
1

Task Scheduling Techniques for
Asymmetric Multi-core Systems

Kallia Chronaki, Alejandro Rico, Marc Casas, Miquel Moretó,
Rosa M. Badia, Eduard Ayguadé, Jesus Labarta, and Mateo Valero

Abstract—As performance and energy efficiency have become the main challenges for next-generation high-performance computing,
asymmetric multi-core architectures can provide solutions to tackle these issues. Parallel programming models need to be able to suit
the needs of such systems and keep on increasing the application’s portability and efficiency. This paper proposes two task scheduling
approaches that target asymmetric systems. These dynamic scheduling policies reduce total execution time either by detecting the
longest or the critical path of the dynamic task dependency graph of the application, or by finding the earliest executor of a task. They
use dynamic scheduling and information discoverable during execution, fact that makes them implementable and functional without the
need of off-line profiling. In our evaluation we compare these scheduling approaches with two existing state-of the art heterogeneous
schedulers and we track their improvement over a FIFO baseline scheduler. We show that the heterogeneous schedulers improve the
baseline by up to 1.45× in a real 8-core asymmetric system and up to 2.1× in a simulated 32-core asymmetric chip.

Index Terms—Scheduling, Heterogeneous, Multi-core

F

1 INTRODUCTION

The use of asymmetric multi-core architectures forms an
appealing solution in high-performance computing to tackle
the power wall. These architectures increase energy effi-
ciency [1], [2], [3] by featuring different types of processing
cores designed to target performance or power optimiza-
tion.

To effectively utilize such systems taking into account
their heterogeneity, load balancing and scheduling become
two of the main challenges [4]. An approach towards these
challenges is the use of task-based programming models [5],
[6], [7], [8]. The modern task-based programming models
schedule tasks dynamically according to the availability of
resources. They also allow the specification of dependencies
between tasks, enabling the runtime system to automatically
perform scheduling and synchronization decisions.

Even though task-based programming models is a pow-
erful mechanism, the efficient mapping of ready tasks to
different types of cores on an asymmetric system remains a
challenge. Task-based parallel applications expose different
characteristics that can affect the total application duration
such as complex task dependency graphs (TDGs) with long
critical paths or different levels of task cost variability.
These characteristics influence researchers to develop smart
scheduling techniques within a task-based programming
model and accelerate the overall application. The criticality-

• Kallia Chronaki, Eduard Ayguade, Jesus Labarta and Mateo Valero are
with Barcelona Supercomputing Center and Universitat Polytéchnica de
Catalunya. Email: first.last@bsc.es

• Marc Casas, Miquel Moreto, are with Barcelona Supercomputing Center.
Email: first.last@bsc.es

• Alejandro Rico is with ARM. Email: alejandro.rico@arm.com
• Rosa M. Badia is with Barcelona Supercomputing Center and Artificial

Intelligence Research Institute (IIIA) - Spanish National Research Council
(CSIC). Email: rosa.m.badia@bsc.es

Manuscript received April 11, 2016;

aware schedulers detect the critical tasks of an application
and increase performance by running critical tasks on fast
cores. Some previous works [9], [10], [11], [12] tackled
this issue using static scheduling over the whole TDG
to statically map tasks to processors on a heterogeneous
system. However, they required the knowledge of profiling
information and most of them were evaluated on synthetic
randomly-generated TDGs.

In this paper, we propose two novel dynamic task sched-
ulers that detect the critical path of the in-flight dynamic
snapshot of the TDG. Moreover, we make a study of the po-
tential of the proposed dynamic scheduling techniques com-
pared to existing dynamic heterogeneous schedulers [11],
[13]. Specifically we compare our approaches to the the
criticality aware task scheduler (CATS) [13] as well as a dy-
namic implementation of the heterogeneous earliest finish
time scheduler (HEFT) [11]. We implement these scheduling
policies in the OmpSs [5], [14] programming model that
supports dynamic scheduling and dependency tracking.

Compared to previous works, all the scheduling policies
described and evaluated in this paper are based on informa-
tion discoverable at runtime, are implementable and work
on a real asymmetric multi-core platform with real applica-
tions and therefore, using real TDGs. The contributions of
this paper are the following:

• The Critical Path scheduler (CPATH) that dynami-
cally assigns the tasks that belong to the critical path
of the TDG to the fast cores of the system. To do
so, CPATH tracks the execution time of the tasks,
assigns cost-based priorities and, according to these
priorities it detects the critical tasks.

• The Hybrid Criticality scheduler (HYBRID) that in-
corporates the features of CPATH and CATS [13] by
assigning to the fast cores tasks that belong either to
the critical path or to the longest path of the TDG,

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution 
to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/TPDS.2016.2633347



2

TABLE 1: Acronyms used in the paper

Acronym Meaning
TDG Task Dependency Graph
CATS Criticality-Aware Task Scheduler

CPATH Critical Path-Aware Scheduler
HEFT Heterogeneous Earliest Finish Time

dHEFT Dynamic Heterogeneous Earliest Finish Time
BF Breadth-First

HYBRID Hybrid Criticality-Aware Scheduler
FIFO First-In First-Out
plist Predecessors’ List
slist Successors’ List

tt-is Task Type - Input Size

depending on the runtime circumstances. HYBRID
uses mixed priorities that are cost-based or level-
based. This technique also keeps track of the task
costs but if this information is not available it uses the
mechanisms of CATS that dynamically detects the
longest dependency chain of the in-flight dynamic
state of the TDG

• An evaluation of the proposed CPATH and HYBRID
schedulers compared to the state of the art hetero-
geneous schedulers CATS [13] and HEFT [11], all
of them implemented in the OmpSs programming
model. Moreover we evaluate these approaches next
to the default FIFO scheduler that serves as our
baseline. The results show that all heterogeneous
schedulers improve overall performance reaching
up to 45% improvement. Furthermore, we describe
their features such as the high per-task overheads of
CPATH, the inability of dHEFT to improve perfor-
mance when the task number increases as well as
the benefit of HYBRID scheduler compared to CATS
when task cost variability increases.

Table 1 shows the acronyms that we use in the next sections.

2 BACKGROUND

The OmpSs programming model is a task-based program-
ming model that offers a high level abstraction to the imple-
mentation of parallel applications for various homogeneous
and heterogeneous architectures [5], [14]. It enables the
annotation of function declarations with the task directive,
which declares a task. Every invocation of such a function
creates a task that is executed concurrently with other tasks
or parallel loops. OmpSs also supports task dependencies
and dependency tracking mechanisms [7]. OmpSs is built
with the support of the Mercurium compiler, responsible for
the translation of the OmpSs annotation clauses to source
code, and the Nanos++ runtime system, responsible for the
internal creation and execution of the tasks.

Nanos++ is an environment that serves as the runtime
platform of OmpSs. It provides device support for het-
erogeneity and includes different plug-ins for implementa-
tions of schedulers, throttling policies, barriers, dependency
tracking mechanisms, work-sharing and instrumentation.
This design allows to maintain the runtime features by
adding or removing plug-ins, facilitating the implementa-
tion of a new scheduler, or the support of a new architecture.

The implementations of the different scheduling policies
in Nanos++ perform various actions on the states of the

tasks. A task is created if a call to this task is discovered but
it is waiting until all its inputs are produced by previous
tasks. When all the input dependencies are satisfied, the task
becomes ready. The ready tasks of the application at a given
point in time are inserted in the ready queues as stated by
the scheduling policy. Ready queues can be thread-private
or shared among threads. When a thread becomes idle, the
scheduling policy picks a task from the ready queues for that
thread to execute. The default OmpSs scheduler employs a
breadth-first policy (BF) [15] and implements a single first-
in-first-out ready queue shared among all threads. When a
task is ready, it is inserted in the tail of the ready queue
and when a core becomes available, it retrieves a task from
the head of the queue. BF does not differentiate among core
types and assigns tasks in a first-come-first-served basis. We
use this scheduler as our baseline.

The Nanos++ internal data structures support task pri-
oritization. The task priority is an integer field inside the
task descriptor that rates the importance of the task. If the
scheduling policy supports priorities, the ready queues are
implemented as priority queues. In a priority queue, tasks are
sorted in a decreasing order of their priority. The insertion
in a priority queue is always ordered and the removal of a
task is always from the head of the queue, i.e., the task with
the highest priority. The priority of a task can be either set
in user code, by using the priority clause, which accepts an
integer priority value or expression, or dynamically by the
scheduling policy, as is described in the next section.

3 HETEROGENEOUS SCHEDULING

The efficient scheduling problem has been intensively stud-
ied for asymmetric systems. In this section we describe four
scheduling approaches that target such systems. The first
three are based on separating the tasks into groups of critical
and non-critical tasks and assign each group to one core
type: the critical tasks to the fast cores and the non-critical
tasks to the slow cores. The difference between these three
approaches is the way of considering a task critical. First is
the Criticality-Aware scheduler (CATS) [13], which detects
the critical tasks based on their bottom level. Secondly, the
Critical Path scheduler (CPATH), proposed in this paper,
that detects the critical path of the dynamic (TDG) with the
help of bottom cost based priorities. The Hybrid Criticality
scheduler (HYBRID), proposed in this paper, uses both bot-
tom level and bottom cost based priorities. Last, we describe
a dynamic implementation of HEFT scheduler (dHEFT) [11],
that for every task it detects the processor that finishes its
execution at the earliest possible time. All of the described
schedulers operate at runtime on the dynamic snapshots
of the TDG. CPATH, HYBRID and dHEFT perform on-line
profiling of the task execution time without considering
inter-task communication costs, given the uncertainty of
data movement latency that hides in the cache hierarchy
of an asymmetric multi-core system with prefetching.

