
Dynamic Software Randomisation: Lessons Learned
From an Aerospace Case Study
Fabrice Cros1, Leonidas Kosmidis2,3, Franck Wartel1, David Morales2

Jaume Abella2, Ian Broster4, Francisco J. Cazorla2,5

1Airbus Defence and Space, France 2Barcelona Supercomputing Center (BSC), Spain
3Universitat Politècnica de Catalunya, Spain 4Rapita Systems, UK 5Spanish National Research Council (IIIA-CSIC), Spain

Abstract—Timing Validation and Verification (V&V) is an
important step in real-time system design, in which a system’s
timing behaviour is assessed via Worst Case Execution Time
(WCET) estimation and scheduling analysis. For WCET esti-
mation, measurement-based timing analysis (MBTA) techniques
are widely-used and well-established in industrial environments.
However, the advent of complex processors makes it more difficult
for the user to provide evidence that the software is tested under
stress conditions representative of those at system operation.
Measurement-Based Probabilistic Timing Analysis (MBPTA) is a
variant of MBTA followed by the PROXIMA European Project
that facilitates formulating this representativeness argument.
MBPTA requires certain properties to be applicable, which can
be obtained by selectively injecting randomisation in platform’s
timing behaviour via hardware or software means.

In this paper, we assess the effectiveness of the PROXIMA’s
dynamic software randomisation (DSR) with a space industrial
case study executed on a real unmodified hardware platform
and an industrial operating system. We present the challenges
faced in its development, in order to achieve MBPTA compliance
and the lessons learned from this process. Our results, obtained
using a commercial timing analysis tool, indicate that DSR does
not impact the average performance of the application, while
it enables the use of MBPTA. This results in tighter pWCET
estimates compared to current industrial practice.

I. INTRODUCTION

Critical real-time systems – like those used in avionics, auto-
motive or space – undergo a Validation and Verification (V&V)
process1 to ensure that their requirements provide the specified
functionality and they are fulfilled. Timing V&V derives a
timing bound for each software unit together with a scheduling
of those software units so that system’s timing requirements
are fulfilled. Industry extensively relies on measurement-based
timing-analysis (MBTA) [28], due to its simple applicability in
industrial setups. The quality of the derived WCET estimates
depends on user ability to control the conditions in which
measurement are made so that they represent those expected at
operation [2]. However, the use of advanced hardware features
– to respond to the increasing performance demands in modern
critical systems – challenges the applicability of MBTA[2]. In
this paper we focus on the a challenge found in single core
systems, brought by caches due to their jittery response time.
Caches complicate providing evidence on representativeness,
i.e., assessing whether the execution time conditions (such
as the cache states under which the measurements used for

1Validation and verification are referred to as qualification and acceptance
in space. Qualification shows that the requirements fulfil the mission needs,
while acceptance shows that the product meets specification requirements.

analysis are collected) cover worst-case scenarios that can arise
during actual system operation.

The PROXIMA project provides different means to deal
with this challenge by introducing probabilistic timing analysis
technologies, while it still remains attractive to industry by
keeping its measurement-based nature. This timing analysis,
known as Measurement-Based Probabilistic Timing Analy-
sis (MBPTA)[9], has been shown to be competitive com-
pared to conventional timing analysis methods: static [1] and
measurement based[26][27]. MBPTA requires the platform
to satisfy certain properties. In particular MBPTA-compliant
systems [20] should exhibit control means to ensure that
conditions at analysis match or upperbound those at operation;
as well as a timing behaviour that can be modeled with inde-
pendent and identically distributed (i.i.d.) random variables2.

These properties can be achieved with both hardware and
software solutions. The former includes the selective modifi-
cation of the few jittery resources in the architecture that are
hard to model [20], so that their timing behaviour becomes
random. While required modifications are minimal, specialised
hardware has high recurring costs and a long adoption horizon
by the real-time industries which are quite conservative. This
has motivated software randomisation techniques as a way to
achieve MBPTA compatibility without the need for specialised
hardware. This provides a fast path for PROXIMA technology
to be available to industry right away for testing over Com-
mercial off-the-shelf (COTS) processors, with an overall goal
to be finally adopted in real products.

