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Abstract

This work analyses the parabolic stable manifolds of the periodic orbits at infinity for the Restricted Planar
Circular Three Body Problem. Using the parametrization method we prove the existence of such manifold
and we compute an approximate parametrization K with an internal dynamic Y. That leads to numerical
computations that will be analysed and compared with a similar methodology called the graph transform
method.
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Introduction

Dynamical systems have always had a strong relationship with the problems of celestial mechan-
ics. Among them, one of the most challenging are those related to the N -body problem, which
analyses the behaviour of N mass particles moving under their mutual Newtonian gravitational
attraction.

The N -body problem has been studied along more than two centuries and even now it is
far for being understood. Unlike the case N = 2, which was already solved by Newton, , when
N ≥ 3 the general solution is still a mystery. For these reason mathematicians are forced to
focus on specific parts of this problem.

In this work we analyse some aspects of the restricted planar circular three body problem
(RPC3BP). Here there are different points to take on account. First we claim that there are
only three point bodies in the universe. Also, we suppose that one of the bodies has a so small
mass that we can consider it equal to zero. Then, we also consider that the behaviour of the
two massive bodies consists on circular orbits in an invariant plane. All of these conditions
leads to some simplifications of the formulae involved which allows us to make studies further
than the general case.

In our work we are going to study the parabolic stable manifolds associated to periodic
orbits at infinity, meaning the set of points which tend to the orbit with zero velocity. Our
objective is to promote a new way of proving the existence of a parabolic stable manifold for
each periodic orbit at infinity. To do so we will use the parametrization method.

The parametrization method has its origin in a total of three articles, which are [CFdlL03a],
[CFdlL03b] and [CFdlL05], written by X. Cabré, E. Fontich and R. de la Llave. The method
is quite recent but it has been proved to be extremely useful since, by the way it works, it has
extremely good synergy with numerical computations.

The main idea of the parametrization method is the following: consider a dynamical system
F : U ⊂ Rn → R with a fixed point at the origin i.e. F (0) = 0. Given an invariant subspace E
of DF (0), we ask ourselves if it exists an invariant manifold tangent to this subspace. One way
of finding it consist in looking for K : U ⊂ Rp → Rn, such that K(0) = 0 and DK(0)Rp = E,
satisfying

F ◦K = K ◦R, (1)

where R : U ⊂ Rp → Rp is a reparametrization.
One strategy for solving it is the following: we try to find approximate solutions of (1) i.e.

K≤m and R≤m (polynomials of degree ≤ m) such that

F≤m ◦K≤m(u)−K≤m ◦R≤m(u) = O(uN),

for an N sufficiently large. If that is possible, then we can find later a true solution for (1) close
to the approximated ones.

In the first chapter of this work, supported by [MHO09], we explain the general case of the
N -body problem. Also, in the same chapter, we analyse with more detail the restricted circular
planar three body problem. Even more, we present a suitable changes of variables, which comes
from the paper [McG73], which would be of great use along all the posterior calculus.

iii



iv INTRODUCTION

In the second chapter we explain in more detail how the parametrization method works.
We show first two cases where we can apply this methodology, even it is not strictly necessary
for our work. This is done for developing the intuition of the reader. Then we move to the case
we shall use for our problem.

The structure of all three cases works similar. We start by giving the necessary defini-
tions and notation. Later we show how to compute iteratively the terms of an approximate
parametrization. Finally we prove that there exist a real invariant manifold and that the ap-
proximate parametrization is close to it. This chapter is supported by the articles [BFdlLM07],
[BFM], [CFdlL03a], [CFdlL03b], [CFdlL05] and the books [HCF+16] and [KK01].

In the third chapter we will move to all the computations done for proving that the new vec-
tor field of the parabolic stable manifold satisfy the hypothesis for applying the parametrization
method. Once we have done that we will work with a series expansion of the differential equa-
tions for obtaining an approximated parametrization of degree four. We had chosen this degree
because is the smallest one we need to know exactly the internal dynamic of the parametriza-
tion. Then, for degree greater or equal to five, it will be only necessary to compute iteratively
the parametrization itself.

In the fourth and last chapter we implement numerically the parametrization method with
the parametrization computed before. We use MATLAB software to do so. Later we compare
the results and evolution of the error with another methodology called the graph transform
method, explained in the article [MS14], which we will call simply graph method from now and
beyond.

Finally we attach two appendices. The first contains a summary of the parametrization
method for parabolic periodic vector fields. The other one contains the MATLAB code for the
parametrization method and the graph method used in our work.

To sum up, we remark one of the most important points of this project. It works with the
parametrization method which, even it is quite recent, it has been proven to be an extremely
effective tool from both, the computational and theoretical point of view. There are still studies
that analyse how to apply that in complete different fields. We consider that the fact of using
fresh methodology is quite interesting and appealing.

Also, since we have studied the comparison of the graph method for a fixed order, this work
allows people interested in that method to continue from here by computing and analysing the
error of higher degrees. Even they could find a way to generalize its evolution. There is still a
whole world to explore.



Chapter 1

The N-Body Problem

In this chapter we present one of the most important problems in celestial mechanics: the
N -body problem.

Consider N spherical masses, which can be considered then as point masses, in R3. The
N -body problem studies their evolution according to the classical mechanics and Newtonian
gravitational forces.

First of all we introduce some notations and concepts that will be used along all the work,
this is done in Section 1.1. After, in Section 1.2, we present the differential equations that the
trajectories of the N -body problem follow according to their mutual gravitational attraction.

Later, in Sections 1.3 – 1.6 we show the simplest features of the N -body problem, namely
first integrals, equilibrium points,... Then, in Sections 1.7 and 1.8, we restrict ourselves to the
case N = 2 which can be solved explicitly. In Section 1.9, we consider an special case: when
N = 3, one body has zero mass and all the bodies are moving circularly into a plane.

Finally, in Section 1.10, we present the set of orbits we will study: the parabolic orbits at
infinity.

1.1 Preliminary concepts
The universal gravitation Newton’s law give rise to a system of second-order differential equa-
tions in R3N . Then it can be transformed into a system of first-order equations in R6N .

This system of 6N first order differential equations can be written as a Hamiltonian system.
Let H = H(t, q, p) : U ⊂ R2n+1 → R, be a Hamiltonian, where t can be considered as the

time, q = (q1, . . . , qn) as the position vector and p = (p1, . . . , pn) as the momentum vector. The
integer n is the number of degrees of freedom of the system.

The Hamiltonian defines the following set of differential equations:

q̇i = ∂H

∂pi
(t, q, p), ṗi = −∂H

∂qi
(t, q, p), (1.1)

for i = 1, . . . , n.
These differential equations can be resumed in a simple formula if we define the 2n-

dimensional vector z, the 2n× 2n skew symmetric matrix J and the gradient of H as

z =
[
q
p

]
, J =

[
0 I
−I 0

]
, ∇H =


∂H
∂z1
. . .
∂H
∂z2n

 ,
where 0 is the n×n zero matrix and I is the n×n identity matrix. Indeed, (1.1) can be written
as

ż = J∇H(z, t). (1.2)

1



2 CHAPTER 1. THE N -BODY PROBLEM

When H is independent of t, that is H : U ⊂ R2n → R, we call (1.2) conservative. Note that,
in this case, the differential equations (1.2) are autonomous.

A first integral for (1.2) is a smooth function F : U → R which is constant along the
solutions of (1.2). Some examples of first integrals in systems arising from classical mechanics
are the classical conserved quantities of energy, momentum, etc. Notice that if we have any
constant c ∈ R, then the level surface F−1(c) ⊂ R2n is an invariant set; i.e. if a solution starts
in this set it will remain there for all time.

1.2 The general case of the N-Body Problem
Consider that we have N ≥ 2 spherical masses in R3, which we are going to consider as particles
i.e., all the respective masses are concentrated in single points. The only forces that act on
them are their mutual Newtonian gravitational attraction. We want to study their motion
along time.

For the i-th body let qi ∈ R3 be its position and mi > 0 its mass. Let G be the gravitational
constant, which depends uniquely on the units chosen. The potential U is defined as

U =
∑

1≤i<j≤n

Gmimj

‖qi − qj‖
.

Then, from the Newton’s law, we obtain the following system of equations

miq̈i =
N∑

j=1,j 6=i

Gmimj(qj − qi)
‖qi − qj‖3 = ∂U

∂qi
, i = 1, . . . , N. (1.3)

We define pi := miq̇i as the momentum of the i-th particle and T as the kinetic energy:

T = 1
2

N∑
i=1

‖pi‖2

mi

= 1
2

N∑
i=1

mi‖q̇i‖2.

Then the Hamiltonian H is
H = T − U,

and the equations (1.3) become

q̇i = pi
mi

= ∂H

∂pi
, ṗi =

N∑
j=1,j 6=i

Gmimj(qj − qi)
‖qi − qj‖3 = −∂H

∂qi
. (1.4)

1.3 Classical first integrals
The N -body problem has ten known first integrals. We devote this section to present them.

Let
L = p1 + . . .+ pN

be the total momentum. From equation (1.4) we observe that L̇ = 0. Then, if we define the
centre of mass C as

C = m1q1 + . . .+mNqN ,

we obtain C̈ = 0, since Ċ = L. Thus the centre of mass of the system moves with uniform
rectilinear motion, that is, C = at + b, where the vectors a, b ∈ R3 are constants that depend
on the initial conditions.
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Each component of a and b corresponds to a first integral. So we have already found six
first integrals.

Let
A = q1 × p1 + . . .+ qN × pN

be the total angular momentum of the system, where × denotes the cross product. We claim
that it is constant along the trajectories. Indeed, we derive with respect to t and we obtain

dA

dt
=

N∑
i=1

(qi × ṗi + q̇i × pi)

=
N∑
i=1

miqi × qi +
N∑
i=1

N∑
j=1,j 6=i

Gmimjqi × (qj − qi)
‖qj − qi‖3 .

(1.5)

Since qi × qi = 0 we have that the first sum of the last equality in (1.5) is zero. The second
sum is also zero because qi × (qj − qi) = qi × qj − qi × qi = qi × qj and the sum also have these
terms with opposite sign.

Thus the three components of A are constant and we have obtained another three first
integrals.

The last first integral is H itself, so we have found the ten known first integrals of the
N -body problem.

1.4 Equilibrium points
Given a system of o.d.e., its behaviour around the hyperbolic equilibrium points is well un-
derstood, described by Hartman’s theorem, at a topology level, and by the stable manifold
theorem.

However, as we will prove here, there are no equilibrium points for the N -body problem.
Indeed, from equation (1.3) we have that an equilibrium point has to satisfy

∂U

∂qi
= 0, i = 1, . . . , N.

Now we observe that U is an homogeneous function of degree -1 i.e. U(tq) = t−1U(q). Then,
by the Euler’s theorem on homogeneous functions, we have

N∑
i=1

qi
∂U

∂qi
= −U. (1.6)

On the one hand, if there is an equilibrium point, the left part of (1.6) should be zero and,
consequently, also the right part. On the other hand, U is an strictly positive function, because
is the sum of strictly positive terms.

So we have U > 0 and then −U < 0, which enters in contradiction with the equality (1.6),
then we conclude that there are no equilibrium points in the N -body problem.

1.5 Central configurations
A common way to understand problems in dynamical systems is to look for the simplest possible
behaviours. We have seen in the previous section that there are no equilibrium points so here
we look for other types of “single solutions”.
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In this section we want to see whether the N -body problem has solutions of the form
qi(t) = φ(t)ai, where ai are constant vectors and φ(t) is the same scalar function for all i.
These particular solutions are called central configurations.

Substituting these expressions into (1.3) we get

ai|φ|3φ−1φ̈ =
N∑

j=1,j 6=i

Gmj(aj − ai)
‖aj − ai‖3 . (1.7)

In order to obtain solutions of this equation we notice that the right hand side of (1.7) is
constant. Then, |φ|3φ−1φ̈ must be also constant. Let λ ∈ R be its value. Then we have

aiλ =
N∑

j=1,j 6=i

Gmj(aj − ai)
‖aj − ai‖3 , i = 1, . . . , N, (1.8)

φ̈ = λφ

|φ|3
. (1.9)

First of all, we notice that the equation (1.9) is a simple ordinary differential equation in R
and one possible solution is φ(t) = αt2/3, where |α| = −(9λ/2)1/3. Then (1.9) can be solved for
non-positive values of λ.

However (1.8) is a non-trivial and non linear algebraic system whose solutions are only
known for the case N = 2, 3 and some special cases with N > 3. We will present some of them
in Section 1.6.

We will say that a configuration of N bodies is a central configuration, or c.c., if it is given
by vectors a1, . . . , aN satisfying (1.8).

Now we observe that if q = (q1, . . . , qN) is a c.c., then λq is it also. For this reason we
introduce the moment of inertia I, in order to measure the size of the system:

I = 1
2

N∑
i=1

mi‖qi‖2.

So we can rewrite system (1.8) as

∂U

∂qi
(a) + λ

∂I

∂qi
(a) = 0, (1.10)

with i = 1, . . . , N , a = (a1, . . . , aN).
Notice that we can consider (1.10) as a Lagrange function with λ as the Lagrange multiplier.

Because of this observation we can see a central configuration as a critical point of U restricted
to I = I0, where I0 is a constant. If we set I0 we will have already fixed the scale of the system.

We present now a method to compute λ.
Let a be the central configuration. Taking the dot product of equation (1.10) and a we

obtain
∂U

∂qi
(a) · a+ λ

∂I

∂qi
(a) · a = 0.

Then, since U and I are homogeneous functions of degrees −1 and 2 respectively, we have from
the Euler’s theorem on homogeneous functions that

−U + 2λI = 0.

Isolating λ we get
λ = U(a)

2I(a) > 0.
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Notice that if we multiply (1.8) by mi and we sum over i we have that

N∑
i=1

miai =
N∑
i=1

N∑
j=1,j 6=i

Gmimj(aj − ai)
‖aj − ai‖3 = 0,

because of the antisymmetry.
So the centre of masses of a c.c. is the origin.
We remark that rescaling a c.c. or multiplying their vectors ai by an orthogonal matrix give

rise to other c.c.

1.6 Lagrange solutions
As we mentioned before, the central configurations are extremely hard to compute in general.
However, we study here a particular case where it is possible to find it.

We will consider that we are in the planar 3-body problem i.e. the motion of the three
bodies is restricted to a plane and their positions have only two degrees of freedom.

We will find c.c. of this problem by means of looking for critical points of U restricted to
I = I0 constant.

We define ρij = ‖qi − qj‖ as the distance between the bodies i and j. Then we can rewrite
the function U as

U = G
(
m1m2

ρ12
+ m2m3

ρ23
+ m3m1

ρ31

)
.

Let M = ∑3
i=1mi be the total mass of the system. We can assume that the centre of mass is

at the origin. We have
3∑
i=1

3∑
j=1

mimjρij =
3∑
i=1

3∑
j=1

mimj‖qi − qj‖

=
3∑
i=1

3∑
j=1

mimj‖qi‖2 − 2
3∑
i=1

3∑
j=1

mimjqi · qj +
3∑
i=1

3∑
j=1

mimj‖qj‖2

= 2MI − 2
3∑
i=1

mi

qi, 3∑
j=1

mjqj

+ 2MI

= 4MI.

Then we obtain
I = 1

4M

3∑
i=1

3∑
j=1

mimjρij.

Now we notice that taking I as a constant is equivalent to fix

I∗ = 1
2(m1m2ρ12 +m2m3ρ23 +m3m1ρ31),

since I∗ = MI.
Thus the conditions that U has to satisfy to have a critical point on the set I∗= constant

is (see (1.10)):
−Gmimj

ρ2
ij

+ λmimjρij = 0, (i, j) = (1, 2), (2, 3), (3, 1). (1.11)

System (1.11) has a unique solution that is ρ12 = ρ23 = ρ31 = G/λ.
This solution, attributed to Lagrange, corresponds to an equilateral triangle with λ as a

scale parameter.
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1.7 The Two-Body Problem
In the case of only two bodies, it is possible to fully solve the equations.

First we define the following constants:

µ1 = m1

m1 +m2
, µ2 = m2

m1 +m2
, µ = m1 +m2, M = m1m2

m1 +m2
.

Then we define the coordinates (q, u,G, v) as

q = µ1q1 + µ2q2, G = p1 + p2,

u = q2 − q1, v = −µ2p1 + µ1p2.

Here we can interpret the new variables: q is the centre of mass, G is the total linear momentum,
u is the position of the second body taking the first one as the origin and v is the scalar
momentum.

With these variables we can define the following Hamiltonian:

H = ‖G‖
2

2µ + ‖v‖
2

2M − m1m2

‖u‖
,

and we obtain the corresponding equations of motion:

q̇ = G

µ
= ∂H

∂G
, Ġ = 0 = −∂H

∂q
,

u̇ = v

M
= ∂H

∂v
, v̇ = −m1m2u

‖u‖3 = −∂H
∂u

.

So the linear momentum G is a first integral and the centre of mass g moves following a
rectilinear motion.

Since the centre of mass is in the origin we take the initial conditions q = G = 0. Then we
can reduce the problem only to the variables u, v. That is, we need to solve:

ü = −Gµu
‖u‖3 .

This is a particular case called the Kepler problem, which we will study in more detail in the
following section.

1.8 The Kepler problem

1.8.1 Definition and properties
The Kepler problem is a particular case of the 2-body problem where we consider that one body
is so massive that their position is fixed on the linear term. The second body is considered to
have mass equal to one.

Then, if we define q ∈ R3 as the position of the second body and k := Gm, where m is the
mass of the first body, we obtain that its motion is described by

q̈ = − kq

‖q‖3 . (1.12)

If we define p = q̇ we can obtain the Hamiltonian of (1.12):

H = ‖p‖
2

2 − k

‖q‖
. (1.13)
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Therefore the Kepler problem can be defined either by equation (1.12) or the Hamiltonian
(1.13). Then we notice that the case we presented in Section 1.7 can be reduced to it with
m = µ = m1 +m2.

Let A = q× p the angular momentum, which we have already proved at Section 1.3 that it
is constant and their components are first integrals of the system.

