
Partition Strategies For Incremental

Mini-Bucket

Alicia Nicas Miquel

Director: Alexander Ihler - UC Irvine
Internal examiner: Llúıs Belanche Muñoz - Computer Science

October 13, 2016
UC Irvine

Informatics Engineering - Computation
Facultat d’Informàtica de Barcelona (FIB)

Universitat Politècnica de Barcelona (UPC) – BarcelonaTech

Abstract

Probabilistic graphical models such as Markov random fields and Bayesian net-
works provide powerful frameworks for knowledge representation and reasoning
over models with large numbers of variables. Unfortunately, exact inference
problems on graphical models are generally NP-hard, which has led to signifi-
cant interest in approximate inference algorithms.

Incremental mini-bucket is a framework for approximate inference that pro-
vides upper and lower bounds on the exact partition function by, starting from
a model with completely relaxed constraints, i.e. with the smallest possible
regions, incrementally adding larger regions to the approximation. Current
approximate inference algorithms provide tight upper bounds on the exact par-
tition function but loose or trivial lower bounds.

This project focuses on researching partitioning strategies that improve the
lower bounds obtained with mini-bucket elimination, working within the frame-
work of incremental mini-bucket.

We start from the idea that variables that are highly correlated should be
reasoned about together, and we develop a strategy for region selection based
on that idea. We implement the strategy and explore ways to improve it, and
finally we measure the results obtained using the strategy and compare them to
several baselines.

We find that our strategy performs better than both of our baselines. We
also rule out several possible explanations for the improvement.

Resumen

Los modelos en grafo probabiĺısticos, tales como los campos aleatorios de
Markov y las redes bayesianas, ofrecen poderosos marcos de tabajo para la
representación de conocimiento y el razonamiento en modelos con gran número
de variables. Sin embargo, los problemas de inferencia exacta en modelos de
grafos son NP-hard en general, lo que ha causado que se produzca bastante
interés en métodos de inferencia aproximados.

El mini-bucket incremental es un marco de trabajo para inferencia aproxi-
mada que produce como resultado ĺımites aproximados inferior y superior de la
función de partición exacta, a base de -empezando a partir de un modelo con
todos los constraints relajados, es decir, con las regiones más pequeñas posible-
incrementalmente añadir regiones más grandes a la aproximación. Los métodos
de inferencia aproximada que existen actualmente producen ĺımites superiores
ajustados de la función de partición, pero los ĺımites inferiores suelen ser de-
masiado imprecisos o incluso triviales.

El objetivo de este proyecto es investigar estrategias de partición que mejoren
los ĺımites inferiores obtenidos con el algoritmo de mini-bucket, trabajando den-
tro del marco de trabajo de mini-bucket incremental.

Empezamos a partir de la idea de que creemos que debeŕıa ser beneficioso
razonar conjuntamente con las variables de un modelo que tienen una alta cor-
relación, y desarrollamos una estrategia para la selección de regiones basada en
esa idea. Posteriormente, implementamos nuestra estrategia y exploramos for-
mas de mejorarla, y finalmente medimos los resultados obtenidos usando nuestra
estrategia y los comparamos con varios métodos de referencia.

Nuestros resultados indican que nuestra estrategia obtiene ĺımites inferiores
más ajustados que nuestros dos métodos de referencia. También consideramos
y descartamos dos posibles hipótesis que podŕıan explicar esta mejora.

Resum

Els models en graf probabiĺıstics, com bé els camps aleatoris de Markov i les
xarxes bayesianes, ofereixen poderosos marcs de treball per la representació
del coneixement i el raonament en models amb grans quantitats de variables.
Tanmateix, els problemes d’inferència exacta en models de grafs son NP-hard
en general, el qual ha provocat que es produeixi bastant d’interès en mètodes
d’inferència aproximats.

El mini-bucket incremental es un marc de treball per a l’inferència aprox-
imada que produeix com a resultat ĺımits aproximats inferior i superior de la
funció de partició exacta que funciona començant a partir d’un model al qual
se l’hi han relaxat tots els constraints -es a dir, un model amb les regions mes
petites possibles- i anar afegint a l’aproximació regions incrementalment més
grans. Els mètodes d’inferència aproximada que existeixen actualment pro-
dueixen ĺımits superiors ajustats de la funció de partició. Tanmateix, els ĺımits
inferiors acostumen a ser massa imprecisos o fins aviat trivials.

El objectiu d’aquest projecte es recercar estratègies de partició que millorin
els ĺımits inferiors obtinguts amb l’algorisme de mini-bucket, treballant dins del
marc de treball del mini-bucket incremental.

La nostra idea de partida pel projecte es que creiem que hauria de ser ben-
eficiós per la qualitat de l’aproximació raonar conjuntament amb les variables del
model que tenen una alta correlació entre elles, i desenvolupem una estratègia
per a la selecció de regions basada en aquesta idea. Posteriorment, implementem
la nostra estratègia i explorem formes de millorar-la, i finalment mesurem els
resultats obtinguts amb la nostra estratègia i els comparem a diversos mètodes
de referència.

Els nostres resultats indiquen que la nostra estratègia obté ĺımits inferiors
més ajustats que els nostres dos mètodes de referència. També considerem i
descartem dues possibles hipòtesis que podrien explicar aquesta millora.

Acknowledgements

I would like to thank the director of my project, Prof. Alexander Ihler, for
giving me the opportunity for working with him and for hosting me in his lab,
and for his advice and support and patience.

I would also like to thank the supervisor of my project, Prof. Llúıs Belanche,
for his advice and support.

Additionally, wish to express my sincere thanks to the Balsells fellowship
program and Professor Roger Rangel for giving me the opportunity to carry out
my project at UC Irvine.

Finally, I also want to thank my family for being so patient and supportive.

1

Contents

1 Context 5

1.1 Problem formulation . 5

1.2 Background . 5

1.2.1 Graphical models . 5

1.2.2 Bucket elimination . 6

1.2.3 Junction trees . 6

1.2.4 Mini-bucket elimination 8

1.2.5 Weighted mini-bucket . 8

1.3 State of the art . 8

1.3.1 Partitioning methods . 8

1.3.2 Variational bounds . 9

1.3.3 Incremental mini-bucket 10

2 Scope 11

2.1 Objective . 11

2.2 Scope . 11

3 Methodology 13

4 Planning 14

4.1 Duration . 14

2

4.2 Stages . 14

4.2.1 Setup . 14

4.2.2 Planning and feasibility 14

4.2.3 Project iterations . 15

4.2.4 Testing and results . 16

4.2.5 Final stage . 16

4.2.6 Time breakdown . 16

4.3 Gantt chart . 17

4.4 Planning deviation . 17

5 Budget 19

5.1 Resources . 19

5.1.1 Hardware . 19

5.1.2 Software . 19

5.2 Human resources . 19

5.3 Hardware . 20

5.4 Software . 20

5.5 Unforeseen costs and contingency 20

5.6 Budget deviation . 21

6 Sustainability report 22

6.1 Social sustainability . 22

6.2 Economic sustainability . 23

6.3 Environmental sustainability . 23

6.4 Sustainability table . 24

7 Partition strategy 25

8 Implementation 28

3

8.1 Algorithm . 28

8.2 Considerations . 29

8.2.1 Correlation . 32

8.2.2 Message Passing . 33

9 Experiments and Results 37

9.1 Comparison to random variable baseline 37

9.2 Comparison to scope-based merge 38

9.2.1 Possible causes of improvement 39

10 Conclusions 41

11 Future work 43

4

Chapter 1

Context

1.1 Problem formulation

Mini-bucket elimination is an algorithmic framework for approximate inference
on graphical models that provides a lower and upper bound on the exact result.
Mini-bucket elimination lowers the complexity of the problem to be solved by
partitioning the factors that ought to be reasoned about together into mini-
buckets, thus relaxing some of its constraints. The strategy used to partition
the buckets heavily influences the accuracy of the bounds obtained. There
exists a spectrum of partitioning strategies that attempt to obtain accurate
bounds. For an upper bound, these approaches use a specific and greedy way to
estimate the improvement that could be obtained through each of the available
clusters. However, this greedy method is not applicable to lower bounds, and
no equivalent method has yet been developed. Starting from the incremental
mini-bucket algorithm developed by Forouzan and Ihler [2], this project focuses
on researching partitioning strategies that improve the lower bounds obtained
with mini-bucket elimination.