Both static[19][16][15] and dynamic software randomisa-
tion (DSR) [18] share the same basic principle: memory
objects (functions, stack frames etc) are randomly placed in the
memory, thus affecting the mapping of those elements in the
cache. As a result, the execution time variability generated by
cache can be analysed with MBPTA. Since DSR has reached a
high technology readiness level, it is the randomisation version
of choice for evaluation in this paper. Despite that DSR has
been preliminarily assessed in the past with an avionics case
study[27] as well as compared with hardware randomisation,
that work was not performed on a real industrial environment,
but on a research prototype using a research RTOS[4] and a
simulation infrastructure.

2It has been shown that independence is not strictly necessary as long as
dependence is weak or maxima are independent [24]. However, our platform
and data collection process provide independence by construction.

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works



In this paper, we evaluate PROXIMA’s DSR technology
with a space case study in an industrial setup. We implemented
DSR as part of the compilation toolchain and a runtime sys-
tem. In particular as specific compiler pass on top of the LLVM
(http://llvm.org/) toolchain. The application under analysis is
randomised using DSR and executed over an industrial RTOS
on top of a real processor used in the space domain. To our
knowledge, the first evaluation of DSR in a real setup, using a
Space case study on an FPGA platform based on LEON3 [25].

Our evaluation assesses experimentally whether the statis-
tical timing properties for the application of MBPTA can be
obtained with DSR on the target board. Further, we assess the
accuracy of MBPTA w.r.t. current practice measurement-based
deterministic (i.e. not probabilistic) techniques. To that end
we perform the timing analysis evaluation with a commercial
timing analysis tool [23] that has been properly enhanced to
support probabilistic analysis. From our results with a Space
case study based on a mixed criticality control and processing
application of an on-board scientific instrument, we concluded:
a) DSR does not impact the average performance of the
application, but improves it in some cases. b) DSR provides
the probabilistic timing behaviour required in the platform to
apply MBPTA. And c) the obtained WCET estimates with
DSR are tighter compared to the typical 20% margin used in
current industrial practice, while MBPTA provides more solid
argumentation on the validity of the derived WCET estimates.

This paper is structured as follows: Section II introduces
MBPTA. Section III explains the changes in the compila-
tion and runtime system to provide MBPTA properties using
dynamic software randomisation. Section IV introduces the
space case study used in this work. Section V presents the
timing analysis infrastructure we use and its integration and
adaptation to our platform. Section VI presents the main
results obtained and conclusions provided in Section VII.

II. BACKGROUND

Measurement-based techniques comprise an analysis phase,
when verification of the timing behaviour takes place; and the
operation phase when the system becomes operational. The
goal of measurement-techniques is to derive WCET estimates,
from execution runs of the program performed at analysis, that
hold valid during the operation of the system. This requires
creating an argument that the execution conditions of the
experiments at analysis capture those worst-case conditions
that can occur at operation [13].

The quality of the derived WCET estimates of current-
practice measurement-based analysis (MBDTA) lies on the
user ability to design stressful test scenarios, in which the
application is run under similar worst-case conditions to those
that can arise during system operation. In general, it is
impossible for the user to cover all the input space of the
program. For some sources of jitter there are tools that help
the user determining, for instance, the degree of path coverage
in its program and hence allowing the end user to create more
input vectors until certain degree of coverage is reached (e.g.
MC/DC coverage). In contrast to execution path coverage,

which we define as a high-level source of jitter (hlsoj), the
use of more complex hardware and software in future real-
time systems introduces low-level sources of jitter (llsoj) [14].

In general, the user cannot exercise the necessary control to
force that in the tests worst-case conditions for each llsoj are
captured. MBPTA attack this problem by deploying statistical
analysis through Extreme Value Theory (EVT) [21] and the
selective injection of randomisation in the timing behaviour
of certain resources [20]. With EVT, MBPTA is able to
derive and upperbound the probability that bad behaviour of
several of the llsoj, whose impact has been captured in the
analysis time runs, are triggered in the same run, leading to
a high execution time. Randomisation makes events affecting
execution time, including those representing bad behaviour of
the llsoj have a probability of appearance. This way, those
events can be probabilistically guaranteed to be captured in
the measurements (tests) performed during analysis provided
a sufficient number of experiments is performed. Note that not
all llsoj are handled by MBPTA using randomisation, but only
the ones difficult to model and/or with high jitter [20] such
as the cache related ones examined in this paper. Other llsoj
are forced to work in their worst latency during analysis. In
this paper we analyse one of the most prominent examples of
llsoj, the cache. We focus on a single-core setup and do not
take into account activities related to i/o devices and alike, i.e.
our main focus is at the chip level.

