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Abstract

A novel damage mechanics-based continuous micro-model for the analysis of masonry-
walls is presented and compared with other two well-known discrete micro-models. The
discrete micro-models discretize masonry micro-structure with nonlinear interfaces for
mortar-joints, and continuum elements for units. The proposed continuous micro-model
discretizes both units and mortar-joints with continuum elements, making use of a ten-
sion/compression damage model, here refined to properly reproduce the nonlinear re-
sponse under shear and to control the dilatancy. The three investigated models are
validated against experimental results. They all prove to be similarly effective, with the
proposed model being less time-consuming, due to the efficient format of the damage
model. Critical issues for these types of micro-models are analysed carefully, such as
the accuracy in predicting the failure load and collapse mechanism, the computational
efficiency and the level of approximation given by a 2D plane-stress assumption.

Keywords: Masonry, Continuous micro-modeling, Discrete micro-modeling,
Continuum damage model, Interface model, Dilatancy

1. Introduction

Masonry is a composite material, with a micro-structure consisting of bricks and joints,
with or without mortar. These micro-structural constituents, their very different elas-
tic and inelastic properties, and their arrangement lead to very complex behaviors and
different failure mechanisms. Several computational strategies were proposed to deal
with the numerical analysis of such a complex material [1]. Several macro-models, also
known as continuum finite element models, are available in the existing literature to study
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masonry structures. The most recent macro-models regard the material as a fictitious
homogeneous orthotropic continuum, without making any explicit distinction between
units and joints in the discrete model [2, 3, 4]. This approach presents some intrin-
sic difficulties mainly related to the identification of the mechanical parameters of the
continuum and the definition of realistic phenomenological failure criteria. However,
macro-models are still a suitable option for the numerical analysis of large and com-
plex structures due to their limited computational cost. More sophisticated numerical
strategies were proposed by several authors for detailed analysis of single structural
members, where a full description of the interaction between units and mortar is nec-
essary (Figure 1a). Very popular approaches used nowadays to study masonry, includ-
ing its heterogeneous micro-structure in the discretization, are based on micro-modeling
[5, 6, 7, 8]. Midway between macro- and micro-modeling there are the homogenization
methods [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].
A complete and detailed description of masonry micro-structure would require the full
three-dimensional discretization of bricks, mortar joints, and the interface between them.
In this way all masonry constituents and their complex interaction would be explicitly
accounted for. However, three-dimensional modeling requires a complex model genera-
tion and high computational costs. For the case of a wall made of one layer of bricks
with a regular pattern, the 2D plane stress assumption can be made to simplify the
problem. This however can lead to imprecise results when the wall is subjected to high
levels of compressions, since the state of triaxial compression in the mortar joints cannot
be represented with the plane-stress assumption. A more accurate solution can be the
adoption of generalized plane state [20, 21].
The objective of this paper is to propose a novel damage-mechanics based continuous
micro-model able to represent the mechanical behaviors of masonry constituents. The
proposed micro-model is based on a tension-compression continuum damage model [22,
23, 24], here refined in order to accurately reproduce the nonlinear response of masonry
constituents, especially in shear. The adoption of appropriate failure criteria enables the
analyst to control the dilatant behavior of the material, even though this aspect is not
generally associated to continuum damage models as it is for plasticity models. The study
proposes a simple solution to this issue, consisting in the appropriate definition of the
failure surfaces under shear stress states together with the formulation of proper evolution
laws for damage variables. For this aim, a failure criterion for quasi-brittle materials [25]
is suitably enhanced under shear conditions and a novel hardening-softening law based on
quadratic Bézier curves is established. The model keeps the simple and efficient format
of classical damage models, where the explicit evaluation of the internal variables avoids
nested iterative procedures, thus increasing computational performance and robustness.
Another purpose of this research is to carry out a critical comparison of the proposed con-
tinuous micro-model with other two well-known discrete micro-modeling strategies for the
numerical simulation of shear walls made of periodic masonry. The three micro-models
explicitly take into account the interaction between units and mortar joints by includ-
ing their separate discretizations. The main distinction made here between continuous
and discrete micro-models is referred to the different type of elements and constitutive
models used for the discretization of masonry micro-structure. Discrete micro-modeling
has been widely adopted by several authors in literature [5, 7, 26, 27, 28, 29, 30] us-
ing a discrete description of masonry micro-structure, mixing continuum and interface
elements for bricks and mortar joints, respectively. On the contrary, the proposed contin-
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uous micro-modeling uses a continuum discretization of all components of the masonry
micro-structure, without resorting to interface elements.
The investigated approaches are validated against experimental tests of masonry shear
walls under different level of vertical compression [31], proving to be similarly effective
and accurate in predicting the global strength of shear walls up to their collapse. All three
micro-modeling techniques are able to properly reproduce the main failure mechanisms
of the material, such as tensile cracking, sliding, shear and crushing. However, each one
of the selected models introduces different approximations that lead to slight differences
in accuracy, robustness and computational cost. The validation of the novel continuous
micro-model, together with the critical review of available discrete micro-models, leads
to a fruitful discussion on advanced computational strategies for the analysis of masonry
structures at the level of material constituents.

2. Adopted modeling strategies

The three selected modeling strategies to represent the micro-structure of masonry ma-
terial (see Figure 1a) are:

1. 2D Continuous micro-model (2D-C): Both units and mortar joints are mod-
eled using 2D plane-stress continuum elements with nonlinear behavior (see Fig-
ure 1b). This paper presents a novel formulation for this approach at the level of
the constitutive law.

2. 2D Discrete micro-model (2D-D): All non-linearity is lumped into interface
elements. Both horizontal and vertical mortar joints are discretized by this type
of elements. Units are composed of 2D continuum elastic elements and vertical
interfaces at their mid-length for potential splitting cracks (see Figure 1c).

