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C. Jordi Girona, 1-3, Mòdul C3, Barcelona, Spain

{jherranz,aruiz,german}@ma4.upc.edu

Abstract. The goal of a signcryption scheme is to achieve the same functionalities as encryption and signature
together, but in a more efficient way than encrypting and signing separately. To increase security and reliability in
some applications, the unsigncryption phase can be distributed among a group of users, through a (t, n)-threshold
process.
In this work we consider this task of threshold unsigncryption, which has received very few attention from the
cryptographic literature up to now (maybe surprisingly, due to its potential applications). First we describe in
detail the security requirements that a scheme for such a task should satisfy: existential unforgeability and indistin-
guishability, under insider chosen message/ciphertext attacks, in a multi-user setting. Then we show that generic
constructions of signcryption schemes (by combining encryption and signature schemes) do not offer this level of
security in the scenario of threshold unsigncryption. For this reason, we propose two new protocols for threshold
unsigncryption, which we prove to be secure, one in the random oracle model and one in the standard model.
The two proposed schemes enjoy an additional property that can be very useful. Namely, the unsigncryption
protocol can be divided in two phases: a first one where the authenticity of the ciphertext is verified, maybe by
a single party; and a second one where the ciphertext is decrypted by a subset of t receivers, without using the
identity of the sender. As a consequence, the schemes can be used in applications requiring some level of anonymity,
such as electronic auctions.
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1 Introduction

By encrypting or signing messages, digital communications may achieve some well-known properties: con-
fidentiality, authentication, integrity or/and non-repudiation. When all these properties are required at the
same time, there are more efficient solutions than signing and encrypting each message separately. Crypto-
graphic schemes that provide the same properties than encryption and signature together receive the name
of signcryption schemes [27] (or also authenticated encryption schemes [2]). Such schemes consist of a key
generation protocol, a signcryption protocol run by the sender of the message (which uses his secret key and
the public key of the receiver to hide and authenticate the message) and an unsigncryption protocol run by
the receiver (which uses his secret key and the public key of the sender to recover the message and verify its
authenticity).

Since the invention of this concept in 1997, many papers discussing different security properties and
proposing new signcryption schemes have appeared. In particular, there are some generic constructions [1] of
signcryption schemes, combining signature and encryption schemes, that achieve a very high level of secu-
rity: unforgeability under chosen message attacks and plaintext indistinguishability under chosen ciphertext
attacks, against an insider adversary in a multi-user setting.

Most of the papers dealing with signcryption consider individual entities to perform the secret tasks of
signcryption and unsigncryption. In many real-life situations, centralizing a secret task is not desirable due
to both security and reliability reasons (a security / technical problem at a single entity can cause important
threats / delays to the system). In these cases, a common approach is to decentralize the secret task(s)
by considering a group of n entities, in such a way that the cooperation of at least t of them is necessary
to successfully finish the task. This approach is known as (t, n)-threshold cryptography. In the scenario of
signcryption, there are two secret tasks, so threshold cryptography could be applied to the signcryption
protocol, to the unsigncryption protocol, or to both of them.

Among these three possibilities, here we focus on the situation where the unsigncryption task is distributed
among a set of entities through a (t, n)-threshold process. Such schemes are known as threshold unsigncryption



schemes. For simplicity we consider that the signcryption protocol is run by an individual entity (see however
Section 9 for a discussion on fully threshold signcryption). We want to stress that the primitive of threshold
unsigncryption is not just of theoretical interest; it has applications in real-life scenarios. For example, in a
digital auction system, bidders may send their authenticated private bids, encrypted with the public key of a
set of servers. In this way, even if some dishonest servers (less than t) collude, they will not be able to obtain
information about the bids and influence the result of the auction. At the end of the auction, a large enough
number of servers will cooperate to decrypt the bids and determine the winner of the auction and the price
to pay.

The first works that focused on threshold unsigncryption [12, 26, 13, 14, 25] failed to achieve the desired
security properties for this kind of schemes: existential unforgeability under chosen message attacks, and
plaintext indistinguishability under chosen-ciphertext attacks (CCA), in a multi-user setting where the ad-
versary can be insider and can corrupt up to t − 1 members of the target receiver entity. These security
properties, along with the syntactic definition of threshold unsigncryption schemes, are detailed in Section 3.
The security weaknesses of the above-mentioned threshold unsigncryption schemes were pointed out in [10,
20]. We showed in [10] (and we include this in Section 4 of this paper, for completeness) that even generic
constructions of threshold unsigncryption schemes, obtained by combining a fully secure standard signature
scheme and a fully secure threshold decryption scheme, do not achieve the maximum level of security. This
is in contrast to what happens in the traditional scenario of signcryption, with a single receiver entity.

For this reason, one of the main goals in this area of threshold unsigncryption is to design new threshold
unsigncryption schemes which are provably secure in the desired security model. The first two such schemes
were proposed very recently: one scheme by ourselves in [10] which works in the traditional PKI setting, and
one scheme in [20] which works in the identity-based setting. We include the design and security analysis of a
slightly modified version of our scheme in [10], in Section 5 of this paper. Both our scheme and the scheme in
[20] are proved secure in an idealized world, the random oracle model, where hash functions are assumed to
behave as totally random functions. This assumption is useful but not achievable in real systems. Therefore,
proofs in the random oracle model are just heuristic arguments, and thus security proofs in the standard
model are preferable, when analyzing the security of cryptographic protocols.

To overcome this drawback, we propose and analyze in Section 6 a new threshold unsigncryption scheme;
it is the first one in the literature which achieves, in the standard model, the required security properties.
The design of this second scheme is quite modular: it employs two signature schemes and the ideas by
Canetti-Halevi-Katz to achieve CCA security from identity-based selectively secure encryption [7].

The two schemes that we present in this paper, in Sections 5 and 6, have an additional property which may
be of independent interest: the unsigncryption protocol of the schemes can be split into two parts. The first
part, verifying the validity and the authorship of the ciphertext, can be done by anyone, because the required
inputs are the ciphertext and the public key of the sender. The second part, decrypting the (valid) ciphertext,
can be done without using the public key of the sender. To the best of our knowledge, these are the first
fully secure signcryption schemes in the literature that enjoy this property, considering both individual and
threshold (un)signcryption. This ‘splitting’ property seems to be very promising for applications requiring
authentication and confidentiality, but also some level of anonymity or privacy in some of their phases. As
an illustrative example, we explain in Section 8 the case of an electronic auction system.

Previous publication. We stress here that an earlier version of the results in Sections 4 and 5 was published
in the Proceedings of the conference ProvSec’2010 [10]. The material in Sections 6, 7, 8 and 9 is completely
original.

2 Preliminaries

In this section we recall some tools that will be used in the design and security analysis of the two threshold
unsigncryption schemes that we present in this paper.



2.1 Strongly Unforgeable Signature Schemes

A signature scheme Θ = (Θ.KG, Θ.Sign, Θ.Vfy) consists of three probabilistic polynomial time protocols.
ΘKG(1λ) → (sk, vk) is the key generation protocol, which takes as input a security parameter λ ∈ N and
outputs a secret signing key sk and a public verification key vk. The signing protocol Θ.Sign(sk,m) → θ
takes as input the signing key and a message m, and outputs a signature θ. Finally, the verification protocol
Θ.Vfy(vk,m, θ)→ 1 or 0 takes as input the verification key, a message and a signature, and outputs 1 if the
signature is valid, or 0 otherwise.

Regarding security, we consider an adversary FΘ who first receives a verification key vk obtained from
Θ.KG(1λ) → (sk, vk). He can make at most qS signature queries for messages mi of his choice, obtaining as
answer valid signatures Θ.Sign(sk,mi) → θi, and finally outputs a pair (m′, θ′). We say that the adversary
succeeds if Θ.Vfy(vk,m′, θ′)→ 1 and (m′, θ′) 6= (mi, θi) for all i = 1, . . . , qS .

We denote FΘ’s success probability as AdvFΘ(λ). The signature scheme Θ is strongly unforgeable if
AdvFΘ(λ) is a negligible function of the security parameter λ ∈ N, for any polynomial-time attacker FΘ
against Θ. Here negligible means that AdvFΘ(λ) decreases (when λ increases, asymptotically) faster than the
inverse of any polynomial. If a signature scheme is strongly unforgeable only against adversaries who can
make at most qS = 1 signature query, then the scheme is a secure one-time signature scheme.

An example of strongly unforgeable signature scheme can be found in [5]. The scheme therein is proved
secure, in the standard model, under the Computational Diffie-Hellman Assumption (defined in the next
subsection). Some examples of secure one-time signature schemes can be found in [17].

2.2 Bilinear Groups and Computational Assumptions

Given a security parameter λ ∈ N, let G = 〈g〉 be a cyclic group of prime order p, such that p is λ bits long.
The Diffie-Hellman (DH, for short) problem consists of computing the value gab from the values g, ga, gb,

for random elements a, b ∈ Z∗q . The Diffie-Hellman Assumption states that the DH problem is hard to solve.