MBPTA [9][26][27] produces a pWCET distribution that
describes the highest probability (e.g., 10−15) at which one
instance of a program may exceed the corresponding execution
time bound. The particular exceedance probability, and the
corresponding time budget, to choose is that deemed as suffi-
ciently low based on i) the criticality level of the application
under analysis; and ii) the corresponding safety standard.

The advent of more autonomous satellite operations in-
creases the complexity of on-board software. Software timing
analysis can be simplified with incremental software integra-
tion and qualification [12] in which different modules follow
an independent development process and WCET estimates
derived during early design phases should hold valid across
integrations. However, caches makes that the relative cache
offset of software unit’s can change across integrations. This
might invalidate the WCET estimates derived for already inte-
grated software, incurring the cost of re-assessing the WCET
estimate of already-integrated software. Further this exposes
users to late detection of timing violations with high associated
costs. DSR breaks the relation between the memory position
of code/data and the cache sets they are assigned to. DSR
randomly changes this mapping across different executions,
hence factoring in the potential impact of different cache
alignments caused by future integration. This has enormous
advantages in enabling incremental software integration - and
its benefits - in the presence of caches.

III. ACHIEVING MBPTA COMPLIANCE VIA SOFTWARE

Software randomisation handles the jitter caused by caches
in COTS platforms in an MBPTA conformant manner. Soft-



Fig. 1. Target Architecture of PROXIMA’s LEON 3-based platform.

ware randomisation techniques [18][19] achieve this effect in
an indirect way. In the case of the caches , the placement func-
tion is fixed and hence cannot be modified (i.e. randomised).
Software randomisation exploits the direct relation between the
memory address of the object in main memory and its location
(set) in the cache. Based on this basic principle, software ran-
domisation changes across runs the location in main memory
for each object in a random way, achieving the same effect
as with a hardware randomised cache. The main difference
though, is in the granularity of the randomisation: while a
cache with random placement randomises each cache line,
software randomisation techniques randomise entire memory
object, whose size might be smaller or usually bigger than a
cache line. Hence, software randomisation is able to alter inter-
object [18] conflicts, while intra-object conflicts are retained.
The changes in inter-object conflicts, due to the different
memory placements have an effect also in the LRU stack
of their respective cache lines, since now the time between
accesses in the same cache line are also modified. For this
reason, a similar effect to a random-replacement policy is
achieved between runs [18].

Software randomisation techniques are classified into dy-
namic and static ones. Dynamic Software Randomisation [18]
(DSR) changes the location of memory objects at runtime
during system operation, while static implementations [19] are
based on pre-compiled binaries with different memory object
placements. Independently of the static or dynamic imple-
mentation, both solutions are equivalent in enabling MBPTA
and have been successfully assessed with industrial case
studies on top of timing simulation environments [27][19]. In
particular, DSR has been applied to two avionics case study
applications [27], while a static variant has been used in the
automotive domain [19] as it suits better its requirements. For
our space case study we have opted for the dynamic variant
following the example of [27], since the avionics and the space
domains have similar requirements and the DSR technology
in PROXIMA has reached a higher industry-readiness level.

A. Target COTS Platform Description

We use a LEON3 [25] based platform implemented on
an FPGA. The organisation of our platform is shown in
Figure 1. LEON3 processors comprise first level instruction
(IL1) and data (DL1) caches, with the DL1 implementing a
write-through no write-allocate policy; a bus that propagates
DL1 and IL1 misses to the unified L2 cache. L2 misses are
propagated to the DRAM memory controller, see Figure 1. IL1
and DL1 are 16KB with 4-way set-associative caches, while

the L2 is 32KB direct-mapped with write-back policy. TLBs
with 64 entries for instructions and data are also included.

The processor implements a pipelined architecture compris-
ing seven stages: fetch (F), decode (D), register access (R),
execution of non-memory operations (E), DL1 access (M),
Exceptions (X) and write back (W). As a SPARCv8 proces-
sor, LEON3 features a microarchitecture based on register
windows. The register file comprises 8 register windows. The
floating-point unit takes a variable latency depending on the
particular values operated, with a jitter of up to 3 cycles.