We will study the motion of the Kepler problem in function of A. First of all we set the
following equality:

d

dt

(
q

‖q‖

)
= q̇ · (q · q)− (q · q̇) · q

‖q‖3 = (q × q̇)× q
‖q‖3 = A× q

‖q‖3 . (1.14)

Now we separate the problem in two cases, depending on whether A is zero or not.

1) If A = 0.
In this case we observe from (1.14) that q = ω‖q‖, where ω is constant. So we can see
that the motion is confined in a straight line.
Setting the line of motion as one of the coordinate axes we obtain a system with one
degree of freedom. Then the computation of first integrals is straightforward.

2) If A 6= 0.
In this case we notice that A is orthogonal to q and p. Then the motion takes place on a
plane which is orthogonal to A and invariant.
We take the last coordinate axis as the one who crosses along the vector A. Then the
equations of motion are the same as (1.12) but with q ∈ R2, since the third component is
zero.
We consider A = (0, 0, c), with c = ‖A‖ 6= 0, and we set q in polar coordinates: q =
(r cos θ, r sin θ, 0). Using properly (1.14) we have

r2θ̇ = c,

which integrating we obtain the Kepler’s third law: The square of the orbital period of a
planet is proportional to the cube of the semi-major axis of its orbit.
As a consequence, we prove that the area described by the second body grows linearly
with constant rate c/2. This fact is known as the Kepler’s second law.
First we have that the area a(t) described by the body in function of the radius r and
the angle θ is equal to a θ/(2π) part of the total area of a circle.
We have that a = θr2/2. Then

da

dθ
= r2

2 ⇒
da

dt
= r2

2
dθ

dt
= θ̇r2

2 = c

2 .

Integrating and using the fact that a(0) = 0 we obtain a(t) = ct/2.

1.8.2 Resolution of the Kepler problem
Here we present a possible strategy for solving the Kepler problem. We remark that there are
others.

We multiply equation (1.14) by k and then we have

k
d

dt

(
q

‖q‖

)
= A× kq

‖q‖3 = −A× −kq
‖q‖3 = −A× ṗ = ṗ× A.
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Integrating we get

k

(
e+ q

‖q‖

)
= p× A, (1.15)

where e is a constant vector, coming from the integration.
Notice that if take the dot product of equation (1.15) with A and use that q · A = 0, we

obtain that e · A = 0. We study the vector e as a function of the values of A.
If A = 0, we have that e = −q/‖q‖ and then e lies on the straight line of motion and it has

modulus equal to one.
If A 6= 0, the vector e lies into the invariant plane, orthogonal to A. From now on and for

the rest of the section we consider only this case.
Taking dot product by q on both sides of equation (1.15) we get

k(e · q + ‖q‖) = q · (p× A) = A · (q × p) = A · A = ‖A‖2 = c2.

Then
e · q + ‖q‖ = c2

k
. (1.16)

We study the cases depending on e:
If e = 0 we obtain that ‖q‖ = c2/k, which is constant. Then, since ‖q‖ = r and r2θ̇ = c, we

get θ̇ = k2/c3. In this case the second body moves on a circle with constant angular velocity.
If e 6= 0 we take ε = ‖e‖ > 0. It is convenient to consider the polar coordinates r, θ of the

second body, where θ is the angle respect the first axis. We denote by g the angle of e respect
the first axis. Then the angle f between e and the body is f = θ − g.

Thus e · q = εr cos f and we can rewrite (1.16) as

r = c2/k

1 + ε cos f . (1.17)

Now we introduce the line l that is at distance c2/kε of the origin and orthogonal to the vector
e. Then, equation (1.17) can be rewritten as

r = ε

(
c2

kε
− r cos f

)
. (1.18)

The interpretation of (1.18) is that the distance from the origin to the second body is ε times
the distance from it to the line l. With this we deduce Kepler’s first law: the motion of the
second body is on a conic section of eccentricity ε with one focus at the origin.

We recall that in the case 0 < ε < 1 the motion is an ellipse, for ε = 1 it is a parabola and
for ε > 1 a hyperbola.

1.9 The Restricted Planar Circular Three Body Prob-
lem

1.9.1 Definition, equations and Hamiltonian
The general case of the three body problem is unsolved and it is believed to be non-integrable.
For this reason several simplifications are widely studied. One of them is known as the restricted
planar three body problem.

The restricted three body problem considers that the mass of one of the bodies is so small
that we can say that it is equal to zero. The other two bodies will be called primaries and,
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rescaling the units of mass, we will consider that the first has mass 1− µ and the other one µ,
where µ ∈ (0, 1/2].

Let qi ∈ R2, i = 1, 2, 3 be the position of the i-th body. Namely, the motion lies in an
invariant plane. Then the Restricted Planar Three Body Problem (RP3BP) has the following
differential equation system:

m1q̈1 = Gm1m2(q2 − q1)
‖q2 − q1‖3 ,

m2q̈2 = Gm2m1(q1 − q2)
‖q1 − q2‖3 ,

q̈3 = Gm1(q1 − q3)
‖q1 − q3‖3 + Gm2(q2 − q3)

‖q2 − q3‖3 .

(1.19)

Notice that the first two equations of (1.19) show that the motion of the first two particles (the
primaries) are exactly the same as the 2-body problem, since the influence of the third body is
zero. They describe Keplerian orbits.

For this reason the main point of the RP3BP is to compute the behaviour of the third body
under the influence of the primaries. If we assume that the orbit of the primaries are circular,
we have the Restricted Planar Circular Three Body Problem (RPC3BP).

Using a suitable change of variables, see [MHO09], we can fix the first body of mass 1− µ
at the position (−µ, 0) and the second one with mass µ at (1− µ, 0).

Defining q3 = (x, y) as the new variables and the function U as

U(x, y) = 1− µ
((x+ µ)2 + y2)1/2 + µ

((x− 1 + µ)2 + y2)1/2 ,

the system becomes
ẍ = x+ 2ẏ + ∂U

∂x
,

ÿ = y − 2ẋ+ ∂U

∂y
.

(1.20)

Now we introduce the variables X, Y defined as

X = ẋ− y,
Y = ẏ + x,

which makes the system Hamiltonian.
The Hamiltonian associated to the motion of the third particle in these variables is

H(x, y,X, Y ) = 1
2(X2 + Y 2)− xY + yX − U(x, y).

Indeed, the conjugate derivations match

ẋ = X + y = ∂H

∂X
,

ẏ = Y − x = ∂H

∂Y
,

Ẋ = Y + ∂U

∂x
= −∂H

∂x
,

Ẏ = −X + ∂U

∂y
= −∂H

∂y
.

(1.21)
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1.9.2 Equilibrium solutions
As we mentioned before, the general case of the 3-body problem has no equilibrium points.
However, once we have fixed the position of the primaries in the RPC3BP, there are five fixed
points for the third body which are well known. That is due to the fact that we are using a
reference system which is rotating.

From the definition of equilibrium point of systema(1.21) we obtain that an equilibrium
point has to satisfy

X + y = 0, Y − x = 0,

Y + ∂U

∂x
= 0, −X + ∂U

∂y
= 0.

(1.22)

If we add the first equation of (1.22) with the last one and we subtract the third and the second
we get

x+ ∂U

∂x
= 0, y + ∂U

∂y
= 0.

Considering now the function

V (x, y) = (x2 + y2) + 2U + µ(1− µ),

known as the amended potential, we have that the last conditions are equivalent to have

∂V

∂x
= ∂V

∂y
= 0.

Thus an equilibrium solution is a critical point of the amended potential. To compute these
points we are going to consider two cases

1. If the points do not lie in the line of the primaries: L4,L5.

In this case we will work with the distances of the points respect to the primaries

d2
1 = (x− 1 + µ)2 + y2, d2

2 = (x+ µ)2 + y2. (1.23)

From (1.23), we obtain

x2 + y2 = µd2
1 + (1− µ)d2

2 − µ(1− µ),

and substituting in V we obtain

V = µd2
1 + (1− µ)d2

2 + 2µ
d1

+ 2(1− µ)
d2

.

Because we are looking for critical points of V , d1 and d2 have to satisfy

∂V

∂d1
= 2µd1 −

2µ
d2

1
= 0, ∂V

∂d2
= 2(1− µ)d2 −

2(1− µ)
d2

2
= 0.

This system has a unique solution which is d1 = d2 = 1, corresponding to two symmetric
points respect to y = 0, see (1.23). The two points L4,L5 are the vertexes of an equilateral
triangle whose base is the segment created by the two primaries, one point for each
orientation.
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2. If the points lie in the line of primaries: L1,L2,L3.
In this case we look for the points with the form y = 0. Then V will be expressed as a
function with a single variable x.

V (x, 0) = Ṽ (x) = x2 ± 2µ
x− 1 + µ

± 2(1− µ)
x+ µ

+ µ(1− µ).

We want Ṽ to be positive in its domain, so the choice of signs will be determined by the
interval where x lies

1) If x < −µ, we take − and −.
2) If −µ < x < 1− µ, we take − and +.
3) If x > 1− µ, we take + and +.

Now, since Ṽ (x)→∞ when x→ {±∞, µ, 1−µ} we have that there’s at least one critical
point at each interval.
We want to see that there exactly one for everyone.
Taking derivatives of Ṽ twice with respect x we get

∂2Ṽ

∂x2 = 2± 4µ
(x− 1 + µ)3 ±

4(1− µ)
(x+ µ)3 ,

that have the signs chosen as we set before. So the second derivative is always positive
and V is a convex function, thus there is only one critical point per interval.
This leads us to prove the existence of the so called libration points L1,L2,L3.

So we have found the five equilibrium points, also known as Lagrangian points, that we
were looking for.

Figure 1.1: Graphical representation of the Lagrangian points (in red) respect the primaries
(in black).

1.9.3 Hill’s region
The Restricted Planar Circular Three Body Problem has a first integral known as the Jacobi
constant. The projection of its levels sets to the position coordinates is what is called a Hill’s
region.
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For a given value of the Jacobi constant, the motion in the RPC3BP can only take place in
the corresponding Hill’s region.

In order to compute the Hill’s region, we introduce the following first integral for system
(1.20):

H(x, y) = 1
2(ẋ2 + ẏ2)− 1

2(x2 + y2)− U(x, y).

The Jacobi constant C is then defined as

C = −2H(x, y) + µ(1− µ) = (x2 + y2)− 2U(x, y)− (ẋ2 + ẏ2) + µ(1− µ),

and the amended potential V as before:

V (x, y) = (x2 + y2)− 2U(x, y) + µ(1− µ).

Notice that
V − (ẋ2 + ẏ2) = C.

So, from this equality, we will be able to determine where the orbits can lie.
We define the Hill’s region associated to C as

R(C) = {(x, y) : V (x, y) ≥ C},

including the boundary where the velocity is zero. For a fixed value of C, the motion can only
take place inside R(C).

1.10 The parabolic periodic orbits at infinity
We are interested in studying the parabolic stable manifold at infinity of the RPC3BP. That
is, the orbits arriving to infinity with zero velocity.

The first step of our study is to use adequate coordinate: the so called McGehee coordinates.

1.10.1 The McGehee coordinates
We present here a suitable change of coordinates of the system (1.20) that will help for the
study.

Let (x, y) ∈ R2 be the position of the third body on the invariant plane of the RPC3BP.
Then we consider this position as a complex number z = x+ iy and we introduce the McGehee
coordinates (q, p, θ, ω), see [McG73] and [MS14]:

x+ iy = 2
q2 e

−iθ,

ẋ+ iẏ = e−iθ
[
p+ i

(
q2ω

2 − 2
q2

)]
.

(1.24)

Proposition 1.10.1. The system of o.d.e. (1.20) with the change of variables (1.24) becomes

q̇ = −1
4q

3p,

ṗ = −q
4

4 σ2 + q6w2

8 − q6

8 µ(1− µ)σ1 cos θ,

θ̇ = 1− 1
4q

4ω,

ω̇ = −q
4

4 µ(1− µ)σ1 sin θ,

(1.25)
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where
σ1 = 1

f 3
µ

− 1
f 3
µ−1

, σ2 = 1− µ
f 3
µ

+ µ

f 3
µ−1

,

fm =
(

1 +mq2 cos θ + m2

4 q4
)1/2

.

Proof. We start the proof for the equations of q and θ.
We differentiate the first equation of (1.24):

ẋ+ iẏ = −4q̇
q3 e

−iθ − 2
q2 iθ̇e

−iθ.

If we equal them to the second equation of (1.24) and multiply by eiθ we get

p+ i

(
q2ω

2 − 2
q2

)
= −4q̇

q3 −
2
q2 iθ̇.

Taking the real part we obtain

p = −4q̇
q3 ⇒ q̇ = −1

4q
3p. (1.26)

And taking the imaginary part now

− 2
q2 θ̇ = q2ω

2 − 2
q2 ⇒ θ̇ = 1− 1

4q
4ω. (1.27)

To compute ṗ and ω̇ we differentiate the second equation of (1.24)

ẍ+ iÿ

= −iθ̇e−iθ
[
p+ i

(
q2ω

2 − 2
q2

)]
+ e−iθ

[
ṗ+ i

(
2q̇qw + q2ẇ

2 + 4q̇
q3

)]
.

(1.28)

Then, from system (1.20) we see that ẍ+ iÿ has to satisfy

ẍ+ iÿ = x+ iy + 2ẏ − 2iẋ+ ∂U

∂x
+ i

∂U

∂y
. (1.29)

We compute the terms of the right hand of (1.29) by parts

x+ iy = 2
q2 e

−iθ,

2ẏ − 2iẋ = −2i(ẋ+ iẏ) = −2ie−iθ
[
p+ i

(
q2ω

2 − 2
q2

)]
.

(1.30)

For the last term ∂U/∂x+ i∂U/∂y we use the notation fm, σ1, σ2. Then, with a few computa-
tions, we have

∂U

∂x
+ i

∂U

∂y
= −q

4

4 e
−iθσ2 −

q6

8 µ(1− µ)σ1. (1.31)

Combining (1.28), (1.29), (1.30) and (1.31) we obtain

−iθ̇e−iθ
[
p+ i

(
q2ω

2 − 2
q2

)]
+ e−iθ

[
ṗ+ i

(
2q̇qw + q2ẇ

2 + 4q̇
q3

)]
=

= 2
q2 e

−iθ − 2ie−iθ
[
p+ i

(
q2ω

2 − 2
q2

)]
− q4

4 e
−iθσ2 −

q6

8 µ(1− µ)σ1.

(1.32)
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Multiplying (1.32) by eiθ and taking the real part we get

θ̇

(
q2ω

2 − 2
q2

)
+ ṗ = 2

q2 + q2ω − 4
q2 −

q4

4 σ2 −
q6

8 µ(1− µ)σ1 cos θ.

Using (1.27) and isolating ṗ we have

ṗ = q6w2

8 − q4

4 σ2 −
q6

8 µ(1− µ)σ1 cos θ, (1.33)

and we are done for ṗ.
If we multiply (1.32) again by eiθ and take its imaginary part we get

−θ̇p+ q̇qω + q2ω̇

2 + 4q̇
q3 = −2p− q6

8 µ(1− µ)σ1 sin θ.

Using (1.26), (1.27) and isolating ω̇ we have

ω̇ = −q
4

4 µ(1− µ)σ1 sin θ. (1.34)

Summarizing (1.26), (1.27), (1.33) and (1.34) we obtain the system of differential equations for
the McGehee coordinates

q̇ = −1
4q

3p,

ṗ = −q
4

4 σ2 + q6w2

8 − q6

8 µ(1− µ)σ1 cos θ,

θ̇ = 1− 1
4q

4ω,

ω̇ = −q
4

4 µ(1− µ)σ1 sin θ.

The system (1.25) is the one we will use along this work. One of the great advantages it
has is that the phase q = 0 corresponds to the infinity and p = 0 to zero velocity.

We call the parabolic infinity to the set

I∞ := {q = p = 0},

which correspond to the points which have arrived at infinity with zero velocity. This set is
foliated by periodic orbits, indeed, for any θ0, ω0 ∈ R we obtain a periodic orbit of the form
(0, 0, θ0 + t, ω0), belonging to I∞. Any of these periodic orbits has a parabolic stable manifold
associated to it, see [McG73].

Our goal is to apply the parametrization method to compute a good approximation of these
parabolic manifolds.



Chapter 2

The Parametrization Method

In a dynamical system, orbits can have extremely different behaviours. The simplest ones
are the equilibrium points, that is, motions that stay at a single point forever. Other simple
behaviours, are either the periodic orbits or quasiperiodic motions, which lie in a torus.

The objects where these motions take place are called invariant sets. Namely, for a given
initial condition in an invariant set, the motion is confined in it.

Under appropriate conditions, these simple invariant objects (equilibrium points, periodic
orbits, invariant tori, etc.) have associated invariant manifolds (every point in the invariant
manifold tends to the invariant set either backwards or forwards) which turn out to be also
invariant sets.

These invariant manifolds provide the skeleton of the qualitative behaviour around the
invariant object they are associated to.

With the arrival of the computers, the study of invariant manifolds started to be not only
qualitative but also quantitative. As a consequence researchers are getting more and more
interest in the development of efficient algorithms for the computation of these invariant sets.

At the same time, the problems and applications related to the computation of invariant sets
had gained more complexity, motivating new research around the development of computational
algorithms and software implementations.

It is an interesting fact that the synergy between software implementation and mathematical
methodology had made both parts to gain force and more refinements along the last thirty years.

The parametrization method comes from this new trend. It is a novel method, introduced by
X. Cabré, E. Fontich and R. de la Llave in the articles [CFdlL03a], [CFdlL03b] and [CFdlL05],
which has emerged with the idea of creating new methodology in the theory of computation of
invariant manifolds.

As his name suggests, the parametrization method looks for the invariant manifolds as
parametrized embedded manifolds. In addition, the internal dynamics on it is also provided.