A bit more formally, for any polynomial-time algorithm ADH that receives as input G, g, ga, gb, for random
elements a, b ∈ Z∗q , we can define as AdvADH (λ) the probability that ADH outputs the value gab. The Diffie-
Hellman Assumption states that AdvADH (λ) is negligible in λ.

The Diffie-Hellman problem is easier to solve than the Discrete Logarithm problem: the input is (G, g, y),
where y ∈ G, and the goal for a solver ADL is to find the integer x ∈ Z∗q such that y = gx. We can define
AdvADL(λ) and the Discrete Logarithm Assumption analogously to the Diffie-Hellman case.

A group G = 〈g〉 as defined above is said to be bilinear if there exist another group GT with the same
order p and a map e : G×G→ GT satisfying the following properties:

1. e(·, ·) can be efficiently computed (in time polynomial in λ),
2. e(g, g) is a generator of GT ,
3. for any two elements a, b ∈ Zp, we have e(ga, gb) = e(g, g)ab.

The Decisional Bilinear Diffie-Hellman (DBDH, for short) problem consists of distinguishing tuples of the
form (g, ga, gb, gc, e(g, g)abc) from tuples of the form (g, ga, gb, gc, T ), for random a, b, c ∈ Z∗p and random T ∈
GT . For any polynomial-time solver ADBDH of this problem, we can define its advantage as AdvADBDH (λ) =∣∣∣Pr[ADBDH(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[ADBDH(g, ga, gb, gc, T ) = 0]

∣∣∣
The Decisional Bilinear Diffie-Hellman Assumption states that AdvADBDH (λ) is negligible in λ.

3 Signcryption with Threshold Unsigncryption

In a signcryption scheme, a user A sends a message to an intended receiver B, in a confidential and authen-
ticated way: only B can obtain the original message, and B is convinced that the message comes from A. In



a scenario where the role of B is distributed among a set of users, the cooperation of some authorized subset
of users will be necessary to perform the unsigncryption phase. Each user in the set B will have a share of
the secret information of B, and will use it to perform his part of the unsigncryption process. In this paper
we will focus on threshold families of authorized subsets: the cooperation of at least t users in B will be
necessary to successfully run the unsigncryption protocol. Both our formal definitions and our schemes can
be extended to more general families of authorized subsets, by replacing threshold secret sharing techniques
(i.e. Shamir’s scheme [19]) with more general linear secret sharing schemes.

3.1 Syntactic Definition

A signcryption scheme with threshold unsigncryption Σ = (Σ.St, Σ.KG, Σ.Sign, Σ.Uns) consists of four prob-
abilistic polynomial-time algorithms:

– The randomized setup algorithm Σ.St takes a security parameter λ ∈ N and outputs some public param-
eters params that will be common to all the users in the system: the mathematical groups, generators,
hash functions, etc. We write params← Σ.St(1λ) to denote an execution of this algorithm.

– The key generation algorithm Σ.KG is different for an individual sender A than for a collective B of
receivers. A single user A will get a pair (skA, pkA) of secret and public keys. In contrast, for a collective
B = {B1, . . . , Bn} of n users, the output will be a single public key pkB for the group, and then a threshold
secret share skB,j for each user Bj , for j = 1, . . . , n, and for some threshold t such that 1 ≤ t ≤ n.
The key generation process for the collective B can be either run by a trusted third party, or by the
users in B themselves. We will write (skA, pkA) ← Σ.KG(params, A, ‘single’) and ({skB,j}1≤j≤n, pkB) ←
Σ.KG(params, B, n, t, ‘collective’) to refer to these two key generation protocols.

– The signcryption algorithm Σ.Sign takes as input params, a message M , the public key pkB of the
intended receiver group B, and the secret key skA of the sender. The output is a ciphertext C. We denote
an execution of this algorithm as C ← Σ.Sign(params,M, pkB, skA).

– The threshold unsigncryption algorithm Σ.Uns is an interactive protocol run by some subset of users
B′ ⊂ B. The common inputs are params, a ciphertext C and the public key pkA of the sender, whereas

each user Bj ∈ B′ has as secret input his secret share skB,j . The output is a message M̃ , which

can eventually be the special symbol ⊥, meaning that the ciphertext C is invalid. We write M̃ ←
Σ.Uns(params, C, pkA, B

′, {skB,j}Bj∈B′) to refer to an execution of this protocol.

For correctness, condition Σ.Uns(params, Σ.Sign(params,M, pkB, skA), pkA, B
′, {skB,j}Bj∈B′) = M is

required, whenever B′ contains at least t honest users and the values params, skA, pkA, {skB,j}1≤j≤n, pkB have
been obtained by properly executing the protocols Σ.St and Σ.KG.

A different property that can be required is that of robustness, which informally means that dishonest re-
ceivers in B who do not follow the threshold unsigncryption protocol correctly can be detected and discarded,
without affecting the correct completion of the protocol.

3.2 Security Model

A correct signcryption scheme must satisfy the security properties that are required for both encryption
and signatures: confidentiality and unforgeability. In the threshold setting for unsigncryption, confidentiality
must hold even if an attacker corrupts t − 1 members of a collective of receivers. We consider a multi-user
setting where an adversary is allowed to corrupt the maximum possible number of users (all except the target
one), and where he can make both signcryption and unsigncryption queries for different users, messages and
ciphertexts. In particular, unforgeability must hold even if the adversary knows the secret keys of all the
possible collectives of receivers, and confidentiality must hold even if the adversary knows the secret keys of
all the possible senders. In other words, we require insider security.

Note that we are considering only static adversaries, who choose the corrupted users at the beginning of
the attack, in order to simplify the notation and thus allow a better understanding of the proposed schemes.
In order to resist more powerful adaptive attacks, where the users may be corrupted at different stages of the
system, our schemes should be combined with well-known techniques, as those in [6, 11, 16].



Unforgeability. Unforgeability under chosen message attacks is the standard security notion for signature
schemes and in general for any cryptographic primitive which pretends to provide some kind of authentication
or non-repudiation. The idea is that an attacker who does not know the secret key of a user A and who can
ask A for some valid signatures (or, in our case, signcryptions) for messages of his choice must not be able to
produce a different valid signature (signcryption) on behalf of A. For a security parameter λ ∈ N, this notion
is formalized by describing the following game that an attacker AUNF plays against a challenger:

1. The challenger runs params← Σ.St(1λ) and gives params to AUNF.
2. AUNF chooses a target user A?. The challenger runs (skA? , pkA?) ← Σ.KG(params, A?, ‘single’), keeps

skA? private and gives pkA? to AUNF.
3. [Queries] AUNF can make adaptive queries to a signcryption oracle for sender A?: AUNF sends a tuple

(M, pkB) for some collective B of his choice, and obtains as answer C ← Σ.Sign(params,M, pkB, skA?).
Note that other kinds of queries (such as unsigncryption queries or signcryption queries for senders
different from A?) make no sense because AUNF can reply such queries by himself.

4. [Forgery] Eventually, the attacker AUNF outputs a tuple (pkA? , B
?, pkB? , {skB?,j}Bj∈B? , C?).

We say that AUNF wins the game if:

– the protocol Σ.Uns(params, C?, pkA? , B
?, {skB?,j}Bj∈B?) outputs a message M? 6=⊥,

– the tuple (pkA? , pkB? , C
?) has not been obtained by AUNF through a signcryption query.

The advantage of such an adversary AUNF in breaking the unforgeability of the signcryption scheme is
defined as

AdvAUNF
(λ) = Pr[AUNF wins].

A signcryption scheme Σ with threshold unsigncryption is unforgeable if, for any polynomial time adver-
sary AUNF, the value AdvAUNF

(λ) is negligible with respect to the security parameter λ.

Indistinguishability. The confidentiality requirement for a signcryption scheme Σ with (t, n)-threshold
unsigncryption (i.e. the fact that a signcryption on the message m addressed to B leaks no information on
m to an attacker who only knows t− 1 secret shares of skB) is ensured if the scheme enjoys the property of
indistinguishability under chosen ciphertext attacks (IND-CCA security, for short). For a security parameter
λ ∈ N, this property is defined by considering the following game that an attacker AIND-CCA plays against
a challenger:

1. The challenger runs params← Σ.St(1λ) and gives params to AIND-CCA.

2. AIND-CCA chooses a target set B? of n users and a subset B̃ ⊂ B? of t − 1 users, to be corrupted.
The challenger runs ({skB?,j}1≤j≤n, pkB?) ← Σ.KG(params, B?, n, t, ‘collective’) and gives to AIND-CCA
the values pkB? and {skB?,j}Bj∈B̃. Without loss of generality, we can assume B? = {B1, . . . , Bn} and

B̃ = {B1, . . . , Bt−1}.
Note that we are considering only static adversaries who choose the subset B̃ of corrupted users at the
beginning of the attack.

