, n_neighbors=5, leaf_size=30):

142 self.problem = problem

143 self.n_neighbors = int(n_neighbors)

144 self.leaf_size = int(leaf_size)

145 self.name = ’KNN’

146

147 def eval(self):

148 if self.problem == ’binary’:

149 mod = KNeighborsClassifier(n_neighbors=self.n_neighbors,

150 leaf_size=self.leaf_size)

151 else:

152 mod = KNeighborsRegressor(n_neighbors=self.n_neighbors,

153 leaf_size=self.leaf_size)

154 return mod

155

156

157 class MLP:

158 def __init__(self, problem=’binary’, hidden_layer_size=100, alpha=10e-4,

159 learning_rate_init=10e-4, beta_1=0.9, beta_2=0.999):

160 self.problem = problem

161 self.hidden_layer_sizes = (int(hidden_layer_size),)

162 self.alpha = alpha

163 self.learning_rate_init = learning_rate_init

164 self.beta_1 = beta_1

165 self.beta_2 = beta_2

166 self.name = ’MLP’

167

168 def eval(self):

169 if self.problem == ’binary’:

170 mod = MLPClassifier(hidden_layer_sizes=self.hidden_layer_sizes,

alpha=self.alpha, learning_rate_init=self.learning_rate_init,

beta_1=self.beta_1, beta_2=self.beta_2, random_state=20)

↪→

↪→

171 else:

172 mod = MLPRegressor(hidden_layer_sizes=self.hidden_layer_sizes,

alpha=self.alpha, learning_rate_init=self.learning_rate_init,

beta_1=self.beta_1, beta_2=self.beta_2, random_state=20)

↪→

↪→

173 return mod

B.3 testing.py

1 from testing.utils import evaluateDataset, plotRes

2 from testing.modaux import *

3 import os
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4 import numpy as np

5

6 if __name__ == ’__main__’:

7 models = [SVM(), MLP(), GBM(), KNN()]

8 params = [d_svm, d_mlp, d_gbm, d_knn]

9

10 path = os.path.join(os.getcwd(), ’datasets’)

11 datasets = [’aff.csv’, ’pinter.csv’, ’breast_cancer.csv’, ’indian_liver.csv’,

’parkinsons.csv’,↪→

12 ’lsvt.csv’, ’pima-indians-diabetes.csv’]

13 problems = [’cont’, ’binary’, ’binary’, ’binary’, ’binary’, ’binary’, ’binary’]

14 targets = [0, 0, 0, 10, 16, 0, 8]

15

16 for model, parameter_dict in zip(models, params):

17 print(’Evaluating model {}’.format(model.name))

18 for dataset, target, problem in zip(datasets, targets, problems):

19 model.problem = problem

20 np.random.seed(93)

21 print(np.random.randn(1))

22 try:

23 g, g2, g3, r = evaluateDataset(os.path.join(path, dataset),

target_index=target, model=model, parameter_dict=parameter_dict,

method=’5fold’, seed=20, max_iter=50, problem=problem)

↪→

↪→

24 plotRes(g, g2, g3, r, dataset, model, problem=problem)

25 print(np.random.randn(1))

26 except Exception as e:

27 print(e)

28 continue


