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Abstract 

This paper proposes an analytical solution of the Inverse Kinematics (IK) problem at dead point 

configurations for any planar one degree of freedom linkage mechanism, with regard to the 

continuity    of the motion law. The systems analyzed are those whose elements are linked with 

lower pairs and do not present redundancies. The study aims to provide the user with some rules 

to facilitate the design of feasible motion profiles to be reproduced by conventional electrical 

actuators at these configurations. During the last decades, several methods and techniques have 

been developed to study this specific configuration. However, these techniques are mainly 

focused on solving numerically the IK indeterminacy, rather than analyzing the motion laws that 

the mechanisms are able to perform at these particular configurations. The analysis presented in 

this paper has been carried out differentiating and applying l’Hôpital’s rule to the system of 

constraint equations      of the mechanism. The study also considers the feasibility of the time-

domain profiles to be reproduced with conventional electrical actuators (i.e. AC/DC motors, 

linear actuators, etc.). To show the usefulness and effectiveness of the method, the development 

includes the analytical application and numerical simulations for two common one degree of 

freedom systems: a slider-crank and a four linkage mechanisms. Finally, experimental results are 

presented on a four linkage mechanism test bed. 

Keywords: inverse kinematics, linkage mechanism, singular configuration, dead point, motion 

law. 

1. Introduction 

The design of motion profiles of machine elements has been widely studied in research areas 

such as mechanical engineering and control engineering. Commonly, the transmission chain 

between the actuator coordinate, commanded by the user, and the coordinate that describes the 

desired motion, is linear (pulley belt [1], gear chain [2], rack and pinion, etc.) (Figure 1). In this 

case, the constraints and limitations to perform any profile generally come from the actuator or 

control performances. Nevertheless, when the transmission chain is a linkage mechanism, it is 

necessary to deal with additional constraints, such as the singularities of the targeted coordinate 

within its functional range [3]. The actuator coordinate, however, has typically no singularities. 
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In the study of kinematics in linkage mechanisms with planar motion, the mobility can be 

described by a set of generalized coordinates and generalized velocities. The coordinates to 

describe the configuration of the mechanism are named generalized coordinates. The minimum 

number of them to fully define the state of the mechanism are the so-called independent 

coordinates, while the rest are known as dependent coordinates. In the case of a planar one 

degree of freedom mechanism, there is only one independent coordinate. Generically, the aim of 

the user is to design a time domain evolution of this coordinate, described by means of a motion 

law or profile. Thus, the inverse kinematics (IK) approach could be used to calculate the actuator 

command. However, if this coordinate has dead point configurations within its accessible 

configuration range, IK leads to algebraic indeterminacies. This paper addresses which type of 

time-domain profiles can be performed, by the independent coordinate, in presence of dead 

points. The analysis is carried out with regard to the continuity    of the profile and its 

feasibility to be reproduced with conventional electrical actuators (i.e. AC/DC motors, linear 

actuators, etc.). 

In order to find a solution to IK near dead points, Whitney [4] suggested using the pseudoinverse 

of the Jacobian matrix ( ). The main drawback of this method is that it has stability problems in 

the neighborhood of dead points. Balestrino et al. [5] and Wolovich and Elliot [6] proposed to 

use the transpose of   instead of its inverse which, according to Buss [7], is a good 

approximation when scaled by some small scalar  . Another approach is the well-known 

damped least-squares method (DLS) introduced by Nakamura and Hanafusa [8] and Wampler 

[9]. This technique uses a damping factor   to ensure that an inverse kinematic solution exists in 

the vicinity of a dead point by allowing the independent coordinate to deviate from the reference 

trajectory. There have been several authors that presented methods to find an appropriate value 

for   ([8], [10], [11], [12], [13], [14], [15]). Similar methods to the DLS are exposed by Xiang et 

al. [16] and Sugihara [17]. 