3. 2D Mixed Continuous/Discrete micro-model (2D-CD): The mortar joints
(vertical and horizontal) are represented by nonlinear interface elements, whereas
the units are modeled with 2D plane-stress continuum elements with nonlinear
behavior, to avoid forcing the crack pattern inside the units, differently from 2D-D
approach (see Figure 1d).
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Figure 1: Masonry modeling strategies

The aforementioned 2D-D and 2D-CD micro-modeling strategies for masonry structures
are very well-known and they have been used by several authors in the available literature
[5, 7, 26, 27, 28, 29, 30]. In the present comparative study, the adopted constitutive model
for the interfaces is the one presented in [5]. The 2D-D and 2D-CD strategies are also
known as "simplified micro-models", while "detailed micro-models" would consider a
distinct discretization for units and mortar (by means of continuum finite elements) and
unit-mortar interface (by means of interface elements).
On the other hand, the proposed 2D-C micro-modeling strategy considers a more clas-
sical approach, discretizing both bricks and mortar joints with continuum elements. In
this context, and to propose an efficient and robust numerical method, a constitutive
law based on continuum damage mechanics is adopted, taking advantage of its ex-
plicit evaluation, thus avoiding local iterative procedures typically necessary to integrate
plasticity-based models. In particular, the d+/d− tension-compression damage frame-
work [22, 23, 24] has been used. This model introduces two failure criteria for tensile and
compressive stress states, as well as two scalar damage indexes, allowing the description
of different behaviors under tension and compression. A novel failure criterion for com-
pression is presented in Section 3.2 to be combined with a novel hardening-softening law
based on quadratic Bézier curves (Section 3.3). Section 4 describes how this criterion can
be used to control the dilatant behavior of the damage model.
In the following, Section 3 describes the continuum damage model here proposed, and
used for both bricks and mortar joints in the modeling strategy 2D-C, and for bricks in
the modeling strategy 2D-CD, while Section 5 describes the constitutive model used for
mortar interfaces in the modeling strategies 2D-D and 2D-CD.
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Note that the modeling strategy 2D-CD features both a plasticity-based model (in mortar
joints), and a damage-based one (in bricks). The choice of a damage model for bricks
stems from the brittle nature of bricks failure mechanism. In fact, in in-plane loaded
shear walls, the main failure mechanism that can be expected at the brick level is a
brittle tensile split, which can be accurately represented by a damage model.

3. Proposed Tension/Compression Continuum Damage Model

3.1. Constitutive Model
The 2-parameter d+/d− damage model, based on the works in [22, 23, 24], defines the
stress tensor as

σ =
(
1− d+

)
σ̄+ +

(
1− d−

)
σ̄− (1)

where σ̄ is the effective (elastic) stress tensor

σ̄ = C : ε (2)

while σ̄+and σ̄−are, respectively, its positive and negative components, computed as:

σ̄+ =

3∑
i=1

〈σ̄i〉pi ⊗ pi (3)

σ̄− = σ̄ − σ̄+ (4)

d+ and d− are tensile and compressive damage indexes, affecting, respectively, the posi-
tive σ̄+ and negative σ̄− components of the effective stress σ̄. These damage indexes are
scalar variables ranging from 0 (intact material) to 1 (completely damaged material).

3.2. Failure Criteria
Two scalar measures, referred to as equivalent stresses τ+ and τ−, are introduced to
properly identify “loading”, “unloading” or “reloading” conditions.
The compressive surface employed in this research represents an improvement of the one
described in [25]. The equivalent stress τ− is computed as

τ− =
1

1− α

(
αĪ1 +

√
3J̄2 + k1β 〈σ̄max〉

)
(5)

α =
kb − 1

2kb − 1
(6)

β =
fcp
ft

(1− α)− (1 + α) (7)

where Ī1 is the first invariant of the effective stress tensor, J̄2 is the second invariant of
the effective deviatoric stress tensor, σ̄max is the maximum effective principal stress, fcp
is the compressive peak stress and kb is the ratio of the bi-axial strength to the uniaxial
strength in compression. The constant k1 in Eq. (5) is proposed in this research to control
the influence that the compressive criterion has on the dilatant behavior of the model, as
described in Section 4. k1 ranges from 0 to 1. A value of 0 leads to the Drucker-Prager
criterion, while a value of 1 leads to the criterion presented in [25]), as shown in Figure 2.
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Figure 2: Proposed compressive failure surface for the continuum model. Influence of the parameter k1

The tensile surface is similar to the compressive one

τ+ =
1

1− α

(
αĪ1 +

√
3J̄2 + β 〈σ̄max〉

) ft
fcp

(8)

but without the k1 parameter. Here the term ft
fcp

is introduced to compare τ+ with
the uniaxial tensile strength ft. Figure 3 shows the two initial damage surfaces, for the
plane-stress case, superimposed in the principal stress space. The negative surface τ−
is represented for various values of the constant k1. Being the two surfaces defined for
any state of stress, it may happen that negative damage evolves under uniaxial or biaxial
tension and vice-versa for the tensile damage. This can be avoided inactivating the tensile
and compressive criteria under conditions, so that (i) the compressive surface can evolve
if and only if at least one of the principal stresses is negative, and (ii) the tensile surface
can evolve if and only if at least one the principal stresses is positive.
These conditions can be taken into account by rewriting the damage surfaces as:

τ− = H (−σ̄min)

[
1

1− α

(
αĪ1 +

√
3J̄2 + k1β 〈σ̄max〉

)]
(9)

τ+ = H (σ̄max)

[
1

1− α

(
αĪ1 +

√
3J̄2 + β 〈σ̄max〉

) ft
fcp

]
(10)

where H (x) is the Heaviside function, defined as

H (x) =

{
0 x < 0

1 x > 0
(11)
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Figure 3: Initial damage surfaces for the plane-stress case.