The parametrizations of the invariant manifold and the dynamics are solutions the invari-
ance equations. Normally we will try to find the internal dynamic as simply as possible, even
sometimes linear. This proceeding adapts the parametrization to the geometry of the object we
are studying, and leads to simplifications that are extremely useful when we try to build soft-
ware implementation. For this reason the parametrization method has good synergy between
mathematical theory and software implementations.

The proofs of the parametrization method consist in computing iteratively approximations
of the parametrization near the invariant manifold. There are theoretical theorems ensuring
that these computable approximations converge to a parametrization of the real manifold.

With this kind of method we can see intuitively that this methodology leads to develop
efficient numerical computations.

In conclusion, the parametrization method combines theoretical and practical knowledge.

15
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Even when the method has been exploited in a big amount of situations along the last fifteen
years it remains a lot of contexts to be explored.

In this section we will present how the parametrization method works for some concrete
cases: maps having hyperbolic and parabolic points and periodic vector fields having parabolic
equilibrium points.

For our project we will only need the case of these vector fields, since we are studying the
RPC3BP. However, we have considered that it would be a good idea to present also the two
cases for maps because it helps to develop the intuition about how the parametrization method
works.

2.1 Preliminaries
Even when the parametrization method can deal with multidimensional invariant manifolds,
we restrict our exposition to the one dimensional case. We point out that on the one hand, this
will be enough for our purposes because the parabolic manifold in RPC3BP is one dimensional,
when a Poincaré map is considered. On the other hand, this restriction simplifies a lot the
exposition and let of the reader to gain some intuition.

We will look for the one-dimensional stable manifold of a fixed point, which we will consider
it to be at the origin, of some concrete dynamical system. For the sake of notation we will define
x as a one-dimensional variable, which represents the stable subspace, and y as an n-dimensional
one.

The systems under consideration can be either discrete, given by a map F (x, y) : R1+n →
R1+n, or continuous, given by a vector field Z(t, x, y) : R× R1+n → R1+n.

To finish this preliminary section we introduce some notation.
We define E1 as the one-dimensional subspace generated by the first variable and E2 as the

n-dimensional space generated by the last n variables. We also define πi as the projection onto
Ei, for i = 1, 2, and π2,l as the projection onto the l-th coordinate of E2. Then E2,l := π2,lE2.

The parametrization K will be of the form K : R → R1+n : u → K(u) for maps and
K : R × R → R1+n : (t, u) → K(t, u) for vector fields, where t represents the time. Then the
invariance equations are, respectively:

F ◦K(u) = K(ũ), Z(t,K(t, u)) = DuK(t, u)u̇+ ∂tK(t, u).

We have that ũ and u̇ are the internal dynamics of the manifold for the discrete and continuous
case, respectively. We define R : R→ R1+n as R(u) := ũ and Y : R→ R1+n as Y (u) := u̇. The
invariance equation are rewritten as:

F ◦K(u) = K ◦R(u), Z(t,K(t, u)) = DuK(t, u)Y (u) + ∂tK(t, u).

Remark. Notice that we have imposed the internal dynamics u̇ = Y (u) to be independent of
time. In fact, Y could be constructed with a time-depending form. However it is possible to get
one which only depends on u.
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Figure 2.1: Graphical representation of the parametrization method for maps.

From now we will describe briefly how the method works only for maps. The case of vector
fields is analogous.

The main idea is to look for iteratively functions K≤m and R≤m such that the invariance
equation is satisfied up to an order error, i.e

F ◦K≤m(u)−K≤m ◦R≤m(u) = O(um+1), (2.1)

for m large enough and setting O(um) as
O(um)
um

bounded when h→ 0.

Both K≤m and R≤m will be computed by induction.
The case m = 1 will be determined from the stable manifold theorem, which says that the

parametrization must contain the fixed point and must be tangent to the x-axis. Then we will
have

K(0) = 0, DK(0) = (1, 0)T .
In the induction step, for m + 1 ≥ 2, we assume that we have K≤m, R≤m satisfying (2.1).
Then we want to find some functions Km+1, Rm+1 such that K≤m+1 := K≤m + Km+1 and
R≤m+1 := R≤m +Rm+1 satisfy

F ◦K≤m+1(u)−K≤m+1 ◦R≤m+1(u) = O(um+2).

When m is large enough, the error term is small enough to start a fixed point argument.
That is, we look for K>m satisfying

F ◦ (K≤m +K>m) = (K≤m +K>m) ◦R.

We will prove the existence and useful properties ofK>m by using functional analysis techniques
as the Banach fixed point theorem. For instance, using the appropriate Banach space, we can
check that K>m(u) = O(um+1).

For this project, which is focused in numerical approximation, we will focus on the actual
computation of K≤m and R≤m.

In Section 2.2, we will deal with maps having the origin as a hyperbolic critical point. Then
we will move to Section 2.3, where the maps have a parabolic critical point. This case works
remarkably different from the last one. Finally, in Section 2.4, we will deal with periodic vector
fields with a parabolic critical point at the origin. There the method works in a different way
as maps but the main idea is preserved.
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2.2 Hyperbolic points in maps
To illustrate the parametrization method we begin by showing the simplest case, namely, in-
variant manifolds associated to hyperbolic critical points.

2.2.1 The maps under consideration and main result
Let us to consider Cr maps, with r ≥ 2, of the form F = (F 1, F 2) : U ∈ R1+n → R1+n:

F 1(x, y) = λx+
r∑
i=2
F 1
i (x, y) +O(|(x, y)|r+1),

F 2,l(x, y) = µlyl +
r∑
i=2
F 2,l
i (x, y) +O(|(x, y)|r+1),

(2.2)

for l = 1, . . . n.
The variable x is one-dimensional, y is n-dimensional, y = (y1, . . . , yn) and the parameters

λ and µl satisfy, respectively,
0 < |λ| < 1, |µl| > 1. (2.3)

The functions F 1
i , F

2,l
i are homogeneous polynomials of degree i. To set the notation we

introduce
F 1
i (x, y) =

∑
k+|α|=i

ak,αx
kyα, F 2,l

i (x, y) =
∑

k+|α|=i
blk,αx

kyα,

where α is a multi-index vector: yα = yα1
1 yα2

2 . . . yαn
n and |α| = α1 + . . .+ αn.

Remark. Since we are looking for maps with one-dimensional stable manifold, we assume that
there is only one eigenvalue of the linear part that has modulus less than one. The general case
can be also considered.

The main goal in this section is to prove the following theorem:

Theorem 2.2.1. Let F : U ∈ R1+n → R1+n be a Cr map of the form (2.2) satisfying (2.3).
Then there exist K : [−ρ, ρ]→ R1+n and R : R→ R, both Cr, satisfying the invariance equation

F ◦K = K ◦R. (2.4)

The proof of this theorem will be divided in two parts. First we will compute the so called
formal part, K≤m, which is an accurate approximation of K, and the exact computation of R.
Then we will move to the proof of properties of the remainder K>m.

2.2.2 Formal part
As we said in the introduction of this chapter, we search K≤m, R≤m satisfying

F ◦K≤m(u)−K≤m ◦R≤m(u) = O(um+1). (2.5)

We present now a proposition showing a way to compute K≤m, R≤m. As we will see along
the prove there are other choices of K≤m and R≤m.

The strategy we follow is to obtain the simplest inner dynamics R.
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Proposition 2.2.1. Let F be a Cr map of the form (2.2) satisfying (2.3). Take m ∈ N,
1 ≤ m ≤ r. Then equation (2.5) has a solution of the form:

K≤m(u) =
(
u+

m∑
i=2

c1
iu

i,
m∑
i=2

c2,l
i u

i

)T
, R(u) = λu,

where λ is the only eigenvalue of the linear part of F that has modulus less than one and c1
i , c

2,l
i

are known.

Proof. Since we are looking for invariant manifolds for the origin, the parametrization must
contain it. For this reason we will ask K to satisfy K(0) = 0.

We have also stated that the parametrization, i.e. the stable manifold, has to be tangent to
the invariant subspace associated to the eigenvalue λ. In our case it corresponds to the x-axis.
So we will also ask K to satisfy K ′(0) = (1, 0)T , where here the second 0 is n-dimensional.

Since we want K(0) = 0 and K ′(0) = (1, 0)T , the parametrization K has to be set of the
form K(t) = (t, 0) +O(t2). Then we take K≤1 = (t, 0)T .

Now we want choose R≤1 such that K≤1, R≤1 satisfy (2.5) with m = 1.
We substitute K≤1 and R≤1 into (2.5). The main point is that the linear terms have to

be cancelled. Taking only at the first order terms of equation (2.5) we obtain that R≤1 has to
satisfy (

λu
0

)
−
(
R≤1(u)

0

)
= 0.

So we take R≤1(u) = λu.
As we commented in the introduction of this chapter, the parametrization method wants

to take R the simplest possible. In this case, as we will show, it is possible to fix R(u) = λu
and we only need to modify iteratively K≤m.

Now we compute K≤m to eliminate the terms of orders m, for 2 ≤ m ≤ r. We start with
the case m = 2.

We want K≤2 to be of the form K≤2 = (t + c1
2t

2, c2,l
2 t

2)T , l = 1, . . . , n. Substituting K≤2

into (2.5) and taking only the coefficients of second order we get

λc1
2 + a2,0 − λ2c1

2 = 0,

µlc
2,l
2 + bl2,0 − λ2c2,l

2 = 0.

Therefore we obtain the coefficients

c1
2 = a2,0

λ2 − λ
, c2,l

2 =
bl2,0

λ2 − µl
.

Remark. We notice that it is always possible to compute c1
2, c

2,l
2 because λ and µ satisfy (2.3),

which implies that λ2 − λ and λ2 − µl are always different from 0.

Now we deal with the general case K≤m for 2 ≤ m ≤ r. For convenience, we introduce the
notation [·]j, which means to take the coefficients of order j.

We proceed by induction. Assume that the approximated invariance equation holds true
for m. That is

F ◦K≤m(u)−K≤m ◦R(u) = O(um+1),

where K≤m is of the form stated in the theorem. We look for coefficients c1
m+1, c

2,l
m+1 ∈ R such

that
K≤m+1(u) = K≤m(u) + (c1

m+1u
m+1, c2,l

m+1u
m+1)T . (2.6)
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The goal is then to compute c1
m+1, c

2,l
m+1 such that K≤m+1 would satisfy (2.5). We introduce

the following terms:

γ1
m+1 =

[
m+1∑
i=2

F 1
i ◦K≤m+1

]
m+1

=
m+1∑
i=2

[
F 1
i ◦K≤m+1

]
m+1

,

γ2,l
m+1 =

[
m+1∑
i=2

F 2,l
i ◦K≤m+1

]
m+1

=
m+1∑
i=2

[
F 2,l
i ◦K≤m+1

]
m+1

.

Then, if we substitute K≤m+1 into (2.5) and we take the terms of order m+ 1 we get

λc1
m+1 + γ1

m+1 − λm+1c1
m+1 = 0,

µlc
2,l
m+1 + γ2,l

m+1 − λm+1c2,l
m+1 = 0,

(2.7)

and consequently we can take c1
m+1 and c2,l

m+1 as

c1
m+1 = γ1

m+1
λm+1 − λ

, c2,l
m+1 = γ2,l

m+1
λm+1 − µl

.

We remark that c1
m+1, c

2,l
m+1 are well defined for any m because of (2.3).

With this construction we have that K≤m+1 defined in (2.6) satisfies the approximated
invariance equation

F ◦K≤m+1 −K≤m+1 ◦R = O(um+2)

and therefore the induction proof is complete. We then note that we have found a construction
of the parametrization and its internal dynamic as we wanted.

With the Proposition 2.2.1 we have finished the formal part. Now it only remains to deal
with the reminder K>m that will end the proof of Theorem 2.2.1.

2.2.3 The reminder
Once we have computed K≤m for m large enough it would be interesting to measure how
accurate it is. We want to know if this approximate parametrization is close to the real stable
manifold.

We define K>m as a Cr function having its first m derivatives at the origin equal to zero
and satisfying

F ◦ (K≤m +K>m) = (K≤m +K>m) ◦R. (2.8)

The functions F,R and K≤m are, respectively, the map, the internal dynamic on the invariant
manifold and the approximation of the parametrization provided in Proposition 2.2.1. Then
we can consider K>m as “the remainder” of the approximate parametrization K≤m.

The function K>m cannot be computed explicitly in the general case but there are ways to
ensure its existence and uniqueness when m is large enough.

The most usual way to do this is to transform (2.8) as a fixed point equation for K>m and
then work with the standard contraction mapping theorem:

Theorem 2.2.2. (Banach’s Contraction Mapping Principle): Let (M,d) be a complete metric
space and let T : M →M be a contraction mapping i.e. for all x, y ∈M

d(T (x), T (y)) ≤ κd(x, y),
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with 0 < κ < 1. Then T has a unique fixed point x0, and for each x ∈M

lim
n→∞

T n(x) = x0.

Moreover,
d(T n(x), x0) ≤ kn

1− kd(x, T (x)).

Proof. See [KK01], pages 41-43.

We construct from (2.8) a contraction operator T , depending on K≤m, such that K>m is a
fixed point i.e. T K>m = K>m.

Then, if we have K>m
0 satisfying

d(T (K>m
0 ), K>m

0 ) < δ,

we will have that
d(K>m, K>m

0 ) < δ

1− κ.

With these bounds we are able to make some estimations about the accuracy of the numerical
computations for K≤m.

Since our main goal is the formal solution i.e. the computations done in Proposition 2.2.1
we will not give explicit details of the proofs involved in this part. However we will show the
sketch of how the construction of the operator T works.

First of all we remark that the map F can be written of the form

F = A+N,

where A is the constant diagonal matrix with coefficients λ, µl defined in Proposition 2.2.1 and
N satisfies N(0) = 0, DN(0) = 0.

Then, with the aim of simplifying the proofs, we will rescale the maps involved in the
equations. Let H be a map and δ > 0 a real number. We define Hδ as

Hδ(x) = 1
δ
H(δx).

Then we have that the invariance equation (2.4) holds in the ball of radius δ if and only if

F δ ◦Kδ = Kδ ◦Rδ

holds in the ball of radius one. Notice also that

F δ = A+N δ,

with N δ(0) = 0, DN δ(0) = 0 and ‖N δ‖Cr is arbitrarily small in the ball of radius three centred
at the origin, taking δ sufficiently small.

Remark. For all δ > 0, the rescaling of K,R will not affect the conditions K(0) = 0, K ′(0) =
(1, 0)T and R(u) = λu.

As we said before, we are looking for a K>m, with DiK(0) = 0, i = 0, . . . ,m such that
K = K≤m +K>m satisfies the invariance equation (2.4). This is equivalent to ask for K>m to
satisfy

AK≤m + AK>m +N ◦ (K≤m +K>m) = K≤m ◦R +K>m ◦R,
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that can be rewritten as
AK>m −K>m ◦R = −N ◦ (K≤m +K>m)− AK≤m +K≤m ◦R. (2.9)

This equation leads to work with the linear operator S defined as
S(H) = AH −H ◦R, (2.10)

which acts over maps H : B1 ⊂ R→ R1+n, where B1 is the unit ball centred at the origin and
H belongs to the Banach Space Γs,l, defined as follows.

Let s ∈ N ∪ {ω} and l ∈ N, with s ≥ l. Then

Γs,l :=
{
H : B1 ⊂ R;H ∈ Cs, DkH(0) = 0 for 0 ≤ k ≤ l, sup

x∈B1

(
DlH(x)
|x|

)
<∞

}
,

endowed with the norm

‖H‖Γs,l
:= max

{
‖H‖C0(B1), . . . , ‖DsH‖C0(B1), sup

x∈B1

(DlH(x)/|x|
}

if s ∈ N,

‖H‖Γω,l
:= ‖Dl+1H‖C0(B1) if s = {ω}

becomes a Banach space. As it is usual, the first problem we need to overcome to write
(2.9) as a fixed point equation is to prove that the operator S has a left-hand side inverse. This
is done in the following lemma:
Lemma 2.2.1. Under all the assumptions made in this section, let r ∈ N ∪ {ω}. Then
S : Γr−1,m → Γr−1,m is a bounded operator. Moreover ‖S−1‖ can be bounded by a constant
independent of the scaling parameter δ.
Remark. If r = {ω}, then Γr−1,m = Γω,m.
Proof. See [CFdlL03a], pages 19-21.

Now, using the operator S defined in (2.10), we rewrite equation (2.9) as
S(K>m) = −N ◦ (K≤m +K>m)− AK≤m +K≤m ◦R. (2.11)

By Proposition 2.2.1 we have that the right part of (2.11) vanishes up to order m at the origin
when K>m ∈ Γr−1,m. Since, by Lemma 2.2.2, S is invertible in Γr−1,m we can rewrite the
invariance equation (2.4) as the fixed point equation

K>m = T (K>m),
where T is defined as

T (K>m) = S−1[−N ◦ (K≤m +K>m)− AK≤m +K≤m ◦R].
Then, since we are assuming that the non-linear operator

N (H) = −N ◦ (K≤m +H)− AK≤m +K≤m ◦R
is Cr small, we can prove that T = S−1 ◦ N is a contraction in the Banach space Γr−1,m.

We present the following lemma:
Lemma 2.2.2. Under all the assumptions made in this section, let r ∈ N∪{ω}. Then T maps
the closed unit ball B̄r−1

1 of Γr−1,m into itself, is a contraction in B̄r−1
1 with the Γr−1,m norm

and, consequently, has a fixed point K>m in B̄r−1
1 .

Proof. See [CFdlL03a], page 22.

With that lemma we have proved the existence of a Cr−1 map K>m that satisfies (2.8).
However we would like it to be Cr instead. In the article [CFdlL03a], at page 23, there is a
proposition that proves that K>m is, indeed, Cr.

Then K = K≤m + K>m and R computed in Proposition 2.2.1 and Lemma 2.2.2 are the
functions that Theorem 2.2.1 claimed to exist.
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2.3 Parabolic points in maps
In this section we will work with a type of map slightly different respect the hyperbolic case.
We will see that it is not possible to obtain a parametrization with the proceeding that we
presented on Section 2.2.

The reason why the procedure in the hyperbolic case does not work in the parabolic one is
because it assumes that the maps have no resonances, and in the parabolic case they actually
have.