Another approach to solve the IK problem is based on a null-space path tracking technique 

presented by Nenchev [18], and Nenchev and Uchiyama [19]. This method, based on the work of 

Kieffer [20] and known as Singularity Consistent (SC) method, proposes to reparametrize the 

path of the independent coordinate in the neighborhood of a dead point. The main idea is to 

parametrize the independent coordinate trajectory with a smooth function     , where   is not 

time and is treated as a dependent coordinate. Nenchev et al. [21] analytically demonstrated the 

equivalence between the Singularity Consistent and the Jacobian adjoint matrix technique used 

by Tchoń and Dulęba [20] and Senft and Hirzinger [23]. 

Other methods for solving the IK problem are based on artificial neural networks ([24], [25]). 

Aristidou and Lasenby [26] suggested a heuristic method called Forward And Backward 

Reaching Inverse Kinematics (FABRIK) that takes the last calculated position of the dependent 

coordinates to find the future values in a forward and backward iterative mode. The Feedback 

Inverse Kinematics (FIK) presented by Pechev [27] uses a feedback loop to minimize the 

difference between the actual and the target velocity. Vargas [28] introduced the Filtered Inverse 

algorithm (FI), which dynamically estimates the inverse of the Jacobian matrix  . PO
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The present paper proposes an analytical solution of the IK problem at dead point configurations, 

for any planar one degree of freedom linkage mechanism, with regard to the continuity    of a 

motion law that describes the time-evolution of the independent coordinate. The systems 

analyzed are those whose elements are linked with lower pairs and do not present redundancies. 

The novelty of this study is to provide the user with some rules to facilitate the design of feasible 

motion profiles of the independent coordinate at these configurations, while dealing with the 

limitations of conventional electrical actuators. The main contributions of this development are: 

i) The study of the feasibility of the time-domain profiles, with regard to the continuity   , to be 

reproduced with the above-mentioned actuators; ii) The analysis carried out by differentiating 

and applying l’Hôpital’s rule to the system of constraint equations      of the mechanism, 

which is a different approach from previous work; iii) The specific rules to design motion 

profiles around a dead point configuration, taking into consideration the limitations of these 

actuators and all the casuistry involved, related with the values of the derivatives of the 

independent coordinate, and iv) the verification of the conclusions obtained through simulation 

and experimental results.  

The paper is organized as follows. Section 2 introduces the problem formulation of the IK 

approach in the neighborhood of a dead point. Section 3 analyzes the limitations of a 

conventional electrical actuator to perform a command input with regard to the continuity   . 

Section 4 proposes the workspace solutions of the problem stated in section 2 and particularizes 

the results for a slider-crank mechanism. Some simulations to confirm the goodness of the 

development are carried out in section 5 and experimental results are presented in section 6. 

Finally, conclusions are drawn in section 7. 

 

2. Problem formulation 

The mobility of a mechanism of   degrees of freedom can be described by a set of     

generalized coordinates                             and generalized velocities    

                              . The set of geometric variables   defines all the possible 

configurations of the mechanism, while its derivatives    and    define the distribution of the 

mechanism velocities and accelerations. The minimum set of   coordinates to fully define the 

configuration of the mechanism are called independent coordinates (                 ), 

while the remaining   are known as dependent coordinates (                ). In the case 

of a planar one degree of freedom mechanism (   1), there is only one independent coordinate 

  . Generically, this coordinate is used, by means of a motion law in the time domain, to describe 

the movement of the mechanism. If the actuator is commanded through a different coordinate 

than the independent one, the IK technique could be used to calculate the actuator command. 

Nevertheless, the IK approach in mechanisms presents problems when the independent 

coordinate is found at a dead point within its accessible configuration’s range. Actually, this 

problem can be summarized as an algebraic indeterminacy. An example of a planar one degree 

of freedom mechanism with dead points is the four linkage mechanism presented in Figure 2 a), 

where             
 . In this case, the generalized coordinate    presents a dead point when 

       (Figure 2 b)). PO
ST

PR
IN

T



4 
 

 

Figure 2. a) Four linkage mechanism with 3 generalized coordinates (      and   ); b) Dead point configuration for 

  . 

In a planar one degree of freedom mechanism, in general, the relation between the    1 

generalized coordinates can be obtained from the constraint equations       of the mechanism. 