To account for the irreversible nature of damage, two scalar quantities are used, referred
to as damage thresholds r±. The thresholds r± denote the largest values attained by
the equivalent stresses τ± throughout the whole loading history up to the current time
instant. r± at time t+ ∆t are explicitly evaluated as

r± = max

(
r±0 , max

0≤n≤t
τ±n

)
r+0 = ft (12)

r−0 = fc0 (13)

with r+0 and r−0 being the initial damage thresholds, i.e. the elastic limits in uniaxial
tension ft and uniaxial compression fc0. n denotes the time instant. With τ± and r± at
hand, the damage criteria can be defined as:

Φ
(
τ±, r±

)
= τ± − r± ≤ 0 (14)
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3.3. Evolution laws for damage variables
The tensile (positive) damage d+ is obtained from the following exponential softening
law (see Figure 4):

d+
(
r+
)

= 1− r+0
r+
exp

{
2Hdis

(
r+0 − r+

r+0

)}
(15)

where Hdis is the discrete softening parameter. In the discrete problem, in order to
achieve invariance of the response with respect to the discretization size, the softening
law must be modified according to the size of the damaging zone (ldis) [32, 33, 34], so
that the following equation holds:

gf ldis = Gf (16)

where Gf is the fracture energy per unit area in tension. The specific fracture energy gf
per unit volume, for the exponential softening law, is obtained as:

gf =

(
1 +

1

Hdis

)
f2t
2E

(17)

The discrete softening parameter Hdis is given by

Hdis =
ldis

lmat − ldis
(18)

where lmat = 2EGf/f
2
t . ldis is taken equal to the characteristic size of the finite element

(ldis = lch).

Figure 4: Tensile uniaxial law

The evolution of the compressive damage index d−, instead, is governed by an ad hoc
uniaxial law proposed in this paper, as shown in Figure 5.
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Figure 5: Compressive uniaxial law

This curve is made of a linear part [(0, 0)− (ε0, σ0)], a hardening part [(ε0, σ0)− (εp, σp)]
and two softening parts [(εp, σp)− (εk, σk)] [(εk, σk)− (εu, σu)], followed by a final resid-
ual plateau [(εu, σu)− (+∞, σu)].
The hardening and softening portions are three quadratic Bézier curves. Each one of them
has three control points that define their shape, the end-positions, and the tangents to
the curve at the end-positions.
We can define a function B that evaluates the Y-coordinate of a Bézier curve at a given
X-abscissa, given the three control points, as follows:

B (X, x1, x2, x3, y1, y2, y3) = (y1 − 2y2 + y3) t2 + 2 (y2 − y1) t+ y1 (19)

where

A = x1 − 2x2 + x3

B = 2 (x2 − x1)

C = x1 −X
D = B2 − 4AC

t =
−B +

√
D

2A

Given the current compressive damage threshold r−, its strain-like counterpart ξ can be
obtained

ξ =
r−

E
(20)

and then it is used to calculate the corresponding hardening variable Σ (ξ):
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Σ (ξ) =


B (ξ, ε0, εi, εp, σ0, σi, σp) ε0 < ξ ≤ εp
B (ξ, εp, εj , εk, σp, σj , σk) εp < ξ ≤ εk
B (ξ, εk, εr, εu, σk, σr, σu) εk < ξ ≤ εu
σu ξ > εu

(21)

Finally the damage index d− can be calculated as follows:

d−
(
r−
)

= 1− Σ (ξ)

r−
(22)

This novel formulation for the evolution law of the compressive damage parameter d− is
more flexible than conventional ones. In fact, the control points of the Bézier curves may
be set so that the curve can match the experimental response obtained from an uniaxial
compressive test. Then the compressive fracture energy Gc (shaded area in Figure 5) is
evaluated with the following relations:

Gc,1 =
σpεp

2
(23)

Gc,2 = G (εp, εj , εk, σp, σj , σk) (24)

Gc,3 = G (εk, εr, εu, σk, σr, σu) (25)

Gc = Gc,1 +Gc,2 +Gc,3 (26)

where the area G under each Bézier curve reads:

G (x1, x2, x3, y1, y2, y3) =
x2y1

3
+
x3y1

6
− x2y3

3
+
x3y2

3
+
x3y3

2
−x1

(y1
2

+
y2
3

+
y3
6

)
(27)

It should be noted that here Gc is not the total area under the uniaxial curve, but only
the portion that needs to be regularized (post-peak regime).
In the discrete problem the compressive curve shown in Figure 5 needs to be regularized
so that the shaded area underneath be Gc/ldis. This can be achieved by “stretching” the
strain abscissas εj , εk, εr and εu (before using them in Eq. (21)):

ε̃α = εα + S (εα − εp) , α = j, k, r, u (28)

where S is a stretching factor calculated as

S =

Gc

ldis
−Gc,1

Gc −Gc,1
− 1 (29)

This factor should be greater than −1.0 to avoid a constitutive snap-back. In fact for a
stretch factor S = −1.0 every post-peak strain-abscissa would collapse to the peak strain
εp, leading to a sudden fall of the uniaxial curve. To avoid this, the characteristic length
ldis should satisfy the following restriction:
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ldis <
2Gc
σpεp

(30)

The effect of this regularization on the uniaxial law can be seen in Figure 6.

Figure 6: Regularization of compressive uniaxial law

4. Shear behavior and dilatancy of the Tension/Compression Continuum
Damage Model

This section describes the shear behavior of the proposed d+/d− damage model. The
present formulation includes the possibility to calibrate the dilatant behavior of the ma-
terial under shear stresses. This crucial aspect has been usually disregarded by available
models based on classical damage mechanics theory. Such disadvantage has often favored
the use of plasticity models since they can control explicitly the dilatancy through the
definition of a proper plastic potential. This work proposes an improvement of the well-
known d+/d− damage model [22, 23, 24] to control the dilatant behavior of the material.
The material dilatancy is described without resorting to the formulation of a plastic
potential, i.e. differently from well-established plasticity models (e.g. Eq. (36)). The
objective of the proposed approach is to describe phenomenologically the dilatant be-
havior without spoiling the simple and efficient format of the classical damage mechanics
models.