However, we will be able to present an alternative way of computing the parametrization
up to any order. We emphasize that in the parabolic case, for example, the internal dynamic
will not be linear and the computations will be a bit harder, but not so much.

2.3.1 The maps under consideration and the main result
Let F be a Cr function F = (F 1, F 2) : U ∈ R1+n → R1+n, r ≥ 2 such that F (0, 0) =
0, DF (0, 0) = Id that holds the following conditions:

Let be N,M ∈ N such that 2 ≤ N,M ≤ r and F satisfies

DjF 1(0, 0) = 0 for 2 ≤ j ≤ N − 1, (2.12)

DjF 2(0, 0) = 0 for 2 ≤ j ≤M − 1, (2.13)
∂NF 1

∂xN
(0, 0) < 0, ∂MF 2

∂xM
(0, 0) = 0, (2.14)

Spec ∂MF 2

∂xM−1∂y
(0, 0) ⊂ {z ∈ C |Re z > 0} if M ≤ N. (2.15)

We define L = min(N,M) and η = 1 + N − L and assume that r > 2N − 1. We write
F = (F 1, F 2) = Id +∑r

i=L Fj + F̃r+1 of the form

F 1(x, y) = x+
r∑

i=N
F 1
i (x, y) +O(|(x, y)|r+1),

F 2,l(x, y) = yl +
r∑

i=M
F 2,l
i (x, y) +O(|(x, y)|r+1),

(2.16)

where F 1
i , F

2,l
i are, as in the hyperbolic case, homogeneous polynomials of degree i and F̃r+1 =

O(|(x, y)|r+1). Notice that Fi(x, y) = (F 1
i (x, y), F 2,l

i (x, y)).
We will also define

aN,0 := aN,0,...,0, bM,0 := (b1
M,0,...,0, . . . , b

n
M,0,...,0)>,

and the matrix

BM−1,1 =

b
1
M−1,1,0,...,0 . . . b1

M−1,0,0,...,1
. . . . . .

bnM−1,1,0,...,0 . . . bnM−1,0,0,...,1

 .
We notice that aN,0 < 0 and bM,0 = 0 by the condition (2.14) and BM−1,1 has eigenvalues

with real positive part by (2.15) when M ≤ N . Otherwise we do not ask any condition over
BM−1,1.

As in the hyperbolic case, we are interested in prove the following theorem:

Theorem 2.3.1. Let F : U ∈ R1+n → R1+n be a map of the form (2.16) satisfying the
properties (2.12)–(2.15). Then there exist K : [0, ρ)→ R1+n and R : R→ R, Cr at (0, ρ), such
that satisfy the invariance equation

F ◦K = K ◦R.
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As before, the proof will be divided in two parts: the formal part and the reminder one, as
we set in the previous section.

2.3.2 Formal part
As we commented at the beginning of this section, since 1 ∈ specDF (0), equation (2.7) can
not be solved.

Therefore we have to present an alternative method for the computation of K≤m, R≤m. To
do this we will use the following proposition, presented in [BFdlLM07]:

Proposition 2.3.1. Let F be a Cr of the form (2.16) satisfying (2.12)–(2.15). Let m ∈ N be
such that 2 ≤ m ≤ r. Then there exists polynomials K≤m, R≤m of the form

R≤m =
{

R1 +RN if N ≤ m < 2N − 1,
R1 +RN +R2N−1 if m ≥ 2N − 1,

K≤m =
{ ∑m−N+1

i=1 Ki if N ≤M,
(∑m−N+1

i=1 Ki
1,
∑m−M+1
i=1 Ki

2,l) if N > M,

where Ki, Ri are homogeneous polynomials of degree i, K1(u) = (u, 0)T , R1(u) = u, such that

F ◦K≤m(u)−K≤m ◦R≤m(u) = O(um+1).

Remark. When N < M we do not need condition (2.15) to determine K and R.

Proof. As we settled in the introduction, the parametrization has to contain the fixed point,
which is the origin. For this reason we ask K and R to satisfy that K(0) = 0, R(0) = 0.

Then K≤m and R≤m will be of the form

K≤m(u) =
m∑
i=1
Ki(u), R≤m(u) =

m∑
i=1
Ri(u). (2.17)

For this proof we define Ki
1 := π1K

i, Ki
2,l := π2,lK

i. Then we use the notation

K≤m1 (u) =
m∑
i=1
c1
iu

i, K≤m2,l (u) =
m∑
i=1
c2,l
i u

i, R≤m(u) =
m∑
i=1
diu

i.

So K≤m = (K≤m1 , K≤m2,l ), Ki(u) = (c1
iu

i, c2,1
i ui, . . . , c2,n

i ui) and Ri(u) = diu
i.

The main point of the proof is to solve iteratively the equation

F ◦K≤m(u)−K≤m ◦R≤m(u) = O(um+1) (2.18)

and determine Km and Rm for each step.
Actually what we are going to compute in each iteration are the coefficients c1

i , c
2,l
i , di.

We start computing the case m = 1, so we want to know K1(u), R1(u). We substitute them
into the equation (2.18) and obtain

K1(u)−K1 ◦R1(u) = O(u2).

Then, as we mentioned at the introduction of the hyperbolic case, we want K(u) such that
K(0) = 0 and K ′(0) = (1, 0)T . For this reason we take

K1(u) = (K1
1(u), K1

2,l(u)) = (u, 0), R1(u) = u.

We remind that we have defined E1 as the subspace generated by the one-dimensional variable x
and E2,l as the projection of the l-component of the subspace E2 generated by the n-dimensional
variable y.

We divide the proof in two different cases, depending on the relation between N and M :
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1) Case N ≤M .
To compute the order m we are going to divide the calculus in different cases:

a) If 2 ≤ m < N .
First of all we notice that this case is void if N = 2.
From (2.17) and, since F = Id +O(|(x, y)|N), we write

K1 +K2 + . . .+Km −K1 ◦R≤m − . . .−Km ◦R≤m = O(um+1). (2.19)

Therefore all the terms of order m are obtained form the left part of (2.19). We will
determine Km and Rm such that we can eliminate precisely these terms.
We start with the second order i.e. m = 2:
When we look at the second order terms of (2.19) we get

K2 −K1 ◦R2 −K2 ◦R1 = 0.

Then we can take R2 = 0 and let K2 be free.
Now we want to see that we can take Rm = 0 and Km free for m = 2, . . . , N − 1.
We will prove it by induction.
Suppose that Rp = 0 for 2 ≤ p < l ≤ N − 1, where l = p+ 1. Then we have

K1 + . . .+K l −K1 ◦ (R1 +Rl)− . . .−K l ◦ (R1 +Rl) = O(ul+1).

From here we compare the terms of order l to obtain the equality

K l −K1 ◦Rl −K l ◦R1 = 0.

If we project into the first component we obtain directly that Rl = 0. Then we have
that K l is free.
So we have R2 = . . . = RN−1 = 0 and K2, . . . , KN−1 are free.

b) If m ≥ N .
In this case we have

m∑
j=1

Kj+
m∑
j=1

Fj ◦K≤m

−
m∑
j=1

Kj ◦ (R1 +RN + . . .+Rm) = O(um+1).
(2.20)

When m = N we compare the terms of order N form (2.20) and we have

KN + FN ◦K1 −K1 ◦RN −KN ◦R1 = 0. (2.21)

Since R1(u) = u we have that KN is free. Also if we project (2.21) onto E1 we obtain
that F 1

N ◦K1 = RN . Thus aN,0 = dN . We notice that the projection of the left-side
of (2.21) onto E2 vanishes directly.
When m > N we can obtain the terms from the expression

K1 + . . .+Km + FN ◦ (K1 + . . .+Km−N+1) + . . .

+Fm ◦K1 = K1 ◦ (R1 +RN + . . .+Rm) + . . .

+Km ◦R1 +O(tm+1).
(2.22)

We are going to compute Km−N+1 and Rm assuming that we already know Kp and
Rq for all p < m−N + 1, q < m. To do so we will work on the projections onto E1
and E2,l by π1, π2,l respectively.
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b.1) Projection onto E2,l.
When we project (2.22) by π2,l and we take only the terms of order m we get

c2,l
m + blN−1,1,0,...,0c

2,1
m−N+1 + blN−1,0,1,...,0c

2,2
m−N+1 + . . .

+blN−1,0,0,...,1c
2,n
m−N+1 = (m−N + 1)c2,l

m−N+1dN

+c2,l
m + Γ2,l

m ,

(2.23)

where Γ2
m := (Γ2,1

m , . . . ,Γ2,n
m ) depends on the coefficients of F,K2, . . . , Km−N ,

RN , . . . , Rm−1. Then, if we write (2.23) in matrix notation we have

(BN−1,1 − (m−N + 1)aN,0Id)c2
m−N+1 = Γ2

m, (2.24)

where c2
m−N+1 = (c2,1

m−N+1, . . . , c
2,n
m−N+1).

The reason why the matrix BN−1,1− (m−N + 1)aN,0Id is invertible depends on
the relation between N and M .
If N = M we have that BN−1,1 = BM−1,1 has eigenvalues with real positive part
and, since aN,0 < 0, we have that all of them are non-zero.
If N < M we have that BN−1,1 = 0 and (m−N + 1)aN,0Id is invertible.
Hence in both cases we can solve (2.24) and obtain c2

m−N+1 that will determine
Km−N+1

2 .
b.2) Projection onto E1.

We proceed exactly as the case b.1 but projecting (2.22) by π1. Then we get

c1
m +NaN,0,...,0c

1
m−N+1 + aN−1,1,0,...,0c

2,1
m−N+1

+ aN−1,0,1,...,0c
2,2
m−N+1 + . . .

= dm + (m−N + 1)c1
m−N+1dN + c1

m + Γ1
m.

Then, isolating cm−N+1 and dm, we have

(2N −m− 1)aN,0c1
m−N+1 − dm = “known terms”. (2.25)

Notice that these “known terms” depend on c2
m−N+1, so its mandatory to compute

them first in the step b.1. The way we solve equation (2.25) will depend on the
value of m.
If m 6= 2N − 1 we can take dm = 0 and determine c1

m−N+1 from (2.25).
If m = 2N − 1 we have fixed the value of dN and coefficient c1

N is free.

Then we have obtained K≤m, R≤m as we claimed at the statement of the proposition in
the case N ≤M .

2) Case N > M .

This case is not of our interest for the work so we will not develop its proof. However we
notice that it works on a similar way as the first one. See [BFdlLM07] for further details.

Then we have finished the formal part and we have R and a approximation of K, that we
will se now that it is accurate.
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2.3.3 The reminder
Our interest is, as in the hyperbolic case, to see how accurate is the computed parametrization
K≤m. We want to see that if m is large enough, then it will exist a real stable manifold near
of K≤m.

Let k ∈ N be such that 2N − 1 ≤ k ≤ r. We can decompose F = P +Qk, where P is of the
form

P (x, y) =
(
x+ aN,0x

N + yTfN−1(x, y) + fN+1(x, y)
y +BM−1,1x

M−1y + yTgM−2(x, y)y + gM+1(x, y)

)

and Qk is of order O(|(x, y)|k).
We apply Proposition 2.3.1 to the Taylor polynomial P with m = k − 1. We notice that

sometimes we will use the term m and other times k. In any case they are used, they will
always satisfy the relation

m+ 1 = k.

Then we get the corresponding K≤m : R→ R1+n and R : R→ R. We define the remainder of
order k:

Tk := P ◦K≤k−1 −K≤k−1 ◦R
= P ◦K≤m −K≤m ◦R,

(2.26)

where Tk is a polynomial such that Tk(u) = O(uk) = O(um+1) and DlTk(u) = O(uk−l) =
O(um+1−l) for 1 ≤ l ≤ r.

Our main goal is to prove the existence of a Cr function K>m such that

F ◦ (K≤m +K>m)− (K≤m +K>m) ◦R = 0. (2.27)

To do so we will transform the equation (2.27) into a fixed point equation for K>m and we will
use the fixed point theorem in some appropriate Banach spaces.

First of all, considering L = min(M,N), we fix η = 1 + N − L. Given E a Banach space,
t0 ∈ (0, 1), r ≥ 0 and k ∈ R, we introduce the Banach space

X k
r = {f : (0, t0)→ E|f ∈ Cr, max

0≤j≤r
sup

t∈(0,t0)
t−k+jη|Djf(t)| <∞},

with the norm
‖f‖r,k := max

0≤j≤r
sup

t∈(0,t0)
t−k+jη|Djf(t)|.

We perform some scaling in the maps, as we have done in the hyperbolic case but slightly
different. For any δ > 0, we define

Eδ(x, y) = (x, δy),

and
F̃ = E−1

δ ◦ F ◦ Eδ,
P̃ = E−1

δ ◦ P ◦ Eδ,
Q̃k = E−1

δ ◦Qk ◦ Eδ,
K̃≤m = E−1

δ ◦ K̃≤m,
T̃k = E−1

δ ◦ T̃k.

Scaling the equations (2.26) and (2.27) we obtain

T̃k = P̃ ◦ K̃≤m − K̃≤m ◦ R̃,
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and
F̃ ◦ (K̃≤m + K̃>m)− (K̃≤m + K̃>m) ◦ R̃ = 0. (2.28)

We have:

P̃ (x, y) =
(
x+ aN,0x

N + δyTfN−1(x, δy) + fN+1(x, δy)
y +BM−1,1x

M−1y + δyTgM−2(x, δy)y + δ−1gM+1(x, δy)

)

To avoid cumbersome notation, we skip the tilde symbol of our notation.
We will see that if δ is sufficiently small we can ensure that there exists K>m such that

(2.28) is satisfied.
The first step is to write equation (2.28) as a fixed point equation. Notice that (2.28) can

be rewritten as

(DP ◦K≤m)K>m −K>m ◦R = −Tk −Qk ◦ (K≤m +K>m)
−P ◦ (K≤m +K>m) + P ◦K≤m + (DP ◦K≤m)K>m.

(2.29)

This decomposition motivates to define the linear operator

L0(H) = (DP ◦K≤m)H −H ◦R. (2.30)

To deal with the derivatives of K>m, we introduce the linear operators

Lj(H) = (DP ◦K≤m)H −H ◦R(DR)j, j ≥ 1. (2.31)

We note that, if we have T ∈ Cr such that H∗ is a Cr solution of L0(H∗) = T , then, for
0 ≤ j ≤ r, Hj

∗ := DjH∗ has to be a solution of

Lj(Hj
∗) = T j,

where T j is defined by the recurrence

T 0 = T,

T j+1 = DT j −D(DP ◦K≤m)DjH∗ ◦R(DR)j−1D2R.
(2.32)

We recall that η = 1 +N − L and we define α and σ as

α := 1
N − 1 , σ := δα|aN,0|−1 sup

t∈(0,t0)
|fN−1(t, 0)t−N+1|.

Then we have the following lemma:

Lemma 2.3.1. If k > 2N − 1 and σ < α(k − 2N + 1), then the operators Lj : X k−N+1−jη
0 →

C0, j ≥ 0 defined in (2.30) and (2.31) are one to one.

Proof. See [BFdlLM07], page 849.

Now we want to find the inverse of Lj in an appropriate Banach space.
We notice that the equation (2.31) can be rewritten as

H = [(DP )−1 ◦K≤m]H ◦R(DR)j + [(DP )−1 ◦K≤m]T. (2.33)

If we iterate (2.33) and assume that

lim
i→∞

[
i∏

n=0
(DP )−1 ◦K≤m ◦Rn

]
H ◦Ri(DRi)j = 0,
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we can define the formal operator

Sj(T ) =
∑
i≥0

[
i∏

n=0
(DP )−1 ◦K≤m ◦Rn

]
T ◦Ri(DRi)j. (2.34)

The following lemma shows the relation between the operators Sj and Lj defined in (2.34) and
(2.30),(2.31) respectively:

Lemma 2.3.2. If k > 2N − 1 and σ < α(k − 2N + 1), then (2.34) defines a bounded linear
operator

Sj : X k−jη
0 → X k−N+1−jη

0 ,

satisfying
Lj ◦ Sj = Id on X k−jη

0 .

Moreover, (2.34) also defines a bounded linear operator

Sj : X k−jη
1 → X k−N+1−jη

1

and, if T ∈ X k−jη
1 , we have

D[Sj(T )] = Sj+1(T̃ ),
where

T̃ = DT −D(DP ◦K≤m)Sj(T ) + jSj(T ) ◦R(DR)j−1D2R. (2.35)

Remark. The conditions for k and σ of this lemma and Lemma 2.3.1 are the same. In addition,
formulae (2.32) and (2.35) are very related.

Proof. See [BFdlLM07], page 851.

To deal with the r-derivative of K>m, we will need to work with the operators S0 and S1

defined on the space X k−N+1
s , with s ≤ r.

Proposition 2.3.2. Let r > 0, k > 2N − 1 and σ < α(k − 2N + 1). Then if 0 ≤ s ≤ r

S0 : X k
s → X k−N+1

s and S1 : X k−η
s → X k−N+1−η

s

are bounded linear operators.

Remark. The conditions for k and σ of this lemma are the same than the ones in lemmas
2.3.1 and 2.3.2.

Proof. See [BFdlLM07], page 853.

Once we have found a right inverse of the linear operator L0, we are able to write equation
(2.29) as a fixed point equation. Indeed, using the definition (2.30) of L0 we can rewrite
equation (2.29) as

L0(K>m) = F(K>m),
where

F(K>m) = −Tk −Qk ◦ (K≤m +K>m)− P ◦ (K≤m +K>m)
+ P ◦K≤m + (DP ◦K≤m)K>m.

If L0 ◦ S0 = Id, in some appropriate Banach space, we have that for proving the existence of
K>m it is enough to solve the fixed point equation

K>m = S0 ◦ F(K>m). (2.36)



30 CHAPTER 2. THE PARAMETRIZATION METHOD

One of the main questions the reader could, and should, ask is which is this appropriate Banach
Space. Now we are able to answer it.