1.2 Background

1.2.1 Graphical models

A graphical model is a probabilistic model for which a graph expresses the
conditional dependence structure among random variables [1] by explicitly rep-
resenting the direct relationships inherent in the joint probability distribution
[2]. Examples of graphical models include Bayesian networks, Markov random
fields, constraint networks and influence diagrams. Consider a set of variables
X = {x1, ..., xn} and a distribution over them:

5

p(x) =
1

Z

∏
α∈I

fα(xα)

Z =
∑
x

fα(xα)

where x indicates a configuration of the variables and Z is the normalizing
constant, called the partition function. We associate the probability distribution
p(x) with a graph G = (V,E) where each variable xi is associated with a node
i ∈ V and is connected by an edge of the graph to xj if both variables xi and xj
are arguments of the same function fα. I is then a set of all the sets of variables
that appear together (cliques) in G.

Common inference tasks on graphical models include finding the most likely,
or MAP, configuration of p(x), which is a combinatorial optimization problem,
or computing the partition function Z, which is a combinatorial summation
problem. Computing Z -which corresponds to the probability of evidence in
Bayesian networks- or the marginal probabilities of p(x) are central problems in
many learning and inference tasks.

Unfortunately, inference on graphical models is NP-hard and often compu-
tationally intractable for real-world problems. Exact inference, such as bucket
elimination, is exponential on the treewidth of the model, which motivates the
development of a spectrum of approximations and bounds subject to computa-
tional limits that make them tractable.

1.2.2 Bucket elimination

Bucket elimination [3] is an exact inference algorithm that eliminates each of
the variables sequentially. Given an elimination order over the variables of
the distribution, bucket elimination collects all factors that include xi as their
earliest-eliminated argument, takes their product, and eliminates xi from the
product to produce a new factor over later variables, which is placed in the
bucket of its “parent”, the earliest uneliminated variable.

The space and time complexity of bucket elimination are exponential in the
induced width of the graph given the elimination order. While good elimination
orders can be identified using various heuristics, this exponential dependence
often makes direct application of bucket elimination intractable for many real-
world problems.

1.2.3 Junction trees

We can view the bucket elimination process as passing ”messages” between the
nodes and their parents along a tree structure [6]. Each newly generated factor
in the bucket elimination step can be viewed as a ”message” that is passed

6

x1

x2

x3

x4

(a)

x1

x2

x3

x4

(b)

x1

x2

x3

x4

(c)

x1

x2

x3

x4

(d)

x1, x2, x4
x2
x4

x2, x3, x4
x3
x4

x3, x4
x3
x4

x4

(e)

Figure 1.1: Construction of a junction tree on a small graph: (a) The first step
is to triangulate (add edges between its parents) node 1. We can now create the
first cluster of the junction tree, which is made up of node 1 and its parents, x2
and x4. (b) Next, we triangulate node 2. The second cluster is made up of node
2b and its parents, x3 and x4. Since x2 is the first parent of node 1, we add an
edge between the first and second clusters. (c) we continue triangulating and
adding a new cluster with the node and its parents, and add an edge from the
second to the third clusters. (d) The last cluster is only made up of node 4. (d)
The resulting junction tree.

forward from node i (i.e. the bucket of xi) to its parents. In the case that the
graph G = (V,E) is a tree, the forward and backward elimination processes
can be directly viewed as passing messages between the nodes. However, for
more general models, it is more notationally convenient to view the elimination
as passing messages over a junction tree, a tree structure formed by subsets of
nodes (called clusters) in the original graph.

A cluster graph is a graph formed by subsets of variables. A cluster graph
is also a junction graph if it satisfies the running intersection property: for each
variable i ∈ V , the sub-graph consisting of the clusters and edges of the cluster
graph that include i is a connected tree.

Constructing junction trees

The bucket elimination process is analogous to constructing a junction tree. the
junction tree simply records the variable scopes of the buckets {Bi} and their
message trajectories (since j is the first parent of i iff the factor ψnewi created
when eliminating xi falls into the bucket Bj of variable xj). This process is
visualized for a small graphical model in Figure 1.1.

7

1.2.4 Mini-bucket elimination

Mini-bucket elimination [4] is an approximate version of bucket elimination
where the factors in each bucket are grouped into partitions and where each
partition, also called a mini-bucket, includes at most ibound+ 1 variables. The
bounding parameter ibound then serves as a way to control the complexity of
elimination, as the elimination of each variable is performed on each mini-bucket
separately, instead of on the more complex original bucket.

Mini-bucket elimination gives upper and lower bounds on the exact parti-
tion function, and its time and space complexity are exponential in the user-
controlled ibound. Smaller ibound values result in lower computational cost, but
are typically less accurate. The accuracy of the resulting bound also depends
heavily on the strategy used for partitioning the buckets. From the variational
perspective, this corresponds to the choice of regions in the approximations,
where the regions define which sets of variables will be reasoned about jointly.
Several partitioning strategies have been developed. This project will explore
partitioning strategies that yield accurate lower bounds on the partition func-
tion.

It’s useful to consider the effect of partitioning the factors into different
mini-buckets and eliminating in each mini-bucket separately. This procedure
effectively splits a variable into one or more replicates, one for each mini-bucket.
Mini-bucket is equivalent to exact bucket elimination if all the copies of each
variable are constrained to be equal. Otherwise, the additional degrees of free-
dom lead to a relaxed problem and can generate bounds on the exact partition
function.

1.2.5 Weighted mini-bucket

An improvement to minibucket, weighted mini-bucket [5], generalizes the MBE
bound with a “weighted” elimination, where the general procedure is the same,
except that the sum/max operators are replaced with weighted sums where the
weights are normalized to sum to one for each variable.

1.3 State of the art

1.3.1 Partitioning methods

Mini-bucket elimination and its weighted variant compute a partitioning over
each bucket Bi to bound the complexity of inference and compute an upper
bound on the partition function Z. However, different partitioning strategies will
result in different upper bounds. Rollon and Dechter [7] proposed a framework
to study different partitioning heuristics, and compared them with the original
scope based heuristic proposed by Dechter and Rish [4]. Here we summarize

8

several approaches.

Scope-based Partitions

Proposed in Dechter and Rish [4], scope-based partitioning is a top-down ap-
proach that tries to minimize the number of mini-buckets in Bi by including as
many functions as possible in each minibucket. To this end, it first orders the
factors in Bi by decreasing number of arguments. Starting from the largest, each
factor f is then merged with the first available minibucket where the size of the
union of its variables with the variables of f isn’t larger than ibound+1. If there
are no minibuckets available that can include the factor, a new minibucket is
created and the scheme continues until all factors are assigned to a mini-bucket.

Content-based Partitions

Rollon and Dechter [7], on the other hand, seeks to find a partitioning that
is closest to the true bucket function. This requires solving the optimization
problem of minimizing the distance between the true bucket and the product of
the minibuckets. The distance is minimized in a greedy fashion, and Rollon and
Dechter [7] studied the effectiveness of several different distance functions across
multiple problem instances; however, no one distance was found to consistently
outperform scope-based partitioning.