3.1 Criticality-Aware Task Scheduler

The Criticality-Aware Task Scheduling generally applies to
task-based programming models supporting task depen-
dencies, but for simplicity we explain it in the context of



3

0

4

2

5

3

1

63

2

1

0

0

C
ri

ti
ca

l q
u

e
u

e

N
o

n
-C

ri
ti

ca
l q

u
e

u
e

0

Fast CoreSlow 
Core

pop
pop

4

3

2

5

1

0

0

1

2

3

0 6 01 2 3

4 5
6

7

8

11

9 10

12

13
R

e
ad

y 
Ta

sk
s’

 S
u

b
m

is
si

o
n

(o
rd

e
re

d
 in

se
rt

io
n

)

Fig. 1: Task submission with CATS. Nodes are marked with
the bottom level of each task. Pattern-filled nodes mark the
critical tasks.

the OmpSs programming model. CATS uses bottom-level
longest-path priorities and consists of three steps:

Task prioritization: when a task is created and added to
the TDG, it is assigned a priority and the priority of the rest
of tasks in the graph is updated accordingly.

Task submission: when a task becomes ready, i.e., all its
predecessors finished their execution, it is submitted to a
ready queue. At this point, the algorithm decides whether
the task is considered critical or non critical. The task is
then inserted in the corresponding ready queue: tasks in the
critical ready queue will be executed by fast cores, and tasks
in the non-critical ready queue will be executed by slow cores.

Task-to-core assignment: when a core becomes idle, it
tries to retrieve a task from its corresponding ready queue
to execute it. If the queue is empty, it might try to steal from
the other queue according on the work stealing policy.

These steps are performed dynamically and potentially
in parallel in different cores. Thus, while some tasks are be-
ing prioritized, previously created tasks may be submitted,
and others assigned to available cores or executed.

To give an overview of the scheduling process, Figure 1
shows a scheme of the operation of CATS. In the TDG on the
left, each node represents a task and each edge of the graph
represents a dependency between two tasks. The number
inside each node is the bottom level of the task: the length of
the longest path in the dependency chains from this node to
a leaf node. The priority of a task is given by its bottom level.
The pattern-filled nodes indicate tasks that are considered
critical. The number outside each node is the task id and
is used in the text to refer to each task. Critical tasks are
inserted in the critical queue, and non-critical tasks to the
non-critical queue. The insertion is ordered with the highest
priorities at the head of the queue and the lowest priorities
at the tail. Slow cores retrieve tasks from the head of the
non-critical queue and fast cores from the critical queue. The
following sections describe these scheduling steps in detail.

3.1.1 Task Prioritization
Each task in the TDG has a list to include its predecessors
(plist). Every time an edge is added into the TDG on the
creation of a new task, the corresponding predecessor of
the dependency is added in the plist of its successor. For
example, in Figure 1, when the dependency between tasks 2

1 void prioritize_task(task *succ) {
2 int blev = succ->priority;
3 list plist = plistOf(succ);
4 task *currPred;
5 while( not isEmpty(plist) ) {
6 currPred = plist.next();
7 if(priorityOf(currPred) < blev+1) {
8 currPred->priority = blev+1;
9 if(isReady(currPred))
10 readyQueueOf(currPred)->reorder();
11 prioritize_task(currPred);
12 }
13 }
14}

Listing 1: Pseudo-code task prioritization with CATS.

and 5 occurs, the task number 2 is inserted into the plist of
the task number 5. Thus, the plist of task number 5 becomes
{2}. Accordingly, the plist of task number 10 will be {2, 9}
when the edge 9→10 is inserted to the TDG.

The priority given to a task is the bottom level of the task.
The bottom level is computed by traversing the TDG upwards
starting from the successor that the currently created edge
is pointing to. The priority of this successor is 0 because
it is a leaf node of the graph, as it is the last created task.
Then, using plist for each task, the algorithm navigates to the
upper levels of the TDG and updates the priority on each
visited node. This way not all the graph is updated, but only
the tasks that are predecessors in the paths to the new edge.
The algorithm also stops going up through a path, when it
finds a priority larger than the one it would be updated to.

Listing 1 shows the algorithm for task prioritization. The
complexity of this is O(n2), n being the number of tasks.
This function is called on the creation of a new edge with
the successor as argument. The algorithm traverses the plist
of the successor task (line 5) and if the priority of the current
predecessor is lower than the bottom level of the successor
plus one, it updates the current predecessor’s priority to
that value (lines 7-8). If the updated predecessor task is
ready (i.e., it sits in one of the ready queues), the scheduler
reorders the ready queue so it remains ordered considering
the updated priority (lines 9-10). Then, the same actions are
performed recursively for each predecessor of the plist to
update all the possible upward paths from the successor.

The terminate conditions for the TDG navigation are
two: (a) if the plist of the current task (currPred) is empty,
so either we reach an entry node or the predecessors of the
task have finished execution; or (b) if the priority of the
current task (currPred) remains unchanged, which means
that the successor task (succ) does not belong to the longest
path because its predecessor already has a higher priority.

3.1.2 Task Submission
The purpose of this step is to divide the tasks into two
groups: critical and non-critical. Critical tasks are tasks that
belong to the longest path of the dynamic TDG, namely the
path with the maximum number of tasks (or nodes). Thus,
the longest path starts from the task with the maximum
bottom level. At runtime, the longest path changes as tasks
complete execution and new tasks are created. CATS man-
ages to detect these changes and dynamically decide if the
submitted task belongs to the longest path of the TDG.

When a task’s dependencies are satisfied, the task be-
comes ready for execution and is to be inserted in the ready



4

maxPriority = 1, maxTaskSucc = { }
maxPriority = 6, maxTaskSucc = {4, 5, 6, 10}
maxPriority = 5, maxTaskSucc = {8}
...

4
8

3

9

2

10

5
5

1
12

0

13

03

0

6

1
11

2
7

3
4

01 62

4

3

9

2

10

1
12

0

13
1

11

2
7

8

•  (4 == maxPriority-1) ✓

•  (8 ∈ maxTaskSucc)  ✓

Fig. 2: Task submission. Gray nodes indicate finished tasks
and pattern-filled nodes indicate critical tasks.

queues. Ready queues are priority queues that keep tasks in
a decreasing order of task priorities, i.e., the task with the
maximum priority resides on the head of the queue. Critical
tasks are inserted in the critical queue and non-critical tasks
in the non-critical queue. The pattern-filled nodes in Figure 1
represent the critical tasks in that graph.

To determine the criticality of a task, CATS keeps track
of the last discovered critical task. Then, for each task that
becomes ready, CATS checks the following conditions: (a)
if the priority of the current ready task is higher or equal
to the priority of the last discovered critical task and, (b)
if the current ready task is the highest-priority immediate
successor of the last discovered critical task.

The task that satisfies the second condition is a task with
a lower priority than the maximum but the task belongs to
the longest path because it is the highest priority immediate
successor of the last detected critical task.

Listing 2 shows a simplified version of the task submis-
sion code, that is of complexity O(n) (n is the number of
tasks). The variable maxPriority (line 1) is used to store
the priority of the last critical task, and maxPriorityTask
(line 2) is used to store the last critical task. Initially,
maxPriority is set to 1 and maxPriorityTask is set to
NULL. This avoids the scheduling of independent tasks (i.e.,
tasks with zero priority) to fast processors at the start of the
execution. On the first ready task, if its priority is higher or
equal than 1 (line 5) , it is considered to be the first task of
the longest path. Therefore, it is inserted in the critical queue
and the variables maxPriority and maxPriorityTask
are updated accordingly (lines 9-11) to determine correctly
the criticality of the next submitted task.

If the priority of the submitted task is equal to
maxPriority - 1, we check if it also belongs to the
successors of the task with the maximum priority (lines 6-7)
and therefore to the longest path. If these two conditions are
met, the task is determined to be critical, it is inserted in the
critical queue and, as before, the variables maxPriority
and maxPriorityTask are updated (lines 9-11). In the
rest of the cases the task is not considered critical and it
is inserted in the non-critical queue.

Figure 2 shows an example of a TDG during task
submission. The gray nodes in the graph are tasks that
have finished execution and the pattern-filled nodes are
critical tasks. The numbers inside the nodes indicate their

1 int maxPriority = 1;
2 task *maxPriorityTask = NULL;
3
4 void submit_task(task *t) {
5 if( t->priority >= maxPriority or
6 (t->priority == maxPriority-1 and
7 t ∈ succListOf(maxPriorityTask)) )
8 { //the task is critical
9 critical_queue.push(t);
10 maxPriority = priorityOf(t);
11 maxPriorityTask = t;
12 return;
13 }
14 //the task is non-critical
15 non_critical_queue.push(t);
16}

Listing 2: Pseudo-code for task submission with CATS.

priority and the numbers outside the nodes show the task
id, which is assigned in task creation order. The variable
maxPriority corresponds to the priority of the last critical
task and the maxTaskSucc is the list of the successors of the
last critical task, filled with the task ids of the successors.
Initially, maxPriority is set to 1 and maxTaskSucc is
empty. When task 2 is about to be submitted, it is inserted
in the critical queue because its priority is higher than the
maximum, which at the beginning is 1. Then, the value
of maxPriority is set to 6 (priority of task 2), and the
maxTaskSucc list is updated with the successors of task 2.
At the point where all the gray tasks have finished execu-
tion, the values of maxPriority and maxTaskSucc are
updated as shown in Figure 2. For every newly-ready task,
the conditions listed above are evaluated. When task 7 is
submitted, it is not considered as critical because it does
not belong to the maxTaskSucc list and its priority is not
equal to maxPriority-1. Contrarily, task 8 satisfies both
conditions and so the task is inserted in the critical queue.