B. DSR on the LEON 3: Challenges and Solutions
DSR is implemented combining a compiler pass and a

runtime system, based on Stabiliser (a software randomisation
tool proposed for unbiased performance evaluation of high-
performance software [10]). The compiler pass is implemented
on top of the LLVM toolchain and it generates metadata
required for the relocation of memory objects at runtime,
as well as modifies the code of the compiled software to
transparently access these metadata. The runtime system takes
care of the actual memory object moving at runtime. The
original version of the software randomisation framework
supports x86, x86-64 and PowerPC variants. Since our LEON3
target platform is based on a different architecture (SPARC
v8), we have ported the framework to this environment. This
has been a challenging task due to the peculiarities of the
target architecture. In the following we explain in detail
how the original toolchain works, which modifications we
have performed to our port of the library, the problems we
encountered in this process and how we have overcome them.
In particular DSR randomises functions and their stack frames,
in random memory locations on each invocation.

B.1. Code Randomisation
Relocation Scheme. Code randomisation comprises moving

a function to a new memory location selected randomly. Func-
tion relocation can take place either in an eager or in a lazy
manner. Eager implementation requires all function relocations
to take place before the program execution, while lazy one
relocates only the functions used by the software, at the
moment of their first use. However, lazy relocation complicates
the estimation of the worst-case memory consumption as well
as the WCET, both of which are necessary in critical real-
time systems. For these reasons, despite the original version
supports lazy relocation, in our porting of the library we
selected to implement an eager relocation scheme.

Cache Consistency: SPARC does not provide hardware
consistency between the instruction and data caches as op-
posed to x86. Therefore, after relocating a function, the
updated data cache lines first need to be written in the memory
before they can be fetched for execution. This is not a problem
for DL1 which is write through, but it is for the write-back
unified L2. In addition to that, any updated IL1 or L2 entry
corresponding to the old location, need to be invalidated to
guarantee the memory consistency across the different caches.
To achieve this, we have implemented a fully SPARC v8
compliant address invalidation routine.



B.2. Stack Randomisation
Previous uses of stack randomisation in the real-time do-

main used a scheme in which each stack frame was allocated
dynamically at function entry [18][19]. We opted for the
solution described in [10], in which stack randomisation is im-
plemented by making the stack non-contiguous. The compiler
pass inserts code in each function’s prologue and epilogue,
which adjusts the stack frame with an offset (ranging between
0 and the way size of the cache) read from a table assigned
to this function, which is part of the metadata created during
compilation. This table is initialised in the program start-up
with a random positive value, which randomises the location
of the stack frame’s initial address.

This implementation appeared as one of the most chal-
lenging parts of porting software randomisation in SPARC
architecture due to the presence of the register window. We
had to increase the stack pointer by the random offset within
the SAVE instruction of the caller (which invokes the register
rotation), and restore it within the RESTORE instruction at
function return. This way we ensure that stack pointer is
modified atomically and remains always valid. Note that the
random offset used to adjust the stack pointer must be a
multiple of 8 in order to keep the stack pointer aligned in
double word boundaries, as the architectural specification of
SPARC requires.

B.3. Software Random Number Generator
The position of the software objects is selected randomly

inside memory chunks obtained using a memory allocator
based on HeapLayers[11]. In particular, the starting offset
is between zero and the maximum way size to ensure that
the memory object can be mapped in any cache line inside
a cache way. The random numbers required are generated
using a software implementation of the Multiply-With-Carry
(MWC) [22] PRNG. The quality of this PRNG in terms of
period is shown in [3] to be sufficient, as for the LFSR
proposed in the same work. However, while LFSR can be
efficiently implemented in hardware, the MWC is the simplest
one to implement in software. Therefore, the random source
used for DSR is the MWC PRNG.

B.4. Second-Level Unified Cache
All software randomisation works so far, have considered

a single cache level. As described in the previous point, the
random offset of the memory object need to be up to the size
of the cache way, so previous works set this number according
to the L1 size. However, our target platform features also a
second level unified cache. For this reason, we set the offset
equal to the L2 cache way size, in order to randomise also
the cache layout of the second level cache. Since the L1 way
size is multiple of the L2, this achieves also cache layout
randomisation of the first level caches.

Unified L2 caches create complex interactions between
instruction and data objects. This has causes L2 caches to
be usually disabled in critical real-time systems. MBPTA has
been shown to be effective in the analysis of arbitrary levels
of hardware time-randomised caches [17]. Since by our offset

selection we randomise the cache layout of all cache levels, the
entire memory hierarchy becomes time-randomised similar to
the hardware randomisation case, so MBPTA can be also used
to analyse it. In addition to the obvious advantage that DSR
offers MBPTA analysability, the fact that it breaks the complex
interactions between instruction and data objects reduces the
possibility of cache risk patterns, and this way it can result in
performance improvements over the non-software randomised
case, as we show in the Evaluation Section.