Relax-Compensate-Recover

Choi and Darwiche [8] indirectly addresses the problem of partition selection
within their Relax, Compensate and Recover framework, in which certain equal-
ity constraints in the graph are first relaxed in order to reduce complexity of
inference. New auxiliary factors are then introduced to compensate for the re-
laxation and enforce a weaker notion of equivalence. The recovery process then
aims to identify those equivalence constraints whose relaxation were most dam-
aging and recover them. Choi and Darwiche [8] proposed a number of recovery
heuristics, including mutual information and residual recovery.

1.3.2 Variational bounds

The variational viewpoint of inference corresponds to optimizing an objective
function over a collection of beliefs constrained to lie within the marginal poly-
tope, or set of marginal probabilities that can be achieved by some joint distribu-
tion. Efficient approximations are then developed by relaxing these constraints
to enforce only a subset of them. Like mini-bucket bounds, the quality of vari-
ational bounds depends significantly on the choice of regions. Often regions are
chosen to match the original model factors, and then improved using methods
like cluster pursuit.

9

Cluster pursuit

Sontag et al. [9] developed a bottom-up approach for MAP estimation in which
regions (typically cycles or triplets) are added incrementally: First, the dual
decomposition bound is optimized through message passing. Then, a pre-defined
set of clusters, such as triplets or faces of a grid, are scored by computing a
lower bound on their potential improvement of the bound. After adding the
best-scoring cluster, the procedure repeats.

1.3.3 Incremental mini-bucket

Incremental mini-bucket [2] uses a hybrid approach that - like mini-bucket - uses
the graph structure to guide region selection while also taking advantage of the
iterative optimization and scoring techniques of cluster pursuit. Cluster pursuit
algorithms use the function values in order to select which clusters should be
added to the model. However, there are often prohibitively many clusters to
consider, which forces cluster pursuit algorithms to restrict their search to a
predefined set of clusters, such as triplets. Incremental mini-bucket uses the
graph structure to guide region selection, restricting the search to merges of
existing clusters, within one bucket at a time. This allows us to restrain the
complexity of the search and add larger regions more effectively.

Current algorithms provide reasonably tight upper bounds, but the lower
bounds are often too loose. This is because the lower bounds can be made
trivial by zeroes in the factors. Consider an example when eliminating variable
X1 from a bucket containing two factors, {f1,3, f1,2}, with ibound = 1. Suppose
that f1,2 returns 0 for some assignment to the variables in its scope. The lower
bound provided by mini-bucket elimination is trivial∑

x

f1,3,min
x
f1,2

since the zeroes in the result of minx f1,2 = λ12 will get propagated to any
factor that is reasoned about together with λ12, and all the information they
contain will be lost. In contrast, however loose the result of maximizing over
a variable is, the results the product of that result with other factors will still
contain some of the information of the other factors. This is why for this project
we’re focusing on researching ways to improve the lower bounds.

10

Chapter 2

Scope

2.1 Objective

The main objective of this project is to improve the results of the mini-bucket
elimination algorithm due to Forouzan and Ihler [2] by developing a mini-bucket
partitioning strategy that provides tighter lower bounds on the approximation
it provides and that are efficient in memory usage.

The secondary objectives of the project arise from the iterative and incre-
mental way that the project timeline is structured. For each potential parti-
tioning strategy, the objectives of each iteration of the project are to make an
incremental improvement to the strategy and to measure the magnitude of the
improvement achieved in terms of its tightness and time and space complexity
compared to the baseline.

2.2 Scope

This project builds on the framework of incremental mini-bucket. Working
within this framework, we developed a region selection strategy starting from
an idea that we thought could lead to tighter lower bounds on the approximation
of the partition function, and we tested the performance of this strategy.

Before the project started, we had a code package implemented in python,
PyGM, developed by Prof. Alexander Ihler, that implemented functionality for
dealing with graphical models and for mini-bucket elimination. Our first step is
to implement the incremental mini-bucket algorithm and related functionality,
in order to be able to implement our strategy within this framework. The next
step is to develop and implement our strategy. For this step, we first develop
and implement a strategy that tries to make the highly correlated variables be
reasoned about together. We then iteratively improve our strategy by perform-

11

ing experiments that measure the changes in accuracy of the algorithm when
certain variables are changed, and incorporate the results into our algorithm.

Once we have developed the strategy, the next step is to design and perform
experiments to test its performance. For this purpose, we compare the lower
bounds obtained by our strategy to two baselines. Specifically, we compare using
our heuristic for region choice to adding a random region, and we compare
incremental mini-bucket using our strategy to scope-based incremental mini-
bucket. We find that in both cases our method obtains tighter lower bounds on
average.

Finally, we research possible reasons why our algorithm performs better than
scope-based incremental mini-bucket. We considered whether the larger average
size of the models generated by our algorithm may lead to tighter bounds,
and we also consider whether selecting regions whose variables are more highly
correlated on average may lead to tighter bounds. We find that we can discard
both hypotheses.

12

Chapter 3

Methodology

This project was developed using an iterative development schedule made up of
short one-week cycles, with weekly meetings dedicated to ensure an adequate
progress of the project and to discuss the goals for the following cycle.

Before the start of the project, code with graphical models and mini-bucket
elimination functionality was already developed, both in python and matlab.
We chose to develop the project using python because of familiarity and speed
of development and because of its tools, such as iPython, that are useful for
performing experiments.

During the development stage, we used iPython notebooks to be able to
closely examine the behavior of our algorithm and to make sharing the progress
for meetings easier. In the iterations, we initially focused in developing and
implementing the strategy from the initial idea, then we tested that it obtained
useful results, and finally we focused on making improvements to the strategy.
In order to make improvements, we designed and performed experiments in
the testing step of each iteration to test the effects of changing some aspect
of the algorithm, such as the amount of message passing. In the analysis and
implementation steps, we incorporated our findings to the algorithm.

During the testing stage, we designed and performed experiments with the
goal of measuring the accuracy of our algorithm and compare it to those of the
baselines. These experiments were performed on artificial, randomly generated
data. We tested the results against two baselines. Our first baseline was meant
to determine whether our region choice heuristic is better than random choice.
Our second baseline is a state-of the art algorithm for approximate inference,
specifically, scope-based incremental mini-bucket. Because we found that our
algorithm performed better on average than our state-of-the-art baseline, we
additionally designed and performed tests aimed at finding the reason for the
improvement.

13

Chapter 4

Planning

4.1 Duration

This project had a duration of six months. The starting date of this project
was February 1st and its ending date was July 31st.

4.2 Stages

4.2.1 Setup

The first stage of the project was the setup. Its main objective was learning
about the background of the problem that is addressed by the project and
gaining familiarity with the codebase. In order to achieve this goal I studied
the literature that makes up the context for the project and the state of the art
of the work done on the problem.

4.2.2 Planning and feasibility

The Project Management Course taken at UPC covered the stage of analyzing
the feasibility of the project and planning its objectives and stages thoroughly.
This was done through the deliverables required for the course. There were six
stages:

• Scope and context

• Planning

• Budget and sustainability

14

• Preliminary presentation

• Specialization module

• Presentation

4.2.3 Project iterations

After the setup stage, python code for incremental mini-bucket and our partition
strategy was developed. Afterwards, the iterative process of improving the
strategy started. Each iteration of this process involved the steps of analysis,
implementation, test, and preparation for the next iteration. The first iteration
started with the test step. In this iteration the performance of a scope-based
partition strategy that has already been implemented was tested. This scope-
based partition is a known strategy that works by merging the mini-buckets with
the smaller scopes, and it was used as a baseline to compare to our strategy.
In subsequent iterations, the strategy developed in the design stage will be
implemented and iteratively refined.