  

      
     

 
     

    (1) 

 

According to Cardona and Clos [29], Eq. (1) is differentiated in order to calculate the velocities 

   of the mechanism 

        (2) 

 

where    is known as the Jacobian matrix of the system of equations and is calculated according 

to Eq. (3) 
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Splitting the dependent and independent terms in Eq. (2) 
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When a mechanism is found at a dead point configuration for the generalized independent 

coordinate   , its corresponding velocity     has a null value regardless the motion of the rest of 

the mechanism. Therefore, to have a solution for the generalized dependent coordinates     

different than zero, the value of the determinant of   
  must also be null. As a consequence, the 

value of the velocities     cannot be numerically defined using Eq. (5), because of this 

indeterminacy. 

In the case of the mechanism shown in Figure 2, the relation between       and    can be 

obtained from the constraint equations       of the mechanism. 
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And the Jacobian matrix of the system of equations will be 
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If    is considered the independent coordinate   , and    and    are treated as dependent 

coordinates   , Eq. (4) can be rewritten as 
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Then, 
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Regarding the acceleration vector    , a similar development can be obtained by differentiating 

Eq. (2) 
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Splitting again the dependent and independent terms of Eq. (12) 
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When the independent coordinate    is located in one of its dead point configurations, the value 

of the numerator of Eq. (14) is also null (see Appendix A). Thus, analogously to the case of the 

velocities    , the algebraic indeterminacy presented in Eq. (14) does not allow the calculation of 

the accelerations    . Therefore, Eqs. (5) and (14) seem to imply that the motion law of the 

independent coordinate    cannot be used to track the kinematics of the entire mechanism in this 

specific configuration. 

In the four linkage mechanism presented in Figure 2, the accelerations          
  are 
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The aim of this study is to prove which is the minimum continuity    required by the motion 

law of the independent coordinate in presence of dead points in order to be achievable by a 

conventional electrical actuator while controlling a dependent coordinate. 
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3 Capability of conventional actuators 

In this section it is defined the minimum continuity    that an input command must have in 

order to be performed with a reasonable accuracy by a conventional actuator. To this purpose, 

the limitations caused by the discontinuities in position, velocity and acceleration are considered. 

However, a quantitative analysis of the capability of the actuators is not included. This means 

that the frequency range in which the actuators are able to respond is not considered. As an 

example, the input command of the generalized coordinate    of the four linkage mechanism 

presented in Figure 2 is studied.  

In conventional electrical actuators such as AC or DC servomotors, the electrical time constant 

and the magnetic diffusion time are about few milliseconds (see [30]). Therefore, a constant 

stationary torque and, consequently, a constant stationary acceleration are fully available after 

this transition time    when a step is used as an electrical input command. 

Assume that the coordinate    follows the time profile showed in Figure 3 a): 

 

 
       

         

           
          

         

          
  

(17) 
  

        

         

               

         

  

 

where     and     are the instant of time just before and after of the starting point of the motion 

profile, respectively. The parameter    refers to the coefficient of the generic polynomial motion 

law of      . This type of movement is    and imply an impulse of acceleration (Eq. (17)). 

Although this motion can physically be approximated by a percussive torque, the majority of the 

conventional actuators cannot execute it. 

Consider now the    input command presented in Figure 3 b), where    is a generic coefficient 

of the new polynomial expression of      : 
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Unlike the case detailed in Eq. (17), this acceleration profile can be performed with more or less 

precision with a certain delay of    milliseconds, as exposed above (real acceleration drawn in 

Figure 3 is just for reference). Its accuracy will depend on the frequency range where the PO
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actuators are able to respond. Thus, the hypothesis assumed in this study is that any input 

command performed by conventional electrical actuators must be, at least,   . 

 

Figure 3: Input command with a discontinuity in the velocity     a) and acceleration     b). 