We have that Tk and Qk ◦ K≤m belong to X k
r and, by Proposition 2.3.2, S0 ◦ F(0) =

S0(−Tk − Qk ◦ K≤m) belongs to X k−N+1
r . For this reason we will look for a solution of the

equation (2.36) in X k−N+1
r .

Proposition 2.3.3. If t0 is small enough, equation (2.36) has a unique fixed point K>m :
[0, t0)→ R1+n in the sphere of radius ρ, Bk−N+1

r−1,ρ .

Proof. See [BFdlLM07], page 856.

Finally, combining the results of Propositions 2.3.1 and 2.3.3, we have found K = K≤m +
K>m and R satisfying the statement of Theorem 2.3.1.

2.4 Parabolic periodic orbits in time periodic vector fields
In this section we present the parametrization method for some concrete vector fields T -periodic
in time. This is the case where the computations will be used in our project, since the N -body
problem is a continuous dynamical system and T -periodic with T = 2π.

2.4.1 The vector fields under consideration and main result
Definition 2.4.1. A T -periodic vector field is a function Z(z, t), where z ∈ R1+n, t ∈ R
and Z(z, t+ T ) = Z(z, t).

We want to find a parametrization K(u, t) : R × T → Rn+1, with T = R/[0, T ], of a
one-dimensional invariant manifold . From the invariance condition, K(u, t) has to satisfy

d

dt
K(u, t) = Z(K(u, t), t),

that means
Z(K(u, t), t) = ∂uK(u, t)u̇+ ∂tK(u, t).

So, if we consider Y (u) = u̇ : R→ R as the internal dynamic of K, we obtain the form

Z(K(u, t), t) = ∂uK(u, t)Y (u) + ∂tK(u, t). (2.37)

We also ask K to satisfy K(0, t) = 0 and ∂uK(0, t) = ~v for a direction vector v. In our case ~v
will be ~e1.

We also assume that the vector field Z is of the form

Z(x, y, t) =
(
−axN + pN(x, y) + f(x, y, t)
xN−1By + qN(x, y) + g(x, y, t)

)
, (2.38)

where a > 0 and the n× n matrix B has eigenvalues with positive real part.
The functions pN , qN are, respectively, one-dimensional and n-dimensional sums of homo-

geneous polynomials of order N such that

pN(x, 0) = qN(x, 0) = 0, ∂yqN(x, 0) = 0,

and f, g are Cr functions, with r ≥ 2, of order O(‖(x, y)‖N+1).

Remark. It is also possible to solve the problem when the polynomials of (2.38) have different
degrees, but we will not do that case.
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In this section, as before, our main goal is to prove the following theorem:

Theorem 2.4.1. Let Z : U ⊂ R1+n×R→ R1+n be a T -periodic vector field of the form (2.38).
Then, for any ρ small enough, there exist K(u, t) : [0, ρ)×T→ R1+n and Y : R→ R such that
satisfy the invariance equation (2.37). Moreover K(u, t) is T -periodic in t.

As always, we divide the proof of the theorem by diving it into the formal part and the
remainder.

2.4.2 Formal part
The following proposition provides the invariant manifolds of parabolic periodic orbits:

Proposition 2.4.1. Let Z(z, t) be a T -periodic vector field, satisfying the hypotheses of Theo-
rem 2.4.1, with z defined as z = (x, y)T , for x ∈ R, y ∈ Rn. Then for any m ∈ N, 2 ≤ m ≤ r,
there exist K≤m(u, t) : R× T→ R1+n, Y ≤m+N−1(u) : R→ R of the form

K≤m(u, t) =
m∑
j=1

Kj(u, t), Y ≤m+N−1(u) =
m+N−1∑
j=N

Y j(u),

satisfying the invariance condition up to order m+N , namely

Z(K≤m(u, t), t)−DuK
≤m(u, t)Y ≤m+N−1(u) + ∂tK

≤m(u) = O(um+N). (2.39)

In addition, Kj and Y j can be taken of the form

Kj(u, t) = Kju
j + K̂j(t)uj+N−1,

Y j(u) = Yju
j,

(2.40)

where Kj,∈ R1+n, Yj ∈ R are constants and K̂j(t) : R→ R1+n is a T -periodic Cr function with
zero mean i.e.

T∫
0

K̂j(s)ds = 0.

Proof. We define the error

Em(u, t) :=
Z(K≤m(u, t), t)− ∂uK≤m(u, t)Y ≤m+N−1(u)− ∂tK≤m(u, t).

(2.41)

Despite the notation, Em is expected to be of orderm+N respect to u i.e. Em(u, t) = O(um+N).
We will start the computations of K≤m, Y ≤m+N−1 with the case m = 1. Since K has to

contain the origin and has to be tangent to the first axis, we take

K≤1(u, t) = K1u =
(
u
0

)
.

Then we want to compute Y ≤N such that (2.39) is satisfied for m equal to one. We substitute
K≤1 into (2.39) and we obtain

E1(u, t) =
(
−auN + f(u, 0, t)

0 + g(u, 0, t)

)
−
(

1
0

)
Y ≤N − 0. (2.42)

Taking Y ≤N = −auN we have that (2.42) is of order O(uN+1), as we wanted.
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Now we will construct K≤m+1, Y ≤m+N by induction.
Suppose that we have already computed K≤m, Y ≤m+N−1 satisfying Em(u) = O(um+N).

Then we want to find Km+1(u, t) and Y m+N(u) such that

K≤m+1(u, t) = K≤m(u, t) +Km+1(u, t), Y ≤m+N(u) = Y ≤m+N−1(u) + Y m+N(u)

satisfy (2.39) for the case m+ 1.
From definition of Em+1 and (2.41) we have

Em+1 = Z(K≤m +Km+1)− ∂u(K≤m +Km+1)(Y ≤m+N−1 + Y m+N)
− ∂t(K≤m +Km+1),

that is equivalent to

Em+1 = Z(K≤m)− ∂uK≤mY ≤m+N−1 − ∂tK≤m

+DZ(K≤m)Km+1

− ∂uK≤mY m+N

− ∂uKm+1Y ≤m+N−1

− ∂uKm+1Y m+N

+Z(K≤m +Km+1)− Z(K≤m)−DZ(K≤m)Km+1

− ∂tKm+1.

(2.43)

We recall that we want Em+1 = O(um+N+1). We will see that all the terms in (2.43) are at
least of order O(um+N). The ones of order m + N + 1 or higher will not be considered, since
they do not represent an inconvenience.

However, the terms of order m+N need to be eliminated or changed to higher order. This
is the criteria that we will use in order to choose Km+1, Y m+N .

First we compute the order of DZ(K≤m):

DZ(K≤m) =
(
−aNuN−1 cTuN−1

0 BuN−1

)
+O(uN) =: AuN−1 +O(uN),

for some c ∈ Rn and A as
A =

(
−aN cT

0 B

)
.

Now we estimate all the lines of (2.43).

1. The line Z(K≤m)−∂uK≤mY ≤m+N−1−∂tK≤m is O(um+N) because it is exactly Em and, by
induction hypothesis, it has that order.

2. The line DZ(K≤m)Km+1 is O(um+N) because it is O(u(N−1)+(m+1)).

3. Using previous argument, we can see that the lines ∂uK≤mY m+N and ∂uKm+1Y ≤m+N−1 are
both of order O(um+N) and ∂uKm+1Y m+N is O(u2m+N) = O(um+N+1), since m is greater
or equal to one.

4. By Taylor’s theorem, we have that Z(K≤m +Km+1)− Z(K≤m)
−DZ(K≤m)Km+1 is of the same order as D2Z(K≤m)

(
K l+1

)2
, that is O(u(N−2)+(2m+2)) =

O(u2m+N) = O(um+N+1), for the same reason we explained in point 3.

5. And the last line ∂tKm+1 is O(um+1).
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Recall that we are looking for Km+1 of the form:

Km+1(u, t) = Km+1u
m+1 + K̂m+1(t)um+N .

Then, since we want Em+1 = O(um+N+1), we need to choose Km+1, Y m+N satisfying

Em + AKm+1uN−1 − ∂uKm+1Y ≤m+N−1 − ∂uK≤mY m+N − ∂tKm+1

= O(um+N+1).
(2.44)

We solve the computation of Km+1 and Y m+N using the form (2.40).
We start by solving the equation for Km+1u

m+1. In this case is the equation associated with
the independent of t terms of order m+N .

We consider Km+1 = (K1
m+1, K

2,l
m+1) ∈ R × Rn, l = 1, . . . , n. As in Section 2.2, we define

[·]j as the terms of order j and [·]1j , [·]2j as their respective projections to the one-dimensional
variable x and n-dimensional y.

To obtain the t-independent coefficients of order m+N of the equation (2.44) we take the
average with respect to t in every term of (2.44) in the interval [0, T ]. Since Y N(u) = −auN
and ∂tKm+1(u, t) is of order O(um+1), we obtain

(
−aN cT

0 B

)
Km+1 + a(m+ 1)Km+1 −

(
Ym+N

0

)
=
[
−Em

]
m+N

, (2.45)

where Em is the average respect to t of Em in [0, T ]. We remark that it is known because it
only depends on K≤m−1 and Y m+N−1.

Now we separate (2.45) in two equations, one corresponding to the variable x and another
for the other n variables y:

−aNK1
m+1 + cTK2

m+1 + a(m+ 1)K1
m+1 − Ym+N =

[
−Em

]1
m+N

, (2.46)

(B + a(m+ 1)Id)K2
m+1 =

[
−Em

]2
m+N

. (2.47)

We start solving equation (2.47).
Since B has eigenvalues with positive real part we have that B + a(m + 1)Id is invertible.

In fact, it has eigenvalues with positive real part. So (2.47) can always be solved and we obtain
a unique solution:

K2
m+1 = −(B + a(m+ 1)Id)−1

[
Em

]2
m+N

.

Once we have computed K2
m+1 we can solve (2.46). Notice that we have

(m+ 1−N)aK1
m+1 − Ym+N =

[
−Em

]1
m+N

− cTK2
m+1, (2.48)

where the right part of (2.48) is now known.
We solve it depending on the value of m:

• If m+ 1 6= N we can take Ym+N = 0 and solve the equation (2.48) for K1
m+1.

• If m+ 1 = N we have that K1
N is a free term and Y2N−1 is uniquely determined by known

terms.
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To solve equation (2.44), the last computation which has to be done is the construction of
the periodic part K̂m+1(t) of Km+1(u, t). Notice that K̂m+1(t) is the coefficient associated to
um+N .

Substituting um+NK̂m+1(t) into (2.44) and taking into account the above computations for
um+1Km+1, we obtain that we have to solve

Êm − um+N∂tK̂m+1(t) = O(um+N+1), (2.49)

where Êm(u, t) := Em(u, t)− Em(u, t).
Equation (2.49) can be solved if we take K̂m+1(t) satisfying

∂tK̂m+1(t) =
[
Êm(u, t)

]
m+N

=
[
Em(u, t)− Em(u, t)

]
m+N

,

or equivalently

K̂m+1(t) =
t∫

0

[
Em(u, s)− Em(u, s)

]
m+N

ds. (2.50)

Remark. The function K̂m+1(t) is T -periodic since
[
Em(u, t)− Em(u, t)

]
m+N

has zero mean.

Finally, from (2.45) and (2.50) we have computed Km+1(u, t), Y m+N(u) of the form (2.40)
such that Em+1(u, t) = O(um+N+1).

2.4.3 The reminder
In this case we will work in a different way than the case of maps. Actually we are going to
prove that the proof corresponding to the reminder part for vector fields can be reduced to the
corresponding one for maps.

To prove the existence of the reminder we use the following proposition:

Proposition 2.4.2. It exists K(u, t) and Y (u) satisfying (2.37) with the vector field Z defined
in (2.38).

Proof. We start constructing two Poincaré maps F (x, y, t) : R1+n × R→ R1+n, R(u) : R→ R,
which will come from the flows of the vector field Z and the dynamic Y .

Using Section 2.4.2 we show that the maps F and R satisfy

F (K≤m(u, t), t)−K≤m(R(u), t) = O(um+N).

Then, by Theorem 2.3.1, it will exist a parametrization K(u, t) which satisfy the invariance
equation for maps, meaning

F (K(u, t)) = K(R(u), t).

Remark. Here the variable t of K(u, t) is considered as a parameter.

Finally we proof that this parametrization K(u, t) also satisfies the invariance equation
(2.37).

So we start by proving the reduction to the map case:
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Form flows to maps

From the invariance equation (2.37) we define ϕ(s; t, x, y), ψ(s; t, u) as the flows of the vector
fields Z and Y respectively, satisfying

ψ(t, t, x, y) = (x, y),
ϕ(t, t, u) = u.

Then (2.37) is equivalent to

ϕ(s; t,K(u, t))−K(ψ(s; t, u), s) = 0.

We have, by Proposition 2.4.1, that there exists a large m ∈ N such that the corresponding
K≤m(u, t) and Y (u) := Y ≤m+N−1(u) satisfy

Z(K≤m(u, t), t)−DuK
≤m(u, t)Y (u) + ∂tK

≤m(u) = O(um+N).

Then, for s ∈ [t, t+ T ], we have

ϕ(s; t,K≤m(u, t))−K≤m(ψ(s; t, u), s) = O(um+N). (2.51)

We introduce now the Poincaré maps

F (x, y, t) := ϕ(t+ T, t, x, y),
R(x) := ψ(T, 0, x) = ψ(t+ T, t, x).

(2.52)

Applying (2.51) with s = t+ T we obtain

F (K≤m(u, t), t)−K≤m(R(u), t) = O(um+N).

We remark that the map F is of the form F = P + Qk as we set in Section 2.3.3. The details
of this justification are in [BFM], page 50.

Then F satisfies the conditions of the Theorem 2.3.1, with k = m, and it will exist a
parametrization K(u, t) := K≤m(u, t) + K>m(u, t) with the internal dynamic R(u) = ψ(t +
T, t, u) such that

F (K(u, t), t) = K(ψ(t+ T, t, u), t). (2.53)
Notice that, by the uniqueness of the solution, K>m(u, t) and consequently K(u, t) are T -
periodic respect to t.

From maps to periodic flows

We have finished the first part, which is to reduce the vector field case to the map one. Now
we want to see that if K satisfies (2.53), then it will also satisfy (2.37).

Using the definitions (2.52) of F and R, equation (2.53) and the properties of general
solutions of vector fields we obtain

K(u, s) = ϕ(s; s+ T,K(R(u), s)), R(ψ(s; t, u)) = ψ(s; t, R(u)).

We introduce
Ks(u, t) = ϕ(t; s,K(ψ(s; t, u), s)),

remarking that Kt(u, t) = K(u, t).
We want to check that Ks(u, t) satisfies the invariant equation (2.53) for all s ∈ R, namely

F (Ks(u, t), t) = Ks(ψ(t+ T, t, u), t).



36 CHAPTER 2. THE PARAMETRIZATION METHOD

Computing both parts of the equality we have

F (Ks(u, t), t) = ϕ(t+ T, s,K(ψ(s; t, u), s)) = ϕ(t+ T, s+ T,K(ψ(s; t, R(u)), s))
= ϕ(t, s,K(ψ(s; t− T, u), s))

and
Ks(R(u), t)) = ϕ(t; s,K(ψ(s; t, R(u)), s)) = ϕ(t, s,K(ψ(s; t− T, u), s)).

So Ks(u, t) satisfies the invariant condition (2.53) for all s, as we wanted.
Once we know that we want to check that

Ks(u, t)−K≤m(u, t) = O(um+1), (2.54)

since it will be enough to proof that K(u, t) satisfies (2.37).
Indeed, applying Taylor’s theorem we obtain

Ks(u, t) = ϕ(t; s,K(ψ(s; t, u), s)) = ϕ(t; s,K≤m(ψ(s; t, u), s))

+
1∫

0

Dϕ(t; s,K≤m(ψ(s; t, u), s) + wK>m(ψ(s; t, u), s))K>m(ψ(s; t, u), s)dw.

Using now equality (2.51) we have

Ks(u, t)−K≤m(u, t) = O(um+N) +
1∫

0

DK≤m(u+ w(ϕ(s; t, u)− u), t)[ψ(s; t, u)− u]dw

+
1∫

0

Dϕ(t; s,K≤m(ψ(s; t, u), s) + wK>m(ψ(s; t, u), s))K>m(ψ(s; t, u), s)dw.

Since ψ(s; t, 0) = 0 and ψ(s; t, u) = u+O(uN) we obtain that (2.54) is satisfied.
From the uniqueness statement of Proposition 2.3.3 we have that

Ks(u, t) = K(u, t).

Then we get
K(ψ(s; t, u), s) = ϕ(s; t,Ks(u, t)) = ϕ(s; t,K(u, t)).

With this statement we have finished the remaining part, since K satisfies the invariant
equation for vector fields and all the properties stated and Theorem 2.4.1 is proved.



Chapter 3

Parabolic manifolds in the RPC3BP

In this Chapter we show how the parametrization method can be used to compute an approx-
imation of the parabolic stable manifold of each periodic orbits at infinity in the RPC3BP.
Recall that, as we presented in Section 1.10, the parabolic infinity can be seen as the set of
orbits (0, 0, θ0 + t, ω0) inside I∞ := {q = p = 0}.

To do so, we recall here system (1.25):

q̇ = −1
4q

3p,

ṗ = −q
4

4 σ2 + q6w2

8 − q6

8 µ(1− µ)σ1 cos θ,

θ̇ = 1− 1
4q

4ω,

ω̇ = −q
4

4 µ(1− µ)σ1 sin θ,

(3.1)

with
σ1 = 1

f 3
µ

− 1
f 3
µ−1

, σ2 = 1− µ
f 3
µ

+ µ

f 3
µ−1

, (3.2)

fm =
(

1 +mq2 cos θ + m2

4 q4
)1/2

. (3.3)

The strategy we will use is the following:

1) We emphasize that system (3.1) is not in the form stated in Proposition 2.4.1. Therefore,
the first thing we need to do is to prove that our result can be applied to system (3.1).
This is done by a change of variables and considering θ as the new independent variable,
in Section 3.1.
Once we know that system (3.1) has a parabolic manifold, it does not matter how we find
it. As a consequence we can work, if necessary, with the initial variables (q, p, θ, ω) but
with the variable θ as the new independent variable.
We consider the new system:

dq

dθ
= −1

4q
3p

1
1− 1

4q
4ω
,

dp

dθ
=
[
−q

4

4 σ2 + q6w2

8 − q6

8 µ(1− µ)σ1 cos θ
]

1
1− 1

4q
4ω
,

dω

dθ
= −q

4

4 µ(1− µ)σ1 sin θ 1
1− 1

4q
4ω
.