4.1. Shear response of the Tension/Compression Damage Model
The models adopted in this paper are based on the 2D plane stress hypothesis. In this
specific case, and in the framework of the d+/d− damage model, when the two principal
stresses have different sign, both tensile and compressive surfaces might be active. In this
case the positive principal stress is affected by the tensile damage while the minimum
principal stress is affected by the compressive damage. If the damage was isotropic, i.e.
the tension and compression damage variables are equal, the damaged stress tensor would
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be an isotropic scaling of the effective (elastic) stress tensor. On the other hand, in the
d+/d− damage model the damaged stress tensor is actually obtained by an anisotropic
scaling of the effective (elastic) stress tensor, as it was already demonstrated in [2].
Figure 7 graphically shows this behavior for the simple case of a pure shear distortion,
in an isotropic damage model (Figure 7a) and d+/d− damage model (Figure 7b). Let us
suppose that the material point is subject to a given strain state whose components are
(εxx = 0, εyy = 0, γxy 6= 0). Point A represents the effective stress state σ̄ = C : ε due
to pure shear, with coordinates (σ̄1, σ̄2 = −σ̄1) in the principal stresses reference system.
Point B represents the damaged stress state σ denoted by coordinates (σ1, σ2 = −σ1)
obtained in the case of an isotropic damage model, i.e. if d+ = d−. In this case the
damaged stress tensor is an isotropic scaling of the effective stress tensor, since the
isotropic scalar damage index scales the whole effective stress tensor σ̄. Consequently
the damaged stress would stay in a pure shear state as the effective stress (Figure 7a).
Point C, instead, corresponds to the damaged stress σ obtained by the d+/d−damage
model. In this case, due to the existence of two different failure surfaces, the tensile and
compressive damage indexes do not have in general the same value, being their evolution
laws different. Consequently the damaged stress is not an isotropic scaling of the effective
stress. In the specific example depicted in Figure 7b, the compressive damage increment
is smaller then the tensile one. Thus, due to the preassigned null values for εxx and εyy,
the damaged stress σ must denote a shear-compression state.
In the compressive damage surface in Eq. (5), the parameter k1 is introduced to con-
trol the “weight” of the compressive surface on the constitutive shear response in the
nonlinear range. As shown in Figure 2, the parameter k1 controls the size of the com-
pressive surface in tension/compression quadrants. As a consequence, this parameter
controls implicitly also the dilatancy of the model, taking into account that the larger
the compressive surface (with respect to the tensile surface), the higher the dilatancy.
This effect is shown in Figure 8 for decreasing values of k1, moving from Figure 8a to
Figure 8c. It can be seen how decreasing k1 from 1 to 0, the size of the compressive sur-
face in the tension/compression quadrants increases. As a consequence, the increment
of the compressive damage index d− diminishes, thus predicting increasing compressive
stresses.
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(a) Isotropic damage (b) d+/d− damage

Figure 7: Behavior of isotropic and d+/d− damage models in tension/compression quadrants

(a) (b) (c)

Figure 8: Behavior of d+/d− damage model in tension/compression quadrants for values of k1 decreasing
from (a) to (c)

4.2. Numerical modeling of shear behavior of mortar joints
To assess the performance of the proposed constitutive model in shear, the experimental
shear tests conducted in [35] are numerically reproduced here. Figure 9a shows the test
set-up. These tests aim at producing a constant stress state in the mortar joint. Mortar
joints are subjected to shear under a constant confining stress.

13



(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Us [mm]

τ

[

N
/m

m
2
]

p = −0.1 N/mm2

p = −1.0 N/mm2

p = −0.5 N/mm2

(b)

Figure 9: Van Der Pluijm (1993). (a) test set-up; (b) test results for different values of confinement

The experimental tests were conducted with three different confining stress levels of −0.1,
−0.5 and −1.0N/mm2. Experimental results are given in Figure 9b in terms of envelope
curves of shear stress τ vs. shear displacement Us along the mortar joint. It can be seen
how the maximum shear stress increases with increasing confining stress. After reaching
a peak value, the shear stress decreases with increasing shear displacement, reaching a
residual value due to dry friction. Another important aspect of this kind of experiment
is the dilatancy of the mortar joint (Figure 10a), which describes the appearance (in
the nonlinear range) of normal displacement perpendicular to the shear displacement.
The ratio between the normal and shear displacements is denoted as the tangent to the
dilatancy angle ψ. This behavior is related to the roughness of the crack surface. Exper-
imental results show how dilatancy decreases with increasing normal stresses, as shown
in Figure 10b. In the same way, for a constant normal stress, the dilatancy decreases to
zero upon increasing shear displacement, as shown in Figure 10c.
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Figure 10: Van Der Pluijm (1993). (a) dilatancy of mortar joints; (b) dilatancy tanψ as a function of
confining stress; (c) typical evolution of normal displacement for increasing values of shear displacement.
Adapted from [6].
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To study the control of the dilatancy in the proposed model, an elemental test has been
performed. The geometry and boundary conditions are shown in Figure 11. Material
parameters, obtained from [35], are given in Table 1. For each level of confining stress
(p = −0.1, p = −0.5, and p = −1.0N/mm2) two analyses have been conducted, using
k1 = 0, and k1 = 0.16. The value k1 = 0.16 has been found as optimal for these tests as
well as for the shear walls analyzed in Section 6.

Figure 11: Elemental shear test. Geometry and boundary conditions

E ν σt Gt σ0 σp σr Gc εp kb

2970.0 0.15 0.62 0.02 8.0 11.0 1.0 20.0 0.005 1.16
N

mm2 - N
mm2

N
mm

N
mm2

N
mm2

N
mm2

N
mm - -

Table 1: Mortar material properties for the shear tests

Results of the analyses are given in Table 2 in terms of shear strength and dilatancy, for
each level of pre-compression. The first column show the shear stress - shear displace-
ment curves, with the shear strength increasing for higher values of pre-compression. The
second column show the uplift (positive vertical displacement) generated upon shear dis-
placement. Finally the third column shows the dilatancy coefficient (which is the tangent
to the curves reported in the second column). It can be clearly seen that if the standard
Drucker-Prager failure surface (k1 = 0) is chosen for compression, an overestimation of
the dilatant behavior (with respect to the values shown in Figure 10b and Figure 10c) is
obtained.
Overall, these analyses show how the size of the compressive surface in the tension/compression
quadrants has a major impact on the dilatancy of the model. As explained in the intro-
duction of this section, the d+/d− damage model as proposed in [22, 23, 24] does not
explicitly impose the direction of the inelastic strain, as opposed to plastic models. This
elemental test has shown how a careful definition of the compressive damage surface, and
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especially of its shape in the II and IV quadrants of the principal (plane)stress space,
can help in controlling the dilatant behavior in the proposed continuum damage model.
It can be noticed, however, that for higher levels of vertical compression, the maximum
shear strength is slightly underestimated (see Table 2, case p=-1 N/mm2). The same
effect will be found in the results of the analysis of the shear walls given in Section 6.2.
This slight underestimation may be due to the limitations given by plane-stress assump-
tion. In fact, for high levels of compression, the plane-stress hypothesis is not able to
represents the triaxial compression state in the mortar bed joint given by its interaction
with the surrounding units.
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Table 2: Numerical results of the elemental shear test
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5. Multisurface Plasticity Interface Model

Mortar joints are modeled using interface elements, allowing to incorporate discontinu-
ities in the displacement field. Thus a constitutive law in terms of relative displacement
and traction vector is required. The constitutive model adopted in this work is the one
formulated in [5]. For the sake of completeness, only a brief description of the model is
given here, and for further details the reader should refer to [5]. This model is based
on the concept of multisurface plasticity to better describe all failure mechanisms of ma-
sonry, through the definition of three surfaces for tension, shear and compressive failures,
as shown in Figure 12.