 

4 Kinematic study at dead point configurations for 1 degree of freedom linkage 

mechanisms 

Assuming a one degree of freedom mechanism, the purpose of this section is to analyze the 

continuity    of the independent coordinate motion law, when dead points are present, by 

solving the algebraic indeterminacy shown in section 2. This study contemplates the velocity and 

acceleration analysis of the dependent coordinates based on the motion profile described by the 

time evolution of the independent coordinate. For a better understanding while developing the 

generic solution, all the results are particularized to the slider-crank mechanism presented in 

Figure 4 a) when found at the dead point configuration of the independent coordinate    shown 

in Figure 4 b). The conclusions obtained in this study are valid for any planar one degree of 

freedom mechanism, with lower pairs and without redundancies, when the independent 

coordinate is found at a dead point. 

 

Figure 4: Slider crank mechanism in a general configuration a) and at a dead point of the coordinate    b). PO
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4.1 Velocity analysis 

As stated in Eq. (5), the   velocities     of the dependent coordinates are proportional to the 

velocity     of the independent coordinate. At a dead point configuration, the generalized velocity 

    has a null value regardless the motion of the rest of the mechanism. In order to have a solution 

for     different than zero, the determinant of the matrix   
  must also be null. This fact implies 

an algebraic indeterminacy     in the calculation of     
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The indeterminacy shown in Eq. (19) can be solved by applying L’Hôpital’s rule and imposing 
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In order to find a proper solution for Eq. (20), the following notation is introduced, 
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The generic solution for the  th value of the     vector is  

 
         

   
  

                           
    

    

 (24) 

 

Thus, the quotient between two velocities     and     is 
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Combining both Eqs. (24) and (25) yields to the final generic solution 
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which in vector form can be written as 

 

     
    

     
   

  
 

    

 (27) 

 

For the slider-crank mechanism considered in this study, 
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with   
  and   

  defined according to Eqs. (6) and (7) 
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Thus, at the dead point configuration defined in Figure 4 b) 
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And, therefore, the velocities     and     are PO
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(34) 

 

In absence of bifurcations, the functions that define the constraint equations are always 

continuous and differentiable within the accessible configuration range of the mechanism. 

Therefore,   
       will be a finite and determined value. According to Eq. (27), the velocities 

of the dependent coordinates are proportional to the square root of the acceleration of the 

independent coordinate at the configuration of dead point. Consequently, assuming that a 

conventional electrical actuator is able to perform a motion with a minimum    continuity, the 

acceleration     of the independent coordinate must be, at least, continuous around this point (  ). 

Therefore, the motion law described by the time evolution of the independent coordinate    must 

be, at least,   . Otherwise, with a lower continuity degree, the velocities of the dependent 

coordinates     will change instantaneously between two different values, making the movement 

not feasible for conventional actuators. 

 

4.2 Acceleration analysis 

The acceleration analysis is based on Eq. (14). When the independent coordinate is located near 

a dead point, the numerator of this expression tends to zero (see Appendix A). Therefore, there is 

an algebraic indeterminacy in the calculation of    , which is solved again using L’Hôpital’s rule. 
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Splitting the dependent and independent terms and imposing       
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where (see Appendix B for expressions (38) and (39)) PO
ST

PR
IN

T



12 
 

    
 
  

    
   

   
   

      
    

     
  

 
    

    
 (37) 

 
    

 
 
    

    
 

   
   

      

 

   

 

    

 (38) 

 
    

 
 
    

     
 

   
 

 

   
   

       

 

   

    
 

   
   

      

 

   

  

  
 

   
   

      
    

 

(39) 

 

In order to facilitate the notation,     
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Rearranging terms in Eq. (36) 
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In order to see the dependence between the acceleration of the dependent coordinates     and the 

motion of the independent coordinate   , Eqs. (37), (38) and (40) are rewritten considering Eqs. 

(25-27) 

 

   
 
  

    
     

  
 
  

    

  
 

    

 (44) 

 

    
 
 
    

    
 

   
   

     

 

   

 
    

  
 

    

 (45) PO
ST

PR
IN

T



13 
 

 
     

 
 
 
 
    

      
 

   
 

 

   
   

      

 

   

   

 

   

    

  
 

    

 (46) 

 

Therefore, Eq. (43) is rewritten, considering Eq. (23), (27), (41), (42) and (44)-(46). For the 

calculation of the derivative of the adjoint matrix of   
 ,  Eq. (45) is used, replacing   
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with the vector         being 
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Regrouping terms, 
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with the matrix         defined as follows 
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where   is an   by   identity matrix. Based on the previous subsection 4.1, the law of motion of 

the independent coordinate must be, at least,   . This implies that the acceleration     must be 

continuous around the dead point. According to Eq. (49), the calculation of the dependent PO
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accelerations     may considerably differ if the acceleration     of the independent coordinate is 

zero or has any finite value, because it appears in the denominator of the equation. These two 

scenarios are analyzed in the following subsections. 