3. [Queries] AIND-CCA can make adaptive queries to a threshold unsigncryption oracle for the target set

B?: AIND-CCA sends a tuple (pkA, C) for some public key pkA of his choice. The challenger runs M̃ ←
Σ.Uns(params, C, pkA, B

?, {skB?,j}Bj∈B?). The attacker AIND-CCA must be given all the information that

is broadcast during the execution of this protocol Σ.Uns, including M̃ .
Other kinds of queries (such as unsigncryption queries for other collectives B 6= B? or signcryption queries)
make no sense because AUNF can reply such queries by himself.

4. AIND-CCA chooses two messages M0,M1 of the same length, and a sender A? along with (skA? , pkA?).
5. [Challenge] The challenger picks a random bit d ∈ {0, 1}, runs C? ← Σ.Sign(params,Md, pkB? , skA?) and

gives C? to AIND-CCA.



6. Step 3 is repeated, with the restriction that the tuple (pkA? , C
?, B?) cannot be queried to the threshold

unsigncryption oracle.
7. Finally, AIND-CCA outputs a bit d′ as his guess of the bit d.

The advantage of such a (static) adversary AIND-CCA in breaking the IND-CCA security of the signcryp-
tion scheme is defined as

AdvAIND-CCA
(λ) =

∣∣∣∣Pr[d′ = d]− 1

2

∣∣∣∣ .
A signcryption scheme Σ with (t, n)-threshold unsigncryption is IND-CCA secure if AdvAIND-CCA

(λ) is

negligible with respect to the security parameter λ, for any polynomial time (static) adversary AIND-CCA.

4 Generic Threshold Unsigncryption Schemes Are Not Fully Secure

The first proposals of explicit signcryption schemes with threshold unsigncryption that appeared in the
literature did not achieve the full level of security described in the previous section. This includes two proposals
[12, 26] in the traditional PKI setting, and three proposals [13, 14, 25] in the identity-based setting. Some
details about the weaknesses of these schemes can be found in [10, 20].

It is a bit surprising that none of these first proposals considered the possibility of a generic construction of
a signcryption scheme with threshold unsigncryption, following the well-known approaches Sign then Encrypt
or Encrypt then Sign, that have been deeply analyzed in [1] for the case of individual signcryption. Therein,
it is proved that both generic constructions achieve full security (against insider attackers in a multi-user
setting) if the underlying signature and encryption schemes have full security. Thus, one could expect that
the same happens in the scenario with threshold unsigncryption. But unfortunately this is not the case, as
we argue below.

Let Ω = (Ω.KG, Ω.Sign, Ω.Vfy) be a signature scheme, and Π = (Π.KG, Π.Enc, Π.ThrDec) be a public
encryption scheme with threshold decryption. For the keys of the generic signcryption schemes with threshold
unsigncryption, an individual sender will run (skA, pkA)← Ω.KG(1λ) and a collective of receivers B will run
({skB,j}1≤j≤n, pkB)← Π.KG(1λ).

Let us consider for example the ThresholdEncrypt then Sign approach. To signcrypt a message m for
the collective B, a sender A first computes c ← Π.Enc(pkB,m||pkA) and then signs c||pkB to obtain ω ←
Ω.Sign(skA, c||pkB). The final ciphertext is C = (c, ω). To unsigncrypt such a ciphertext, members of B first
verify the correctness of signature ω by running Ω.Vfy(pkA, c||pkB, ω). If the signature is not correct, the
symbol ⊥ is output. Otherwise, a subset B̃ ⊂ B of at least t members of B run Π.ThrDec({skB,j}Bj∈B̃, c)
to recover the message m||pkA. If the public key pkA corresponds with that of the sender A, then m is the
output of the protocol. If not, the output is ⊥.

The IND-CCA security of this generic construction can be broken by an insider attacker AIND-CCA in
a multi-user scenario. AIND-CCA receives a challenge ciphertext C? = (c?, ω?) for a challenge sender A?

and a challenge collective B? of receivers. After that, AIND-CCA can generate keys (skA, pkA) for another
user A 6= A?, compute a valid signature ω for c?||pkB? using skA, and send C = (c?, ω) as a threshold
unsigncryption query for sender A and collective B? of receivers. As answer to this query, since the signature
ω is valid, AIND-CCA must receive all the information that the members of B? would broadcast in the
execution of the threshold decryption of c?. Even if the final output of this query is ⊥, because the public
key pkA does not match the public key pkA? which is encrypted in c?, the attacker AIND-CCA has obtained
enough information to recover the whole plaintext encrypted in c?, and therefore succeeds in breaking the
indistinguishability of the scheme. We stress that this same attack is valid against relaxed IND-CCA (see [8]),
because the decryption of C (which is ⊥) is different from the decryption of C?.

Regarding the Sign then ThresholdEncrypt approach, the attack is even simpler. Once AIND-CCA gets
a challenge ciphertext C? = c? for A? and B?, where c? is an encryption under Π of (m,ω?, pkA?) and ω?

is a signature on m||pkB? , all that AIND-CCA has to do is to make an unsigncryption query for the tuple
(C?, pkA, pkB?), where A 6= A?. Even if the output of the protocol is again ⊥, the attacker AIND-CCA gets



all the partial information broadcast by the members of B? in the execution of the threshold decryption of
c?, which allows AIND-CCA to directly obtain the plaintext m.

5 A First New Threshold Unsigncryption Scheme with Full Security

This section is dedicated to the description and analysis of our first new signcryption scheme with (t, n)-
threshold unsigncryption, achieving full security in the random oracle model. Our approach has been to take
a secure public key encryption scheme with threshold decryption and modify it in order to accommodate also
the authentication process. In particular, we have considered the scheme TDH1 of Shoup and Gennaro [22].
The idea of that scheme, to encrypt a message m for a collective B with public key pkB, is to first compute
a hashed ElGamal encryption (R, c) of m. That is, assuming that we have fixed a cyclic group G = 〈g〉 of
prime order q, along with a hash function H0, the sender computes R = gr and c = m ⊕H0((pkB)r). After
that, he adds to the ciphertext another element ḡ ∈ G and the value R̄ = ḡr, and finally a zero-knowledge
proof that DiscLogg(R) = DiscLogḡ(R̄). Members of B will start the real decryption process only if the proof
of knowledge is valid.

Our signcryption scheme follows the same principle, but the sender A will compute now a zero-knowledge

proof that both DiscLogg(R) = DiscLogḡ(R̄) holds and he knows skA such that pkA = gskA . We will prove that
the resulting signcryption scheme (with threshold unsigncryption) enjoys the strong notions of unforgeability
and indistinguishability. We consider for simplicity a scenario where the receivers follow the threshold unsign-
cryption protocol correctly. A simple modification of our scheme, by including appropriate non-interactive
zero-knowledge proofs of the equality of two discrete logarithms, allows to provide robustness to the scheme
against the action of malicious receivers. The protocols of the scheme are described below.

Setup: Σ.St(1λ).
Given a security parameter λ, a cyclic group G = 〈g〉 of prime order q, such that q is λ bits long, is chosen.
A length `, which must be polynomial in λ, is defined for the maximum number of bits of the messages to be
sent by the system. Three hash functions H0 : {0, 1}∗ → {0, 1}`, H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zq are
chosen. The output of the protocol is params = (q,G, g,H0, `,H1, H2).

Key Generation: Σ.KG(params, A, ‘single’) and Σ.KG(params, B, n, t, ‘collective’).
For an individual user A, the secret key skA is a random element in Z∗q , whereas the corresponding public

key is pkA = gskA . The public output of this protocol is pkA, and the secret output that is privately stored
by A is skA.

For a collective B = {B1, . . . , Bn} of n users, the common public key is computed as pkB = gskB for some
random value skB ∈ Z∗q that will remain unknown to the members of B. Each user Bj ∈ B will receive a
(t, n)-threshold share skB,j of skB, computed by using Shamir’s secret sharing scheme [19]. This means that,
for every subset B′ ⊂ B containing exactly t users, there exist values λB

′
j ∈ Z∗q such that skB =

∑
Bj∈B′

λB
′

j skB,j .

The public output of this protocol is pkB, whereas each user Bj ∈ B receives a secret output skB,j .
The key generation process for a collective B can be performed by a trusted dealer, or by the members

of B themselves, by using some well-known techniques [9].

Both solutions permit that the values DB,j = gskB,j are made public, for j = 1, . . . , n. These values would
be necessary to provide robustness to the threshold unsigncryption process.

We assume that both pkA and pkB include descriptions of the identities of A and members of B.

Signcryption: Σ.Sign(params,m, pkB, skA).

1. Choose at random r ∈ Z∗q and compute R = gr.
2. Compute k = H0(R, pkB, (pkB)r) and c = m⊕ k.
3. Choose at random α1, α2 ∈ Z∗q and compute Y1 = gα1 and Y2 = gα2 .
4. Compute ḡ = H1(c,R, Y1, Y2, pkA, pkB) ∈ G, and then R̄ = ḡr and Ȳ1 = ḡα1 .
5. Compute h = H2(c,R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB).