B.5. TLBs
The random memory allocations performed by [5] use

two separate memory pools for code and data. Each pool is
sufficiently large and is comprised by a diverse set of pages,
which effectively randomises both Instruction and Data TLBs,
as in the case of the hardware randomised platform.

IV. SPACE CASE STUDY

We use mixed-criticality space application controlling an
integrated active optics instrument for space telescopes. It
consists of both a data processing task which computes the
wave front error using data from a collection of sensors (low
criticality) and a control task which elaborates commands to
the actuators controlling mirror displacements and is in charge
of the interface with the rest of the spacecraft (high criticality).

The control task is robust to functional misbehaviour of the
image processing application. However the temporal interfer-
ences caused by a malfunction in the image processing task
could affect the timing of the high criticality control task.

The image processing computes the passive deformation of
a mirror in a satellite instrument and comprises 2 phases.
During the former, a coarse offset is computed and while
during the latter the offset is computed in a finer granularity.
Image processing is both CPU intensive (it executes significant
amount of floating point operations) and memory intensive (it
performs many reads and writes to the pixels from the lenses).

The input vectors of the application are composed of 12x12
array of lenses of 34x34 pixels each. Not every lens is
processed, but only the most lightened ones which are around
70% of the total lenses. This creates a variation in the duration
of the computation directly linked to the input data, which
makes the timing analysis of the application challenging.

Each task is self-contained and is implemented in a separate
partition of the underlying hypervisor RTOS, PikeOS Native,
to ensure spatial and temporal isolation. The control is invoked
periodically every 1 second while the processing partition
every 100ms. In order to ensure that in each period the
partition executions start with the same initial hardware state,
we use PikeOS features to automatically flush instruction
and data caches. Moreover, PikeOS is configured to prevent
preemptions during the execution of the application. DSR
has been successfully applied in both tasks, however only
the timing of the critical task is captured and analysed using
MBPTA. Whether it is sufficient to randomise only the critical
one is left for future work. For the measurement collection
during the MBPTA analysis phase, after the end of each



partition execution, the partition is rebooted through software
means to guarantee that each execution starts with a different
memory layout.

V. TIMING ANALYSIS

MBPTA technology has been integrated into Rapita Verifi-
cation Suite [23] (RVS), a commercial tool used in domains
such as avionics or automotive. RVS executes the UoA on
the target board, extracting a trace of execution times at
instrumentation point boundaries which is then processed to
extract execution times, that are then processed by MBPTA.

We define as unit of analysis (UoA) the execution time of
the control task which is repeated in each partition invocation.

GRMON debug monitor for LEON processors [8] commu-
nicates with the LEON debug support unit (DSU) and allows
non-intrusive debugging of the complete target system. We
use GRMON to initialise the FPGA and load the binary file
to execute. The application code is instrumented by RVS at
UoA granularity, recording the execution time of entry and
exit points by reading the value of the execution time register,
which provides the cycle count.

While the instrumented program runs, time-stamps are
stored in a buffer allocated on a second memory bank to
avoid interference with the application, and results are dumped
to a file by GRMON through the Ethernet interface after the
program execution finishes. This binary trace is processed and
converted to a format which is readable by RVS.

VI. EVALUATION

We assess the effectiveness of the DSR technology to expose
cache-alignment variability (jitter) in the measured execution
times and show the pWCET estimates obtained by processing
those measurements with MBPTA. We start by analysing
the default platform that contains no randomisation source.
In the performed analysis the effect of the jittery floating
point operations is not taken into account. The reason is their
expected low impact since the space application executes less
than 2% of floating point instructions. Further, only two types
of those instructions have a maximum jittery of 3 cycles.

Current practice for WCET estimation include measuring
the execution time of the supposed worst-case scenarios and
adding an engineering margin to the highest observed value.
The engineering margin is computed depending on the pre-
vious experience with the software under analysis and the
confidence that the validation expert has on the elaboration of
the worst-case scenarios. A typical margin for relatively simple
single-core processors is 20%, which we use as reference.