Analysis

In the analysis step of each iteration, the strategy as implemented in the previ-
ous iteration is analyzed, and an improved strategy is developed. In this step,
the objective is detecting problems with the current implementation, as well as
analyzing the results of the testing steps in order to develop ways to incorpo-
rate the knowledge gained from them into our strategy. The analysis step also
involves designing the code that will be developed in the following step.

Implementation

In the implementation step, the partitioning strategy developed from the anal-
ysis is implemented in python to be used with the existing incremental mini-
bucket code.

Test

In the testing step, the results obtained with the new strategies are tested. The
tests performed evaluate the tightness of the bounds obtained by the imple-
mented strategies. Additionally, in this step, other experiments are designed
and performed, in order to determine ways in which our strategy could be im-
proved.

15

Stage Estimated dedication(hours) Actual dedication(hours)
Setup 105 230
Planning and feasibility 75 75
Project iterations 625 430
Testing and results 70
Final stage 70 70

Total 875 875

Table 4.1: Time breakdown

Preparation for the next iteration

In preparation for the next iteration, the problems with the current strategies
will be identified in this step.

4.2.4 Testing and results

In this stage of the project, the final testing for the project was performed,
and results were extracted. This involved two steps. The first step was to test
the accuracy of the lower bounds obtained by our strategy, as compared to our
two baselines. For this purpose, several experiments that compared the our
strategy to a baseline were designed and performed. Our results from the first
step indicated that our strategy performs better on average than both of our
baselines. This result was surprising, since we expected our strategy to perform
better than scope-based incremental mini-bucket only in certain cases. In the
second step of the testing stage, some hypotheses for the reason for this result
were tested. This required designing and performing experiments to test each
of them.

4.2.5 Final stage

The final stage of the project involves the creation of the final report and prepa-
ration for the final presentation.

4.2.6 Time breakdown

The setup stage of the project lasted the first 9 weeks of the project. The
planning and feasibility stage requires 75h of work, spread over 8 weeks, and it
overlaps with the latter part of the setup stage. The rest of the available time
before the last 4 weeks of the project is taken up by the project iterations. This
means that TODO hours were dedicated to the project iterations, with each
iteration lasting one week. After the project iterations, the testing step took
up two weeks, and the final stage of the project took up the last 2 weeks of the
project. Table 4.1 shows the time breakdown.

16

4.3 Gantt chart

Both the task durations and dependencies of the project estimated in the plan-
ning stage of the project and the final recorded ones are shown in the Gantt
charts in Figure 4.1

4.4 Planning deviation

During the development of the project, there were some temporal deviations.
They were fixed by focusing on developing one strategy, instead of several at
the same time. The delay was caused by the time needed for the setup and
knowledge acquisition being more than initially planned.

Additionally, a stage was added, taking up some of the time at the end of
the project iterations stage, dedicated to performing experiments and gathering
results. In Table 4.1 we can see the differences in duration estimated and actual
for each step.

17

(a) (b)

Figure 4.1: (a) Gantt chart showing the estimated timing of the project stages.
(b) Gantt chart showing the actual timing of the project stages.

18

Chapter 5

Budget

5.1 Resources

5.1.1 Hardware

1. Sony VAIO laptop

5.1.2 Software

1. Matlab 2015b

2. Python 3.4

3. Google drive

4. Dropbox

5. Windows 10

5.2 Human resources

This project has been developed by one person. Since this is a research project,
the developer has two roles: project manager and researcher. The role of project
manager entails planning the project, and the role of researcher entails doing
the technical work of the project (designing, implementing, and testing the
partitioning strategies for the mini-bucket algorithm). This being an academic
project, the cost of human resources is fictitious; however, the cost has been
estimated for the purpose of this budget. The costs are detailed in Table 5.1

19

Role Hours Cost per hour Total cost
Project manager 75h AC50/h AC3750
Researcher 835h AC35/h AC29225

Total 910h 910

Table 5.1: Human resources budget

Product Cost Units Service life Amortization
Sony VAIO laptop AC800 1 5 years AC80

Total AC800 AC80

Table 5.2: Hardware budget

5.3 Hardware

The development of this project requires a computer for every stage. Its cost is
estimated in Table 5.2

5.4 Software

Some software products were needed to carry out this project. Most of the
products needed are free to use, and the rest are free for academic projects
like this one, but here their cost for commercial use is considered. The cost is
detailed in 5.3

5.5 Unforeseen costs and contingency

Since the timeline is rigid, costs that only depend on the duration in months of
the project were unlikely to change. The most likely unforeseen expense would
have been hardware repair costs, which can be estimated at 300AC. We estimated
the risk of incurring these expenses to be at 10%. These expenses finally weren’t
incurred.

Product Cost Units Service life Amortization
Matlab 2016b student license AC100 1 3 years AC16.67
Python AC0 1 N/A AC0
Google Drive AC0 1 N/A AC0
Dropbox AC15/month 1 6 months AC90
Windows 10 Home AC135 1 3 years AC22.5
Sublime Text AC63 1 4 years AC7.88

Total AC388 AC137.05

Table 5.3: Software budget

20

Concept Estimated cost Final cost
Human resources AC32975 AC32975
Hardware AC80 AC80
Software AC137.05 AC137.05
Unforeseen expenses AC30 AC0

Total AC33,222.05 AC33,192.05

Table 5.4: Total budget: estimated and final

5.6 Budget deviation

This project didn’t have a complex budget, its only requirements being a de-
veloper, a laptop, and some free-for-educational-purposes software. The biggest
costs are those of human resources, and, since we were able to complete the
project in the stated time, these costs haven’t changed.

In our initial budget, we considered the possibility of incurring unforeseen
costs during the course of the project. These unforeseen costs weren’t actually
incurred, so the final cost of the project is slightly smaller than the estimated
cost.

We can see the comparison between estimated and final budgets in Table 5.4

21

Chapter 6

Sustainability report

This is a theory project that doesn’t result in a product and, as such, has little
environmental or social impact. However, no human activity is without external
effects, and it’s important to recognize and measure these effects in order to fully
understand the contribution of the project.

6.1 Social sustainability

Working on this project has been an important experience for me in several
ways. During the course of the project, I have gained important experience
in applying the scientific method to finding solutions to a problem. Since my
project is a science project, a big part of our methodology consisted in coming
up with hypotheses and testing them, and using the test results to come up
with new hypotheses. This method required some getting used to because it’s
different from most work I’ve done before in my schooling. Additionally, my
work on this project highlighted certain problems I still haven’t fully addressed,
like that I need to be more proactive.

In its current form, and since it isn’t geared toward any application in par-
ticular, this project doesn’t have any social impact. The project may, however,
have an impact through being a small contribution to the problem of inference
in graphical models. As such, it will be beneficial to the community of graph-
ical models researchers by providing an incremental improvement to existing
approximate inference methods.

Additionally, graphical models are a powerful paradigm for knowledge rep-
resentation and reasoning that have applications in a variety of fields, such as
medical diagnostics or computer vision [2]. Advances in these fields may lead
directly to increases in quality of life. Therefore, although a lot of work would
be needed to incorporate its results into a practical application, the contribution
of this project could have a positive societal impact.

22

On the other hand, the development of machine learning solutions causes
some ethical concerns that need to be taken into account when considering the
net effect of this development. A particularly pressing one is the possibility of
a massive loss of jobs due to automation [12].

6.2 Economic sustainability

The budget for this project is described and justified in Chapter 5. Most of the
budget is spent on human resources, with an item dedicated to hardware -the
laptop used for development- and a few software licenses. The final budget for
this project was of AC33,192.05. This budget is hard to reduce, but a possible
way to reduce some costs would be to try to use free or cheaper software instead
of some of the programs that we needed paying licenses for.