Tension mode 

Coulomb friction 

mode 

Compression mode 

Intermediate 

surface 

Initial 

surface 

Residual 

surface 

Figure 12: Composite yield surface for mortar joints, from [5].

For an interface element, the elastic response relating the generalized stresses σ =
{σn, τ}T and the generalized strains ε = {un, us}T is given by

σ = Dε = diag {kn, ks} ε (31)

where kn and ks are the stiffness parameters (not meant as dummy stiffnesses to simulate
contact) in the normal and tangential directions, and can be obtained by the elastic
properties of brick and mortar as follows:

kn =
EbEm

tm (Eb − Em)
; ks =

GbGm
tm (Gb −Gm)

(32)

where Eb, Em, tm, Gb, Gm are respectively the brick Young’s modulus, the mortar
Young’s modulus, the mortar thickness, the brick Shear modulus and the mortar Shear
modulus. To describe the nonlinear regime, three yield functions are employed in the
framework of multisurface plasticity:

f1 (σ, κ1) = σn − ft (κ1) (33)
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f2 (σ, κ2) = |τ |+ σntanφ (κ2)− c (κ2) (34)

f3 (σ, κ3) = Cnnσ
2
n + Cssτ

2 + Cnσn − fc (κ3)
2 (35)

f1 is the tension cut-off criterion, where ft (κ1) is the yield value and k1 is the hardening-
softening parameter. Associated flow rule is considered.
f2 is the Coulomb friction criterion, where c (κ2) is the cohesion, φ (κ2) is the friction
angle, and k2 is the hardening-softening parameter. To properly describe dilatancy in
mortar joints, a non-associated flow rule is considered, replacing the friction angle with
the dilatancy angle ψ:

g2 (σ, κ2) = |τ |+ σntanψ (κ2)− c (κ2) (36)

f3 is the elliptical cap criterion, where fc (κ3) is the yield value and k3 is the harden-
ing/softening parameter. Cnn, Css and Cn are parameters describing the shape of the
elliptical cap. An associated flow rule is assumed.
The evolution of the yield value ft is described by an exponential softening:

ft (κ1) = ft0exp

(
− ft0
GIf

κ1

)
(37)

where ft0 is the initial tensile strength and GIf is the tensile fracture energy. Similarly,
the evolution of the cohesion is given by same exponential softening:

c (κ2) = c0exp

(
− c0
GIIf

κ2

)
(38)

where c0 is the initial cohesion and GIIf is the shear fracture energy. The evolution of
friction and dilatancy angles is linked to the evolution of the cohesion:

tanφ (κ2) = tanφ0 + (tanφr − tanφ0)

(
c0 − c
c0

)
(39)

tanψ (κ2) = tanψ0 + (tanψr − tanψ0)

(
c0 − c
c0

)
(40)

where φ0 and ψ0 are the initial friction and dilatancy angles, while φr and ψr are the
residual friction and dilatancy angles.
The evolution of fc (κ3) is described by a hardening-softening law in terms of plastic
displacements, explained in Section 3.2.

6. Numerical modeling of shear walls

The adopted modeling strategies are used to model the experimental response of ma-
sonry shear walls [31]. Section 6.1 describes the experimental tests, then the results of
each modeling strategy is described in detail. Finally, Section 6.5 compares the adopted
modeling strategies, highlighting similarities/differences and advantages/disadvantages.
The analyses were performed using an enhanced version of the software Kratos Multi-
physics [36, 37], while pre- and post-processing were done with GiD [38].
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6.1. Numerical simulation of experimental test: TU Eindhoven shear wall
The geometry and boundary conditions of the wall are given in Figure 13. The wall
consists of single layer of solid bricks (210mm × 52mm × 100mm), and 10mm of
mortar [31]. Loading conditions are applied in two stages. In the first stage, the top of
the wall is subjected to a uniform vertical compression. In the second stage, a horizontal
force is applied via displacement control, while keeping the top of the wall horizontal.
The test is performed for three increasing values of vertical compression (0.30, 1.21 and
2.12N/mm2). The experimentally obtained crack patterns are shown in Figure 14. Two
tests were carried out only for a pre-compression level of 0.3N/mm2, and the envelope
of their load-displacement curves is represented as a shaded area in Figure 15, Figure 17
and Figure 18.

(a) (b)

Figure 13: TU Eindhoven shear wall [31]. Geometry and loading conditions: (a) first stage: uniform
vertical compression p = 0.3, 1.21, 2.12N/mm2; (b) second stage: horizontal displacement.
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(a) p = 0.3N/mm2 (b) p = 0.3N/mm2

(c) p = 1.21N/mm2 (d) p = 2.12N/mm2

Figure 14: Experimental failure patterns, adapted from [6].