 

4.2.1 Acceleration        

When the mechanism reaches a dead point configuration with an acceleration of the independent 

coordinate     different than zero, and assuming          , the acceleration of the dependent 

coordinates     could directly be obtained from Eq. (49). As conventional electrical actuators can 

perform    input commands, there are no requirements with respect to the jerk    , as long as it 

has a finite value. Therefore, if      , the motion law of the independent coordinate must be, at 

least,   . 

In the case of the slider-crank mechanism considered throughout this study 
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Thus, 
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4.2.2 Acceleration        

Based on Eq. (49), when the mechanism is located at a dead point with a null     acceleration, the 

value of the jerk     must also be null. Otherwise, the accelerations      of the dependent 

coordinates will tend to infinity. Moreover, as      , the velocities     are also null. Therefore, 

to know the exact value of     when                   , L’Hôpital’s rule is again applied to 

Eq. (35) 
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Splitting again the dependent and independent terms and imposing                   PO
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Considering Eq. (39) and        
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The relation between the  th and the  th value of the acceleration vector     is obtained by 

differentiating Eq. (5)  and applying twice L’Hôpital’s rule considering                
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Thus, for the  th component of the acceleration     
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Therefore, considering the  th row of Eq. (59), its final expression is 
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where     is the  th row of the matrix       
  .  

In the case of the slider-crank mechanism, in the configuration of dead point shown in Figure 4 

b) 
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According to Eq. (60), the acceleration of each of the   dependent coordinates is proportional to 

the square root of     . Based on section 3, conventional actuators can perform motions with a 

discontinuity in the acceleration. Therefore,      can be any finite value, but it is not necessary to 

be continuous. Thus, if      , the motion law of the independent coordinate must be, at least, 

  , with     necessarily zero. 

 

5 Simulation 

This section presents the simulations carried out to verify the results obtained in section 4. For 

this purpose, the two configurations presented in Figure 2b, a four linkage mechanism, and 

Figure 4b, a slider-crank mechanism, are studied. For the first case, the lengths of the mechanism 

are     0.075 m,     0.175 m,     0.1 m and     0.175 m. Regarding the slider-crank 

mechanism, the values for   and   are 0.75 m and 1.25 m, respectively. The instant of time in 

which the mechanism is found at the dead point configuration is set to     . 

Two situations have been analyzed. The first case, based on 4.2.2, shows the influence of the 

value     of the independent coordinate when its acceleration     is null at the dead point 

configuration. The second part of the simulation, referring to 4.2.1., considers a motion law with 

      near the dead point. The motion law of the independent coordinate    around the dead 

point follows Eq. (63)  

 
       

    
     

     
               

    
     

     
               

  
(63) 

 

where the values of   ,   ,   ,    and   , listed in Table 1, depend on the case simulated and the 

mechanism used. 

 

Four linkage Slider-crank 

          

          

          

          

          

          

          

          

          

          

          

          

   2.25 2.25 2.25 2 2 2 

   0 0 0 0 0 0 

   0 0 0.5 0 0 0.5 

   0.563 0 0.563 0.5 0 0.5 

   0 0.563 0 0 0.5 0 

 

Table 1. Values of   ,   ,   ,    and    for all the simulations. Units in SI. 
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5.1 Acceleration       

When the mechanism reaches a dead point configuration of the independent coordinate    with 

null acceleration    , the jerk     must also be null. Otherwise, according to Eq. (49), the 

acceleration     of the dependent coordinates will tend to infinity and the motion will not be 

feasible for conventional electrical actuators. This statement can be depicted in Figures 5 and 6. 