6.3 Environmental sustainability

This project has some direct environmental impact as a result of being devel-
oped using a laptop with an estimated power rating of 33W. During the 875h
of the project, this amounts to 26.25kWh. Since this project has been devel-
oped in California, we use the California emissions statistics to estimate the
emissions footprint of this project. Therefore we estimate that electricity pro-
duction causes emissions of 0.287kg of CO2 per kWh[13], and that the carbon
emissions for the entire project is of 7.53kg of CO2. This impact is hard to re-
duce, especially since laptop computers have relatively low power consumption,
and a high percentage of California’s electricity is generated using renewable
sources. Since the total time dedicated to development hasn’t changed, the
emissions estimate from the planning stage of the project is the same as the
actual emissions generated by the project, save for possible differences between
the actual sources of the consumed electricity and the percentages calculated in
the statistics.

Graphical models are often used to tackle problems involving massive amounts
of data, and algorithms are often extremely inefficient due to the inherent com-
plexity of inference in graphical models. This means that using these methods
requires significant computational resources and therefore has a high environ-
mental impact.

This project’s goal is to improve the efficiency of the algorithms used to solve
our problem, and therefore could have an indirect positive impact in the envi-
ronmental footprint of graphical models-based solutions. However, this project
doesn’t generate such a solution, and therefore doesn’t have an impact in and
of itself.

23

PPP Service life Risks
Environmental 8 0 0
Economic 8 0 0
Social 10 0 0

Table 6.1: Sustainability matrix

6.4 Sustainability table

Table 6.1 presents the numerical sustainability score of the project, for the three
aspects of sustainability considered. For both the service life and risks columns,
we give all three aspects a score of 0, because, while we have identified potential
impacts of the project, these aren’t direct impacts and considerable work would
have to be undertaken for them to be possible.

24

Chapter 7

Partition strategy

We propose a strategy for region choice based on the idea that highly correlated
variables should be reasoned about together. In order to improve the bounds,
we need to take into account the values of the factors of the distribution, so
that we can find the regions that lead to more improvement. Here, we observe
that variables encode information about other variables that is lost when the
variables aren’t reasoned about together.

As an example, consider the graph in Figure 7.1a where both x1 and x2 and
x1 and x3 are highly correlated. In this situation, x2 and x3 have the same
value with high probability. However, in mini-bucket elimination, the bucket of
the variable x1 could be divided into two mini-buckets, each containing one of
the factors f(x1, x2) and f(x1, x3), effectively creating two copies of the variable
x1, as shown in Figure 7.1b.

B1 = {f(x1, x2), f(x1, x3)} ⇒ B11 = {f(x11, x2)}, B12 = {f(x21, x3)}

In this graph with relaxed constraints, having x2 6= x3 is a consistent solution.
This happens because the copies of x1 can have different values.

x1 x2

x3 x4

(a)

x11

x21

x2

x3 x4

(b)

Figure 7.1: Example graph showing the effects of partitioning a bucket. (a)
Graph where x1 ≈ x2 and x1 ≈ x3. (b) Graph where the bucket of x1 is divided
into two mini-buckets.

25

x1 x2

x3

x4 x5

(a)

x11

x12

x3

x4 x5

x21

x31

(b)

x11 x12

x3

x4 x5

x22x21

(c)

Figure 7.2: Example graph, showing the effects of partitioning a larger bucket
and of adding a variable to the cliques. (a) A graph where the bucket of x1
is formed by the functions f12, f13, and f14. (b) The result of relaxing the
constraints of the first bucket. (c) Result of adding x2 to the mini-buckets and
merging the buckets with the same variables.

26

Additionally, some pairs of variables contain more information about each
other than others. We hypothesize that preserving the relationships between
the most correlated variables will lead to tighter bounds.

Consider the graph in Figure 7.2a where x1 is connected to x2, x3, and x4.
Suppose that x1 = x2. In incremental mini-bucket elimination, we start from a
fully relaxed graph. A fully relaxed x1 bucket looks like the graph in 7.2b.

If we want to slightly increase the complexity of the bucket, while taking
into account our idea, we can try adding a highly correlated variable to all the
cliques of the bucket. Doing this gives us the option of reasoning jointly about
any two of three possible sets of variables -(x1, x2, x3), (x1, x2, x4) and (x1,
x3, x4)- all for the same memory cost. This cost is additionally lower than that
of exactly eliminating x1, which requires reasoning jointly over all of x1, x2, x3,
and x4.

If x1 = x2, it makes sense to add x2 to the cliques, as seen in graph 7.2c, since
this actually leads to the same result as the exact graph, with lower complexity.
Our hypothesis, then, is that, if x1 doesn’t equal x2 but instead is only highly
correlated to it, adding x2 will lead to a good approximation.

27

Chapter 8

Implementation

This chapter describes the structure and implementation of our algorithm and
discusses the experiments we performed in order to decide on the parameters of
the algorithm and the conclusions we derived from them.

8.1 Algorithm

This section explains the structure of our code.

Our algorithm works within the framework of incremental mini-bucket de-
scribed in Forouzan and Ihler [2].

The structure of the algorithm is the same; the differences come from the
way that we’re adding complexity to the model. Instead of finding the cliques
we would benefit most from merging, we select a variable that we add to all the
cliques.

The input of the algorithm is a factor graph, plus the ibound, which deter-
mines the maximum size of the cliques of the model and therefore its maximum
complexity, and the numbers T , U , and V , which determine the amount of mes-
sage passing that we will do before starting the merges, after each merge and
in the end, respectively.

The algorithm begins by initializing a join graph using some elimination
ordering for the variables, usually min-fill [10], and ibound = 1. For each bucket
Bi, this results in each mini-bucket (or region) qki ∈ Bi containing a single factor
θα.

We perform some rounds of message passing on the join graph. The number
of rounds of message passing is determined by the input parameter T . In Section
8.2.2 we explore the effectiveness of various strategies for message passing. After
the initial message passing, we go through the buckets following the elimination

28

order. For each of the buckets, the objective is to choose variables to add to
the cliques of the bucket until the cliques reach the maximum size, which equals
ibound+ 1.

We work toward the goal by iteratively choosing the best variable, then
making all the cliques of the bucket be made up of their old variables plus the
new chosen variable. In order to choose the best variable vj , we score all the
variables of the bucket except the elimination bucket according to the strategy
detailed in Chapter 7.

The next step is to update the graph. We do this using a variation of the
method detailed in Forouzan and Ihler [2]. For each clique of the bucket, we
create a new mini-bucket with scope var(Bi)∪vj and add it to Bi. Eliminating
vi from this mini-bucket we obtain the forward message λr⇒πr

from this region
r to its parent region πr. The earliest eliminated variable in the scope of λr⇒πr

determines the bucket Bj containing mini-buckets that can be the parent of
r.To find πr, we first search for a mini-bucket qkj that can contain r, that is, var(

λr→πr) ⊆ var(qkj). If such a mini-bucket exists, we set πr to qkj ; otherwise, we

create a new mini-bucket q
|Qj |+1
j with a scope that matches var(λr→πr

) and add
it to Qj . If we don’t find a mini-bucket that can be the parent, we repeat this

procedure after eliminating xj from q
|Qj |+1
j until we either find a mini-bucket

already in the join tree that can serve as the parent, or var(λr→πr)= ∅ in which
case the newly added mini-bucket is a root.

After this procedure is complete, we have a valid join tree. The next step
is to remove any unnecessary mini-buckets that can be subsumed by the new
regions and to update the join tree and the function values of the newly added
regions to ensure that the bound is improved.

After each change to the graph, we do one or more rounds of message passing.
The number of rounds is controlled by the parameter U . After all the buckets
have reached their maximum complexity, we perform the final V rounds of
message passing, in order to tighten the bound.