6. Compute s1 = α1 − h · rmod q.
7. Compute s2 = α2 − h · skA mod q.
8. Return the signcryption C = (c,R, R̄, h, s1, s2).

Threshold Unsigncryption: Σ.Uns(params, C, pkA, B
′, {skB,j}Bj∈B′).

LetB′ ⊂ B be a subset of users inB that want to cooperate to unsigncrypt a signcryption C = (c,R, R̄, h, s1, s2).
They proceed as follows.

1. Each Bj ∈ B′ computes ḡ = H1(c,R, gs1 ·Rh, gs2 · (pkA)h, pkA, pkB).
2. Each Bj ∈ B′ checks if the following equality holds:

h = H2(c,R, ḡ, R̄, gs1 ·Rh, gs2 · (pkA)h, ḡs1 · R̄h, pkA, pkB)

3. If the equality does not hold, Bj broadcasts (j,⊥).

4. Otherwise, Bj ∈ B′ broadcasts the value Tj = RskB,j .
If robustness was required, then Bj should also provide a non-interactive zero-knowledge proof that
DiscLogg(DB,j) = DiscLogR(Tj).

5. If there are not t valid shares, then stop and output ⊥. From t valid values Tj , different from (j,⊥),

recover the value RskB by interpolation in the exponent: RskB =
∏

Bj∈B′
T
λB
′

j

j , where λB
′

j ∈ Zq are the

Lagrange interpolation coefficients.

6. Compute k = H0(R, pkB, R
skB ).

7. Return the value m = c⊕ k.

5.1 Security Analysis

Unforgeability. We are going to prove that our scheme enjoys unforgeability as long as the Discrete Loga-
rithm problem is hard to solve. The proof is in the random oracle model for the hash function H2.

Theorem 1. Let λ be an integer. For any polynomial-time attacker AUNF against the unforgeability of the
new signcryption scheme, in the random oracle model, there exists a solver ADL of the Discrete Logarithm
problem such that

AdvADL(λ) ≥ O
(
AdvAUNF

(λ)2
)
.

Proof. Assuming the existence of an adversary AUNF that has advantage AdvAUNF
(λ) in breaking the

unforgeability of our scheme, and assuming that the hash function H2 behaves as a random oracle, we are
going to construct an algorithm ADL that solves the Discrete Logarithm problem in G.

Let (G, y) be the instance of the Discrete Logarithm problem in G = 〈g〉 that ADL receives. The goal of
ADL is to find the integer x ∈ Zq such that y = gx. The algorithm ADL initializes the attacker AUNF by giving
params = (q,G, g,H0, `,H1, H2) to him. Here the hash functions H0 : {0, 1}∗ → {0, 1}` and H1 : {0, 1}∗ → G
are arbitrarily chosen by ADL. However, H2 is modeled as a random oracle and so ADL will maintain a table
TAB2 to answer the hash queries from AUNF.

Key generation. AUNF chooses a target sender A? and requests the execution of the key generation protocol
for this user. ADL defines the public key of A? as pkA? = y and sends it to AUNF. Note that the corresponding
secret key skA? , which is unknown to ADL, is precisely the solution to the given instance of the Discrete
Logarithm problem.

Hash queries. Since H2 is assumed to behave as a random function, AUNF can make queries (c,R, ḡ, R̄, Y1,
Y2, Ȳ1, pkA, pkB) to the random oracle model for H2. ADL maintains a table TAB2 to reply to these queries.
TAB2 contains two columns, one for the inputs and one for the corresponding outputs h of H2. To reply the
query (c,R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB), the algorithm ADL checks if this input is already in TAB2. If so, the
matching output h is answered. If not, a random value h ∈ Zq is chosen and answered to AUNF, and the
entry H2(c,R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB) = h is added to TAB2.



Signcryption queries. AUNF can make signcryption queries for the sender A?, for pairs (m, pkB) of his choice,
where m is a message and B is a collective of receivers with public key pkB. To reply to such queries, ADL
chooses at random a value r ∈ Z∗q and computes R = gr, k = H0(R, pkB, (pkB)r) and c = m⊕ k. Then, ADL
must simulate a valid proof of knowledge to complete the rest of the ciphertext. To do this, ADL acts as
follows:

1. Choose at random h, s1, s2 ∈ Zq and compute the values Y1 = gs1 ·Rh and Y2 = gs2 · (pkA?)h.

2. Compute ḡ = H1(c,R, Y1, Y2, pkA? , pkB), and then the values R̄ = ḡr and Ȳ1 = ḡs1 · R̄h.

3. If the input (c,R, ḡ, R̄, Y1, Y2, Ȳ1, pkA? , pkB) is already in TAB2 (which happens with negligible probability),
go back to Step 1.

4. Otherwise, ‘falsely’ add the relation h = H2(c,R, ḡ, R̄, Y1, Y2, Ȳ1, pkA? , pkB) to TAB2.

The final signcryption that ADL sends to AUNF is C = (c,R, R̄, h, s1, s2).

Forgery. At some point, AUNF outputs a successful forgery; that is, a public key pkB? and a signcryption
C? = (c?, R?, R̄?, h?, s?1, s

?
2) such that:

– the protocol Σ.Uns(params, C?, pkA? , B
?, {skB?,j}Bj∈B?) outputs m? 6=⊥,

– (pkA? ,m
?, pkB? , C

?) has not been obtained by AUNF during a signcryption query.

Since the forgery is valid, we must have h? = H2(c?, R?, ḡ?, R̄?, Y ?
1 , Y

?
2 , Ȳ

?
1 , pkA? , pkB?), where Y ?

1 =
gs
?
1 · (R?)h? , Y ?

2 = gs
?
2 · (pkA?)h

?
and Ȳ ?

1 = (ḡ?)s
?
1 · (R̄?)h? .

Furthermore, since the forgery is different from the ciphertexts obtained during the signcryption queries,
we can be sure that the input query? = (c?, R?, ḡ?, R̄?, Y ?

1 , Y
?

2 , Ȳ
?

1 , pkA? , pkB?) for H2 has not been ‘falsely’
added by ADL to TAB2.

Replying the attack. Now the idea is to use the reply techniques introduced by Pointcheval and Stern in
[18]. Without going into the details, ADL will repeat the execution of the attacker AUNF, with the same
randomness but changing the values output by the random oracle H2 from the query query? on.

With non-negligible probability (quadratic on the probability AdvAUNF
(λ) of the first successful forgery),

the whole process run by ADL would lead to two different successful forgeries C? and C ′?, for the same values
of c?, R?, ḡ?, R̄?, Y ?

1 , Y
?

2 , Ȳ
?

1 , pkA? , pkB? (the input values for H2), but with different H2 outputs h? 6= h′?, and
therefore (possibly different) values s?1, s

?
2, s
′?
1 , s

′?
2 .

We thus have

gs
?
2 · (pkA?)h

?
= Y ?

2 = gs
′?
2 · (pkA?)h

′?
,

which leads to the relation y = pkA? =
(
gs
?
2−s′?2

)1/(h′?−h?)
.

Summing up, ADL can output the value x =
s?2−s′?2
h′?−h? mod q as the solution to the given instance of the

Discrete Logarithm problem. ut

Indistinguishability. We reduce the IND-CCA security of the scheme to the hardness of solving the DH
problem. The proof is in the random oracle model for the three hash functions H0, H1, H2. The conclusion is
that, under the Diffie Hellman Assumption for our group G = 〈g〉, the new signcryption scheme has IND-CCA
security.

Theorem 2. Let λ be an integer. For any polynomial-time attacker AIND-CCA against the IND-CCA security
of the new signcryption scheme, in the random oracle model, there exists a solver ADH of the Diffie-Hellman
problem such that

AdvADH (λ) ≥ AdvAIND-CCA
(λ)/2.



Proof. Assuming the existence of an adversary AIND-CCA that has advantage AdvAIND-CCA
(λ) in breaking

the IND-CCA security of our scheme, and assuming that hash functions H0, H1, H2 behave as random oracles,
we are going to construct an algorithm ADH that solves the Diffie-Hellman problem.

ADH receives as input G, ga, gb, where G = 〈g〉 is a cyclic group of prime order q. The goal of ADH is to
compute gab. ADH initializes the attacker AIND-CCA by giving params = (q,G, g,H0, `,H1, H2) to him. Here
the hash functions H0, H1 and H2 will be modeled as random oracles; therefore, ADH will maintain three
tables TAB0, TAB1 and TAB2 to answer the hash queries from AIND-CCA.

Let B? = {B1, . . . , Bn} be the target collective, and B̃ = {B1, . . . , Bt−1} ⊂ B? be the subset of corrupted
members of B?. The algorithm ADH defines the public key of B? as pkB? = gb. This means that skB? is
implicitly defined as b. For the corrupted members of B?, the shares {skB?,j}Bj∈B̃ are chosen randomly and

independently in Zq. Using interpolation in the exponent, all the values DB?,j = gskB?,j can be computed,
for all the members Bj ∈ B?, corrupted or not.