3.1.3 Task-to-Core Assignment
Task-to-core assignment takes place dynamically and in par-
allel to the previous steps and its time complexity is O(n),
n being the number of tasks. When a core becomes idle, it
checks the corresponding ready queue (depending on the
core type) to get a task to execute. Fast cores retrieve critical
tasks from the critical queue, while slow cores retrieve non-
critical tasks from the non-critical queue. Each ready queue
is shared among the cores of the same type so there is no
need for work stealing among cores of the same type.

If tasks in an application are imbalanced, i.e., the major-
ity are non-critical and only a few tasks are critical, or vice
versa, one of the types of processors would be overloaded
and the other would starve for work. This can happen in
applications with wide graphs and a large amount of tasks,
where the ratio between critical tasks and the total amount
of tasks may be small. To leverage the resources, the work-
stealing mechanism for CATS lets fast cores steal work from
slow cores whenever the critical queue becomes empty.

3.2 Critical Path Scheduler

The Critical Path scheduler (CPATH) dynamically detects
the critical path of the TDG. Like CATS, CPATH separates
tasks into two groups: critical and non-critical tasks. The
detected critical tasks are executed by the fast cores in the



5

10

7

5

12

4

2

7

9

10

17

3 18 7
1 2 3

4 5
6

7

8

11

9 10

12

13

TaskA TaskB

Input1 1 3

Input2 2 7

Task Cost Task IDs

1 7, 10

2 2, 5, 9, 12, 13

3 1, 8

7 3, 4, 6, 11

Fig. 3: Priority assignment taking into account the task costs.
Task costs are assumed known and are shown in the tables.

system and non-critical tasks are executed by slow cores.
The difference with CATS is the algorithm for critical path
detection. CPATH takes into account the task execution
time, about which CATS is unaware. To do so, CPATH
implements a more complex and accurate critical path detec-
tion algorithm that takes into account task execution time.

CPATH scheduler consists of three steps:
Task prioritization: this step takes place when a task is

finishing its execution. This is different than CATS since at
the end of a task execution the algorithm may record the
task execution time (task cost). According to the discovered
task cost CPATH assigns priorities to tasks by traversing the
TDG from top to bottom, introducing the cost of O(2n2),
where n is the number of tasks.

Task submission: when a task becomes ready, it is
submitted to a ready queue. At this point, CPATH decides
whether or not the task is critical and inserts it in the
corresponding ready queue. This step has only slight imple-
mentation differences with CATS and complexity of O(n).

Task-to-core assignment: this step is identical to CATS.

3.2.1 Task Prioritization
Each task of the TDG keeps a list with its successors (slist).
This list is being built when an edge (dependency between
two tasks) is added in the TDG. So when a task dependency
occurs, the corresponding successor task is added in the
slist of its predecessor. For example, on Figure 3, when the
dependency between tasks 2 and 4 occurs, the slist of task
number 2 becomes {4}. This goes on for all the added edges
of the TDG, therefore when the edge 2→5 is inserted in the
TDG, the task number 5 is inserted in the slist of task number
2; so the slist of task number 2 becomes {4, 5}.

The goal of this step is to assign priorities based on the
bottom cost of the tasks of the TDG. We define the bottom
cost of a node on a directed acyclic graph as the maximum
estimated time in the dependency chains from this node to
a leaf node. So the main difference between the bottom level
and the bottom cost is the consideration of the estimated time.

Figure 3 is used to describe the priority assignment with
CPATH. The specific TDG contains tasks of two different
types and two different input sizes. Node color shows the
different task types and the outline of the circle (dashed or
solid) shows the different input sizes. The upper table in
Figure 3 indicates the execution time of the tasks according

1 void taskExit (task* finished) {
2 if( stateOf(finished) == init ) {
3 finished->state = in_progress;
4 return;
5 }
6 if( stateOf(finished) == in_progress ) {
7 timesSet[finished] = finished->execTime;
8 finished->state = tracked;
9 }
10 task* succ;
11 for( succ in finished->successors )
12 if( numPredecessorsOf(succ) == 1 ) {
13 lock();
14 if( succ /∈ entryNodes )
15 entryNodes->push(succ);
16 unlock();
17 }
18 list<task>* updatedList = new list<task>();
19 for( node in entryNodes)
20 updatePriorities(node, updatedList);
21 for( node in updatedList )
22 node->unsetUpdated();
23}

Listing 3: Pseudo-code for taskExit, the function called by
the cores used as reference for tracking the task costs

to their type and input size. The algorithm assumes that
task instances of the same type with the same input size
have the same (or very similar) execution time. To track this
information, CPATH discovers the cost of every possible
task type-input size duple (tt-is duple) that appears on
the TDG. The numbers inside the nodes show the bottom
cost-based priorities that CPATH assigns and the numbers
outside the nodes show their task ID.

The task prioritization step takes place every time a task
finishes execution. CPATH uses a vector to store task costs
and keeps one entry per tt-is. Because CPATH needs to
discover the unbiased critical path of the TDG, it uses one
of the core types as reference to track the task costs. In our
experiments we chose to use as reference the fast cores since
this way the learning phase (that is, the phase where CPATH
discovers the task costs) becomes shorter. To avoid wrong
task cost prediction of future tasks, CPATH ignores the first
execution of each tt-is because usually it takes more time.

Listings 3 and 4 show how the critical path scheduler
performs task prioritization. Whenever a task finishes ex-
ecution on one of the cores used as reference (here: fast
cores) the runtime makes a call to the taskExit routine
shown in Listing 3. At this point, the runtime is aware of
the execution time of the finished task. This function has
the responsibility to update the known task costs and also
perform the prioritization of the tasks on the TDG. The
prioritization is done by the updatePriorities function
of Listing 4. This function is responsible for TDG traversal.

The taskExit function in Listing 3 takes as an argu-
ment the task that has just finished. In order to keep track of
whether the execution time of the tt-is has been discovered
we implement a small finite state machine within this stage.
Every tt-is has three possible states. The initial state is the
init state; this means that the specific tt-is has not yet been
executed so its execution time is totally unknown. When a tt-
is is executed for the first time its state changes from init to
in_progress. This means that a task of this tt-is has been
executed once, but CPATH ignores this cost because the first
instance may not be representative due to cold start effects



6
1 int updatePriorities (task* currT, list* updated) {
2 if( currT == NULL ) return 0;
3 if( isVisited(currT) )
4 return priorityOf(currT);
5 successors = currT->successors;
6 int maxSucc = -1;
7 bool succVisited = true;
8
9 for(succ in successors) {
10 int succPriority;
11 //Avoid double update
12 if( !isUpdated(succ) || !isVisited(succ) ) {
13 succPriority = updatePriorities(succ, updated);
14 succ->setUpdated();
15 updated->push(succ);
16 }
17 else
18 succPriority = priorityOf(succ);
19 if(succPriority > maxSucc)
20 maxSucc = succPriority;
21 succVisited = succVisited && isVisited(succ);
22 }
23 if( timeIsTracked(currT) ) {
24 currT->priority = (maxSucc + timesSet[currT]);
25 if(succVisited && groupOf(currT) < twDetected)
26 currT->setVisited();
27 }
28 else
29 currT->priority = maxSucc + 1;
30
31 return priorityOf(currT);
32}

Listing 4: Pseudo-code for task prioritization with CPATH

and one sample may not be enough history for prediction.
While the tt-is of a node is in init or in_progress state
its execution time is considered to be 1. After the second
execution of a tt-is the state of it becomes tracked meaning
that the execution time has been tracked and can be used for
the computation of the priorities.

After the first checks of the tt-is state (lines 2-9 of List-
ing 3) the algorithm traverses the slist of the finished task
and searches for the successors that become ready by the
end of the execution of this task. This is identified by the fact
that the ready-to-be successors have one unique (remaining)
predecessor (e.g. the just finished task). These successors are
inserted in the entryNodes list (lines 11-16 of Listing 3).
For each one of the entry nodes the updatePriorities
function is called (line 19 of Listing 3); this performs a top
to bottom traversal of the TDG and updates the priorities.

Due to the properties of the top-to-bottom TDG traver-
sal, the algorithm has to make sure that every node is
prioritized only once per updatePriorities call. This
is controlled by checking the updated flag of each node
of the TDG. To visualize this situation let us assume that
task number 2 of the TDG on Figure 3 finishes. Then the
entryNodes list contains three tasks that will start the
update: {4, 5, 6}. The update that starts from task number 4
marks tasks 4, 7, 11 and 13 as updated. Then, during the
update of task number 5, the algorithm knows that task
13 has already been prioritized during the same update so
there is no need to apply the algorithm at this node again.
This example does not show too much optimization because
in this case the update of only one node is saved, but in real
applications this node could have numerous successors for
whom the priority update would be a large overhead.