Algorithm 1 SelectMerge: Score the variables

Require: cluster tree wmb, bucket Bi,
for every variable vj such that vj ∈

⋃
rk∈Bj

var(rk) and vj 6= vi do

S(j)← MutualInformation(vi,vj)
end for
j∗ = argmaxj S(j)

return vj∗

8.2 Considerations

In this section we look into some of the details of our algorithm, and discuss
several methods for each of them.

29

Algorithm 2 Incremental region selection for WMBE

Require: factor graph (G), bounding parameter ibound, initial iterations T ,
in-between iterations U , final iterations V
Initialize wmb to a join graph using e.g. a min-fill ordering o, uniform
weights and uniform messages
for iter = 1 to T do

wmb← update(wmb)
end for
for each bucket Bi following the elimination order do

repeat
AddVariable(wmb, Bi)
for iter = 1 to U do

wmb← update(wmb)
end for

until No more merges possible
end for
for iter = 1 to V do

wmb← update(wmb)
end for

Algorithm 3 AddVariable:Variable scoring and region addition

Require: join graph wmb, bucket Bi
vj ← SelectMerge(Bi)
R← AddRegions(wmb, o, vj)
wmb← MergeRegions(wmb, R)

30

Algorithm 4 AddRegions: Add the larger regions to the graph

Require: The join graph wmb, elimination order o, and the variable xj to be
added to the cliques
for each mini-bucket qi in Qi do

Initialize new region qr with var(qr) = var(qi) ∪ vj and add it to Qi
repeat

R ← R ∪ qr
new clique C ← var(qr)\xi
if C = ∅ then

done← True
else

Bj ← bucket corresponding to the first un-eliminated variable
in C based on elimination order o
for each mini-bucket region qkj ∈ Qj do

if C ⊆ var(qkj) then
//forward message fits in existing mini-bucket:
done← True

end if
end for

end if
if not done then

//Create a new region to contain forward message:
Initialize new region qr with var(qr) = C and add it to Qj

end if
until done

end for

31

Figure 8.1: Improvement of merge over baseline as a function of the score of the
variable added

In Section 8.2.1 we look into our way of measuring correlation between vari-
ables. In Section 8.2.2 we research the effect of the amount and the distribution
of message passing on the accuracy of the bounds.

8.2.1 Correlation

Our method for tightening the bound on the partition function tries to find the
most beneficial variables to add to the buckets. We do this by searching for
the variable most correlated to the elimination variable. In order to estimate
the relative improvements expected from choosing each variable, we need to use
some measure of correlation in line 2 of Algorithm 1. We consider using the
mutual information of the two variables,

MI(x1, x2) = p(xi, xj) log

(
p(xi, xj)

p(xi)p(xj)

)
where p(xi, xj) is the estimate of the joint probability of the variables xi and
xj , and p(xi) and p(xj) are the estimates of the probabilities of the variables,
obtained by marginalizing on p(xi, xj).

We want to determine whether mutual information is a useful metric. For
this purpose, we look at the correlation between the improvement of the bound
when adding a variable and the mutual information of the variable added with
the elimination variable. Our hypothesis is that adding a variable that’s more
highly correlated with the elimination variable results in a larger improvement
on the bound.

The result, as we can see in Figure 8.1 is that we observe a correlation be-
tween the mutual information of the variables and the improvement caused by
adding them to the cliques of the bucket. Therefore, we conclude that mu-
tual information is a useful metric that is able to guide the algorithm to select
beneficial variables.

32

8.2.2 Message Passing

Incremental mini-bucket uses message passing on the join graph to guide the
selection decision.

In the algorithm we have developed, we use message passing in three different
moments that correspond to three loops in Algorithm 2: at the beginning of
the algorithm in line 2, after each change in the graph in line 8, and at the end
of the algorithm in line 13. The amount of message passing done at each point
in the algorithm is determined by the user-controlled parameters T, U, and V,
respectively.

We initially intended to use the method for message passing presented in Liu
and Ihler [5]. However, we found that the method doesn’t result in monotonic
tightening of the bound when the graph contains cliques with weights close to
0. Because of this, we decided to use the method from Ping, Liu and Ihler [11],
which ensures monotonically increasing bounds. Unfortunately, this method is
much slower than non-monotonic message passing.

In this section, we explore some possible strategies for message passing.
Specifically, we study the effect of the total amount of message passing on the
bound, and we compare the effect of doing most of the message passing at the
beginning of the algorithm to the effect of doing more message passing after
each change to the graph.

Total amount of message passing

The amount of message passing performed on the graph may have an effect on
the choices of the algorithm, making variables more or less attractive. Changes
in the choices could be favorable or unfavorable. For example, in a graph where
a factor indicates that its two variables are almost equal, these variables initially
have very high mutual information. However, the effect that message passing
has on this graph is equivalent to making a choice on the value that the two
variables should have, that is, one of the possible assignments to the variables
will have an increasingly high probability, and the rest will become increasingly
unlikely. This would cause the mutual information of the variables to decrease.
In this scenario, by doing message passing, we lose the information that the two
variables have about each other, which could lead the algorithm to choose a
different variable and have an adverse effect on the bound.

However, given a graph with a factor where only one of the possible assign-
ments is likely, message passing would have the effect of spreading the informa-
tion from the factor, and probably have a beneficial effect on the bound.

We compare the bounds achieved with a small amount of message passing
to those obtained when doing more message passing before making any choices.
We additionally look into what characteristics of the graphs may lead to message
passing having a negative effect on the bound.

33

Figure 8.2: Improvement of 200 rounds of message passing before scoring over
no message passing before scoring

In order to study the effect of the total amount of message passing, we look
at the difference between doing no message passing and doing 200 rounds of
message passing at the beginning of the algorithm.

For this experiment, we generate 3-by-3 grid graphs with random factors.
For each of the graphs, we generate two instances of their join graph with
completely relaxed constraints.

We run 200 rounds of message passing on the second instance. This may
affect the relative attractiveness of the variables with respect to those in the first
instance. Then, in both instances, we score the variables of the first bucket by
measuring their mutual information with the elimination variable of the bucket.
We then add the variable with the highest score to all the cliques of the bucket,
using the procedure detailed in Chapter 8.

Finally, we do more message passing. In order to keep the two instances
comparable, we do 200 more rounds of message passing on the first model. In
order to measure the effect of the initial message passing, we now compare the
lower bounds obtained by the two models.

As seen in Figure 8.2, the improvement achieved by doing message passing
before any scoring is positive on average. The average improvement to the bound
is of 0.0464225455864. Therefore, we conclude that doing message passing before
starting the scoring is slightly beneficial (p = 1e− 6).

We also see that message passing has a negative effect in few cases. We look
into what causes this negative improvement and we find that negative improve-
ment usually happens when, in the version that doesn’t do the initial message
passing, mutual information selects the variable that leads to the highest bound,
and in the version with initial message passing, the algorithm doesn’t find the
best variable.

However, when the best possible variable isn’t found without doing mp,
doing message passing is useful. In fact, doing message passing is more likely
to make the algorithm find the variable that most improves the bound, when
it didn’t before, which happens with probability 0.436, than it is to lose the

34

Figure 8.3: Improvement of U = 15 over U = 1 with same total amount of
message passing

variable, which only happens with probability 0.3607.

This leads us to conclude that doing message passing before scoring the
variables is beneficial, since it leads to tighter bounds on average and it has a
good chance of improving the ability of the algorithm to find the best variable.

Distribution of message passing

Additionally, we looked into the distribution of the message passing in the al-
gorithm. In algorithm 2, there are three different lines where message passing
is performed. The first one is at the beginning of the algorithm, before any
scoring is done, in line 2. The second line is after each change in the graph,
in line 8. The last line the message passing at the end of the algorithm, after
all the buckets have reached their maximum size, in order to tighten the final
bound. This message passing happens in line 13.