Hash queries. ADH creates and maintains three tables TAB0, TAB1 and TAB2 to reply the hash queries from
AIND-CCA. All the hash queries are processed by ADH in the same way: given the input for a hash query,
the algorithm ADH checks if there already exists an entry in the corresponding table for that input. If this
is the case, the existing output is answered. If this is not the case, a new output is chosen at random and
answered to AIND-CCA, and the new relation between input and output is added to the corresponding table.

For the particular case of H1 queries, the corresponding outputs ḡ are chosen as random powers of gb.
That is, ADH chooses at random a fresh value β ∈ Z∗q and computes the new output of H1 as ḡ = (gb)β. The
value β is stored as an additional value of the new entry in table TAB1.

Whenever ADH receives a H0 query whose two first elements are ga and gb, the third element of the query
is added to a different output table TAB?, which will be the final output of ADH .

Unsigncryption queries. For an unsigncryption query (pkA, C) sent for the target collective B?, where C =
(c,R, R̄, h, s1, s2), the first thing to do is to check the validity of the zero-knowledge proof (h, s1, s2); that
is, to check if h = H2(c,R, ḡ, R̄, gs1 · Rh, gs2 · (pkA)h, ḡs1 · R̄h, pkA, pkB?), where ḡ = H1(c,R, gs1 · Rh, gs2 ·
(pkA)h, pkA, pkB?) = (gb)β, for some value β known by ADH . If this equation does not hold, then the answer
to the query is ⊥.

Otherwise, ADH has to give to AIND-CCA the values RskB?,j , for all Bj ∈ B?. For the corrupted members
Bj , j = 1, . . . , t − 1, such values can be easily computed by ADH , because it knows skB?,j . Note now that

the value RskB? can be computed by ADH as R̄1/β. In effect, since the zero-knowledge proof is valid, this

means that DiscLogg(R) = DiscLogḡ(R̄), where ḡ = gbβ, and so Rbβ = R̄. Now, knowing RskB? and RskB?,j

for j = 1, . . . , t − 1, the algorithm ADH can compute the rest of values RskB?,j , for j = t, t + 1, . . . , n, by
interpolation in the exponent. Once this is done, the rest of the unsigncryption process can be easily completed
by ADH , who obtains a message m and sends all this information to AIND-CCA.

Challenge. At some point, AIND-CCA outputs two messages m0,m1 of the same length, along with a key pair
(skA? , pkA?) for a sender A?. To produce the challenge ciphertext C?, the algorithm ADH defines R? = ga

and then chooses at random the values c? ∈ {0, 1}`, h?, s?1, s?2 ∈ Zq and β? ∈ Z∗q . After that, ADH defines

ḡ? = gβ
?
, R̄? = (ga)β

?
, Y ?

1 = gs
?
1 · (R?)h? , Y ?

2 = gs
?
2 · (pkA?)h

?
and Ȳ ?

1 = ḡs
?
1 · (R̄?)h? .

If either the input (c?, R?, Y ?
1 , Y

?
2 , pkA? , pkB?) already exists in TAB1, or the input (c?, R?, ḡ?, R̄?, Y ?

1 ,
Y ?

2 , Ȳ
?

1 , pkA? , pkB?) already exists in TAB2, the algorithm ADH goes back to choose at random other values
for c?, h?, etc. Finally, the relation ḡ? = H1(c?, R?, Y ?

1 , Y
?

2 , pkA? , pkB?) is added to TAB1 and the relation
h? = H2(c?, R?, ḡ?, R̄?, Y ?

1 , Y
?

2 , Ȳ
?

1 , pkA? , pkB?) is added to TAB2. The challenge ciphertext that ADH sends
to AIND-CCA is C? = (c?, R?, R̄?, h?, s?1, s

?
2).

More unsigncryption queries. AIND-CCA can make more hash and unsigncryption queries, which are answered
exactly in the same way as described before the challenge phase. The only delicate point is that ADH could



not answer to a valid unsigncryption query C = (c,R, R̄, h, s1, s2) for which the value of ḡ = H1(c,R, gs1 ·
Rh, gs2 · (pkA)h, pkA, pkB?) = ḡ?, because this value does not have the necessary form (gb)β. But this happens
only if the two inputs of H1, in both the challenge ciphertext and in this queried ciphertext, are the same.
Since both zero-knowledge proofs are valid, we would also have that the value of R̄ is equal in both cases,
and therefore the values of h, s1, s2, pkA would also be equal. The conclusion is that the unsigncryption query
C would be exactly the challenge ciphertext, and this query is prohibited to AIND-CCA.

Final analysis. Finally, AIND-CCA outputs a guess bit b′. We are assuming that AIND-CCA succeeds with
probability significantly greater than 1/2 (random guess). SinceH0 is assumed to behave as a random function,
this can happen only if AIND-CCA has asked to the random oracle H0 the input corresponding to the challenge
C?. This input is (ga, gb, gab). Therefore, with non-negligible probability AdvAIND-CCA

(λ)/2, the value gab

is in the table TAB? constructed by ADH , and therefore the output of ADH contains the correct answer
for the given instance of the DH problem. As the authors of [22] indicate, we could use the Diffie-Hellman
self-corrector described in [21] to transform this algorithm ADH into an algorithm that only outputs the
single and correct solution to the DH problem. ut

6 A Threshold Unsigncryption Scheme with Full Security in the Standard Model

The security of the scheme in the previous section has been proved in the random oracle model, which
is an heuristic model, not a realistic one. Therefore, schemes enjoying security in the standard model are
much preferable. We design and analyze in this section the first signcryption scheme with (t, n)-threshold
unsigncryption enjoying full security in the standard model.

The rationale for the design of this second scheme is the following one. Boneh, Boyen and Halevi showed
in [4] how to design threshold decryption schemes with CCA security in the standard model, by adapting the
strategy proposed by Canetti, Halevi and Katz in [7]. That is, to encrypt a message M , a key-pair (s̃k, ṽk)
for some strongly secure one-time signature scheme is generated, then ṽk is used to derive an identity id, and
message M is encrypted for identity id, by using a selectively-secure identity-based encryption scheme such
as that in [3]. The resulting ciphertext C̃ is signed with s̃k, leading to a signature θ̃. Both ṽk and θ̃ are added
to C̃. The set of receivers share the master secret key of the identity-based encryption scheme. To decrypt,
they first verify that the signature θ̃ on C̃ is correct under key ṽk; if this is the case, they can cooperate to
derive the secret key for identity id and then decrypt C̃ to recover the plaintext M .

To implement the primitive of signcryption with threshold unsigncryption, our idea is that the sender
A signs the message C̃||pkA||pkB||ṽk with a strongly secure signature scheme, obtaining θ, and then the
(one-time) signature θ̃ is computed on C̃||pkA||pkB||θ. The final signcryption is C = (C̃, ṽk, θ, θ̃). With this
technique, the receivers will be convinced of the authorship of sender A because even insider attacks can be
prevented.

Although we could have described a more generic construction by using in a black-box way the primitives
of (one-time) signature schemes and identity-based encryption with threshold key generation, it turns out
that the only realization of the later primitive in the standard model is the specific scheme in [4], using
bilinear pairings. For this reason, and for the sake of clarity in the presentation, we have decided to describe
the new signcryption scheme directly instantiated with the pairing-based scheme in [4]. The protocols of the
scheme are detailed below.

Setup: Σ.St(1λ).

Given λ ∈ N, a cyclic bilinear group G = 〈g〉 of prime order p, such that p is λ bits long, is chosen. This
means that there exists a bilinear map e : G × G → GT for some group GT . Let H : {0, 1}∗ → Z∗p be a
collision-resistant hash function. Two more generators h, g2 ∈ G are randomly selected.

LetΘ = (Θ.KG, Θ.Sign, Θ.Vfy) be a strongly unforgeable signature scheme, and let Θ̃ = (Θ̃.KG, Θ̃.Sign, Θ̃.Vfy)
be a strongly secure one-time signature scheme. Note that we could take Θ̃ = Θ.

The output of the protocol is params = (p,G, g,GT , e,H, h, g2, Θ, Θ̃).



Key Generation: Σ.KG(params, A, ‘single’) and Σ.KG(params, B, n, t, ‘collective’).
For an individual user A, the key generation protocol of the signature scheme Θ is executed, and the resulting
signing and verification keys are defined as the secret and public keys for user A. That is, (skA, pkA) ←
Θ.KG(1λ).

For a collective B = {B1, . . . , Bn} of n users, the common public key is computed as pkB = gαB for
some random value αB ∈ Z∗p that will remain unknown to the members of B. This value αB is distributed in
shares {αB,j}Bj∈B through Shamir’s (t, n)-threshold secret sharing scheme [19]. In particular, for every subset

B′ ⊂ B containing at least t users, there exist values λB
′

j ∈ Z∗q such that αB =
∑

Bj∈B′
λB
′

j αB,j . The public

output of this protocol is pkB, whereas each user Bj ∈ B privately receives and stores his share skB,j = g
αB,j
2

of the secret key skB = gαB2 . Again, the key generation process for a collective B can be performed by a
trusted dealer, or by the members of B themselves, by using the techniques in [9].