The raising of the updated flag is something temporal
and is only used for helping the prioritization of a single

update. There are cases when CPATH needs to raise a
permanent flag in order to mark that the priority of the task
will not change again in the future, e.g. it is the final priority.
This happens when the execution times of all the tt-is that
appear on the TDG have been discovered, for the tasks that
their priorities are up to date. To mark these tasks CPATH
uses the visited flag. If a task is visited, there is no need
to get prioritized again. To clarify this, let us assume that in
Figure 3 the task costs of the tt-is TaskA-Input2 and TaskB-
Input2 are known. During the next prioritization, tasks 11
(TaskB-Input2), 12 (TaskA-Input2) and 13 (TaskA-Input2) in
the TDG will be set as visited, because their priorities consist
of the sum of known task execution times and they do not
have any successors (with unknown execution times). So, an
additional priority update in cases like this is redundant.

Listing 4 shows what happens during the the update
of one entry node. The arguments of this function are
currT, that is the entry node being updated, and updated,
that is the list with the updated nodes. This list is being
filled throughout the priority update in order to unset the
updated flag later. The lines 2-4 of Listing 4 perform the
checks that would cause the traversal to finish. If the node is
not visited, then the algorithm traverses its successors. Note
that, at this point, there is no check for updated flag, since
tasks in the entryNodes are unlikely to be updated. Up-
dated nodes can only be discovered through recursive calls
and this check is performed later. If a successor is updated
or visited, the priority update is skipped for the reasons
explained above. Otherwise, the updatePriorities is
called recursively for the current successor. This happens
until we detect a node that is updated, visited or is a leaf
node (node with no successors) of the TDG. When the
algorithm reaches a node ready for update it calculates its
priority by summing the highest priority of its successors to
the execution time, if known, of the current node (lines 24,
29). Finally, the visited flag of the task is being updated.

There are three conditions that mark a task as visited:
(a) if its execution time is known (line 23), (b) if all of its
successors are visited (line 25) or (c) if we have encountered
a taskwait (barrier) after the creation of this task (line 25).
The last condition confirms that it is safe to mark this
task as visited as there will be no future successors of this
task on the current TDG. To track this information we use
an atomic variable, twDetected, which is increased every
time a taskwait is encountered. At creation time, each task is
assigned a group ID which is the value of the twDetected
at that moment. If the group ID of a task is less than the
current twDetected value then this means that a taskwait
has occurred after the creation of this task.

3.2.2 Task Submission and Task-to-Core Assignment
The task submission is implemented using the same
critical and non-critical ready queues as in CATS.
Listing 2 can be used to describe the task submission of
CPATH. The only modification needed is in the condi-
tion of the lines 6 and 7 of Listing 2. In addition to the
maxPriority, CPATH keeps track of the maxExecTime
which is the cost of the last discovered critical task. CPATH
extends the condition of the critical task consideration by
checking whether the priority of the current task is equal
to maxPriority - 1 or if it is equal to maxPriority



7

- maxExecTime. Moreover, the value of maxExecTime is
updated accordingly to the maxPriority.

Finally, task-to-core assignment is identical to CATS as
described in Section 3.1.3. According to this, fast cores are
responsible for the execution of the tasks in the critical
queue and slow cores for the tasks in the non-critical queue.

3.3 Hybrid Criticality Scheduler
The Hybrid Criticality Scheduler (HYBRID) is a combina-
tion of the CATS and CPATH scheduling policies. HYBRID
keeps the simplicity of the implementation of CATS and
introduces the task execution time only if available. This
results in an efficient low-overhead scheduler that computes
the critical path of a TDG more faithfully than CATS and
with lower overheads than CPATH. This section describes
HYBRID through its relation to CATS and CPATH described
in Sections 3.1 and 3.2. We focus our description on the
task prioritization, since task submission and task-to-core
assignment for HYBRID are identical to CPATH.

As shown, CPATH computes priorities on task comple-
tion. The algorithm for priority computation is an expensive
operation and is in the critical path of the execution: on
task completion the core becomes available but the start
of the next task is delayed by priority computation. Also,
when multiple cores are completing tasks, there will be
contention on accessing the TDG for priority computation.
On the other hand, CATS computes priorities during task
creation. The computation of priorities during task creation
is more efficient because, unless there is nested parallelism,
one core creates all tasks and therefore there is no contention
on priority computation. The downside is that there is
potentially less information available on tt-is pair execution
time on task creation, as some task type may have not been
executed yet at the time all tasks are created.

HYBRID tracks task execution time on task completion
and stores this information in a vector. This means that
it also implements the taskExit function of CPATH that
is called on task completion but, in the case of HYBRID,
taskExit is only responsible of recording the execution
time of the exiting task. This functionality is represented
in lines 2-9 of Listing 3 and, after this code, the function re-
turns. The priority assignment, taking place on task creation,
remains similar to CATS 1 with the only difference that task
cost is used for priority computation only if known and,
otherwise, the cost is assigned to 1 and priority is increased
according to CATS (lines 7 and 8 of Listing 1).

When comparing CPATH and HYBRID schedulers their
logical operation is similar. However the difference in their
implementation may result in different task priorities po-
tentially leading to different schedules. For applications
with small TDGs, HYBRID may not be able to compute an
accurate critical path because task creation does not over-
lap with a sufficient amount of task exits. Therefore, task
execution information will not be available during priority
computation and HYBRID will prioritize based on bottom-
level priorities (like CATS). If the application has a large
TDG and task creation overlaps with a sufficient amount of
task exits, HYBRID will use bottom-cost priorities.

1. All of the HYBRID scheduling steps have the same time complexity
as CATS

3

2
1

4

0

0

0

1

2

0 5 0
1 2 3

4 5 6

7

8

11

9 10

12

7

4

2

0

1
7

11

9

10

12

13

A B

1 init init

2 init init

Tasks
Inputs A B

1 init in_prg

2 2 7

Tasks
Inputs

· stateOf(A1) = init
· priorityOf(12) + 1

priorityOf(13) + 
costOf(A2)

priorityOf(10) + costOf(A2)

5

costOf(A2)

Fig. 4: Priority assignment with HYBRID scheduler. Priority
update when the edge between tasks 12 and 13 is created

Figure 4 shows an example of task prioritization with
HYBRID. The tables show the state (or exec. time) of the tt-is
pairs that appear on the TDG. Gray or white nodes indicate
different task types (A or B respectively) and solid or dashed
node outlines indicate task input size (1 or 2 respectively).
The numbers inside the nodes show task priorities and the
numbers outside the nodes show the task id.

On the leftmost TDG, the algorithm has no information
about any of the tt-is costs. As the leftmost table shows,
for all the possible tt-is the state is init meaning no task
has been executed yet. Since the tasks of the TDG have
been created, they have been prioritized using the CATS
priority assignment method and the bottom level based
priorities. On the rightmost TDG, tasks 1, 2, 3, 4, 5, 6 and
8 have been executed and a new task has appeared on the
TDG: task number 13. When the edge 12→13 is created,
tasks begin to be prioritized. Initially, the priority of the
new task 13 is the cost of this task’s tt-is, i.e., type A and
input 2 (TaskA-Input2). Since there are no successors of
this task, this becomes its initial priority. Then, the plist of
task 13 is traversed and the priority of task 12 changes to
priorityOf(13)+costOf(TaskA-Input2) since task 12 is corre-
sponding to the TaskA-Input2 tt-is. Moving to the upper
levels, task 10 is of tt-is TaskA-Input1 that is on the init
state, thus unknown cost. This translates to the use of
bottom level based prioritization so the priority of task 10
becomes priorityOf(12)+1. Finally, task 9 is prioritized using
the cost of the TaskA-Input2 tt-is and the TDG navigation
stops since there are no other predecessors.

3.4 Dynamic Heterogeneous Earliest Finish Time
Scheduler

The Heterogeneous Earliest Finish Time (HEFT) algo-
rithm [11] is a static scheduling approach for asymmetric
systems. HEFT consists of two compile-time phases that
use profiling information: the task prioritizing phase and the
processor selection phase. In the first phase, the algorithm
assigns priorities to the tasks based on their upward rank,
that is, the length of the critical path from a given task to the
exit task including task computation and communication
costs [11]. When task prioritizing is done, the tasks are
sorted according to their priorities. In the processor selection
phase the algorithm searches for each task the appropriate
processor to execute it. By keeping communication and



8

computation costs, HEFT assigns each task to the processor
that will finish its execution at the earliest possible time.
Topcuoglu et al. [11] present their results based on evalua-
tion on synthetic TDGs and assume known task execution
and communication times at compile time. The scheduling
is static, so all the decisions are taken before execution.

In this paper, since the evaluation consists of running
real applications with unknown task costs, the best way
to compare HEFT to our proposal is by using a dynamic
version of HEFT algorithm (dHEFT). The dHEFT is imple-
mented in the OmpSs programming model and is based on
the implementation used in the evaluation of CATS [13].
This version assumes two different types of cores (fast and
slow) and keeps records of the task costs in each core.
DHEFT discovers the task costs at runtime, computes the
mean cost of each tt-is for each core type and then finds the
core that will finish the task at the earliest possible time.