Figure 2 shows the minimum, maximum (MOET) and
average execution times obtained with and without DSR
for the critical task. Interestingly the results with DSR are
quite similar to the ones obtained without DSR. In fact, the
maximum observed time is a little bit smaller.

TABLE I
PERFORMANCE COUNTER READINGS FOR THE CONTROL TASK

icmiss dcmiss L2miss FPU Instr
No Rand 126-127 2088 402-558 3504 163800
Sw Rand 154 2129-2131 398-555 3504 166748

Fig. 2. Average Performance Comparison between original and software
randomised version of the space application.

In Table I we can see values from performance counters
for both setups. DSR has very small impact on number of
instructions for the software analysed (<2%). Recall that DSR
redirects each function call to a new location and adjusts
each stack frame, therefore this has a necessary overhead. Our
space application has a small number of function calls in the
UoA code compared to the number of the total instructions
executed, therefore this overhead is negligible. The number of
L1 misses for both the instruction and data cache increases
with DSR. However, the L2 miss ratio with DSR (computed
as the ratio of the number of L2 missed and the sum of L1
instruction and data misses which represent the total number
of L2 accesses) is 1% lower. In particular the code with
DSR exhibits 17-24% miss ratio, versus 18-25% in the COTS
configuration. This small difference results in slightly lower
execution times, which in turn yields a lower MOET as
presented in the previous figure. The reason for this is that
the software in the COTS version has a bad and rare cache
layout for the L2. Hence, DSR results in better L2 cache
layouts and therefore even in the presence of the 2% software
randomisation overhead, this long MOET is not observed.

Fulfilling the i.i.d properties. The application of MBPTA –
and in particular its EVT component – requires the execution
times (data) provided as input to be modellable with i.i.d.
random variables. We test independence with the Ljung-Box
test [7] and a 5% significance level (a typical value for this
type of tests). For identical distribution we use the two-sample
Kolmogorov-Smirnov test [6] also with a 5% significance
level. These means that i.i.d. is rejected only if the value for
any of the tests is lower than 0.05. For our experiments we
obtain values above 0.05. meaning that both tests are passed,
hence enabling the application of EVT.

pWCET estimates. Figure 3 provides a screenshot of
the RVS Viewer which shows the pWCET curve obtained
by processing the measurements of the software randomised
application using MBPTA. In the X-axis we have the execution
time while on the Y-axis we observe probabilities in logarith-
mic scale. We observe that the pWCET prediction, straight
line, tightly upper-bounds the measured execution times values
(MET).

The pWCET estimates for DSR are close to the MOET
and well under the value 20% margin. In particular, the
pWCET estimation at 10−15 is only 0.2% higher than the
MOET observed with DSR enabled. This means that the value
computed by MBPTA is much closer to the observed values
than what can be achieved with a 20% margin, and therefore



Fig. 3. pWCET curve of the DSR version of the application.

the result is less pessimistic. When this is compared with
the current industrial practice adding an engineering margin
of 20% over the MOET of the non-randomised application,
it results in a 19.6% tighter WCET prediction. Furthermore,
thanks to MBPTA, the values obtained can be used with a
higher degree of confidence than adding a simple margin.

It is worth noting that the current industrial practice (and
also the academic one) finds difficulties to analyse unified
multilevel caches, since the complex interactions between
instruction and data in the second level cache can cause abrupt
time changes. Randomisation allows to explore large cache
memory layout counts, which in combination with MBPTA’s
upperbounding using EVT reduces the risk of observing at
system operation a cache layout with a worse behaviour that
the ones exercised at analysis.

VII. CONCLUSIONS AND FUTURE WORK

We have summarised the foundations behind the dynamic
software randomisation and showed the challenges in imple-
menting it in real setup: space application, commercial RTOS
and a FPGA board. Despite its runtime overhead, we show that
in the particular case study the software randomisation results
in lower WCET estimates than with current industrial practice,
while it helps providing evidence on the cache-generated jitter.
We provided experimentally evidence that MBPTA can be
applied and that i.i.d. properties are passed.

As part of our future work, and based on the promising
results obtained with our current setup, we plan to extend
our work towards: (i) using MBPTA-compatible methods to
achieve full path coverage [29] and (ii) dealing with COTS
multicore contention-related jitter.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s FP7 [FP7/2007-2013] un-
der the PROXIMA Project (www.proxima-project.eu), grant
agreement no 611085. This work has also been partially
supported by the Spanish Ministry of Science and Innovation
under grant TIN2015-65316-P and the HiPEAC Network of
Excellence. Jaume Abella has been partially supported by the
Ministry of Economy and Competitiveness under Ramon y
Cajal postdoctoral fellowship number RYC-2013-14717.