(3.4)

37
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2) Since the Taylor expansions of the functions involved plays a crucial role in the parametriza-
tion method, we explicitly compute the Taylor expansion of the vector field in (3.4). This
is done in Sections 3.2 and 3.3.

3) Finally, in Section 3.4, by using the algorithm presented in Section 2.4, we compute the
formal expansion of the parabolic manifold up to order four.

3.1 The parabolic invariant manifold
As we said at the beginning of this chapter, system (3.1) does not fit the setting in Theorem
2.4.1. However, there is a change of coordinates, preserving the parabolic character of a given
periodic orbit (q = p = 0, ω = ω0) in the parabolic infinity I∞, such that in these new
coordinates, the new systems satisfies the hypotheses of Theorem 2.4.1.

Indeed, it is clear that, in a neighbourhood of q = 0,
1

1− 1
4q

4w
= 1 +O(q4)

and from expressions (3.2) of σ1, σ2,

σ1 = O(q2), σ2 = O(1).

Then, system (3.4) is
dq

dθ
= −1

4q
3p+O(q7),

dp

dθ
= −1

4q
4 +O(q6),

dω

dθ
= O(q6),

which, as we commented, does not satisfy the hypotheses of the Theorem 2.4.1.
We introduce the change of variables

q = α + β

2 ,

p = α− β
2 ,

ω = ω0 + γq,

(3.5)

with ω0 ∈ R a the constant associated to the orbit of I∞ = (0, 0, θ(t), ω0) and α, β and γ as the
new variables. Note that conversely, we have that

α = q + p,

β = q − p,

γ = ω − ω0

q
.

(3.6)

We present the following proposition.
Proposition 3.1.1. The vector field generated by the variables α, β and γ is of the form

dα

dθ
= − 1

32(α4 + 3α3β + 3α2β2 + αβ3) +O(|(α, β)|6),
dβ

dθ
= 1

32(α3β + 3α2β2 + 3αβ3 + β4) +O(|(α, β)|6),
dγ

dθ
= 1

32(α3 + α2β − αβ2 − β3)γ +O(|(α, β)|5),

(3.7)
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and it satisfies the hypotheses of Theorem 2.4.1 with period T = 2π, N = 4, a = 1/32 and B
as the matrix

B =
(

1
32 0
0 1

32

)
.

Proof. The 2π-periodicity comes directly form the 2π-periodicity of θ in (3.1). Also the value
of N, a and B which (3.7) satisfies Theorem 2.4.1’s hypothesis.

Performing the change of variables (3.6): comes directly from its form.

dα

dθ
= dq

dθ
+ dp

dθ
= −1

4q
3(q + p) +O(q6) = −1

4

(
α + β

2

)3

α +O(|(α, β)|6),

dβ

dθ
= dq

dθ
+ dp

dθ
= 1

4q
3(q − p) +O(q6) = 1

4

(
α + β

2

)3

β +O(|(α, β)|6),

dγ

dθ
= 1
q

(
dω

dθ
− γ dq

dθ

)
= 1

4γq
2p+O(q5) = 1

4γ
(
α + β

2

)2
α− β

2 +O(|(α, β)|5).

Developing the binomials we get the form of the statement.

Then, we have that the original system (3.1) has an invariant manifold and a parametrization
K≤m near it can be computed by using the parametrization method.

3.2 The Taylor expansion of the vector field
Once we had proven the existence of the real stable manifold, we want to compute an approxi-
mate parametrization. To do so we will work with the Taylor expansion respect to q of system
(3.1). Namely, (p, ω) are acting as parameters. This is done in the following proposition:

Proposition 3.2.1. System (3.1) can be written as:

dq

dθ
=
∑
n≥0

q4n+3
(
− ω

np

4n+1

)
,

dp

dθ
=
∑
n≥0

q2n+4Ψn(θ, ω),

dω

dθ
=
∑
n≥0

q2n+4Φn(θ, ω),

(3.8)

where Ψn(θ, ω) and Φn(θ, ω) can be computed recursively, see (3.18) and (3.19).

Proof. Since q is small enough, dθ
dt
6= 0 and hence from (3.1) we have that

dq

dθ
= dq

dt

dt

dθ
= −1

4q
3p

1
1− 1

4q
4ω
,

dp

dθ
= dp

dt

dt

dθ
=
[
−q

4

4 σ2 + q6w2

8 − q6

8 µ(1− µ)σ1 cos θ
]

1
1− 1

4q
4ω
,

dω

dθ
= dω

dt

dt

dθ
= −q

4

4 µ(1− µ)σ1 sin θ 1
1− 1

4q
4ω
,

which is exactly (3.4).
Then, again since q is small enough and ω is bounded we have that

1
1− 1

4q
4ω

=
∑
n≥0

(1
4q

4ω
)n
,
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and (3.4) is rewritten as:

dq

dθ
= −1

4q
3p
∑
n≥0

(1
4q

4ω
)n
,

dp

dθ
=
[
−q

4

4 σ2 + q6w2

8 − q6

8 µ(1− µ)σ1 cos θ
] ∑
n≥0

(1
4q

4ω
)n
,

dω

dθ
= −q

4

4 µ(1− µ)σ1 sin θ
∑
n≥0

(1
4q

4ω
)n
.

(3.9)

Now, we compute the series expansion of σ1 and σ2 in (3.2). To do so we will compute the
series expansion of 1/f 3

m defined in (3.3).
Since

1 +mq2 cos(θ) + m2

4 q4 =
(

1 + m

2 q
2e−iθ

)(
1 + m

2 q
2eiθ

)
we obtain

1
f 3
m

= 1(
1 + m

2 q
2e−iθ

) 3
2
(
1 + m

2 q
2eiθ

) 3
2
. (3.10)

We emphasize that, if z ∈ C, |z| < 1, then

h(z) = 1
(1 + z) 3

2
=
∑
n≥0

cnz
n, cn =

(
−3

2
n

)
,

where cn are the binomial coefficients With the aid of this expansion we can rewrite (3.10) as

1
f 3
m

=
∑
n1≥0

cn1

(
m

2 q
2e−iθ

)n1
 ∑

n2≥0
cn2

(
m

2 q
2eiθ

)n2


=
∑

n1,n2≥0
cn1cn2

(
m

2

)n1+n2

q2(n1+n2)e−iθn1eiθn2

=
∑
n≥0

q2n
(
m

2

)n n∑
n1=0

cn1cn−n1e
−iθn1eiθ(n−n1).

We define ζn(θ) as

ζn(θ) =
n∑

n1=0
cn1cn−n1e

−iθn1eiθ(n−n1), (3.11)

that is

ζn(θ) =



1 n = 0,

2
n−1

2∑
k=0

ckcn−k cos((n− 2k)θ) n odd,

c2
n/2 + 2

n
2−1∑
k=0

ckcn−k cos((n− 2k)θ) otherwise.

Then 1/f 3
m will have the series expansion

1
f 3
m

=
∑
n≥0

q2n
(
m

2

)n
ζn(θ). (3.12)

By definition (3.2) of σ1, σ2 and using expression (3.12) of 1/f 3
m, one gets



3.2. THE TAYLOR EXPANSION OF THE VECTOR FIELD 41

σ1 =
∑
n≥0

q2n
[(
µ

2

)n
−
(
µ− 1

2

)n]
ζn(θ),

σ2 =
∑
n≥0

q2n
[
(1− µ)

(
µ

2

)n
+ µ

(
µ− 1

2

)n]
ζn(θ).

To simplify the notation we introduce

an =
(
µ

2

)n
−
(
µ− 1

2

)n
, bn = (1− µ)

(
µ

2

)n
+ µ

(
µ− 1

2

)n
,

and we obtain
σ1 =

∑
n≥0

q2nanζn(θ),

σ2 =
∑
n≥0

q2nbnζn(θ),
(3.13)

where ζn(θ) were defined in (3.11). After these preliminaries computations, we prove the
equalities of the statement one by one.

• Equation for q:
From expression (3.9) of our system we obtain that

dq

dθ
= −1

4q
3p
∑
n≥0

(1
4q

4ω
)n

= −
∑
n≥0

q4n+3 ω
np

4n+1

=
∑
n≥0

q4n+3
(
− ω

np

4n+1

)
,

as we wanted.

• Equation for p:
Again from (3.9) we have

dp

dθ
=
[
−q

4

4 σ2 + q6w2

8 − q6

8 µ(1− µ)σ1 cos θ
] ∑
n≥0

(1
4q

4ω
)n

= −q
4

4 σ2
∑
n≥0

(1
4q

4ω
)n

+ q6w2

8
∑
n≥0

(1
4q

4ω
)n

−
[
q6

8 µ(1− µ)σ1 cos θ
] ∑
n≥0

(1
4q

4ω
)n

(3.14)

We compute the three last lines in (3.14) separately:

1) It follows straightforwardly that:

q6w2

8
∑
n≥0

(1
4q

4ω
)n

=
∑
n≥0

q4n+6 ω
n+2

22n+3 . (3.15)
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2) From expression (3.13) of σ2 we have

q4

4 σ2
∑
l≥0

(1
4q

4ω
)l

= q4

4

∑
k≥0

q2kbkζk(θ)
∑

l≥0

(1
4q

4ω
)l

=
∑
k, l≥0

q2k+4l+4bkζk(θ)
ωl

4l+1

=
∑
n≥0

q2n+4
bn

2 c∑
m=0

bn−2mζn−2m(θ)
4m+1 ωm.

Defining now P 2
n,m(θ), with notation associated to σ2, as

P 2
n,m(θ) = bn−2mζn−2m(θ)

4m+1 ,

we obtain
q4

4 σ2
∑
l≥0

(1
4q

4ω
)l

=
∑
n≥0

q2n+4
bn

2 c∑
m=0

P 2
n,m(θ)ωm. (3.16)

3) Using again (3.13) for σ1, we have[
q6

8 µ(1− µ)σ1 cos θ
] ∑
n≥0

(1
4q

4ω
)n

= q6

8 µ(1− µ)
[
eiθ + e−iθ

2

]∑
k≥0

q2kakζk(θ)
∑

l≥0

(1
4q

4ω
)l

=
∑
n≥0

q2n+6
bn

2 c∑
m=0

(eiθ + e−iθ)µ(1− µ)
4m+2 an−2mζn−2m(θ)wm.

As in the previous case we define P 1
n,m(θ) as

P 1
n,m(θ) = (eiθ + e−iθ)µ(1− µ)

4m+2 an−2mζn−2m(θ),

obtaining [
q6

8 µ(1− µ)σ1 cos θ
] ∑
n≥0

(1
4q

4ω
)n

=
∑
n≥0

q2n+6
bn

2 c∑
m=0

P 1
n,m(θ)wm.

(3.17)

Then, substituting (3.15), (3.16) and (3.17) into (3.14) we obtain
dp

dθ
=
∑
n≥0

q2n+4Ψn(θ, ω),

with

Ψn(θ, ω) =



−1
4 n = 0,

ω
n+3

2

2n+2 −
n−1

2∑
m=0

(P 1
n−1,m(θ) + P 2

n,m(θ))ωm n odd,

−P 2
n,n

2
(θ)w n

2 −
n
2−1∑
m=0

(P 1
n−1,m(θ) + P 2

n,m(θ))ωm otherwise.

(3.18)
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This conclude the proof for the p component of our system.

• Equation for ω:
Recall that ω̇ = − q4

4 µ(1 − µ)σ1 sin θ. Therefore, using expression (3.13) of σ1, we have
that

ω̇ = −q
4

4 µ(1− µ)
[
eiθ − e−iθ

2i

]∑
n≥0

q2nanζn(θ)

=
∑
n≥0

q2n+4
(
−µ(1− µ)

4 anζn(θ)e
iθ − e−iθ

2i

)
.

Defining

Ωn(θ) = −µ(1− µ)
4 anζn(θ)e

iθ − e−iθ

2i ,

we obtain
ω̇ =

∑
n≥0

q2n+4Ωn(θ).

Therefore, using expression (3.9) of dω
dθ
, we have

dω

dθ
=
∑
k≥0

q2k+4Ωk(θ)
∑

l≥0
q4lω

l

4l


=
∑
k,l≥0

q2k+4l+4Ωk(θ)
ωl

4l

=
∑
n≥0

q2n+4
bn

2 c∑
m=0

Ωn−2m(θ)ω
m

4m .

Taking Φn(θ, ω) as

Φn(θ, ω) =
bn

2 c∑
m=0

Ωn−2m(θ)ω
m

4m (3.19)

we have
dω

dθ
=
∑
n≥0

q2n+4Φn(θ, ω),

as we wanted in our statement.

3.3 The dominant terms of our system
In this section we will compute the coefficients Ψn(θ, ω) and Φn(θ, ω), with n = 0, 1, 2, appearing
in Proposition 3.2.1.
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Proposition 3.3.1. The coefficients Ψn(θ, ω) and Φn(θ, ω) introduced in (3.8) and defined in
(3.18) and (3.19), satisfy, for n = 0, 1, 2:

Ψ0(θ, ω) = −1
4 ,

Ψ1(θ, ω) = ω2

8 ,

Ψ2(θ, ω) = − ω16 + 3
16µ(1− µ) cos2(θ)− µ(1− µ)

64 (15 cos(2θ) + 9),

Φ0(θ, ω) = 0,

Φ1(θ, ω) = 3
16µ(1− µ) sin(2θ),

Φ2(θ, ω) = −µ(1− µ)(2µ− 1)
64 (15 cos(2θ) + 9) sin(θ).

Remark. All the notation and formulae we will use, along the proof of this result, comes from
Proposition 3.2.1. We will use it without mention.

Proof. First we compute cn, an, bn.

n cn an bn
0 1 0 1
1 -3/2 1/2 0
2 15/8 (2µ-1)/4 µ(1− µ)/4

We compute now ζn(θ):

ζ0(θ) = 1,
ζ1(θ) = 2c0c1 cos(θ) = −3 cos(θ),

ζ2(θ) = c2
1 + 2c0c2 cos(2θ) = 15

4 cos(2θ) + 9
4 .

We start by proving the result for Ψn(θ, ω), n = 0, 1, 2. For that we need to compute P 1
n,m(θ)

and P 2
n,m(θ). It is straightforwardly checked that:

P 1
0,0(θ) = 0,

P 1
1,0(θ) = − 3

16µ(1− µ) cos2(θ),

P 1
2,0(θ) = µ(1− µ)(2µ− 1)

128 cos(θ)(15 cos(2θ) + 9),

P 1
2,1(θ) = 0.

P 2
0,0(θ) = 1

4 ,

P 2
1,0(θ) = 0,

P 2
2,0(θ) = µ(1− µ)

64 (15 cos(2θ) + 9),

P 2
2,1(θ) = 1

16 .
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Therefore, we obtain Ψn(θ, ω), n = 0, 1, 2 from (3.18):

Ψ0(θ, ω) = −1
4 ,

Ψ1(θ, ω) = ω2

8 − P
1
0,0(θ)− P 2

1,0(θ) = ω2

8 ,

Ψ2(θ, ω) = −P 2
2,1(θ)ω − P 1

1,0(θ)− P 2
2,0(θ)

= − ω16 + 3
16µ(1− µ) cos2(θ)− µ(1− µ)

64 (15 cos(2θ) + 9),

getting the result of the statement.
Now we move on the computation of Φn(θ, ω), n = 0, 1, 2. As for Ψn(θ, ω), we compute first

Ωn(θ):

Ω0(θ) = 0,

Ω1(θ) = −µ(1− µ)
4 a1ζ1(θ) sin(θ) = 3

16µ(1− µ) sin(2θ),

Ω2(θ) = −µ(1− µ)
4 a2ζ2(θ) sin(θ) = −µ(1− µ)(2µ− 1)

64 (15 cos(2θ) + 9) sin(θ).

And then, we can compute Φn(θ, ω):

Φ0(θ, ω) = 0,

Φ1(θ, ω) = 3
16µ(1− µ) sin(2θ),

Φ2(θ, ω) = −µ(1− µ)(2µ− 1)
64 (15 cos(2θ) + 9) sin(θ).

3.4 Computation of the approximate parametrization
As we mentioned before, the system (3.8), or equivalently (3.1), is not on the form that we need
to resolve it. For this reason we will use the change of variables (3.6) but only for the variables
α and β. We can work in this way since we had already proved the existence of a true stable
invariant manifold.

The new differential system is presented on the following proposition

Proposition 3.4.1. The system (3.8) can be rewritten as

dα

dθ
=
∑
n≥0

(
α + β

2

)4n+3
−ωn

(
α−β

2

)
4n+1

+
∑
n≥0

(
α + β

2

)2n+4

Ψn(θ, ω),

dβ

dθ
=
∑
n≥0

(
α + β

2

)4n+3
−ωn

(
α−β

2

)
4n+1

−∑
n≥0

(
α + β

2

)2n+4

Ψn(θ, ω),

dω

dθ
=
∑
n≥1

(
α + β

2

)2n+4

Φn(θ, ω).

(3.20)
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Where

Ψn(θ, ω) =



−1
4 n = 0,

ω
n+3

2

2n+2 −
n−1

2∑
m=0

(P 1
n−1,m(θ) + P 2

n,m(θ))ωm n odd,

−P 2
n,n

2
(θ)w n

2 −
n
2−1∑
m=0

(P 1
n−1,m(θ) + P 2

n,m(θ))ωm otherwise.