To find the earliest possible executor, dHEFT maintains
one list per core (wlist) including the ready tasks waiting
to be executed by that core. When a task becomes ready,
dHEFT first inserts it in the ordered ready queue; then the
task with the highest upward rank is selected and dHEFT
checks if there are execution time records for this task. If the
number of records is sufficient (we require a minimum of
three records) then the estimated cost of the task is consid-
ered stable. Using that estimated execution time, the task is
scheduled to the earliest executor by consulting the wlist of
all cores. If the number of records is not sufficient for one
of the core types, then the task is scheduled to the earliest
executor of this core type to get another record of that
task-type and core-type execution time. In all cases, dHEFT
updates the history of records on every task execution to
adapt for phase changes in the application. 2

The initial dHEFT version presented in previous
work [13] lacks the task prioritizing phase of the original
HEFT algorithm. This paper, uses an improved version of
dHEFT that adds this functionality by prioritizing tasks
according to their upward rank. The implementation of this
is similar to the CPATH prioritization step. When the priori-
tized tasks become ready, they are inserted in a sorted ready
queue in decreasing order of their priorities. The algorithm
then accesses the tasks in the order of their priorities to find
the earliest executor for each of them.

4 EVALUATION

4.1 Methodology

We measure the execution time of five applications us-
ing CATS, CPATH, HYBRID, dHEFT and the default BF
scheduler. The execution time corresponds to the average
of 10 executions of the application on each machine set-up.
Our test bed comprises a real big.LITTLE processor and a
simulated heterogeneous system.

The Hardkernel Odroid-XU3 development board has an
8-core Samsung Exynos 5422 chip with an ARM big.LITTLE
architecture and 2GB of LPDDR3 RAM at 933MHz. The
chip has four Cortex-A15 cores clocked at 1.6GHz and four

2. The time complexity of the task submission step is O(nN ) and the
task-to-core assignment is O(n), where n is the number of tasks and N
is the number of cores.

Cortex-A7 cores at 800MHz. The four Cortex-A15 cores form
a cluster with a shared 2MB L2 cache, and the Cortex-A7
share a 512KB L2 cache. The two clusters are coherent, so a
single shared memory application can run on both clusters,
using up to eight cores simultaneously. In our experiments,
we evaluate a set of possible combinations of fast and slow
cores varying the total number of cores from two to eight.
For the remainder of the paper, we refer to Cortex-A15 cores
as big and to Cortex-A7 cores as little.

To evaluate heterogeneous scheduling on larger multi-
core systems we use the heterogeneous multi-core TaskSim
simulator [16]. TaskSim allows the specification of a hetero-
geneous system with two different types of cores: fast and
slow. We can configure the amount of cores of each type and
the difference in performance between the different types
(performance ratio) in the TaskSim configuration file. In our
experiments, we evaluate the effectiveness of the schedulers
on 8 distinct heterogeneous machine configurations. These
comprise systems with 16 or 32 total number of cores, and
the number of fast cores ranging from 1 to 16. We set
the performance ratio between fast and slow cores to 4.5×
because this is the average performance ratio observed on
the real machine for the benchmarks of this evaluation.

For both real and simulated platforms, each set-up has a
given number of total and big cores. For all the scheduling
approaches we present their speedup over the execution on
one little core, shown in Equation 1.

Speedup(total, big) =
Exec. time(1, 0)

Exec. time(total, big)
(1)

4.2 Applications

We use five scientific applications implemented in the
OmpSs programming model: Cholesky factorization, QR
factorization, Heat diffusion, Integral Histogram and Body-
track. These benchmarks are accessible in the BSC Applica-
tion Repository [17] and in the PARSECSs library [18].

Cholesky factorization is a dense matrix operation that
is used for solving linear equations in linear least square
systems. The OmpSs implementation of Cholesky blocks the
input matrix into square blocks of floats and each task is
responsible for performing the factorization on one block.

QR Factorization is a linear algebra algorithm that is
used to solve the linear least squares problem [19]. We eval-
uate the performance of a blocked, communication avoiding
QR implementation in OmpSs. We use an input blocked
matrix of 8192×8192 doubles forming 16×16 blocks.

Heat diffusion uses the Gauss-Seidel method to com-
pute the heat distribution on a matrix from x heat sources.
Heat diffusion implements an iterative solver of the equa-
tion that invokes the Gauss-Seidel method until the desired
convergence is reached. We use a matrix of 8192×8192
doubles and block size of 512×512.

Integral histogram is a method to compute a cumulative
histogram for each pixel of an image. The OmpSs implemen-
tation performs a horizontal and a vertical scan that transmit
histograms to the blocks that reside on the right or below the
current block. Due to these transmissions, the application
introduces many task dependencies. We use as input an
image of 4096×4096 pixels and block size of 512×512.



9

TABLE 2: Evaluated benchmarks and relevant characteristics

Application Problem size #Tasks
#Task
types

Avg task exec.
time (µs)

Per task overheads (µs)
CATS CPATH HYBRID Measured

perf. ratio

Cholesky
factorization

8×8 blocks of 1024×1024 floats 120 10 314 660 81.19 115.29 112.41
16×16 blocks of 512×512 floats 816 4 1 551 322 104.76 238.02 194.28 3.48
32×32 blocks of 512×512 floats 5984 1 551 322 104.76 238.02 194.28

QR factorization 16×16 blocks of 512×512 doubles 1 496 4 11 651 079 1 419.33 2 580.41 1 451.74 6.86
Heat diffusion 16×16 blocks of 512×512 doubles 5 124 3 93 198 145.17 748.84 170.00 3.68
Int. Histogram 8×8 blocks of 512×512 floats 2 048 2 514 096 217.45 62.07 263.62 2.23

Bodytrack native input (851MB) 408 525 6 41 869 93.90 120.93 120.93 4.14

0

5

10

15

20

25

30

35

0 50 100 150 200

N
u

m
b

er
 o

f 
ta

sk
s

Normalized task cost

(a) Cholesky 8×8

0

50

100

150

200

250

300

0 50 100 150 200

N
u

m
b

er
 o

f 
ta

sk
s

Normalized task cost

(b) Cholesky 16×16

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

N
u

m
b

er
 o

f 
ta

sk
s

Normalized task cost

(c) QR factorization

0

200

400

600

800

1000

1200

0 50 100 150 200

N
u

m
b

er
 o

f 
ta

sk
s

Normalized task cost

(d) Heat diffusion

0

10

20

30

40

50

60

70

80

0 50 100 150 200

N
u

m
b

er
 o

f 
ta

sk
s

Normalized task cost

(e) Integral Histogram

0

50000

100000

150000

200000

250000

300000

350000

400000

0 50 100 150 200
N

u
m

b
er

 o
f 

ta
sk

s

Normalized task cost

(f) Bodytrack

Fig. 5: Task cost distribution for each application. Results are based on 4BIG-core executions. x axis shows the cost of the
tasks and y axis shows the number of tasks with the corresponding task cost.

Bodytrack is an application that tracks a marker-less
human body using multiple cameras through an image
sequence. The OmpSs version implements a two-stage par-
allel pipeline for the image processing. The two stages are
synchronized through the OmpSs dataflow annotations. We
use the native input of the benchmark suite [18].

Table 2 shows the different configurations and charac-
teristics of the applications. The performance ratio between
big and little cores depends on the application. For example,
the difference between the issue rate and throughput of
double-precision floating point units of both types of cores is
larger than the difference for single-precision floating point
instructions. Therefore, applications with heavy double-
precision operation (e.g. QR) get a larger benefit from
running on the big cores, than single-precision dominated
applications (e.g integral histogram), as shown in Table 2.

The average per task overhead for each scheduler is
negligible compared to the average task execution time
shown in Table 2. Specifically, CATS has the lowest per task
overheads. Next is HYBRID and the least efficient is CPATH.
This is because of the complexity of the CPATH algorithm
that takes place whenever the TDG needs to be updated.
On the other hand, CATS and HYBRID have negligible
overheads caused by the task prioritization. For dHEFT,

the search of the appropriate worker for a task becomes an
obstacle in performance. Table 2 lacks the per task overheads
of dHEFT because they appear to be too high due to the
fact that the most intensive computations of dHEFT take
place during the cores’ idle time. Thus, the natural idle time
of cores is also encountered as scheduling overhead and
could not be separated, so it is unfair to present such results
for comparison. Normally these obstacles in heterogeneous
schedulers are paid off by the more effective task execution.

To more precisely characterise the benchmarks, we plot
the task cost variability for each benchmark on Figure 5. For
each of these plots, the x axis shows the normalized task cost
and the y axis the number of tasks that correspond to this
task cost (e.g. how many tasks have this cost). This is used
in the next section to classify how heterogeneous each ap-
plication is and explain the behaviour of the heterogeneous
schedulers that take into account the execution time.

4.3 Real Environment Evaluation
Figure 6 shows the speedup of CATS, CPATH, HYBRID,
dHEFT and BF when running the applications on all eight
cores of the Odroid-XU3. Cholesky and Integral Histogram
operate on single-precision data, while QR and Heat Dif-
fusion operate on double-precision. Double-precision ap-



10

0

5

10

15

20

Cholesky
8x8

Cholesky
16x16

QR Heat Histogram Bodytrack

Sp
ee

d
u

p
 o

ve
r 

lit
tl

e
BF dHEFT CATS CPATH HYBRID

Fig. 6: Speedup of CATS, CPATH, HYBRID, dHEFT and BF
on 8 cores compared to the ideal

plications get larger speedups over one little core because
they benefit from a larger performance ratio when running
on a big core. In the case of Bodytrack, the out-of-order
processing power of the big cores helps on the efficient
execution and creates a high performance ratio between
big and little cores. For most of the cases, CATS scales
better than the rest of the schedulers. The shortening of
the critical path by running all critical tasks on big cores
effectively reduces total execution time when running on all
cores. CPATH scheduler does not achieve as high speedup
as the other heterogeneous scheduling approaches but it still
outperforms the baseline (BF) approach.