Both solutions allow the publication of the values DB,j = gαB,j , for j = 1, . . . , n. These values would be
necessary if robustness of the threshold unsigncryption process was required.

Signcryption: Σ.Sign(params,M, pkB, skA), where M ∈ GT .

1. Run (s̃k, ṽk) ← Θ̃.KG(1λ) to obtain an ephemeral pair of signing and verification keys for the one-time
signature scheme Θ̃.

2. Derive id = H(ṽk), which is an element in Z∗p.
3. Choose at random s ∈ Z∗p.
4. Compute C1 = gs, C2 = M · e(pkB, g2)s and C3 =

(
pkidB · h

)s
.

5. Use skA to compute a signature θ on the message C1||C2||C3||pkA||pkB||ṽk for the scheme Θ. That is,
θ ← Θ.Sign(skA, C1||C2||C3||pkA||pkB||ṽk).

6. Use the ephemeral secret key s̃k to compute a signature θ̃ on the message C1||C2||C3||pkA||pkB||θ for the
scheme Θ̃. That is, θ̃ ← Θ̃.Sign(s̃k, C1||C2||C3||pkA||pkB||θ).

7. Return the signcryption C = (C1, C2, C3, ṽk, θ, θ̃).

Threshold Unsigncryption: Σ.Uns(params, C, pkA, B
′, {skB,j}Bj∈B′).

LetB′ ⊂ B be a subset of users inB that want to cooperate to unsigncrypt a signcryption C = (C1, C2, C3, ṽk, θ, θ̃)
sent by user A. They proceed as follows.

1. Each Bj ∈ B′ runs Θ̃.Vfy(ṽk, C1||C2||C3||pkA||pkB||θ , θ̃). If the output is 0, he broadcasts (j,⊥).
2. Each Bj ∈ B′ runs Θ.Vfy(pkA, C1||C2||C3||pkA||pkB||ṽk , θ). If the output is 0, he broadcasts (j,⊥).

3. Each Bj ∈ B′ derives id = H(ṽk) and checks if e(C3, g) = e(pkidB · h,C1). If this equality does not hold,
Bj broadcasts (j,⊥).

4. Each Bj ∈ B′ chooses rj ∈ Zp at random and broadcasts the tuple (j, ω0,j , ω1,j), where

ω0,j = skB,j · (pkidB · h)rj and ω1,j = grj

If robustness was required, the correctness of this tuple could be publicly verified by checking if e(ω0,j , g) =

e(DB,j , g2) · e(pkidB · h, ω1,j).
5. If there are not t valid shares, then stop and output ⊥. From t valid tuples {(j, ω0,j , ω1,j)}Bj∈B′ , one can

consider the Lagrange interpolation coefficients λB
′

j ∈ Zq such that skB =
∏

Bj∈B′
sk
λB
′

j

B,j .

6. Compute ω0 =
∏

Bj∈B′
ω
λB
′

j

0,j and ω1 =
∏

Bj∈B′
ω
λB
′

j

1,j .

[Note that ω0 = skB · (pkidB · h)r̃ and ω1 = gr̃, being r̃ =
∑

Bj∈B′
λB
′

j rj .]

7. Return the message M = C2 · e(C3,ω1)
e(C1,ω0) .

It is important to point out that the threshold unsigncryption protocol is non-interactive, in the sense
that each receiver Bj can do his secret part of the unsigncryption task independently of the other receivers.



6.1 Security Analysis

Unforgeability. We are going to prove that the scheme enjoys unforgeability as long as the signature schemes
Θ and Θ̃ are strongly unforgeable.

Theorem 3. Let λ be an integer. For any polynomial-time attacker AUNF against the unforgeability of the
new signcryption scheme, making Q signcryption queries, there exists an attacker FΘ against Θ or an attacker
FΘ̃ against Θ̃, such that AdvFΘ(λ) +Q · AdvFΘ̃(λ) ≥ AdvAUNF

(λ).

Proof. Assuming the existence of an adversary AUNF against the unforgeability of the scheme, we are going
to construct a forger FΘ against the signature scheme Θ.

FΘ receives as input a verification key vk obtained from an execution (sk, vk) ← Θ.KG(1λ), and has
access to a signing oracle Θ.Sign(sk, ·) for messages of its choice. The algorithm FΘ runs the setup protocol
params← Σ.St(1λ) and initializes the attacker AUNF by giving params to it.

Key generation. AUNF chooses a target sender A? and requests the execution of the key generation protocol
for this user. FΘ defines the public key of A? as pkA? = vk and sends it to AUNF.

Signcryption queries. AUNF can make signcryption queries for the sender A?, for pairs (Mi, pkBi) of its
choice, where Mi is a message and Bi is a collective of receivers with public key pkBi . To reply such queries,
FΘ runs steps 1-4 of the signcryption protocol Σ.Sign(params,Mi, pkBi , skA?), obtaining consistent values

s̃ki, ṽki, C1,i, C2,i, C3,i. After that, FΘ queries its signing oracle with messagemi = C1,i||C2,i||C3,i||pkA? ||pkBi ||ṽki,
and obtains as answer a valid signature θi for the signature scheme Θ and public key pkA? .

Then, FΘ can run step 6 of the signcryption protocol: θ̃i ← Θ̃.Sign(s̃ki, C1,i||C2,i||C3,i||pkA? ||pkBi ||θi).
The final signcryption that FΘ sends to AUNF is Ci = (C1,i, C2,i, C3,i, ṽki, θi, θ̃i).

Forgery. At some point, and with probability ε = AdvAUNF
(λ), the attacker AUNF outputs a successful

forgery; that is, a public key pkB? and a signcryption C? = (C?1 , C
?
2 , C

?
3 , ṽk

?
, θ?, θ̃?) such that:

– the protocol Σ.Uns(params, C?, pkA? , B
?, {skB?,j}Bj∈B?) outputs M? 6=⊥,

– (pkA? , pkB? , C
?) has not been obtained by AUNF during a signcryption query.

Let us define m? = C?1 ||C?2 ||C?3 ||pkA? ||pkB? ||ṽk
?
. We can distinguish two cases.

First, with probability ε1 we can have (m?, θ?) 6= (mi, θi), for all messages mi that FΘ has queried to its
signing oracle. Then FΘ has obtained a valid and new signature (m?, θ?) for the scheme Θ and public key
pkA? . Therefore, ε1 ≤ AdvFΘ(λ).

Otherwise, with probability ε2 = ε − ε1, we can have (m?, θ?) = (mi, θi) for some of the Q messages mi

that FΘ has queried to its signing oracle. In this case, since the forgery by AUNF is valid, the only possibility

is θ̃? 6= θ̃i. In this case, it is easy to construct a forger FΘ̃ against the strong one-time unforgeability of Θ̃: this

forger receives as input a target verification key ṽk
′
, then guesses the correct signcryption query i, uses its only

access to a signing oracle to obtain the corresponding signature θ̃i for this query, and uses other ephemeral
key pairs (s̃k, ṽk) to reply the rest of signcryption queries. If the guess of i is correct (which happens with
probability 1/Q), then this second kind of forgery by AUNF leads to a valid forgery by FΘ̃ against scheme

Θ̃. Therefore, we have AdvFΘ̃(λ) ≥ ε2/Q.

Summing up, we have AdvAUNF
(λ) = ε = ε1 + ε2 ≤ AdvFΘ(λ) +Q · AdvFΘ̃(λ), as desired. ut

Indistinguishability. We reduce the IND-CCA security of the scheme to the hardness of solving the DBDH
problem in groups G,GT and to the security of the underlying signature scheme Θ̃, which we assume to be
one-time strongly secure. The proof is in the standard model.



Theorem 4. Let λ be an integer. For any polynomial-time attacker AIND-CCA against the IND-CCA secu-
rity of the new signcryption scheme, there exists a solver ADBDH of the Decisional Bilinear Diffie-Hellman
problem or an attacker FΘ̃ against Θ̃ such that AdvADBDH (λ) + AdvFΘ̃(λ) ≥ AdvAIND-CCA

(λ).

Proof. Assuming the existence of an adversary AIND-CCA that has advantage AdvAIND-CCA
(λ) in breaking

the IND-CCA security of our scheme, we construct an algorithm ADBDH that solves the Decisional Bilinear
Diffie-Hellman problem in groups G,GT .
ADBDH receives as input ga, gb, gc, R, where R is either e(g, g)abc or a random element in GT . The goal

of ADBDH is to distinguish between these two cases.
ADBDH runs the key generation protocol for the signature scheme Θ̃, obtaining (s̃k

?
, ṽk

?
) ← Θ̃.KG(1λ).

Then ADBDH chooses at random a suitable hash function H : {0, 1}∗ → Z∗p and a suitable signature scheme

Θ. The value id? = H(ṽk
?
) is computed. ADBDH defines g2 = ga, chooses at random γ ∈ Z∗p and defines h =

(gb)−id
?