As it can be seen in Figure 5, the acceleration     is zero by the time the mechanism gets to the 

dead point configuration. Nevertheless, the absolute value of the jerk     in this configuration is 

different than zero in both mechanisms. Thus, the accelerations     and     tend to infinity.   

 

Figure 5: Motion law of    with           and           for the four linkage (dashed line) and slider-crank (solid 

line) mechanisms. Units in SI.  

However, if the motion law of    is modified so that the jerk     is also null at    (Figure 6), 

accelerations     and     are finite and can be calculated according to Eq. (60). 
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Figure 6: Motion law of    with           and           for the four linkage (dashed line) and slider-crank (solid 

line) mechanisms. Units in SI. 

5.2 Acceleration       

Unlike the two cases presented in 5.1, the acceleration     has a finite value different than zero 

when the mechanism reaches the dead point configuration (Figure 7). Thus, accelerations     and 

    can be calculated using Eq. (49), regardless of the value of the jerk    . 
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Figure 7: Motion law of    with           and           for the four linkage (dashed line) and slider-crank (solid 

line) mechanisms. Units in SI. 

 

6 Experimental results 

A test bed was built to check the usefulness of the proposed method. As shown in Figure 8, it is 

made up by a planar four linkage mechanism and two DC motors. The first motor M1 

commands, through a planetary gear reducer, the movement of the mechanism described by the 

dependent coordinate    of the crank. This motor is connected to an external power supply and 

its motion is recorded using an incremental encoder. The second motor M2 acts as a brake 

through another planetary gear reducer and is connected to a secondary external power supply. 

The effect of the break is required to preload the mechanism and, hence, reduce the unwanted 

consequences of the clearance in both, the joints and the gear reducers. In order to know the time 

evolution of the angular velocity of the independent coordinate   , a gyroscope is attached to the 

rocker. The main characteristics of the test bed are shown in Table 2.   
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Figure 8: Test bed with a four linkage mechanism and two DC motors in any configuration a) and its scheme b). 

Parameter / device Value / specification 

l1 0.075 m 

l2 0.175 m 

l3 0.100 m 

l4 0.175 m 

Motor M1 and brake M2 Permanent magnet DC brushed 

Gear reducer Planetary with 20,25 ratio 

Encoder Rotary, 500 cycles per revolution 

Gyroscope 
ADXRS300, ±300º/s, 5mV/( º/s)         

Low pass filter RC, cutoff freq. at 40 Hz 

Power supply DC 24V, 5A 

DAQ card NI PCI-6036E 

Gaussian FIR filter Order 10, cutoff freq. at 50 Hz 

 

Table 2: Test bed parameters and specifications. Nomenclature according to Figure 2. 
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Figure 9: Block diagrams of the first a) and second experiments b). 

 

In order to validate the method exposed in the previous sections, two experiments are carried out. 

The first one checks the feasibility of performing an acceleration step function as a command 

signal using conventional electrical actuators. For this reason, the motor M1 is connected, 

without any load, to a power supply in an open loop scheme according to Figure 9 a). The time-

domain response of the motor is tested against a voltage step input      while the shaft 

orientation is recorded using the incremental encoder (Figure 10 a)). In order to obtain the 

angular velocity and acceleration of M1, this signal is differentiated twice (Figure 10 b) and c), 

respectively). To reduce the level of the noise introduced by the derivative calculation, the 

acceleration     has been filtered by the FIR Gaussian window specified in Table 2. 
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Figure 10: DC motor response to a voltage step function, theoretical (dashed line) and experimental (solid line). 

Units in SI. 

According to Figure 10, the delay    on the motor’s response with respect to the reference signal 

is around   ms. Thus, according to usual frequency ranges of mechanical systems, it can be 

sustained that conventional electrical actuators are able to reproduce an input command with 

continuity close to   , as it is stated in section 3. 