Figure 7 shows the average speedup obtained for each
scheduler and machine set-up. Overall, the heterogeneous
schedulers outperform the platform-unaware BF scheduler.
Specifically, CATS and HYBRID achieve a higher speedup
by detecting critical tasks. We observe that their perfor-
mance is approximately the same and this is due to the fact
that HYBRID exploits the same CATS criticality in case the
execution time of the task is not yet resolved. CPATH is
less effective due to the additional overheads of the top-to-
bottom TDG traversal. Since the evaluated dHEFT version is
improved from previous studies [13], it shows better perfor-
mance, although it still does not reach the efficiency of CATS
and HYBRID because of its task criticality agnosticism.

Moving in more detail, Figure 8 shows the speedup
obtained for each application, scheduler and machine set-
up. We classify the benchmarks according to their task cost
variability to easier explain the results.

Heat diffusion is the kernel with the lowest task vari-
ability (e.g. the most homogeneous benchmark) as shown
in Figure 5d. CATS, HYBRID and dHEFT increase the
performance of heat by 10% on 8 cores and obtain similar
results for the other numbers of cores by rearranging the
tasks according to the type of the resources. Due to its high
per-task overheads shown on Table 2 and the homogeneity
of the benchmark, CPATH scheduler cannot outperform BF
scheduler. Moreover, for this benchmark, CPATH detects
only 23% of the tasks to be critical while CATS and HYBRID
detect approximately 54%, when running on 8 cores. This
happens because with CPATH, it is more likely to have
zero-priority tasks during the task submission step, due to
the post-exit task priority assignment that the algorithm
introduces. These tasks are considered non-critical, which
limits the utilization of the big cores with CPATH.

Cholesky 16×16 has also low task cost variability. The

0

2

4

6

8

10

12

14

1 1 1 2 1 2 3 3 4

2 3 4 5 6 7 8

Sp
ee

d
u

p
 o

ve
r 

lit
tl

e

Number of big cores
Total number of cores

BF dHEFT CATS CPATH HYBRID

Fig. 7: Average speedups obtained for each scheduler

improvements of CATS, dHEFT and HYBRID over BF are
limited to around 7% when running on 8 cores. These
schedulers perform almost the same for the rest numbers
of cores and CPATH performs almost the same as BF. The
increased overheads of CPATH do not pay off with better
schedules since, for the same reason as in the case of Heat
diffusion, only 10% of the tasks are marked as critical on 8
cores (while 21% CATS and 16% HYBRID).

Bodytrack shows low task cost variability, since 99% of
its tasks have similar execution times. In this case, contrarily
to the previous benchmarks CPATH manages to achieve
similar speedups to CATS and HYBRID and outperform BF
by up to 15%. This is due to the very high number of tasks
of bodytrack; CPATH overcomes its overheads by using the
detected task execution times for a higher number of tasks.
In other words, the learning phase of CPATH becomes a
smaller proportion of the total execution of the benchmark.
Since bodytrack has so many tasks, the per-task overhead of
CPATH is around 120us while for CATS it is 93us. On the
other hand, dHEFT shows poor performance because of the
overheads of analyzing a TDG with a high number of tasks
to compute the earliest finish time schedule.

Integral histogram is characterized by medium task cost
variability and high amount of tasks. This benchmark is de-
pendency intensive with limited parallelism, which makes
scheduling decisions very important. CATS and HYBRID
schedulers achieve the best results since they focus more on
the TDG structure and dependencies, improving BF by 30%
and 27% respectively. CPATH and dHEFT are slightly less
efficient and improve BF by 19 and 21% respectively.

For Cholesky 8×8, the heterogeneous schedulers CATS,
HYBRID and dHEFT constantly improve the performance
of BF and reach up to 45% improvement on 8 cores. It is
observed here that dHEFT indeed performs better when
the number of tasks is limited as this workload has 120
tasks in total. The additional overheads of CPATH do not
compensate with increased performance in this case because
there are not enough tasks to apply the better scheduling.

QR factorization is the highest task cost variability
benchmark as shown in Figure 5c. This is the reason why
HYBRID gradually outperforms CATS as we increase the
number of cores. With a small additional overhead, as
Table 2 shows, HYBRID manages to detect critical tasks that
reside on the critical path and boost their execution reaching
17% improvement over the baseline. For this benchmark,



11

0

5

10

15

20

1 1 1 2 1 2 3 3 4 1 1 1 2 1 2 3 3 4 1 1 1 2 1 2 3 3 4

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Cholesky 8x8 Cholesky 16x16 QR

Sp
e

e
d

u
p

 o
ve

r 
lit

tl
e

BF dHEFT CATS CPATH HYBRID

0

5

10

15

20

1 1 1 2 1 2 3 3 4 1 1 1 2 1 2 3 3 4 1 1 1 2 1 2 3 3 4

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Heat Histogram Bodytrack

Sp
e

e
d

u
p

 o
ve

r 
lit

tl
e

BF dHEFT CATS CPATH HYBRID

Fig. 8: Speedups obtained for each scheduler and each application

CPATH also reaches a 13% improvement over BF since
task cost matters in this case. However, CPATH speedup
is still limited compared to HYBRID because of the higher
scheduling overheads which in this case is 1.8× higher
than CATS overheads. dHEFT also improves BF by finding
the earliest executor of each task, but the improvement is
limited to 11% which is lower than the other approaches.

This section showed a straight comparison between dif-
ferent heterogeneous schedulers. It is important to note that
schedulers like CPATH and HYBRID, that detect the time-
based critical path, are the best choices when the application
has a large amount of tasks. This is because the additional
overheads of these schedulers for critical path computation
take place only when there are new tasks on the TDG
or when there is a task exit of an untracked tt-is. When
the TDG has been completely created, and as soon as the
cost of every tt-is of the application has been tracked, the
schedules of these approaches are purely beneficial. On the
other hand, schedulers like dHEFT perform the same steps
for every single task that becomes ready, affecting the entire
execution since the exit of a task triggers the execution
of its successors that become ready. Thus, as the number
of tasks is increased, the additional scheduling overheads
are increased when using dHEFT-like approaches. CATS
scheduler is an efficient scheduling solution for any number
of tasks and task cost distributions. The additional CATS
overheads take place only during task creation and are
smaller than CPATH overheads with the drawback of not
considering the task execution time. If we have to choose the
best and most generic heterogeneous scheduling approach
among the presented schedulers the HYBRID scheduler is
the best choice, since it computes an accurate critical path
only when it comes at a low cost.

4.4 Simulations
To estimate the impact of the heterogeneity-aware sched-
ulers on larger systems, we run three benchmarks using
the TaskSim simulator [16]. The results contain a fixed
scheduling overhead for all configurations, regardless of the
dynamic overheads during execution (e.g., work stealing).
We simulate Cholesky, QR and Heat diffusion. These appli-
cations feature different levels of task cost variability and
have a proper amount of tasks so that the error introduced
by the static overhead assumption remains negligible (e.g.,
bodytrack that creates 408 525 tasks should not be com-
pared to a 5 000 task benchmark and static overhead). For
Cholesky, we use an input matrix of 16384×16384 floats
creating 512×512 blocks, which results in a 32×32 blocked
matrix. This is because the other Cholesky configurations
do not scale to 32 cores due to the limited task number.
However, the task cost variability is similar to the 16× 16
input since the task size is not modified. Integral Histogram
is excluded from the simulated evaluation because it does
not scale beyond 16 cores.

Figures 9a, 9b and 9c show the improvement of dHEFT,
CATS, HYBRID and CPATH over BF in systems with 16
and 32 cores for Cholesky, QR and heat respectively. In
these experiments, the performance ratio between fast and
slow cores is set to 4.5, which is the average performance
ratio among the benchmarks. The heterogeneous schedulers
utilize fast cores more effectively than BF, which results in
larger improvements with higher number of fast cores.

Figure 9a shows the improvement of the schedulers over
the baseline for Cholesky. The improvement for 16 cores is
comparatively small. This is due to the increased problem
size used in this experiment. This benchmark creates a small
amount of critical tasks in the 32×32 input, which makes



12

the workload less sensitive to critical tasks and limits the
improvement of CATS and HYBRID to a maximum of 17%,
while CPATH and dHEFT outperform BF by up to 10%.

Figure 9b shows that the best option for QR, the applica-
tion with the highest task cost variability, on systems with
16 or 32 cores is the HYBRID scheduler, as was also shown
in the real platform evaluation, bringing improvements of
30 and 56%. CATS also performs well but CPATH falls short
in detecting an appropriate amount of critical tasks which
makes the little cores overloaded and the big cores waste
their resources in work stealing.

For heat diffusion, Figure 9c shows that CATS achieves
the best results outperforming BF by a factor of 2×. More-
over, HYBRID achieves similar results as it performs similar
schedules as CATS. However, CPATH fails to achieve op-
timal results because it overloads the big cores during the
learning phase while the little cores remain under-utilized.