In this section, we want to know whether the amount of message passing
performed after each change in the graph -i.e. after each time that we select a
variable and add it to each clique in the bucket- in line 8 has an effect on the
accuracy of the bounds and whether this effect is beneficial. A larger amount of
message passing in line 8 would mean that the information of the change made
to the cliques of the bucket is spread to the rest of the graph.

In order to study our question, we design an experiment where we compare
two instances of our algorithm where different amounts of message passing are
performed in line 8, but the total amount of message passing is left constant,
which means that the instance with a low value for parameter U has a higher
value for parameter T .

For this experiment, we generate 3-by-3 grid graphs with random factors.
For each of the graphs, we generate two instances of their join graph with
completely relaxed constraints. We run Algorithm 2 on both instances. In the
first instance, we set T = 15, U = 15, and V = 15. In the second instance,
we set U = 1 and V = 15 and we set T such that the total rounds of message

35

passing in the entire algorithm are the same in both instances.

Figure 8.3 shows a histogram of the difference in bounds obtained by the two
methods for each graph. Since we’re testing lower bound performance, higher
bounds are better. As we can see, the bounds obtained with the higher value
of U are tighter on average. The average improvement is of 0.0421, which is
significant with p = 0.087.

From this experiment we can conclude that doing message passing after
each time there’s a change in the graph is slightly beneficial on average to the
accuracy of the final bonds, and that therefore it’s better to spend the available
resources for message passing in having a higher U than on a high T .

36

Chapter 9

Experiments and Results

In this chapter, we compare the results of using our algorithm with two different
baselines. In Section 9.1, we compare our method for scoring variables to picking
a random variable to add, and find that our method leads to better outcomes.
In Section 9.2, we compare our algorithm to scope-based merge, and find that
our method leads to better bounds on average. Finally, in Section 9.2.1 we look
into some possible reasons why our algorithm may lead to better bounds than
scope-based merge.

9.1 Comparison to random variable baseline

For our first baseline, we compare our method for adding variables based on
correlation to a random version.

Because our method identifies variables with high correlation to the elimi-
nation variable, which, according to our hypothesis, is a desirable quality for
variables that are added to all the cliques to have, we expect our method to lead
to tighter bounds than the random version, which doesn’t take into account any
traits of the variables it selects.

In order to compare the performance of both methods, we generate two
instances of the same graph and run algorithm 3 on the join graphs for both of
them, setting their first bucket in the elimination order as Bi.

We test the improvement on randomly-generated 3-by-3 grid graphs.

For each of them, we generate two instances of their join graph with com-
pletely relaxed constraints. On the first instance, we take the first bucket and
score its variables using MI. Then we add the best one to the mini-buckets. On
the second instance, we randomly pick a variable and add it to the mini-buckets.
We then do some message passing on both instances, and compare their bounds.

37

(a) (b)

Figure 9.1: (a) Improvement of using MI over choosing a random variable. (b)
Improvement of the algorithm over scope-based merge

As seen in Figure 9.1a, using MI to choose the right variable leads to an
improvement over making a random choice (p=1.54e-05). The average improve-
ment to the bound is of 0.068.

This experiment allows us to conclude that our method performs better than
random on average.

9.2 Comparison to scope-based merge

We test the improvement of our proposed method over a different baseline. This
baseline is incremental mini-bucket with scope-based merge.

Our initial hypothesis is that neither method should be better than the
other on average. We additionally expect that our method will tend to achieve
a higher improvement over scope-based merge when the graphs have more highly
correlated variables.

In order to test the improvement, we randomly generate 5-by-5 grid graphs.
For each of them, we generate two instances of their join graph with completely
relaxed constraints. We run Algorithm 2 on the first instance, and the incre-
mental mini-bucket algorithm from Forouzan and Ihler [2] using a scope-based
scoring function on the second instance.

As seen in Figure 9.1b, using MI to choose the right variable leads to an
improvement over scope-based merge. The average improvement to the bound
is of 0.339.

From this experiment we can conclude that our method performs better
than scope-based merge. This contradicts our initial hypothesis, since we didn’t
expect either of the methods to perform better than the other. In Section 9.2.1,
we look at two possible causes for this unexpected result.

38

(a) (b)

Figure 9.2: (a) Improvement of merging over baseline as a function of the average
MI of the variables chosen. (b) Improvement of merging over baseline as a
function of the total size of the model

9.2.1 Possible causes of improvement

In this section, we test two hypotheses that may help explain why our algorithm
obtains tighter bounds than scope-based merge. We find that both hypotheses
are unsupported by our data and therefore we don’t know the real cause of the
improvement.

Does a higher average MI lead to a higher improvement over scope-
based merge?

Our first hypothesis is that by using correlation between variables to make
choices, we are making smarter choices than scope-based merge, which doesn’t
take the content of the factors of the distribution into consideration. To test
this, we measure whether in graphs where the variables have high average mutual
information using our algorithm leads to a higher improvement over scope-based
merge than in graphs with low average mutual information.

We run both our correlation-based algorithm and scope-based incremental
mini-bucket on randomly generated 5-by-5 grid graphs and, as seen in Figure
9.2a, we find that there is no correlation between the average MI of the graphs
and the advantage of our algorithm over scope-based merge, and therefore con-
clude that we can discard our hypothesis.

Do larger cliques lead to tighter bounds?

Our second hypothesis is based on the fact that our algorithm tends to generate
uniformly large cliques that are close to the maximum size, while the scope-
based merge tends to generate one large clique and some smaller cliques. Our
hypothesis is that the larger size of the model created by our algorithm allows
it to reach tighter bounds. In order to test this hypothesis, we measure whether

39

there is a correlation between the difference in size of the two models from the
same graph and the improvement of the bound reached by our algorithm over
the bound reached by scope-based merge.

We run both our algorithm and scope-based merge on randomly generated 5-
by-5 grid graphs and, as seen in Figure 9.2a, we find that there is no correlation
between the size difference and the advantage of our algorithm over scope-based
merge, and therefore conclude that we can discard our hypothesis.

40

Chapter 10

Conclusions

Because graphical models are a powerful tool for knowledge representation and
reasoning, they are widely used in a variety of domains. However, because of
the inherent complexity of inference on graphical models, approximate inference
algorithms are increasingly relied on.

In this project, we started from an approximate inference framework that
merges aspects of mini-bucket elimination and variational bounding techniques
into an incremental algorithm where increasingly complex regions are added to
a model that starts with the smallest possible regions.

We focused on a known weakness of existing approximate inference algo-
rithms, the tightness of lower bounds. We attempted to address this weakness
by developing new strategies for region selection in incremental mini-bucket.

In Chapter 7 we presented a strategy for region selection based on the idea
that highly correlated variables should be reasoned about together. In our
strategy, for each bucket of the join graph, we iteratively find the variable that
has the highest correlation to the elimination variable, and add it to the scope
of all the cliques of the bucket. This ensures that the information that the two
variables have about each other is taken into account in the approximation.

In Chapter 8 we discussed the implementation of our strategy within the
framework of incremental mini-bucket. We described the changes made to adapt
the incremental mini-bucket algorithm to our strategy, and we discussed some
aspects of the implementation.

We discussed the method for measuring correlation and proved that higher
mutual information correlates to higher improvement of lower bounds when
adding a variable to the cliques of a bucket. We additionally discussed our
message passing method and strategy. We decided to use the gradient descent
algorithm from Ping, Liu, and Ihler [11] in order to ensure monotonic tightening
of the bound.

41

We also studied the amount and distribution of message passing in the algo-
rithm and found that some message passing at the start of the algorithm leads
to tighter bounds than not doing any and that doing some message passing
after each change in the bound leads to tighter bounds than doing all message
passing at the beginning and end of the algorithm.