·gγ . Then ADBDH initializes the attacker AIND-CCA by giving params = (p,G, g,GT , e,H, h, g2, Θ, Θ̃)
to it.

Key generation. Let B? = {B1, . . . , Bn} be the target collective and B̃ = {B1, . . . , Bt−1} ⊂ B? be the subset
of corrupted members of B?, chosen by AIND-CCA. The algorithm ADBDH defines the public key of B? as
pkB? = gb. This means that the secret value αB? is implicitly defined as b. For the corrupted members of
B?, the shares {skB?,j}Bj∈B̃ are computed by first choosing random and independent values αB?,j ∈ Zp and

then computing skB?,j = g
αB?,j
2 . Let f ∈ Zp[X] be the implicit polynomial, with degree t − 1, that satisfies

f(0) = b = αB? and f(j) = αB?,j for j = 1, . . . , t− 1.
Using interpolation in the exponent and the values pkB? = gαB? = gb and {αB?,j}Bj∈B̃, all the values

DB?,j = gαB?,j could be obtained (if robustness was required) for all the members Bj ∈ B?.

Unsigncryption queries. Let (pkA, C) be an unsigncryption query sent for the target collective B?, where
C = (C1, C2, C3, ṽk, θ, θ̃). If ṽk = ṽk

?
and 1← Θ̃.Vfy(ṽk, C1||C2||C3||pkA||pkB||θ , θ̃), then ADBDH aborts and

outputs a random bit. Otherwise, ADBDH runs steps 1-3 (which are public verifications) of the unsigncryption
protocol.

If (pkA, C) is a valid signcryption and ADBDH has not aborted, we have ṽk 6= ṽk
?

and id = H(ṽk). Since
the hash function is assumed to be collision-resistant, we have id 6= id? as well. Now ADBDH is required to
simulate the values that would be broadcast in an execution of the rest of the protocol. This means simulating
consistent tuples (j, ω0,j , ω1,j) for any Bj ∈ B?, where

ω0,j = skB?,j · (pkidB? · h)rj and ω1,j = grj

for some (randomly uniform) value rj ∈ Zp. For the corrupted members Bj , j = 1, . . . , t− 1, such values can
be easily computed by ADBDH , because it knows skB?,j .

For any non-corrupted member Bi, i = t, . . . , n, let λ0, λ1, . . . , λt−1 ∈ Zp be the Lagrange interpolation
coefficients corresponding to the set {0, 1, . . . , t − 1} and interpolation point i. These coefficients can be
publicly computed because they are independent of the (unknown) polynomial f . We have f(i) = λ0f(0) +∑t−1

j=1 λjf(j). Now ADBDH can choose a random r̃i ∈ Zp and define

ω0,i = g

−γλ0
id−id?
2 · (pkidB? · h)r̃i ·

t−1∏
j=1

sk
λj
B?,j and ω1,i = g

−λ0
id−id?
2 · gr̃i

It is not difficult to see that these two values (ω0,i, ω1,i) have the form

ω0,i = g
f(i)
2 · (pkidB? · h)ri = skB?,i · (pkidB? · h)ri and ω1,i = gri ,

being ri = r̃i − aλ0
id−id?

an implicit but randomly uniform value in Zp.



Summing up, ADBDH can simulate valid tuples (j, ω0,j , ω1,j) for any Bj ∈ B?. Once this is done, the rest
of the unsigncryption process can be easily completed by ADBDH , who obtains a message M and sends all
this information to AIND-CCA.

Challenge. At some point, AIND-CCA outputs two messages M0,M1 of the same length, along with a key
pair (skA? , pkA?) for a sender A?. To produce the challenge ciphertext C?, the algorithm ADBDH chooses at
random a bit d ∈ {0, 1}, and proceeds as follows.

1. Define C?1 = gc, C?2 = Md ·R and C?3 = (gc)γ = . . . = (pkid
?

B? · h)c.

Note that (C?1 , C
?
2 , C

?
3 ) is a consistent encryption of Mb for identity id? when R = e(g, g)abc. On the other

hand, when R ∈ GT is random, the distribution of (C?1 , C
?
2 , C

?
3 ) is independent of the bit d.

2. Run θ? ← Θ.Sign(skA? , C
?
1 ||C?2 ||C?3 ||pkA? ||pkB? ||ṽk

?
).

3. Run θ̃? ← Θ̃.Sign(s̃k
?
, C?1 ||C?2 ||C?3 ||pkA? ||pkB? ||θ?).

4. Send to AIND-CCA the challenge signcryption C? = (C?1 , C
?
2 , C

?
3 , ṽk

?
, θ?, θ̃?).

More unsigncryption queries. AIND-CCA can make more unsigncryption queries (pkA, C) 6= (pkA? , C
?) for

the target collective B?, where C = (C1, C2, C3, ṽk, θ, θ̃), as long as the challenge signcryption is not queried.
If ṽk 6= ṽk

?
, then these queries are handled in the same way as explained above.

Otherwise, if ṽk = ṽk
?

and 1 ← Θ̃.Vfy(ṽk, C1||C2||C3||pkA||pkB||θ , θ̃), then ADBDH aborts and outputs
a random bit.

Final analysis. Finally, AIND-CCA outputs a guess bit d′. If d′ = d, then ADBDH outputs 0 as its answer to
the given instance of the DBDH problem. If d′ 6= d, then ADBDH outputs 1.

Let us denote as δ the probability that AIND-CCA makes an unsigncryption query for a valid signcryption

C = (C1, C2, C3, ṽk, θ, θ̃) such that ṽk = ṽk
?
. In other words, δ is the probability that ADBDH aborts before

AIND-CCA outputs its guess bit d′. Using a similar argument as in the unforgeability proof, it is easy to

see that, in this case, one can construct a forger FΘ̃ against the one-time signature scheme Θ̃: the input

of FΘ̃ is ṽk
?
, the only access to the signing oracle is used to compute the challenge signcryption, and any

valid unsigncryption query coming from AIND-CCA which involves ṽk
?

leads to a valid strong forgery of the

signature scheme Θ̃. Therefore, we have δ ≤ AdvFΘ̃(λ).

Let us now compute the probabilities that the output of the constructed solver ADBDH of the DBDH
problem is 0 in the two possible cases. When R = e(g, g)abc, then the challenge signcryption is consistent,
and we have Pr[ADBDH(g, ga, gb, gc, e(g, g)abc) = 0] = δ · 1

2 + (1− δ) · (AdvAIND-CCA(λ) + 1
2).

When R = T is a random element in GT , the challenge signcryption is independent of the bit d, so the
probability that d′ = d is 1/2, and we have Pr[ADBDH(g, ga, gb, gc, T ) = 0] = δ · 1

2 + (1− δ) · 1
2 .

Now we have AdvADBDH (λ) =∣∣∣Pr[ADBDH(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[ADBDH(g, ga, gb, gc, T ) = 0]
∣∣∣ =

= (1− δ)AdvAIND-CCA(λ) = AdvAIND-CCA
(λ)− δ · AdvAIND-CCA(λ).

Putting all together, we have, as desired:

AdvAIND-CCA
(λ) = AdvADBDH (λ) + δ · AdvAIND-CCA(λ) ≤

≤ AdvADBDH (λ) + δ = AdvADBDH (λ) + AdvFΘ̃(λ).

ut



7 Efficiency of the Schemes

The two schemes proposed in this paper are the first PKI-based threshold unsigncryption schemes which
achieve a high enough level of security. In particular, generic constructions obtained by composing a fully
secure signature scheme and a fully secure threshold decryption scheme do not achieve this level of security,
as we have shown in Section 4.

Therefore, our first goal was to show that the maximum level of security for threshold unsigncryption
schemes can indeed be achieved. This is what we have done with our two proposals. Regarding efficiency,
there are not previous schemes with the same level of security to compare with, so it is not possible to say
if the two new schemes are efficient or not. Anyway, we include Table 1 that summarizes the computational
and communication costs of our schemes (without considering robustness). The costs of these two schemes
should be considered as a benchmark for any future proposal of threshold unsigncryption scheme.

cost of cost of Security
Scheme Signcryption |C| Unsigncryption model

(per receiver)

Section 5 6 Exp 6λ 8 Exp ROM

Section 6 12 Exp + 1 Pa 12λ 11 Exp + 6 Pa Standard

Table 1. Efficiency of our two threshold unsigncryption schemes.

To measure the efficiency of our second scheme, in Section 6, we have taken as the signature scheme Θ
the scheme in [5], and as the one-time signature scheme Θ̃ the scheme in Appendix B of [17]. In the table, λ
denotes the security parameter of the scheme; this means that an element in the group G can be represented
by λ bits. In the case of our first scheme, we have considered that the length of the plaintexts is ` = λ, for
simplicity.

We denote the size in bits of a ciphertext C as |C|. For the computational costs, we just consider expo-
nentiations (denoted as Exp) and bilinear pairing computations (denoted as Pa, only for the second scheme).
The rest of operations (xor, modular addition and multiplication, hash computations) are not considered
because they are very cheap; they do not affect the real efficiency of the schemes. Roughly speaking, we can
say that the scheme in Section 6, whose security is proved in the standard model, is twice less efficient than
the scheme in Section 5, whose security is proved in the random oracle model (ROM).