5 RELATED WORK

The search for efficient task scheduling on multi-core sys-
tems has been intensively studied. Most scheduling heuris-
tics target homogeneous multiprocessors, nevertheless there
is an important number of studies in heterogeneous multi-
processors. In this section we give an overview of different
categories of heterogeneous schedulers and explain details
of previous works on criticality-aware schedulers.

Schedulers for Heterogeneous Systems: There are pre-
vious works on schedulers for heterogeneous systems that
form four different types of schedulers: listing, clustering,
guided-random, and duplication-based schedulers.

Listing schedulers [9], [10], [11], [12], [20], [21], [22] have
two scheduling stages. In the first stage, each task is given a
priority based on the policy defined in each algorithm. In the
second stage, tasks are assigned to processors depending on
their priorities. Most criticality-aware schedulers fall in this
category, and we discuss them in Section 5. The scheduler
proposed in this paper is also a list scheduler.

Clustering schedulers [9], [23], [24], [25] first separate
tasks into clusters, where each cluster is to be executed on
the same processor. During the clustering stage, the algo-
rithm assumes an unlimited number of available processors
in the system. If the number of clusters exceeds the number
of available cores, the merging stage joins multiple clusters
so that they match the number of available processors. An
example is the Levelized Min Time [25] clustering scheduler.
This heuristic clusters tasks that can execute in parallel
according to their level (i.e. sibling nodes in a graph have
the same level), and assigns priorities to the tasks in a cluster
according to their cost, (i.e. tasks with the highest cost have
the highest priority). The task-to processor assignment is
done in decreasing order of priority.

Guided-random schedulers randomize their schedules
by applying policies influenced by other sciences. Genetic
algorithms [26] group tasks into generations and schedule
them according to a randomized genetic technique. Chemi-
cal reaction algorithms [27], [28] mimic molecular interac-
tions to map tasks to processors. Some of these guided-
random approaches are designed for heterogeneous sys-
tems [26], [27]. The scheduler by Page et al. [29] enables dy-
namic scheduling of multiple-sized tasks for heterogeneous
systems, but it lacks support of inter-task dependencies.

Duplication-based schedulers [30], [31], [32] aim to elim-
inate communication costs between processors by schedul-
ing tasks and their successors on the same processor. If
a task has many successors, it is duplicated and executed
in multiple cores prior to its successors to reduce commu-
nication costs. This scheduling may introduce redundant
task duplications tasks which may lead to bad schedules.
The Heterogeneous Economical Duplication scheduler [32]
performs task duplication cautiously as it removes the re-
dundant duplicates if they do not affect performance.

These previous works schedule tasks statically and as-
sume the prior knowledge of the task execution times on
the different processor types in the heterogeneous system.

Criticality-Aware Schedulers: Several previous works
propose scheduling heuristics that focus on the critical path
of a TDG to reduce total execution time [9], [10], [11], [12],
[33]. To identify the tasks on the critical path, most of
these works use the concept of upward rank and downward
rank. The upward rank of a task is the maximum sum of
computation and communication cost of the tasks in the
dependency chains from that task to an exit node in the
graph. The downward rank of a task is the maximum sum
of computation and communication cost of the tasks in the
dependency chain from an entry node to that task. Each task
has an upward rank and downward rank for each processor
type in the heterogeneous system, as the computation and
communication costs differ across core types.

The Heterogeneous Earliest Finish Time (HEFT) algo-
rithm [11] maintains a list of tasks sorted in decreasing order
of their upward rank. At each schedule step, HEFT assigns
the task with the highest upward rank to the processor that
finishes the execution of the task at the earliest possible time.
Another work is the Longest Dynamic Critical Path (LDCP)
algorithm [10]. LDCP also statically schedules first the task
with the highest upward rank on every schedule step. The
difference between LDCP and HEFT is that LDCP updates
the computation and communication costs on multiple pro-
cessors of the scheduled task by the costs discovered in the
processor to which it was assigned.

The Critical-Path-on-a-Processor (CPOP) algorithm [11]
also maintains a list of tasks sorted in decreasing order as in
HEFT, but in this case it is ordered according to the addition
of their upward rank and downward rank. The tasks with the
highest upward rank + downward rank belong to the critical
path. On each step, these tasks are statically assigned to the
processor that minimizes the critical-path execution time.

The main weaknesses of these works are that (a) they
assume prior knowledge of the computation and communi-
cation costs of each individual task on each processor type,
(b) they operate statically on the whole TDG, so they do not
apply to dynamically scheduled applications where only
a part of the TDG is available at any given time, and (c)
most of them use synthetic TDGs that are not necessarily
representative of the dependencies in real workloads.

6 CONCLUSIONS

We introduced the first critical-path-aware dynamic sched-
uler for heterogeneous systems as well as the first hy-
brid criticality-aware scheduler. Like CATS and contrary
to previous works on criticality-aware scheduling that use



13

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 4 8 2 4 8 16

16 32

Im
p

ro
ve

m
e

n
t 

o
ve

r 
B

F

Number of big cores
Total number of cores

dHEFT CATS CPATH HYBRID

(a) Cholesky 32×32

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 4 8 2 4 8 16

16 32

Im
p

ro
ve

m
e

n
t 

o
ve

r 
B

F

Number of big cores
Total number of cores

dHEFT CATS CPATH HYBRID

(b) QR

0.9

1.1

1.3

1.5

1.7

1.9

2.1

1 2 4 8 2 4 8 16

16 32

Im
p

ro
ve

m
e

n
t 

o
ve

r 
B

F

Number of big cores
Total number of cores

dHEFT CATS CPATH HYBRID

(c) Heat diffusion

Fig. 9: Improvement of heterogeneous schedulers over BF for simulated 16 and 32 core heterogeneous systems

synthetic TDGs and require prior knowledge of profiling
information, our proposals work on real platforms with real
applications and do not require off-line profiling.

We implemented and evaluated our scheduling pro-
posals in the runtime system of the OmpSs programming
model. We showed that even if the accuracy of CPATH
is higher in terms of task criticality identification, it does
not always increase performance. Factors like the number
of tasks and task cost variability play an important role
on choosing the most appropriate scheduling policy and
improve the performance of task-based applications. The
implementations shown in this paper will be included in
the next stable release of the OmpSs programming model.
Furthermore, the described policies are expected to be
applicable to other task-based programming models with
support for task dependencies.

In conclusion, this paper shows the potential of dif-
ferent heterogeneous schedulers to speed up dependency-
intensive applications and take advantage of the asymmetric
compute resources. As future work, we aim to provide a
single smart scheduler that dynamically adapts the most
appropriate scheduling policy depending to the applica-
tion’s characteristics and availability of resources, with the
possibility of tracking the task costs on all the core types to
cover the case when a core type is not always faster, and po-
tentially using off-line profiling to alleviate the overhead of
task cost tracking at runtime. In addition, these schedulers
could be extended to assume more than two core types. This
can be done by applying multiple levels of criticality to the
tasks, and assign each task to the corresponding core type
depending on its performance.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Government
(SEV2015-0493), by the Spanish Ministry of Science and
Innovation (contract TIN2015-65316-P), by Generalitat de
Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272),
by the RoMoL ERC Advanced Grant (GA 321253) and the
European HiPEAC Network of Excellence. The Mont-Blanc
project receives funding from the EU’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement
no 610402 and from the EU’s H2020 Framework Programme
(H2020/2014-2020) under grant agreement no 671697. M.
Moretó has been partially supported by the Ministry of
Economy and Competitiveness under Juan de la Cierva
postdoctoral fellowship number JCI-2012-15047. M. Casas
is supported by the Secretary for Universities and Research

of the Ministry of Economy and Knowledge of the Govern-
ment of Catalonia and the Cofund programme of the Marie
Curie Actions of the 7th R&D Framework Programme of the
European Union (Contract 2013 BP B 00243).

REFERENCES

[1] A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto, “Maximizing
Power Efficiency with Asymmetric Multicore Systems,” Communi-
cations of the ACM, vol. 52, no. 12, p. 48, 2009.

[2] P. Greenhalgh, “big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7,” ARM White Paper, pp. 1–8, 2011.

[3] M. Casas, M. Moreto, L. Alvarez, E. Castillo, D. Chasapis,
T. Hayes, L. Jaulmes, O. Palomar, O. Unsal, A. Cristal, E. Ayguade,
J. Labarta, and M. Valero, Runtime-Aware Architectures. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 16–27. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-48096-0 2

[4] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task schedul-
ing on heterogeneous computing systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 11, pp. 2867–2876, 2014.

[5] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, and J. Planas, “Ompss: a Proposal for Programming
Heterogeneous Multi-Core Architectures.” Parallel Processing Let-
ters, vol. 21, no. 2, pp. 173–193, 2011.

[6] O. A. R. Board, “OpenMP Application Program Interface ,” vol.
4.0, 2013.

[7] A. Duran, J. M. Perez, E. Ayguadé, R. M. Badia, and J. Labarta,
“Extending the OpenMP Tasking Model to Allow Dependent
Tasks,” pp. 111–122, 2008.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: A Unified Platform for Task Scheduling on Heteroge-
neous Multicore Architectures,” Concurr. Comput. : Pract. Exper.,
vol. 23, no. 2, pp. 187–198, 2011.