In Chapter 9 we discussed our results, and looked into some possible expla-
nations for them. We first compared the bounds obtained with our algorithm
to the bounds obtained with two different baselines.

First, we compared the bounds obtained by picking and adding a variable
using our strategy to the bounds obtained by random choice, and found that our
strategy leads to tighter lower bounds on average. Additionally, we compare our
algorithm to scope-based incremental mini-bucket and find that our algorithm
obtains tighter lower bounds on average.

Finally we research some possible reasons for our algorithm to obtain tighter
bounds than scope-based incremental mini-bucket. We test whether our algo-
rithm creating cliques with more highly correlated variables on average may lead
to the improvement and whether the larger cliques that our algorithm tends to
create may lead to a more expressive model and tighter bounds. We find that
we can discard both hypotheses

42

Chapter 11

Future work

There are some aspects of the project that could be further developed. In this
chapter, we list some of them.

In Section 9.2.1 we explored possible reasons why our algorithm might achieve
tighter bounds than scope-based incremental mini-bucket. However, we found
that our test results didn’t bear out our hypotheses, and we consequently don’t
know the actual reason for the difference. Therefore, more work should be done
to research the causes of the improvement.

Additionally, we ended up focusing on and developing only one of our ideas
for algorithms. It would be an interesting follow-up to this project to develop
our other ideas and compare their results to the ones we obtained here.

In this project, we developed and tested an algorithm for approximate infer-
ence, but we only developed a Python implementation designed for easy tweak-
ing and testing. For this reason, we couldn’t research the time cost of our
algorithm with sufficient accuracy. A more complete assessment of the perfor-
mance of our algorithm would require an evaluation taking into account its time
costs.

It would also be interesting to see an implementation of our algorithm used
by real users for real problems.

43

List of Figures

1.1 Construction of a junction tree on a small graph: (a) The first
step is to triangulate (add edges between its parents) node 1.
We can now create the first cluster of the junction tree, which
is made up of node 1 and its parents, x2 and x4. (b) Next, we
triangulate node 2. The second cluster is made up of node 2b
and its parents, x3 and x4. Since x2 is the first parent of node
1, we add an edge between the first and second clusters. (c) we
continue triangulating and adding a new cluster with the node
and its parents, and add an edge from the second to the third
clusters. (d) The last cluster is only made up of node 4. (d) The
resulting junction tree. 7

4.1 (a) Gantt chart showing the estimated timing of the project
stages. (b) Gantt chart showing the actual timing of the project
stages. 18

7.1 Example graph showing the effects of partitioning a bucket. (a)
Graph where x1 ≈ x2 and x1 ≈ x3. (b) Graph where the bucket
of x1 is divided into two mini-buckets. 25

7.2 Example graph, showing the effects of partitioning a larger bucket
and of adding a variable to the cliques. (a) A graph where the
bucket of x1 is formed by the functions f12, f13, and f14. (b) The
result of relaxing the constraints of the first bucket. (c) Result of
adding x2 to the mini-buckets and merging the buckets with the
same variables. 26

8.1 Improvement of merge over baseline as a function of the score of
the variable added . 32

8.2 Improvement of 200 rounds of message passing before scoring over
no message passing before scoring 34

8.3 Improvement of U = 15 over U = 1 with same total amount of
message passing . 35

44

9.1 (a) Improvement of using MI over choosing a random variable.
(b) Improvement of the algorithm over scope-based merge 38

9.2 (a) Improvement of merging over baseline as a function of the
average MI of the variables chosen. (b) Improvement of merging
over baseline as a function of the total size of the model 39

45

List of Tables

4.1 Time breakdown . 16

5.1 Human resources budget . 20

5.2 Hardware budget . 20

5.3 Software budget . 20

5.4 Total budget: estimated and final 21

6.1 Sustainability matrix . 24

46

List of Algorithms

1 SelectMerge: Score the variables 29
2 Incremental region selection for WMBE 30
3 AddVariable:Variable scoring and region addition 30
4 AddRegions: Add the larger regions to the graph 31

47

Bibliography

[1] Wikipedia, ”Graphical model”, 2016. [Online]. Available: https://en.

wikipedia.org/wiki/Graphical_model. [Accessed: 02 - Mar - 2016].

[2] A. Ihler and S. Forouzan, ”Incremental Region Selection for Mini-bucket
Elimination Bounds”, in Uncertainty in Artificial Intelligence (UAI), Ams-
terdam, Netherlands, 2015, pp. 268-277.

[3] R. Dechter, ”Bucket elimination: A unifying framework for reasoning”, Ar-
tificial Intelligence, vol. 113, no. 1-2, pp. 41-85, 1999.

[4] R. Dechter and I. Rish, ”A scheme for approximating probabilistic infer-
ence.”, in Uncertainty in Artificial Intelligence (UAI), Providence, Rhode
Island, USA, 1997, pp. 132–141.

[5] ”Bounding the partition function using hölder’s inequality.”, in International
Conference on Machine Learning (ICML), Bellevue, Washington, USA, 2011,
pp. 849–856.

[6] Q. Liu, ”Reasoning and Decisions in Probabilistic Graphical Models - A
Unified Framework”, Ph.D, University of California, Irvine, 2016.

[7] E. Rollon and R. Dechter, ”Evaluating partition strategies for mini-bucket
elimination.”, in International Symposium on Artificial Intelligence and
Mathematics (ISAIM), Fort Lauderdale, Florida, USA, 2010.

[8] A. Choi and A. Darwiche, ”Relax, compensate and then recover.”, in New
Frontiers in Artificial Intelligence: JSAI 2008 Conference and Workshops,
Asahikawa, Japan, June 11-13, 2008, Revised Selected Papers (Lecture Notes
in Computer Science), 1st ed., Springer, 2010, pp. 167–180.

[9] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola and Y. Weiss, ”Tightening
LP relaxations for map using message passing.”, in Uncertainty in Artificial
Intelligence (UAI), Helsinki, Finland, 2008.

[10] R. Dechter, Constraint Processing, San Francisco, CA, USA, Morgan Kauf-
mann Publishers Inc., 2003.

[11] W. Ping, Q. Liu and A. Ihler, ”Decomposition Bounds for Marginal MAP”,
in Neural Information Processing Systems (NIPS), Montreal, Canada, 2015.

[12] S. Russell and P. Norvig, Artificial intelligence a modern approach., 3rd ed.
New Jersey: Prentice Hall, 2003.

48

https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Graphical_model

[13] ”EIA - State Electricity Profiles”, Eia.gov, 2016. [Online]. Available:
http://www.eia.gov/electricity/state/california/. [Accessed: 26-
Jul- 2016].

49

http://www.eia.gov/electricity/state/california/

	Context
	Problem formulation
	Background
	Graphical models
	Bucket elimination
	Junction trees
	Mini-bucket elimination
	Weighted mini-bucket

	State of the art
	Partitioning methods
	Variational bounds
	Incremental mini-bucket

	Scope
	Objective
	Scope

	Methodology
	Planning
	Duration
	Stages
	Setup
	Planning and feasibility
	Project iterations
	Testing and results
	Final stage
	Time breakdown

	Gantt chart
	Planning deviation

	Budget
	Resources
	Hardware
	Software

	Human resources
	Hardware
	Software
	Unforeseen costs and contingency
	Budget deviation

	Sustainability report
	Social sustainability
	Economic sustainability
	Environmental sustainability
	Sustainability table

	Partition strategy
	Implementation
	Algorithm
	Considerations
	Correlation
	Message Passing

	Experiments and Results
	Comparison to random variable baseline
	Comparison to scope-based merge
	Possible causes of improvement

	Conclusions
	Future work