Φn(θ, ω) =
bn

2 c∑
m=0

Ωn−2m(θ)ω
m

4m

P 1
n,m(θ) = (eiθ + e−iθ)µ(1− µ)

4m+2 an−2mζn−2m(θ),

P 2
n,m(θ) = bn−2mζn−2m(θ)

4m+1 ,

ζn(θ) =



1 n = 0,

2
n−1

2∑
k=0

ckcn−k cos((n− 2k)θ) n odd,

c2
n/2 + 2

n
2−1∑
k=0

ckcn−k cos((n− 2k)θ) otherwise.

Ωn(θ) = −µ(1− µ)
4 anζn(θ) sin(θ),

an =
(
µ

2

)n
−
(
µ− 1

2

)n
bn = (1− µ)

(
µ

2

)n
+ µ

(
µ− 1

2

)n
,

Proof. It comes directly from Proposition 3.2.1 and the change of variable (3.6) for α and β.

Now we will compute, using the differential system (3.20), the parametrization K≤4(u, θ)
close to the real manifold and its dynamic Y (u). This parametrization is expected to have an
error order of O(u8). Then, from this approximate parametrization K≤4(u, θ), we are going to
return to the original variables.

3.4.1 Computation of the first coefficients
In this section we will compute the parametrization up to a order 4 for the system (3.1) by
using (3.20). We have chosen the fourth order because it is there when the internal dynamic
Y (u) is computed exactly.

We remark that in this particular case the periodic variable of K will be θ instead of the
usual t, which is the notation used in Chapter 2 and the Appendices.

To compute the approximated parametrization, we first compute this approximation in the
variables α, β and ω, that is the system (3.20). Then we will return to the original variables
corresponding to system (3.1).

The computations are resumed in the following theorem:
Theorem 3.4.1. The parametrization K(u, θ) of the stable invariant manifold and its dynamic
Y (u) for the differential system (3.20) can be of the form
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K(u, θ) =


u+ ω2

0
26 u

3 + 2Λu4

ω2
0

26 u
3

ω0 −
3

211µ(1− µ)[cos(2θ)− 1]u6

+O(u5),

Y (u) = − 1
32u

4,

with ω0, Λ ∈ R.

Remark. We said that K and Y can be of that form rather, as we have already commented in
Chapter 2, the are other possible choices.

Proof. To start with the proof we will remind the formulae involved in this resolution. Later
we will compute one by one the terms Km(u, θ), Y m+N−1(u), with m ≥ 1, satisfying

K≤m(u, θ) =
m∑
j=1

Kj(u, θ), Y ≤m+N−1(u) =
m+N−1∑
j=N

Y j(u). (3.21)

The functions Kj(u, θ) and Y j(u) are asked to be of the form

Kj(u, θ) = Kju
j + K̂j(θ)uj+N−1,

Y j(u) = Yju
j,

where Kj,∈ R1+n, Yj ∈ R are constants and K̂j(θ) : R → R1+n is a T -periodic function with
zero mean.

The algorithm and notation we will used are the one defined in Section 2.4, see also Appendix
A. The formulas that we will use in this proof are (2.41), (2.45), (2.47), (2.48), (2.50), which
are respectively

Em(u, θ) :=
Z(K≤m(u, θ), θ)− ∂uK≤m(u, θ)Y ≤m+N−1(u)− ∂θK≤m(u, θ).

(3.22)

(
−aN cT

0 B

)
Km+1 + a(m+ 1)Km+1 −

(
Ym+N

0

)
=
[
−Em(u)

]
m+N

, (3.23)

(B + a(m+ 1)Id)K2
m+1 =

[
−Em(u)

]2
m+N

, (3.24)

(m+ 1−N)aK1
m+1 − Ym+N =

[
−Em(u)

]1
m+N

− cTK2
m+1, (3.25)

K̂m+1(θ) =
θ∫

0

[
Em(u, s)− Em(u)

]
m+N

ds. (3.26)

We also remember that for this case we have a = 1/32, N = 4 and the matrix, which we call
it A, of (3.23) is

A =
(
−aN cT

0 B

)
=

−
1
8 −

3
32 0

0 1
32 0

0 0 0

 .
We can check that A is of this form by using the first two equations of (3.7) and the fact that
the sum of the differential equation for ω starts with degree six.
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Remark. The application of this case is slightly different from the algorithm presented in the
Appendices:

First, the fixed point of the system (3.20) is (0, 0, ω0), for any ω0 ∈ R, instead of the origin.
This will not be a major problem, we only have to take that in consideration when we

construct K≤1(u, θ), since the parametrization must contain that fixed point.
Second, the matrix B has a positive eigenvalue, which is 1/32, and a null one. That does

not satisfy the initial hypothesis, where it was demanded to have both eigenvalues with positives
values.

We can see that it will not be a problem when solving (3.24). This is due to the fact that
we are adding to B a diagonal matrix, which is a(m + 1)Id. Then, all the eigenvalues of the
matrix of (3.24) are positive. So the matrix B + a(m + 1)Id will be always invertible. This is
enough to solve the cohomological equations.

We compute now K≤m(u, θ) and Y ≤m+N−1(u) iteratively, starting with K1(u, θ) and Y 1(u):

1. K1(u, θ), Y 4(u)
This particular case has been already determined in Section 2.4. Since it has to contain
the fixed point and to be tangent to the first variable axis we have

K1(u, θ) =

 u0
ω0

 .
Then, if we want to obtain an error of O(u5), we have to choose Y 4(u) of the form

Y 4(u) = − 1
32u

4.

Using (3.22), we obtain the error associated:

E1(u, θ) =



∑
n≥1

(
u

2

)4n+3

−ω
n
0

(
u

2

)
4n+1

+
∑
n≥1

(
u

2

)2n+4
Ψn(θ, ω0)

∑
n≥1

(
u

2

)4n+3

−ω
n
0

(
u

2

)
4n+1

−∑
n≥1

(
u

2

)2n+4
Ψn(θ, ω0)

∑
n≥1

(
α + β

2

)2n+4

Φn(θ, ω0)


.

Now we move to the iterative computation ofKm+1(u, θ) and Y m+N , considering the coefficients
of order ν := m+N :

2. K2(u, θ), Y 5(u)
Here we use formulas (3.22)–(3.26) with m = 1 and ν = 5.
We have that E1(u, θ) does not have terms of fifth order, so we get

[
E1(u, θ)

]
5

=

0
0
0

 , [
E1(u)

]
5

=

0
0
0

 . (3.27)
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We start by solving equation (3.24):
1
32 + 2

32 0

0 2
32

K2
2 =

(
0
0

)
,

obtaining

K2
2 =

(
0
0

)
.

Now we can solve (3.25):
−2 1

32K
1
2 − Y5 = 0,

and we take
K1

2 = 0, Y5 = 0.

From (3.27) and (3.26) we have directly

K̂2(θ) =

0
0
0

 .
Then we finally obtain

K2(u, θ) =

0
0
0

 , Y 5(u) = 0.

Therefore the error is
E2(u, θ) = E1(u, θ).

3. K3(u, θ), Y 6(u)
We proceed as the previous case with m = 2 and ν = 6.
First of all we check that

[
E2(u, θ)

]
6

=



ω2
0

29

−ω
2
0

29
3

210µ(1− µ) sin(2θ)u6

 ,
[
E2(u)

]
6

=


ω2

0
29

−ω
2
0

29
0

 .

In this case, the equation (3.24) is:
1
32 + 3

32 0

0 3
32

K2
3 =

ω2
0

29
0

 .
Then we have

K2
3 =

ω2
0

26
0

 .
Now we are able to solve equation (3.25):

− 1
32K

1
3 − Y6 =

(
−ω

2
0

29 + 3
32
ω2

0
26

)
,
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by taking (for instance)

K1
3 = ω2

0
26 , Y6 = 0.

To obtain K̂3(θ) we use the equation (3.26):

K̂3(θ) =
θ∫

0

[E2(u, s)− E2(u)]6 ds =

 0
0

− 3
211µ(1− µ)[cos(2θ)− 1]

 .
Summarizing the above computations, we have obtained

K3(u, θ) =


ω2

0
26 u

3

ω2
0

26 u
3

− 3
211µ(1− µ)[cos(2θ)− 1]u6

 , Y 6(u) = 0.

Consequently, we have that the error is

E3(u, θ) =



∑
n≥1

(
u

2 + ω2
0

26 u
3
)4n+3

−(ω0 +K3
3(u, θ))n

(
u

2

)
4n+1


∑
n≥1

(
u

2 + ω2
0

26 u
3
)4n+3

−(ω0 +K3
3(u, θ))n

(
u

2

)
4n+1


∑
n≥1

(
u

2 + ω2
0

26 u
3
)2n+4

Φn(θ, ω0 +K3
3(u, θ))


.

+



∑
n≥1

(
u

2 + ω2
0

26 u
3
)2n+4

Ψn(θ, ω0 +K3
3(u, θ))

−
∑
n≥1

(
u

2 + ω2
0

26 u
3
)2n+4

Ψn(θ, ω0 +K3
3(u, θ))

− 9
215µ(1− µ)[cos(2θ)− 1]u9


,

with K3
3(u, θ) = − 3

211µ(1− µ)[cos(2θ)− 1]u6.

4. K4(u, θ), Y 7(u)
This case is special since we are taking m = 3 and then we have that m + 1 = N = 4.
Then we will have resonance in the equation (3.25) and the resolution of this equation
will work in a different way than the previous computations.
First we check that E3(u, θ) has no terms of seventh order, then

[
E3(u, θ)

]
7

=

0
0
0

 , [
E3(u)

]
7

=

0
0
0

 . (3.28)

From (3.24) we compute K2
4 : 

1
32 + 4

32 0

0 4
32

K2
4 =

(
0
0

)
.
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We have then
K2

4 =
(

0
0

)
.

Moving now to equation (3.25) we check that

Y7 = 0

and K1
4 is a free term. Let it call 2Λ ∈ R.

Finally, we have from (3.28) and (3.26) that

K̂2(θ) =

0
0
0

 .
Then we obtain

K4(u, θ) =

2Λu4

0
0

 , Y 7(u) = 0,

and the error term is

E4(u, θ) =



∑
n≥1

(
u

2 + ω2
0

26 u
3 + Λu4

)4n+3
−(ω0 +K3

3)n
(
u

2 + Λu4
)

4n+1


∑
n≥1

(
u

2 + ω2
0

26 u
3 + Λu4

)4n+3
−(ω0 +K3

3)n
(
u

2 + Λu4
)

4n+1


∑
n≥1

(
u

2 + ω2
0

26 u
3 + Λu4

)2n+4

Φn(θ, ω0 +K3
3)



+



∑
n≥1

(
u

2 + ω2
0

26 u
3 + Λu4

)2n+4

Ψn(θ, ω0 +K3
3)

−
∑
n≥1

(
u

2 + ω2
0

26 u
3 + Λu4

)2n+4

Ψn(θ, ω0 +K3
3)

− 9
215µ(1− µ)[cos(2θ)− 1]u9


.

(3.29)

Finally, we get the form of our statement:

K≤4(u, θ) =
4∑

m=1
Km(u, θ) =


u+ ω2

0
26 u

3 + 2Λu4

ω2
0

26 u
3

ω0 −
3

211µ(1− µ)[cos(2θ)− 1]u6

 .

We notice that, following the algorithm described in Appendix A, we have

Y m(u) = 0, m ≥ 8.

Consequently we already know that the dynamics on the stable manifold is described by
du

dθ
= Y (u) = − 1

32u
4.

That means that, in each new step, the only function that will be actualized iteratively will be
the parametrization K(u, θ).
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Once we have computed the parametrization K≤4(u, θ) of the system (3.20) in variables
α, β and ω, we perform the change of variables (3.5) and we obtain that the parametrization
K≤4(u, θ) of the stable manifold for the system (3.1) is:

K≤4(u, θ) =


u
2 + ω2

0
26 u

3 + Λu4

u
2 + Λu4

θ
ω0 − 3

211µ(1− µ)[cos(2θ)− 1]u6

 , (3.30)

with Λ ∈ R as a free coefficient.



Chapter 4

Numerical Computations

In this chapter we implement two numerical methods to compute an approximation of the
parabolic stable manifold of the T -periodic vector field defined in (3.1) and we compare them.

We start by presenting in Section 4.1 the formulae involved with the graph method. Then
we will be able to present how the numerical implementations are implemented.

The first method we are going to deal with, in Section 4.2, is the parametrization method,
implementing the computations developed in Chapter 3. Then, in Section 4.3, we will compare
the results with the classical graph transformation method. For that we will implement the
formulae in [MS14].

We choose an error tolerance and we compare both methods in different cases to see which
one computes the stable manifold of the vector field (3.1) with better accuracy. The results
can be encountered in Section 4.4.

In Appendix A we summarize the algorithm developed in Chapter 2, focusing in the com-
putational aspects. In Appendix B, we present the codes in MATLAB we have written to do
this numerical study.

4.1 The Graph Transformation Method
In order to make fair the comparison with the graph method we also set system of [MS14] to
have θ as the time variable, like in the parametrization method. That means that we are going
to integrate the vector field

dq

dθ
= −1

4q
3p
(
−1 + 1

8q
4C + 1

4q
4W

)−1
,

dp

dθ
=
(
−1

4q
4σ3 + µ(1− µ)

8 q6σ2 cos θ + q6

8

(
C

2 +W
)2)(

−1 + 1
8q

4C + 1
4q

4W
)−1

,

(4.1)

where W corresponds to the change of variables W = ω − C/2, which is equivalent to

W (q, p, θ) = C2q4 + 16p2 − 16q2σ1

2
(
8− Cq4 + 4

√
−Cq4 − p2q4 + q6σ1 + 4

) , (4.2)

with
σ1 = 1− µ

fµ
+ µ

fµ−1
, σ2 = 1

f 3
µ

− 1
f 3
µ−1

, σ3 = 1− µ
f 3
µ

+ µ

f 3
µ−1

, (4.3)

fm =
(

1−mq2 cos θ + m2

4 q4
)1/2

. (4.4)

53
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The Jacobian constant C is defined by

C = q2 − p2 + 2ω − 1
4q

4ω2 + q2(σ1 − 1).

We recall that there is a direct relation between C and the constant ω0, corresponding to the
set of parabolic orbits

I∞ = (0, 0, θ0 + t, ω0).

The relation satisfied by C and ω0 is
C = 2ω0,

which means that, for the same initial angle position θ0, the orbits with a fixed constant ω0 in
the parametrization method correspond to the ones in the graph method with Jacobi constant
C = 2ω0.

Remark. In te graph method we will work with the variables (q, p, θ,W ). Since W is only a
translation of the variable ω of (3.1) we claim that the comparison with the parametrization
method will be accurate.

Remark. The differential equation system in variables (q, p, θ, ω) of [MS14] is slightly different
than (3.1). This is due the fact that in [MS14] the primaries are setted in different positions
than in our work.

Remark. The values for the notation σ1, σ2, σ3, fm in (4.3), (4.4) are different than the ones
for (3.2), (3.3) respectively.

Then, for a given q0 > 0, θ0 ∈ [0, 2π], we can parametrize an initial point P0 of the form

P0 = (q0, p
≤4(q0, θ0), θ0,W

≤4(q0, θ0)), (4.5)

where
p≤4(q, θ) = q − C2

32 q
3, W≤4(q, θ) = 0.

When we integrate along system (4.1) for an initial point P0 = (q0, p0, θ0,W0) we will obtain
a two-variable point P1 = (q1, p1). Then, we take θ1 = θ0 + 2π and W1 will be determined by

W1 = W (q1, p1, θ1),

with W defined in (4.2).
In Section 4.4 we will measure the accuracy of parametrization (4.5) respect the integration

along the vector field (4.1).

4.2 Numerics on the Parametrization Method
We present the strategy we have chosen to check the accuracy of the approximated parametriza-
tion K≤m(u, t) for any m. After all we apply it when m = 4.

Let K≤m(u, t) and Y ≤m(u) be the polynomials in u defined in the expression (3.21). In
order the check the accuracy of this approximation we proceed as follows:

1. Choose a tolerance T0 > 0 (for instance, 10−12 or 10−14).
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2. Fix t0 (its value does not matter). Given ut0 > 0, compute xt0 = K≤m(ut0 , t0). Compute,
by integrating numerically the differential equations, the solutions of the initial value
problems {

ẋ = X(x, t),
x(t0) = x0

and
{
u̇ = Y (u),
u(t0) = ut0

at time t = t0 + T , denote them by xt0+T and ut0+T , respectively. The quantity that
measures how invariant is the image of K≤m is

E(u0) = ‖xt0+T −K≤m(ut0+T , t0 + T )‖.

3. Find, plotting the function E(u0), the largest u0 > 0 for which E(u0) < T0.

Remark. In the computation of K≤m, some constants can be chosen arbitrarily. Their value
will affect the goodness of the approximation. It is advisable to repeat the procedure above with
several choices of these constants.

4.3 Numerics on the Graph Transformation Method
The invariant manifold can be described as the graph over one variable. Let us write x =
(x1, x̃)> and assume that the manifold can be written as

x̃ = φ(x1, t)

in a neighbourhood of x1 = 0 with x1 > 0. Let us assume that a expansion of the function φ is
known, ∑j≥1 φj(t)xj1. We can repeat the procedure of the previous section to check if the graph
of a partial sum φ≤m(x1, t) = ∑m

j=1 φj(t)x
j
1 describes a close to invariant object in the following

way:

1. Take the tolerance T0 > 0 of the previous section.

2. Fix t0 (its value does not matter). Given x1,t0 > 0, compute x̃t0 = φ≤m(x1,t0 , t0). Com-
pute, by integrating numerically the differential equations, the solution of the initial value
problem  ẋ = X(x, t),

x(t0) = (x1,t0 , x̃t0)>

at time t = t0 + T , x̂t0+T = (x1,t0+T , x̃t0+T )>. The quantity that measures how invariant
is the image of φ≤m is

Ẽ(x1,t0) = ‖x̂t0+T − φ≤m(x1,t0+T , t0 + T )‖.

3. Find, plotting the function Ẽ(x1,t0), the largest x1,t0 > 0 for which Ẽ(x1,t0) < T0. Compare
with the result of the previous section.