8 Splitting the Unsigncryption Protocol

If we go back to the description of the Threshold Unsigncryption protocol of the two new schemes, in Sections
5 and 6, we can easily distinguish two parts in those protocols. Steps 1-3 correspond to the (public) verification
procedure; these authentication steps can be run by any (individual) party, not necessarily inside the set B
of intended receivers. In other words, no secret information is needed as input to run these three steps; the
only inputs are the ciphertext and the public key of the sender. Then, Steps 4-7 correspond to the (secret)
decryption procedure, which in this case requires the participation of at least t members of the set B of
intended receivers. The important point here is that the identity or public key pkA of the sender is not used
at all for the execution of Steps 4-7. In some sense, the public key pkA of the sender could be removed from
the process once the ciphertext has been accepted as valid, in Step 3. After that, the identity of the sender
would be unknown during the rest of the unsigncryption process.

In this way, the unsigncryption part of our two new schemes could be split into two parts. The first one
could be run by an entity T /∈ B, who would discard invalid ciphertexts and remove (or store privately) the
identities of the senders. In the second part, only valid (and anonymized) ciphertexts would reach the set
B of receivers, who would jointly decrypt the ciphertext to recover the original plaintexts, maybe without
knowing at any moment who are the senders of the messages.



As far as we know, these are the first signcryption schemes (with either individual or threshold unsigncryp-
tion) enjoying this property, which may be of interest in some applications requiring some level of anonymity
or privacy, such as electronic auctions.

In an electronic auction system, participants send their confidential and authenticated bids for a product.
At the end of the process, some (distributed) entity B detects the highest bid and identifies the author of
that bid, who wins the right to buy the product for that price. Identities of the authors of the rest of bids
should remain hidden. To increase the confidentiality of the process, entity B can consist of a set of n entities,
working in a (t, n)-threshold fashion.

Let us assume that such an auction system is implemented by using a signcryption scheme where the
unsigncryption protocol can be split into two phases, in such a way that the decryption part is anonymized.
An external authority (or machine) T , different from B, can be in charge of the first part of the unsigncryption
process: T receives the ciphertexts from the participants in the auction, verifies that the participants are in
the list of admitted participants, and runs the verification part of the unsigncryption. Invalid ciphertexts are
discarded, and valid ciphertexts are anonymized and forwarded to the auction decryption entity B. Entity
T must privately store a table (pkA, C), relating the public keys of the participants with their ciphertexts.
Optionally, the anonymized ciphertexts that are forwarded to B (or a hashed version of them) can be published
so that all the participants in the auction can verify that their bids have been taken into account.

The decryption process is then run by entity B, in an individual or threshold fashion, and the highest bid
among the resulting (anonymous) bids is selected. The winning bid and its corresponding ciphertext C are
announce by B, and then T can search in its table and recover the identity of the author of the winning bid.
Assuming the honesty of entity T , the anonymity of the participants that do not win the auction is clearly
preserved, even in front of the decryption authority B. Since the role of T can be easily implemented by a
secure piece of hardware, trusting entity T is not a very strong assumption.

9 Fully Threshold Signcryption

In this work we have considered, for simplicity, the scenario where the entity B that runs the unsigncryption
process consists of a set of n individuals and works with a (t, n)-threshold mode of operation, but the entity
that runs the signcryption process (the sender A) is an individual entity.

However, it is quite easy to see that our definitions and results (both the negative and the positive ones)
extend to the scenario where the sender entity A also consists of a set of ñ individuals and works with a
(t̃, ñ)-threshold process. Such a scenario can also make perfect sense in some real applications, for example in
critical electronic auctions where an important public contract is put out to tender. A signed confidential bid
on behalf of a company should require the participation of a minimum number of individuals in the board of
the company.

The first threshold unsigncryption scheme that we propose, in Section 5, can be extended to this fully
threshold scenario by using well-known threshold techniques for the computation of zero-knowledge proofs
in the Discrete Logarithm framework (see [23] for the particular case of threshold Schnorr signatures, for
instance). Regarding our second threshold unsigncryption scheme, in Section 6, the idea would be to replace
the individual signature schemes Θ and Θ̃ with threshold signature schemes. Examples of threshold signature
schemes which are secure in the standard model can be found, for example, in [24, 15].

We point out that the two resulting fully threshold signcryption schemes would still enjoy the property
discussed in the previous section: the unsigncryption protocol can be split into two parts.

10 Conclusion

We have considered in this paper the strong security properties that one could (or should) require for a
signcryption scheme with threshold unsigncryption: existential unforgeability under insider chosen message
attacks and indistinguishability under insider chosen ciphertext attacks, in a multi-user setting. Most of the
(few) threshold unsigncryption schemes proposed in the literature, either in the traditional PKI or in the



identity-based scenario, do not achieve this level of security. This includes generic constructions obtained by
composing a fully secure signature scheme and a fully secure threshold decryption scheme.

We have constructed in this paper two threshold unsigncryption schemes which achieve those strong
security properties. We prove the security of the first one in the random oracle model, whereas we are able to
prove the security of the second proposed scheme in the standard model. The two schemes enjoy a “splitting”
property which can be very useful for applications requiring some level of privacy for the sender of the digital
information. As future work, one could investigate if other (more efficient) threshold unsigncryption schemes
can be designed, with full security in the standard model, maybe without using bilinear maps.
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10. J. Herranz, A. Ruiz and G. Sáez. Fully secure threshold unsigncryption. Proceedings of ProvSec’10, LNCS 6402, Springer-
Verlag, pp. 261–278 (2010).

11. S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography: introducing concurrency, removing erasures.
Proceedings of Eurocrypt’00, LNCS 1807, Springer-Verlag, pp. 221–242 (2000).

12. J.H. Koo, H.J. Kim, I.R Jeong, D.H. Lee and J.I Lim. Jointly unsigncryptable signcryption schemes. Proceedings of WISA’01,
vol. 2, pp. 397–407 (2001).

13. F. Li, J. Gao and Y. Hu. ID-based threshold unsigncryption scheme from pairings. Proceedings of CISC’05, LNCS 3822,
Springer-Verlag, pp. 242–253 (2005).

14. F. Li, X. Xin and Y. Hu. ID-based signcryption scheme with (t, n) shared unsigncryption. International Journal of Network
Security, ovl. 3 (2), pp. 155–159 (2006).

15. J. Li, T.H. Yuen and K. Kim. Practical threshold signatures without random oracles. Proceedings of ProvSec’07, LNCS
4784, Springer-Verlag, pp. 198–207 (2007).

16. A. Lysyanskaya and C. Peikert. Adaptive security in the threshold setting: from cryptosystems to signature schemes. Pro-
ceedings of Asiacrypt’01, LNCS 2248, Springer-Verlag, pp. 331–350 (2001).

17. P. Mohassel. One-time signatures and chameleon hash functions. Proceedings of SAC’10, LNCS 6544, Springer-Verlag, pp.
302–319 (2011).

18. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology, vol. 13
(3), pp. 361–396 (2000).

19. A. Shamir. How to share a secret. Communications of the ACM, vol. 22, pp. 612–613 (1979).
20. S. Sharmila Deva Selvi, S. Sree Vivek, S. Priti and C. Pandu Rangan. On the security of identity based threshold unsign-

cryption schemes. Proceedings of APWCS’2010, available at http://eprint.iacr.org/2010/360 (2010).
21. V. Shoup. Lower bounds for discrete logarithms and related problems. Proceedings of Eurocrypt’97, LNCS 1233, Springer-

Verlag, pp. 256–266 (1997).
22. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack. Journal of Cryptology, vol.

15 (2), pp. 75–96 (2002).
23. D.R. Stinson and R. Strobl. Provably secure distributed Schnorr signatures and a (t, n) threshold scheme for implicit certifi-

cates. Proceedings of ACISP’01, LNCS 2119, Springer-Verlag, pp. 417–434 (2001).
24. H. Wang, Y. Zhang and D. Feng. Short threshold signature schemes without random oracles. Proceedings of Indocrypt’05,

LNCS 3797, Springer-Verlag, pp. 297–310 (2005).
25. B. Yang, Y. Yu, F. Li and Y. Sun. Provably secure identity-based threshold unsigncryption scheme. Proceedings of ATC’07,

LNCS 4610, Springer-Verlag, pp. 114–122 (2007).



26. Z. Zhang, C. Mian and Q. Jin. Signcryption scheme with threshold shared unsigncryption preventing malicious receivers.
Proceedings of TENCON’02, IEEE Computer Society, vol. 2, pp. 196–199 (2002).

27. Y. Zheng. Digital signcryption or How to achieve cost(signature & encryption) << cost(signature) + cost(encryption).
Proceedings of Crypto’97, LNCS 1294, Springer-Verlag, pp. 165–179 (1997).