For each one of the three modeling strategies, three analyses have been carried out, one
for each level of vertical compression, for a total of nine analyses.
Each nonlinear static analysis is carried out in two stages. During the 1st stage, the top
of the wall is subjected to a uniform vertical compression of respectively 0.3N/mm2,
1.21N/mm2 and 2.12N/mm2, under load control. During the 2nd stage, a horizontal
concentrated force is applied on the top-right corner, via displacement control. The
vertical displacement on top of the wall is fixed at the value achieved at the previous
time-step.
The pseudo-time is adaptively incremented from t = 0 s to t = 1 s, with an initial
time step of 1.0 × 10−2 s, and a minimum time step of 1.0 × 10−9 s. The duration of
the two stages are respectively 0.02 s and 0.98 s. In each time step the equilibrium is
achieved with a full Newton-Raphson iteration process. Convergence is accepted with a
relative tolerance of the residual norm of 1.0 × 10−5. For all three models, the adopted
FEM discretization size is h = 10.0mm (i.e. the thickness of the mortar layer). 4-
node displacement-based quadrilateral elements with full 2x2 gauss integration are used
for bricks. For the 2D-C and 2D-CD micro-models, the characteristic length used to
regularize the softening behavior of the damage model, is equal to the discretization size
(lch = h = 10.0mm). In all three models, both the bottom and the top steel beams were
modeled, with their corresponding loads and boundary conditions.
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6.2. 2D Continuous micro-model (2D-C)
This section reports the results obtained using the 2D-C model. Table 3 shows the mate-
rial parameters for the damage constitutive model used for both bricks and mortar joints,
adapted from the values reported in [6]. Figure 15 shows the obtained force-displacement
curves for the three levels of vertical pre-compression. A good agreement with experi-
mental results are obtained, with a slight underestimation of the wall capacity for the
highest level of pre-compression. This is probably due to the plane-stress assumption
made for both bricks and mortar joints, that becomes hardly applicable to describe the
complex interaction between bricks and mortar joints under high levels of compression.
A detailed comparison with a full 3D model will be given in Section 6.7. Table 4 shows
the obtained results in terms of maximum principal strain, minimum principal stress,
tensile and compressive damage.

E ν σt Gt σ0 σp σr Gc εp kb k1

850.0 0.15 0.2 0.016 3.0 10.0 2.0 80.0 0.04 1.2 0.16
N

mm2 - N
mm2

N
mm

N
mm2

N
mm2

N
mm2

N
mm - - -

(a)

E ν σt Gt σ0 σp σr Gc εp kb k1

16700.0 0.15 2.0 0.08 8.0 12.0 1.0 6.0 0.004 1.2 0.0
N

mm2 - N
mm2

N
mm

N
mm2

N
mm2

N
mm2

N
mm - - -

(b)

Table 3: Model 2D-C. (a) Material properties for mortar joints (damage model); (b) Material properties
for bricks (damage model)
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Figure 15: Model 2D-C. load-displacement curves for different values of pre-compression
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εmax σmin d+ d−

p = 0.3N/mm2

p = 1.21N/mm2

p = 2.12N/mm2

Table 4: Model 2D-C. Results in terms of maximum principal strains, minimum principal stresses, tensile
damage and compressive damage, at the ultimate displacement Ux = 4.0mm

The results of the model 2D-C for a vertical compression of 0.3N/mm2 are carefully
commented to explain the behavior of the shear walls and to better understand the
evolution of the micro-structure up to the complete failure of the wall. For this rea-
son, five meaningful points of the analysis are considered, identified by instants t =
[0.14, 0.30, 0.47, 0.64, 1.0] s, and by horizontal top-displacements Ux = [0.5, 1.1, 1.8, 2.5, 4.0]mm.
The obtained results are shown in Figure 16, in terms of maximum principal strains.
The very first non-linear behavior takes place at a horizontal top-displacement Ux =
0.5mm, when horizontal cracks appears at the bottom-right and top-left corners of the
wall. At a horizontal top-displacement Ux = 1.1mm, staircase cracks emerge from the
central part, advancing towards the corners and passing through mortar joints. At this
stage, several cracks are visible, but not yet a completely open unique crack. This is
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(a) Ux = 0.5 [mm] (b) Ux = 1.1 [mm] (c) Ux = 1.8 [mm]

(d) Ux = 2.5 [mm] (e) Ux = 4.0 [mm]

Figure 16: Model 2D-C, P = 0.3N/mm2. Incremental contour plots of maximum principal strain εmax

mainly related to the presence of bricks, whose stress state is still far from their tensile
strength. The appearance of these diagonal cracks produces the first significant change
in the slope of the global load-displacement curve. At a later stage of the analysis,
approximately between top-displacements Ux = 1.8mm and Ux = 2.5mm, the tensile
strength in some bricks is exceeded, leading to their splitting. As a consequence, the
previously mentioned staircase cracks coalesce into a single well defined diagonal cracks.
The further opening of this diagonal crack finally leads to the complete development of
the shear/crushing mechanism determining the collapse of the wall.

6.3. 2D Discrete micro-model (2D-D)
This section reports the results obtained using the 2D-D model. Table 5 shows the mate-
rial parameters for the interface constitutive model used for mortar joints, and the elastic
properties for the bricks. The potential crack in the bricks have been simulated using a
simple damage interface model with a tensile strength σt = 2.0N/mm2. Figure 17 shows
the obtained force-displacement curves for the three levels of vertical pre-compression.
Also in this case, a good agreement with experimental results have been reached. As op-
posed to the 2D-C model, the 2D-D model shows an overestimation of the wall capacity
for higher level of pre-compression. This is probably due to assuming only a vertical po-
tential crack in the bricks. This assumption is more appropriate for low values of vertical
pre-compression. For higher values of pre-compression, diagonal cracks in the bricks can-
not appear, and the main diagonal “crack” has to find its path through the pre-defined
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interfaces. Table 6 shows the obtained results in terms of deformed shape, minimum
principal stress, tensile/shear and compressive equivalent plastic displacements.