REFERENCES

[1] J. Abella et al. On the comparison of deterministic and probabilistic
wcet estimation techniques. In ECRTS, 2014.

[2] J. Abella et al. WCET analysis methods: Pitfalls and challenges on their
trustworthiness. In SIES, 2015.

[3] I. Agirre et al. IEC-61508 SIL 3 compliant pseudo-random number
generators for probabilistic timing analysis. In DSD, 2015.

[4] A. Baldovin, E. Mezzetti, and T. Vardanega. A time-composable
operating system. WCET Workshop, 2012.

[5] E. D. Berger and B.G. Zorn. DieHard: Probabilistic memory safety for
unsafe languages. In PLDI, 2006.

[6] S. Boslaugh and P.A. Watters. Statistics in a nutshell. O’Reilly Media,
Inc., 2008.

[7] G. E. P. Box and D. A. Pierce. Distribution of residual autocorrelations
in autoregressive-integrated moving average time series models. Journal
of the American Statistical Association, 1970.

[8] Cobham Gaisler. GRMon. http://www.gaisler.com/index.php/products/
debug-tools/grmon.

[9] L. Cucu-Grosjean et al. Measurement-based probabilistic timing analysis
for multi-path programs. In ECRTS, 2012.

[10] C. Curtsinger and E.D. Berger. STABILIZER: Statistically sound
performance evaluation. In ASPLOS, pages 219–228, 2013.

[11] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing high-
performance memory allocators. In PLDI, 2001.

[12] E. Mezzetti and T. Vardanega. A rapid cache-aware procedure position-
ing optimization to favor incremental development. In RTAS, 2013.

[13] F. J. Cazorla et al. Upper-bounding program execution time with extreme
value theory. In WCET Workshop, 2013.

[14] F. J. Cazorla et al. PROXIMA: Improving measurement-based timing
analysis through randomisation and probabilistic analysis. In DSD, 2016.

[15] L. Kosmidis, D. Compagnin, D. Morales, E. Mezzetti, E. Quiñones,
J. Abella, Tullio Vardanega, and F.J. Cazorla. Measurement-based timing
analysis of the aurix caches. In WCET, 2016.

[16] L. Kosmidis, R. Vargas, D. Morales, E. Quiñones, J. Abella, and
F. J. Cazorla. TASA: Toolchain Agnostic Software Randomisation for
Critical Real-Time Systems. In ICCAD, 2016.

[17] L. Kosmidis et al. Multi-level unified caches for probabilistically time
analysable real-time systems. In RTSS, 2013.

[18] L. Kosmidis et al. Probabilistic timing analysis on conventional cache
designs. In DATE, 2013.

[19] L. Kosmidis et al. Containing timing-related certification cost in
automotive systems deploying complex hardware. In DAC, 2014.

[20] L. Kosmidis et al. Measurement-based probabilistic timing analysis and
its impact on processor architecture. In Euromicro DSD, 2014.

[21] S. Kotz and S. Nadarajah. Extreme value distributions: theory and
applications. World Scientific, 2000.

[22] G. Marsaglia and A. Zaman. A new class of random number generators.
Annals of Applied Probability, 1(3):462–480, 1991.

[23] Rapita Systems Ltd. Rapita Verification Suite. http://www.rapitasystems.
com/products/rvs. Accessed Jan 2015.

[24] L. Santinelli et al. On the sustainability of the extreme value theory for
WCET estimation. In WCET Workshop, 2014.

[25] http://www.gaisler.com/cms/index.php?option=com content&task=
view&id=13&Itemid=53. Leon3 Processor. Cobham Gaisler.

[26] F. Wartel et al. Measurement-based probabilistic timing analysis:
Lessons from an integrated-modular avionics case study. In SIES, 2013.

[27] F. Wartel et al. Timing analysis of an avionics case study on complex
hardware/software platforms. In DATE, 2015.

[28] R. Wilhelm et al. The worst-case execution-time problem overview
of methods and survey of tools. ACM Transactions on Embedded
Computing Systems, 7:1–53, May 2008.

[29] M. Ziccardi et al. EPC: extended path coverage for measurement-based
probabilistic timing analysis. In RTSS, 2015.