[9] M. Hakem and F. Butelle, “Dynamic Critical Path Scheduling
Parallel Programs onto Multiprocessors,” pp. 203b–203b, 2005.

[10] M. Daoud and N. Kharma, “Efficient Compile-Time Task Schedul-
ing for Heterogeneous Distributed Computing Systems,” vol. 1,
p. 9, 2006.

[11] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-Effective
and Low-Complexity Task Scheduling for Heterogeneous Com-
puting,” IEEE Transactions on Parallel and Distributed Systems,
vol. 13, no. 3, pp. 260–274, 2002.

[12] C.-H. Liu, C.-F. Li, K.-C. Lai, and C.-C. Wu, “A dynamic Critical
Path Duplication Task Scheduling Algorithm for Distributed Het-
erogeneous Computing Systems,” vol. 1, p. 8, 2006.

[13] K. Chronaki, A. Rico, R. M. Badia, E. Ayguadé, J. Labarta, and
M. Valero, “Criticality-aware dynamic task scheduling for hetero-
geneous architectures,” pp. 329–338, 2015.

[14] E. Ayguadé, R. Badia, P. Bellens, D. Cabrera, A. Duran, R. Ferrer,
M. Gonzàlez, F. Igual, D. Jiménez-González, J. Labarta, L. Mar-
tinell, X. Martorell, R. Mayo, J. Pérez, J. Planas, and E. Quintana-
Ortı́, “Extending OpenMP to Survive the Heterogeneous Multi-
Core Era,” International Journal of Parallel Programming, vol. 38, no.
5-6, pp. 440–459, 2010.

[15] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of OpenMP
Task Scheduling Strategies,” pp. 100–110, 2008.

[16] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion,
A. Ramirez, and M. Valero, “On the Simulation of Large-Scale
Architectures Using Multiple Application Abstraction Levels,”
ACM Trans. Archit. Code Optim., vol. 8, no. 4, pp. 36:1–36:20, 2012.



14

[17] Barcelona Supercomputing Center, “BSC Application Repository,”
available online on April 18th, 2014. [Online]. Available:
{https://pm.bsc.es/projects/bar}

[18] D. Chasapis, M. Casas, M. Moreto, R. Vidal, E. Ayguade, J. Labarta,
and M. Valero, “PARSECSs: Evaluating the Impact of Task Paral-
lelism in the PARSEC Benchmark Suite,” TACO, 2015.

[19] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “Parallel tiled
QR factorization for multicore architectures,” Tech. Rep., 2007.

[20] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A Comparison of
List Schedules for Parallel Processing Systems,” Commun. ACM,
vol. 17, no. 12, pp. 685–690, 1974.

[21] K. Li, X. Tang, B. Veeravalli, and K. Li, “Scheduling precedence
constrained stochastic tasks on heterogeneous cluster systems,”
IEEE Transactions on Computers, vol. 64, no. 1, pp. 191–204, 2015.

[22] F. Zhang, J. Cao, K. Li, S. U. Khan, and K. Hwang, “Multi-objective
scheduling of many tasks in cloud platforms,” Future Generation
Computer Systems, vol. 37, pp. 309 – 320, 2014.

[23] M.-Y. Wu and D. Gajski, “Hypertool: a Programming Aid for
Message-Passing Systems,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 1, no. 3, pp. 330–343, 1990.

[24] T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on
an Unbounded Number of Processors,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 5, no. 9, pp. 951–967, 1994.

[25] M. A. Iverson, F. Özgüner, and G. J. Follen, “Parallelizing Existing
Applications in a Distributed Heterogeneous Environment,” pp.
93–100, 1995.

[26] H. Yu, “A Hybrid GA-based Scheduling Algorithm for Heteroge-
neous Computing Environments,” pp. 87–92, 2007.

[27] K. Li, Z. Zhang, Y. Xu, B. Gao, and L. He, “Chemical Reaction
Optimization for Heterogeneous Computing Environments,” pp.
17–23, 2012.

[28] Y. Xu, K. Li, L. He, L. Zhang, and K. Li, “A hybrid chemical re-
action optimization scheme for task scheduling on heterogeneous
computing systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 12, pp. 3208–3222, 2015.

[29] A. Page and T. Naughton, “Dynamic Task Scheduling using Ge-
netic Algorithms for Heterogeneous Distributed Computing,” pp.
189a–189a, 2005.

[30] S. Bansal, P. Kumar, and K. Singh, “An Improved Duplication
Strategy for Scheduling Precedence Constrained Graphs in Multi-
processor Systems,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 14, no. 6, pp. 533–544, 2003.

[31] Z. Zong, A. Manzanares, X. Ruan, and X. Qin, “EAD and PEBD:
Two Energy-Aware Duplication Scheduling Algorithms for Paral-
lel Tasks on Homogeneous Clusters,” Computers, IEEE Transactions
on, vol. 60, no. 3, pp. 360–374, 2011.

[32] A. Agarwal and P. Kumar, “Economical Duplication Based Task
Scheduling for Heterogeneous and Homogeneous Computing
Systems,” pp. 87–93, 2009.

[33] I. A. Moschakis and H. D. Karatza, “A meta-heuristic optimiza-
tion approach to the scheduling of bag-of-tasks applications on
heterogeneous clouds with multi-level arrivals and critical jobs,”
Simulation Modelling Practice and Theory, vol. 57, pp. 1–25, 2015.

Kallia Chronaki received the B.Sc in computer
science and M.Sc. in computer architecture from
the Computer Science Department (CSD) of the
University of Crete, Greece. She is currently a
Ph.D. candidate at the department of Computer
Architecture of the Technical University of Cat-
alonia (UPC), Spain and a research engineer
at Barcelona Supercomputing Center (BSC).
Her research interests include high performance
computing architectures, runtime systems and
heterogeneous computing.

Alejandro Rico is a Senior Research Engineer
at ARM Research (Austin, TX, USA). Previously,
he was a post-doctoral researcher at BSC. He
received a Ph.D. from UPC in 2013 and a M.Sc.
and B.Sc. from Universitat Pompeu Fabra in
2005. During his studies he worked as an intern
at IBM (NY, USA) and ARM (Cambridge, UK).
His research interests are high performance
computing, multi-core scalability and heteroge-
neous architectures.

Marc Casas is a senior researcher at the
Barcelona Supercomputing Center. Prior to this,
he spent 3 years as a post-doctoral fellow at
the Lawrence Livermore National Laboratory
(LLNL). He received his B.Sc. and M.Sc. de-
grees in mathematics in 2004 from the UPC and
the PhD in Computer Science in 2010 from the
Computer Architecture Department of UPC. His
research interests are high performance com-
puting, runtime systems and parallel algorithms.

Miquel Moretó is a senior researcher at the
Barcelona Supercomputing Center (BSC). Prior
to joining BSC, he spent 15 months as a post-
doctoral fellow at the International Computer
Science Institute (ICSI), Berkeley, USA. He re-
ceived the B.Sc., M.Sc., and Ph.D. degrees from
UPC. His research interests include studying
shared resources in multithreaded architectures
and hardware-software co-design for future mas-
sively parallel systems.

Rosa M. Badia holds a PhD on Computer Sci-
ence (1994) from UPC. She is a Scientific Re-
searcher from the Consejo Superior de Inves-
tigaciones Cientı́ficas (CSIC) and team leader
of the Workflows and Distributed Computing re-
search group at BSC. Her research interests
are programming models for complex platforms
(from multicore, GPUs to Grid/Cloud). Dr Badia
has published more than 150 papers in interna-
tional conferences and journals in these topics.
She has participated in a significant number of

European funded projects and contracts with industry.

Eduard Ayguadé is full professor of the Com-
puter Architecture Department at UPC. He is
currently associate director of research in Com-
puter Sciences at BSC. His research interests
include multicore architectures, programming
models and compilers for high-performance ar-
chitectures. He published around 250 publica-
tions in these topics and participated in several
research projects with other universities and in-
dustries, in framework of the European Union
programmes or in direct collaboration with tech-

nology leading companies.

Jesus Labarta is full professor on Computer Ar-
chitecture at UPC since 1990. Since 2005 he is
responsible of the Computer Science Research
Department within BSC. His major directions
of current work relate to performance analysis
tools, programming models and resource man-
agement. His team distributes the Open Source
BSC tools (Paraver and Dimemas) and performs
research on increasing the intelligence embed-
ded in the performance analysis tools. He is
involved in the development of the OmpSs pro-

gramming model and its different implementations for SMP, GPUs and
cluster platforms.

Mateo Valero is full professor at Computer
Architecture Department, UPC and director at
BSC. He has published 700 papers and served
in organization of 300 international conferences.
His main awards are: Seymour Cray, Eckert-
Mauchly, Harry Goode, ACM Distinguished Ser-
vice, ”Hall of Fame” member IST European Pro-
gram, King Jaime I in research, two Spanish Na-
tional Awards on Informatics and Engineering.
Honorary Doctorate: Universities of Chalmers,
Belgrade, Las Palmas, Zaragoza, Complutense

of Madrid, Granada and University of Veracruz. Professor Valero is a
Fellow of IEEE, ACM, and Intel Distinguished Research Fellow. He is a
member of Royal Spanish Academy of Engineering, Royal Academy of
Science and Arts, correspondent academic of Royal Spanish Academy
of Sciences, Academia Europaea and Mexican Academy of Science.