E ν
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kn ks ν
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N

mm2
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Table 5: Model 2D-D. (a) Material properties for elastic bricks; (b)(c) Material properties for mortar
joints (interface model)
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Figure 17: Model 2D-D. load-displacement curves for different values of pre-compression
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deformed shape σmin tensile/shear up,eq compressive up,eq

p = 0.3N/mm2

p = 1.21N/mm2

p = 2.12N/mm2

Table 6: Model 2D-D. Results in terms of deformed shape, minimum principal stresses, tensile/shear
and compressive equivalent plastic displacement, at the ultimate displacement Ux = 4.0mm

6.4. 2D Mixed Continuous/Discrete micro-model (2D-CD)
This section reports the results obtained using the 2D-CD model. Table 7 shows the
material parameters for the interface constitutive model used for mortar joints, and for
the damage model used for the bricks. Figure 18 shows the obtained force-displacement
curves for the three levels of vertical pre-compression. A good agreement with exper-
imental results have been obtained also in this case. As expected, this model shows a
response which is in-between the 2D-C and the 2D-D models. The overestimation for
higher levels of vertical pre-compression is reduced compared to the 2D-D model, by
allowing any possible damage pattern in the bricks.Table 8 shows the obtained results
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in terms of deformed shape, minimum principal stress, tensile/shear and compressive
equivalent plastic displacements.
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Table 7: Model 2D-CD. (a) Material properties for mortar joints (interface model); (b) Material prop-
erties for bricks (damage model)
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Figure 18: Model 2D-CD. load-displacement curves for different values of pre-compression
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deformed shape σmin tensile/shear up,eq compressive up,eq

p = 0.3N/mm2

p = 1.21N/mm2

p = 2.12N/mm2

Table 8: Model 2D-CD. Results in terms of deformed shape, minimum principal stresses, tensile/shear
and compressive equivalent plastic displacement, at the ultimate displacement Ux = 4.0mm

6.5. Comparison and discussion of numerical results
The presented results demonstrate that all the three selected models perform relatively
well and give similar results, all in good agreement with the experimental tests. Each
modeling strategy introduces simplifications with respect to a more general 3D detailed
micro-modeling, thus giving slightly different results.
The model 2D-C uses a tension/compression continuum damage model for both bricks
and mortar joints. This leads to a very efficient and robust analysis due to the explicit
evaluation of the internal variables. The concept of dilatancy (which is of paramount
importance for the simulation of shear walls) cannot be easily defined in the context of
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damage models, differently from the case of plasticity. Nevertheless, both failure surfaces
are active in a tension/compression damage model when the two principal stresses have
different sign. In this case, the Cauchy stress is not an isotropic scaling of the effec-
tive (elastic) stress. Taking advantage of this feature, a novel compressive model has
been formulated to provide a satisfactory shear behavior, in terms of dilatancy and shear
strength, as described in Section 4. The proposed model requires a careful definition
of the parameter k1 that sets the shape of the compressive failure surface in the ten-
sion/compression quadrants of the principal stresses plane. A value of 0.16 has shown to
be be adequate for the investigated case studies, see Section 6.6. Also the novel evolution
law for the compressive damage variable, based on quadratic Bézier curves, has shown to
be adequate for the description of the shear-compression nonlinear response of masonry.
The proposed model is remarkably efficient from the point of view of the computation of
the constitutive response.
The model 2D-D lumps all the main non-linearity in mortar joints, modeled as interface
elements with a composite yield criterion based on the concept of multisurface plasticity.
The dilatancy of mortar joints are easily defined due to the non-associativity of the shear
mode. Another advantage is that this model separately defines the shear and compressive
failure mechanisms. In this way the compressive cap criterion can be used to properly
model the compressive behavior of the wall without affecting the shear behavior of the
mortar joints. The choice of allowing only the tensile failure of the brick, through a
vertical potential crack in the mid-section, limits the number of DOFs of the model, but
at the same time it does not allow a natural failure of the bricks when a diagonal crack
is likely to appear, as in cases of shear at high compression. It should be mentioned that
this model takes into account the reduction in shear strength for high level of compression
through the elliptical cap mode. However, this happens at the interface constitutive level
but at the structural level the “crack” is forced to find its path through the predefined
interfaces. This is probably the cause of overestimation of the strength of the wall for
higher vertical compression levels and sudden drops as the vertical cracks in the bricks
open, as can be seen in Figure 17.
Finally the model 2D-CD seems to join the features of both the previous models, at the
price of a higher computational cost. In this model the accurate description of the mortar
joint behavior is achieved with the composite interface model, while the non-linearity in
the bricks is described through the continuum damage model, thus without making any
assumption on the direction of the cracks in the bricks. Compared to the 2D-D model,
the overestimation of the shear strength of the wall under high vertical compression is
alleviated, as can be seen in Figure 18.
Slight differences in the crack patterns can be seen by comparing the obtained results
for each model and for each level of vertical compression, as shown in Table 9. Model
2D-CD shows a progressively changing direction in the main diagonal crack, becoming
more vertical as the vertical compression increases, due to the propagation of diagonal
cracks in the bricks, while the model 2D-D shows almost the same failure pattern for all
vertical compression levels. Model 2D-C instead shows an overall diagonal crack running
from corner to corner, similar to model 2D-D, but with a more diffuse damage pattern
in bricks as the vertical compression increases.
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P = 0.30N/mm2 P = 1.21N/mm2 P = 2.12N/mm2

2D Continuous micro-model (2D-C)

2D Discrete micro-model (2D-D)

2D Mixed Continuous/Discrete micro-model (2D-CD)

Table 9: Comparison of failure patterns

Table 10 shows the total simulation time for each one of the analyses with micro-models,
carried out with a single standard PC equipped with an Intel Core i7-2670QM CPU
and 8 GB RAM. Model 2D-C and model 2D-D are the most efficient ones in terms of
computational costs, with model 2D-C giving a slightly better performance. In relative
terms, the models 2D-D and 2D-CD provide an increment of the computation time of
+23% and + 91% compared with the 2D-C model. The main reason is the efficient
formulation typical of damage-models, where the evolution of the internal variables is
performed explicitly. On the contrary, the interface model used in model 2D-D is based
on multi-surface plasticity (see [6, 5] for further details), where an iterative procedure at
the constitutive law level is also necessary in order to integrate the constitutive relation.
However, in model 2D-D, this higher cost for the interface constitutive model is amortized
by the assumption of an elastic-behavior for bricks. Obviously, model 2D-CD shows the
highest computational cost, due to the use of both the interface model for mortar joints,
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and the damage model for bricks.