The second experiment is intended to verify the continuity conditions exposed in section 5. As in 

the former case, the set up follows an open loop scheme, where the input is the voltage      of 

the motor M1 (Figure 9 b)). For this purpose, and in order to be as accurate as possible with an 

ideal step function    , a voltage step is used to command the motor M1 when the four linkage 

mechanism is found at rest at the dead point configuration shown in Figure 11. In this specific 

configuration,          rad and          rad. The results of this experiment are presented 

in Figure 12. As in the former experiment,     has been obtained differentiating twice the signal 

from the incremental encoder. On the other hand,     and     have been obtained differentiating 

one and two times, respectively, the signal from the gyroscope    . To reduce the noise, the 

signals,    ,     and     have been filtered using the FIR Gaussian window (Table 2). The results 

present a small time delay, mainly caused by the low pass filter embedded in the gyroscope 

hardware and the digital Gaussian filter mentioned above. To better compare the goodness of the 

experiment, these delays have been removed to depict the graphical results.  PO
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Figure 11: Four linkage mechanism at a dead point configuration for the independent coordinate   . 
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Figure 12: Motion law of the coordinates    and    during the experiment (solid line) and the theoretical curves 

(dashed line). Units in SI. 

As it can be seen in Figure 12, a negative step function     of 200 rad/s
2
 is obtained when the 

motor M1 is commanded with a step voltage, while the mechanism is at rest at the dead point 

configuration. The test bed is able to hold this acceleration during the first 35-40 ms. Within this 

range, experimental results are very consistent with the theoretical simulation despite the 

limitations of the signal to noise ratios of the sensors, that become a drawback mainly in the high 

order derivatives     and    . 

 

7 Conclusions 

The continuity    required by a motion law that describes the time-evolution of the independent 

coordinate of a mechanism when it presents dead points during its motion has been introduced in 

this paper. This analysis has been carried out differentiating and applying l’Hôpital’s rule to the PO
ST
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system of constraint equations      of the mechanism and splitting the terms related with the 

dependent and independent generalized coordinates. This study also considered the feasibility of 

the time-domain profile to be reproduced with conventional electrical actuators (i.e. AC/DC 

motors, linear actuators, etc.). According to the study done in section 3 and the first experiment 

shown in section 6, conventional electrical actuators can perform an input command that is, at 

least,   . Regarding the continuity of the motion law of the independent coordinate    at a dead 

point configuration, it must be minimum    when       and    when      . In this last case 

(     ), the value of the jerk     must necessarily also be null. Finally, the two simulations 

presented in section 5 and the experiment carried out in section 6 reinforce the generality and the 

goodness of the method. 
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Appendix A 

In section 2, it is stated that the numerator of Eq. (14) is zero when the mechanism is found at a 

dead point configuration for the independent coordinate. 

 

       
     

              (A.1) 

 

This can be proven by splitting the dependent and independent generalized coordinates in Eq. 

(A.1) according to Eqs. (6) and (7) and imposing       
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Substituting now Eq. (20) in Eq. (A.2) 
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Rewriting Eq. (A.3) 
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According to Jacobi’s formula, Eq. (A.4) can also be written as 
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where       is the trace of the matrix between brackets. As the determinant of the matrix   
  is 

zero when the mechanism is found at a dead point, at least one of the rows is a lineal 

combination of the others     equations. Therefore, without loss of generality,   
  can be 

written as 
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Thus, the adjoin matrix of   
  is 

 

 

      
    

       

       

 
 

 
 

 
 

 
   

  (A.7) 

 

Matrices   
  and    

 
 can generically be written as 
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Substituting now Eqs. (A.7) and (A.8) in Eq. (A.5) 
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(A.9) 

 

Rewriting Eq. (A.9) 
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Therefore, the numerator of Eq. (16) is equal to zero when the mechanism is located at a dead 

point. 

 

 

Appendix B 

In section 4, the expressions of the first and second derivatives of the matrix   
  with respect to 

the generalized coordinates    and    and their derivatives are needed. Thus, considering Eq. (6), 
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According to the chain rule 
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Splitting the dependent and independent terms of Eq. (B.2)  
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Rewriting Eq. B.3 
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Rearranging terms 
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Therefore, 
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Imposing       
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For the calculation of the second order derivative of the matrix   
 , Eq. (B.6) is differentiated 
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The term 
 

  
 

 

   
   

    can be substituted by Eq. (B.7), just replacing   
  for 
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Considering finally       
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