4.4 Main results and conclusions
We have implemented the algorithmic methods of Sections 4.2 and 4.3 in the respectively
programs Par_Method.m and Graph_Method.m attached in Appendix B. We have used the
MATLAB software to program both of them.

Once we have tried several different cases on both programmes, we have arrived at the
following conclusions:
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1) Both programs obtain the same error results for different values of the initial θ0. This
coincides with our assumptions since the variable θ is 2π-periodic.

2) The program Par_Method.m obtains the same result independent of the value of the coeffi-
cient Λ of (3.30). That coincides with the expected result, since the error E4(u, θ) defined
in (3.29) does not depend on Λ. Even if in the expression (3.29) it appears explicitly Λ,
it goes cancelled.
We remark that in higher order parametrizations it is possible that the error could depend
on Λ.

3 The estimation of the error varies depending on the initial value ω0 for Par_Method.m or
C = 2ω0 for Graph_Method.m.

According to that conclusions, we fix t0 = 0, θ0 = 0 and Λ = 0 in either both programs.
Then we study different cases depending on ω0 = C/2. A deeper study show that the graphics
present no difference between values of ω0 with opposite sign. For this reason we show only
cases of non-negative ω0.

In the plots we choose the distance of the correspondent parametrizations to the origin
as the x-variable, and the error as the y-variable. Also the plots have a red horizontal line
corresponding to the tolerance, equal to 10−12.

We have the following plots:

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−12 ERROR FOR INITIAL OMEGA = 0.

DISTANCE FROM THE FIXED POINT

E
R

R
O

R

Figure 4.1: Error for ω0 = 0. Green line representing graph method and blue line the
parametrization method.



4.4. MAIN RESULTS AND CONCLUSIONS 57

0 1 2 3 4 5 6 7 8

x 10
−4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−12 ERROR FOR INITIAL OMEGA = 20.

DISTANCE FROM THE FIXED POINT

E
R

R
O

R

Figure 4.2: Error for ω0 = 20. Green line representing graph method and blue line the
parametrization method.
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Figure 4.3: Error for ω0 = 200. Green line representing graph method and blue line the
parametrization method.
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Figure 4.4: Error for ω0 = 2000. Green line representing graph method and blue line the
parametrization method.
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Figure 4.5: Error for ω0 = 20000. Green line representing graph method and blue line the
parametrization method.

We can observe the following results:

1) The error using the parametrization method for degree four is more efficient that the graph
method with the same approximation degree.

2) Once we increment the absolute value of ω0, the distance to the fixed point which arrives
to the tolerance limit becomes smaller.

3) In many of the results, the proportion between the distance to the fixed point in the
parametrization method and the graph method is around two.
This fact is quite important due to the internal dynamic of the parameter u:

u̇ = Y (u) = − 1
32u

4,
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and the following problem:
We start in an initial small point q0, which corresponds to be close to infinity. Then we
want to estimate the required time to this point to achieve values of the distance of order
O(1), corresponding to closeness to the primaries.
By simply integration we have that this estimated time will be of order O(1/q3

0). This
estimation means that, if we want to duplicate the distance we are interested in, we will
to integrate eight times respect the original one.
So the parametrization method provides also more efficiency in the time of computation.

From the results commented before we obtain the final conclusions:

1) When the Jacobi constant C = 2ω0 is big, in absolute value, it is recommended to work
with higher degree of parametrizations.

2) Under the tolerance settled, the parametrization method works more efficiently than the
graph method.
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Appendix A

Parametrization Method’s algorithm

We start remembering all the notation and definitions that will be used along the computations.

• Z(x, y, t) : R1+n × T is a T -periodic vector field respect t with x ∈ R, y ∈ Rn and
T = R/[0, T ].
We also assume that the vector field Z has a fixed point on the origin and is of the form

Z(x, y, t) =
(
−axN + pN(x, y) + f(x, y, t)
xN−1By + qN(x, y) + g(x, y, t)

)
,

where a > 0 and the n× n matrix B has eigenvalues with positive real part.
The functions pN , qN are, respectively, one-dimensional and n-dimensional sums of homo-
geneous polynomials of order N such that

pN(x, 0) = qN(x, 0) = 0, ∂yqN(x, 0) = 0,
and f, g are Cr functions, with r ≥ 2, of order O(‖(x, y)‖N+1).

• K(u, t) : R× T→ R1+n and Y (u) : R→ R are respectively the parametrization and the
internal dynamic of Z(x, y, t).

• The invariance equation we ask Z to satisfy is
Z(K(u, t), t) = ∂uK(u, t)Y (u) + ∂tK(u, t).

• K≤m(u, t) : R×T→ R1+n and Y ≤m+N−1(u) : R→ R, with m ≥ 1, are the approximation
of K(u, t) and Y (u) respectively.
We ask them to be of the form

K≤m(u, t) =
m∑
j=1

Kj(u, t), Y ≤m+N−1(u) =
m+N−1∑
j=N

Y j(u),

satisfying the invariance condition up to order m+N , namely
Z(K≤m(u, t), t)−DuK

≤m(u, t)Y ≤m+N−1(u) + ∂tK
≤m(u) = O(um+N).

In addition, Kj and Y j can be taken of the form

Kj(u, t) = Kju
j + K̂j(t)uj+N−1,

Y j(u) = Yju
j,

where Kj,∈ R1+n, Yj ∈ R are constants and K̂j(t) : R→ R1+n is a T -periodic Cr function
with zero mean i.e.

T∫
0

K̂j(s)ds = 0.
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• K1
m ∈ R and K2

m ∈ Rn are respectively the first and n last components of Km.

• A is the matrix defined as

DZ(K≤m)(u, t) = AuN−1 +O(uN),

for all m ≥ 1. Also it is of the form

A =
(
−aN cT

0 B

)
,

where a ∈ R and B ∈ Rn×n have been already defined and c ∈ Rn.

• The error Em(u, t) is defined as

Em(u, t) :=
Z(K≤m(u, t), t)− ∂uK≤m(u, t)Y ≤m+N−1(u)− ∂tK≤m(u, t) = O(um+N).

• Em(u) is the average respect to t of Em(u, t).

• The operator [·]j ∈ R1+n takes the coefficients of exact order j respect to u .
[·]1j and [·]2j are respectively the first and n last components of [·]j.
The operator [·]j and its components [·]1j , [·]2j are going to be used with Em and Em.

Once we have already set all the elements necessary for developing the algorithm, we proceed
to the running. We divide it in two cases:

1. K≤1(u, t) and Y N(u):
As we commented in Section 2.4, K≤1 and Y N are of the form

K1(u, t) =

u0
0

 , Y N(u) = −auN .

Then the error will be

E1(u, t) :=
Z(K≤1(u, t), t)− ∂uK≤1(u, t)Y ≤N(u) = O(uN+1).

2. Km+1(u, t) and Y m+N(u), with m ≥ 1:
In each step we will have already computed Km(u, t), Y m+N−1(u) and the correspond-
ing Em(u, t). Using the formulae of Section 2.4 we compute iteratively Km+1(u, t) and
Y m+N(u).
We start by obtaining K2

m+1:

K2
m+1 = −(B + a(m+ 1)Id)−1

[
Em

]2
m+N

.

Now we move to the computation of K1
m+1, that will depend on the value of m+ 1:

a) If m+ 1 6= N :

K1
m+1 = 1

(m+ 1−N)a

([
−Em

]1
m+N

− cTK2
m+1

)
, Ym+N = 0.
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b) If m+ 1 = N :
Then K1

m+1 = K1
N is a free term, which we will call it Λ ∈ R. Also, Ym+N = Y2N−1

will be uniquely determined as

Ym+N =
[
Em

]1
m+N

+ cTK2
m+1.

And then we move to the computation of K̂m+1(t) and Ym+N(u) that will be

K̂m+1(t) =
t∫

0

[
Em(u, s)− Em(u)

]
m+N

ds.

So finally we will have the following values for Km+1(u, t) and Y m+N(u):

Km+1(u, t) =
(
K1
m+1

K2
m+1

)
um+1 + K̂m+1(t)um+N , Y m+N(u) = Ym+Nu

m+N .

And the error Em+1(u, t) will be

Em+1(u, t) :=
Z(K≤m+1(u, t), t)− ∂uK≤m+1(u, t)Y ≤m+N(u)− ∂tK≤m+1(u, t),

of order O(um+N+1).
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Appendix B

MATLAB implementation

We present here the codes in MATLAB language for the parametrization method and the graph
method.

We start with the code of the parametrization method:

Par_Method.m

1 % This code i s the implementation o f the Parametr i zat ion Method .
2 % Notation i s accord ing to the memory .
3

4 c l e a r a l l
5 % INITIAL VALUES
6

7 % I n i t i a l w_0 constant :
8 w0 = 20 ; % C = 2∗w0
9 % I n i t i a l va lue f o r log10 (u) :

10 ui = −6;
11 % Fina l va lue f o r log10 (u) :
12 uf = −3;
13 % Number o f va lue s o f log10 (u) :
14 Nu = 1000 ;
15 % Mu, mass o f the f i r s t p lanet :
16 mu = 0 . 0 0 1 ;
17 % Value o f theta :
18 Theta = 2 ;
19 % Free c o e f i c i e n t Lambda
20 L = 0 ;
21 % Tolerance
22 Tol = 10^(−12) ;
23 % VARIABLES
24

25 % Parametr i zar ion K up to order 4 :
26 K = @(U, theta ) [U/2+((w0^2) /2^6)∗U^3 + L∗U^4 , U/2+ L∗U^4 , theta ,

w0−(3/(2^11) )∗mu∗(1−mu) ∗( cos (2∗ theta )−1)∗U^6 ] ;
27

28 % Fie ld
29 f = @(q , o ,m) sq r t (1+m∗q^2∗ cos ( o ) +0.25∗m̂ 2+q^4) ;
30 sigma1 = @(q , o ,mu) 1/( f (q , o ,mu) )^3 − 1/( f (q , o ,mu−1) ) ^3;
31 sigma2 = @(q , o ,mu) (1−mu) /( f (q , o ,mu) )^3 + mu/( f (q , o ,mu−1) ) ^3;
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32

33 % q = x (1) , p = x (2) , theta = x (3)
34 Z= @( t , x ) [−0.25∗x (1 ) ^3∗x (2 ) ; 0 .125∗x (1 ) ^6∗x (4 ) ^2 − 0 .25∗x (1 ) ^4∗

sigma2 (x (1 ) , x (3 ) ,mu) − 0.125∗x (1 ) ^6∗mu∗(1−mu)∗ sigma1 (x (1 ) , x
(3 ) ,mu)∗ cos ( x (3 ) ) ; 1−0.25∗x (1 ) ^4∗x (4 ) ; −0.25∗x (1 ) ^4∗mu∗(1−mu)
∗ sigma1 (x (1 ) , x (3 ) ,mu)∗ s i n (x (3 ) ) ] ;

35 Y = @( t , x ) −(1/32)∗x^4;
36

37 % Values o f u
38 ValU = l i n s p a c e ( ui , uf ,Nu) ;
39

40 % Matrix o f e r r o r s depending on u :
41 M = zero s (Nu, 2 ) ;
42

43 % IMPLEMENTATION
44 f o r i =1:Nu
45 u = 10^(ValU( i ) ) ;
46

47 % I n i t i a l po int
48 P0 = K(u , Theta ) ;
49 [ ~ , U1 ] = ode45 (@( t , x ) Z( t , x ) , [ 0 , 2∗ pi ] , P0 ’ ) ;
50

51 FK = U1( end , : ) ’ ;
52 [ ~ , U2 ] = ode45 (@( t , x ) Y( t , x ) , [ 0 , 2∗ pi ] , u ) ;
53 Yu = U2( end ) ;
54 KR = K(Yu, Theta ) ’ ;
55 P = FK − KR; % Error between the i n t e g r a t i o n o f the

parametr i za t i on
56 P(3) = P(3) − 2∗ pi ; % and the param . under i t s i n t e r n a l

dynamic .
57 NormP = norm(P) ;
58 Dist = P0 − [ 0 , 0 , Theta ,w0 ] ; % Distance between the

parametr ized po int
59 NormD = norm( Dist ) ; % and the f i x ed one
60 M( i , 1 ) = NormD;
61 M( i , 2 ) = NormP;
62 di sp ( i ) ;
63 end
64 f i g u r e
65 p lo t (M( : , 1 ) ,M( : , 2 ) ,M( : , 1 ) , Tol∗ones (Nu, 1 ) , ’ r ’ ) ;
66

67 t i t l e ( [ ’GRAPHIC OF THE PARAMETRIZATION ERROR FOR VALUES BETWEEN
u = e ’ num2str ( u i ) ’ TO u = e ’ num2str ( uf ) ’ , WITH INITIAL
OMEGA = ’ num2str (w0) ’ : ’ ] )

68 x l ab e l ( ’DISTANCE FROM THE FIXED POINT ’ )
69 y l ab e l ( ’ERROR’ )

Moving on the graph method now we have:

Graph_Method.m
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1 % This code i s the implementation o f the Graph Method , from Car l e s
Simo and Regina Martinez .

2 % Notation i s accord ing to the o r i g i n a l paper .
3

4 c l e a r a l l
5 % INITIAL VALUES
6

7 % C ja cob i constant :
8 C = 40 ;
9 % I n i t i a l va lue f o r log10 (q ) :

10 q i = −6;
11 % Fina l va lue f o r log10 (q ) :
12 qf = −3.7;
13 % Number o f q :
14 Nq = 1000 ;
15 % Mu, mass o f the f i r s t p lanet :
16 mu = 0 . 0 0 1 ;
17 % I n i t i a l va lue theta :
18 Theta = 2 ;
19 % Tolerance
20 Tol = 10^(−12) ;
21

22 % VARIABLES
23

24 % Fie ld
25 f = @(q , o ,m) sq r t (1−m∗q^2∗ cos ( o ) +0.25∗m̂ 2+q^4) ;
26 sigma1 = @(q , o ,mu) (1−mu) /( f (q , o ,mu) ) + mu/( f (q , o ,mu−1) ) ;
27 sigma2 = @(q , o ,mu) 1/( f (q , o ,mu) )^3 − 1/( f (q , o ,mu−1) ) ^3;
28 sigma3 = @(q , o ,mu) (1−mu) /( f (q , o ,mu) )^3 + mu/( f (q , o ,mu−1) ) ^3;
29

30 % Var iab l e s p and W up to c o e f f i c i e n t 4 :
31 p = @(q , theta ) q −((C^2) /32)∗q^3; % a1=1, a2=0, a3=−C^2/32 , a4

=0
32 W1 = @(q , theta ) 0 ; % w1=0, w2=0, w3=0, , w4

=0
33 W = @(q , pe , o ) (C^2∗q^4 + 16∗pe^2 − 16∗q^2∗ sigma1 (q , 0 ,mu) ) /(2∗(8−

C∗q^4+4∗ s q r t (−C∗(q^4)−(pe^2) ∗(q^4)+(q^6)∗ sigma1 (q , 0 ,mu)+4) ) ) ;
34 % q = x (1) , p = x (2) , theta = x (3) , W(q , p , theta )
35 Z= @( t , x ) [(−0.25∗x (1 ) ^3∗x (2 ) ) /(−1+0.125∗(x (1 ) ^4)∗C+0.25∗(x (1 )

^4)∗W(x (1) , x (2 ) , t ) ) ; (−0.25∗(x (1 ) ^4)∗ sigma3 (x (1 ) , t ,mu)+0.125∗
mu∗(1−mu) ∗(x (1 ) ^6)∗ sigma2 (x (1 ) , t ,mu)∗ cos ( t ) +0.125∗(x (1 ) ^6) ∗ ( (
C/2)+W(x (1) , x (2 ) , t ) ) ^2) /(−1+0.125∗(x (1 ) ^4)∗C+0.25∗(x (1 ) ^4)∗W(
x (1) , x (2 ) , t ) ) ] ;

36

37 % Values o f u
38 ValQ = l i n s p a c e ( qi , qf ,Nq) ;
39

40 % Matrix o f e r r o r s depending on q :
41 M = zero s (Nq, 2 ) ;
42
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43 % IMPLEMENTATION
44

45 f o r i =1:Nq
46 di sp ( i ) ;
47 q = 10^(ValQ( i ) ) ;
48

49 % I n i t i a l po int
50 P0 = [ q , p(q , Theta ) , Theta , W1(q , Theta ) ] ’ ;
51 [ ~ , U1 ] = ode45 (@( t , x ) Z( t , x ) , [ 0 , 2∗ pi ] , [ P0 (1 ) ,P0 (2 ) ] ’ ) ;
52 P1 = U1( end , : ) ;
53 P1 = [P1(1 ) ,P1 (2 ) , Theta + 2∗pi , W(P1(1) ,P1 (2 ) , Theta+ 2∗ pi ) ] ’ ;
54 P2 = [P1(1 ) , p (P1(1) ,P1 (3 ) ) ,P1 (3 ) ,W1(P1(1) ,P1 (3 ) ) ] ’ ;
55 P = P1−P2 ;
56 NormP = norm(P) ; % Error o f the i n t e g r a t i o n
57 O = [0 , 0 , Theta , 0 ] ’ ; %Fourth va r i a b l e i s ze ro s i n c e W = w − C/2 =

w − w0
58 Dist = P0 − O; % Distance between the f i x ed po int and the

i n i t i a l one
59 NormD = norm( Dist ) ;
60 M( i , 1 ) = NormD;
61 M( i , 2 ) = NormP;
62 end
63

64 f i g u r e
65 p lo t (M( : , 1 ) ,M( : , 2 ) ,M( : , 1 ) , Tol∗ones (Nq, 1 ) , ’ r ’ ) ;
66

67 t i t l e ( [ ’GRAPHIC OF THE PARAMETRIZATION ERROR FOR VALUES BETWEEN
q = e ’ num2str ( q i ) ’ TO q = e ’ num2str ( q f ) ’ , WITH INITIAL C
= ’ num2str (C) ’ : ’ ] )

68 x l ab e l ( ’DISTANCE FROM THE FIXED POINT ’ )
69 y l ab e l ( ’ERROR’ )
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