Total simulation time (hh:mm:ss)

Model 2D-C Model 2D-D Model 2D-CD

00 : 09 : 16 00 : 11 : 23 00 : 17 : 41
+23% +91%

Table 10: Total simulation time for each one of the three micro-models

6.6. Dilatant behavior in the continuous micro-model 2D-C
This section presents a further assessment of the tension/compression damage model
proposed for the 2D-C model. A parametric study is carried out to evaluate the model’s
capability of handling the dilatant behavior of mortar joints. The effect of the compressive
surface on the global response of the wall is evaluated.
For the 2D-C modeling strategy, with the lowest of the three vertical compression levels,
0.3N/mm2, three analyses have been carried out, varying the k1 parameter in Eq. (5).
Three values have been selected: 0.0, 0.16, and 1.0. Recalling that this parameter affects
the shape of the compressive surface in tension/compression quadrants, the value of
0.0 leads to a Drucker-Prager criterion, while the value of 1.0 leads to the Lubliner
criterion [25]. The intermediate value of 0.16 has been found as optimal for the required
dilatancy. The results of the three analyses are shown in Figure 19 in terms of global
force-displacement response, and in Figure 20 in terms of maximum principal strains.
As expected the Drucker-Prager criterion (k1 = 0) overestimates the dilatancy of the
model, and since no vertical displacement is allowed on top of the wall while loaded in
shear, this induces an excessive state of compression to the material with a consequent
overestimation of the global strength, as well as a more brittle behavior. Furthermore
the crack pattern clearly shows how the slip of mortar joints is inhibited, while a unique
diagonal crack opens through the bricks. On the contrary, a k1 value of 1.0 makes the
compressive surface very close to the tensile one in the tension/compression quadrants.
In this case the dilatancy of mortar joints is not captured at all, and consequently the
global shear strength of the model is largely underestimated. The failure in this case
is almost only due to slip of mortar joints in the middle of the wall, and only when
the crack reaches the boundaries of the wall, it finally propagates vertically through the
bricks. On the other hand, the case with k1 = 0.16 provides a more realistic result, by
giving a better estimate of the dilatancy of mortar joints.
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Figure 19: Model 2D-C, p = 0.3N/mm2. Force-displacement curves for three different values of k1

(a) k1 = 0.0 (b) k1 = 0.16 (c) k1 = 1.0

Figure 20: Model 2D-C, p = 0.3N/mm2. Failure patterns for three different values of k1

6.7. Comparison of 2D-plane stress and full 3D modeling
The adoption of the plane stress hypothesis is widely diffused in the FE analyses of in-
plane loaded shear walls [39]. However, as shown in the results presented in Section 6.2,
the plane-stress assumption in the model 2D-C, while reducing the computational cost
of the simulation, leads to a slight underestimation of the shear strength of walls as
the vertical compression level increases. With stiff bricks and soft mortar, high levels
of vertical compression induce a state of triaxial compression in mortar joints, thus
increasing their strength. This effect is neglected with the plane-stress hypothesis, since
the out-of-plane stress is assumed to be zero. This section shows how a full 3D continuous
model (3D-C) can provide more accurate results, but at the price of higher computational
costs. Another alternative solution that retains the efficiency of 2D modeling is the so
called generalized plane state [20, 21].
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To account for the increase strength under stress states of triaxial compression, Eq. (9)
given for the 2D-plane stress model, should be rewritten for a generic 3D stress state as
follows:

τ− = H (−σ̄min)

[
1

1− α

(
αĪ1 +

√
3J̄2 + k1β 〈σ̄max〉+ γ 〈−σ̄max〉

)]
(41)

γ ≥ 0 is a material parameter that increases the strength in states of triaxial compression,
effectively “enlarging” the damage surface around the hydrostatic axis when all three
principal stresses are negative: σ̄3 ≤ σ̄2 ≤ σ̄1 = σ̄max ≤ 0. In the following simulations
this parameter is set equal to 3 (see [25]).
Figure 21 shows, for the case of highest vertical compression level (p = 2.12N/mm2),
the load-displacement response of the model 2D-C compared to the respective 3D-C
model, while Figure 22 shows the failure pattern obtained from the 3D-C micro-model.
As expected, the 3D model shows an improved global response in terms of maximum
strength of the wall, while the failure pattern is similar to that obtained from the 2D
model.
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Figure 21: Load-displacement curve of the model 2D-C compared to a full-3D simulation
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Figure 22: Continuous 3D micro-model (3D-C), maximum principal strain

7. Conclusions

This work has proposed a novel damage-mechanics based micro-model able to represent
the nonlinear response of masonry constituents, especially under shear stress states. The
presented approach includes the control of the dilatant behavior of the material, even
though this aspect is not generally handled by standard continuum damage models. In
order to obtain a control on the amount of dilatancy, an existing failure criterion for
quasi-brittle materials has been improved under shear conditions and a novel hardening-
softening law based on quadratic Bézier curves has been established.
The paper has presented also the critical comparison of the novel continuous micro-
modeling technique with well-known discrete micro-modeling strategies for the 2D anal-
ysis of in-plane loaded masonry structures. The first numerical strategy, here named 2D
Continuous micro-model (2D-C), is based on a classical continuum description of both
bricks and mortar joints, both of them treated inelastically using the proposed damage
model. The other two strategies, named 2D Discrete micro-model (2D-D) and 2D Mixed
Continuous/Discrete micro-model (2D-CD) are already well-known in the literature, and
they are based on a discrete description of the micro-structure, modeling bricks with
continuum elements and mortar joints with interface elements. Bricks are treated either
elastically with potential vertical cracks in the middle vertical section, or inelastically.
The critical analysis of the results has shown how all the investigated strategies are
equivalently capable of describing the behavior of shear walls up to their collapse. The
main differences have been found with higher compressive levels, where the 2D-D and
2D-CD micro-models overestimate the maximum shear strength of the wall, whereas the
2D-C micro-model slightly underestimates it in a conservative way.
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The advantage of the proposed micro-model mainly resides in its simple and efficient
format that it inherits from classical damage mechanics models, where the explicit evalu-
ation of the internal variables avoids nested iterative procedures, thus increasing compu-
tational performance and robustness. The recurrent disadvantage of standard continuum
damage models, i.e. their poor capability of representing the dilatant behavior of mortar
joints under shear stress states, has been overcome by the proposed model. Other re-
markable advantages offered by the proposed continuous micro-model with a continuum
description of both bricks and mortar joints are the simple generation of the finite element
model during pre-processing, as well as the straightforward interpretation of the results
during post-processing. As regarding the response of the proposed damage model with
respect to the dilatant behavior of mortar joints, through the use of the k1 parameter,
future research will be devoted to further assess the reliability of the model on different
types of masonry walls.
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