
Exploring quality-aware architectural
transformations at run-time: the ENIA case

Javier Criado1, Silverio Mart́ınez-Fernández2,
David Ameller2, Luis Iribarne1 and Nicolás Padilla1

1 Applied Computing Group, University of Almeŕıa, Spain
{javi.criado, luis.iribarne, npadilla}@ual.es

2 GESSI Research Group, Universitat Politècnica de Catalunya, Barcelona, Spain
{smartinez, dameller}@essi.upc.edu

Abstract. Adapting software systems at run-time is a key issue, espe-
cially when these systems consist of components used as intermediary for
human-computer interaction. In this sense, model transformation tech-
niques have a widespread acceptance as a mechanism for adapting and
evolving the software architecture of such systems. However, existing
model transformations often focus on functional requirements, and qual-
ity attributes are only manually considered after the transformations
are done. This paper aims to improve the quality of adaptations and
evolutions in component-based software systems by taking into account
quality attributes within the model transformation process. To this end,
we present a quality-aware transformation process using software archi-
tecture metrics to select among many alternative model transformations.
Such metrics evaluate the quality attributes of an architecture. We vali-
date the presented quality-aware transformation process in ENIA, a ge-
ographic information system whose user interfaces are based on coarse-
grained components and need to be adapted at run-time.

Keywords: quality-driven model transformation, component-based soft-
ware, architecture configuration, architecture metrics.

1 Introduction

Many today’s software systems need to be adapted at run-time. Well-known
examples are component-based software systems for human-computer interac-
tion, whose User Interfaces (UI) need to be modified or reconfigured at run-time
depending on user preferences, interactions, system requirements, or other evo-
lution needs. For instance, this type of software is offered by dashboard UIs, such
as Netvibes3, Geckoboard4, or Cyfe5 applications.

Previous studies have shown that model transformation is a good approach to
adapt the component-based architectures [10]. Existing transformation processes

3Netvibes – https://www.netvibes.com/
4Geckoboard – https://www.geckoboard.com/
5Cyfe – http://www.cyfe.com/

focus on the functionalities of systems, giving less importance to the Quality At-
tributes (QA). However, adapting the software architecture of a system without
considering the QAs at run-time can negatively affect its quality. For instance,
if one UI is adapted by only considering its functionalities, such UI may have a
less flexible interaction (e.g., complex UI with a greater number of components)
or worse maintainability (e.g., costly evolution from introducing unnecessary
dependencies among components) than if we consider QAs at run-time. Actu-
ally, some QAs (e.g., availability or performance) can only be measured only at
run-time since off-line circumstances provide an estimation and not a real value.

The goal of this paper is to study whether model transformations can be
improved by considering QAs at run-time. To this end, we present a QA-aware
transformation approach to adapt component-based software systems by mea-
suring the quality of different transformation alternatives. Then, we validate the
suitability of such QA-aware transformation approach in two scenarios for the
ENIA (ENviromental Information Agent) software. ENIA is a GIS (Geographic
Information System) whose UIs are based on coarse-grained components and
adapted at run-time depending on user preferences, interactions, system require-
ments, or other evolution needs [1]. Nevertheless, the approach can be applied
to other applications offering their functionality as a mashup or a dashboard.

To accomplish this goal, we formulated the following research question: “Do
model transformations improve their quality by considering QAs at run-time in
the ENIA case?”. To measure QAs at run-time, we propose a set of software
architecture metrics. We use these metrics to evaluate various alternative archi-
tectures (each one obtained by executing a different transformation). As a result,
we decide which is the best transformation based on the considered QAs.

The paper is structured as follows. Section 2 introduces a background about
adapting component-based systems by model transformation. Section 3 presents
a QA-aware model transformation approach. Section 4 exemplifies the approach
in the ENIA case. Finally, Section 5 ends up with conclusions and future work.

2 Background

In this section we include the required background for contextualizing the pre-
sented approach of quality-aware architectural transformations at run-time.

Adapting Component-Based Software Systems. Component-based sys-
tems are a type of software which facilitates the execution of adaptation and
evolution operations. In this sense, well-known mechanisms of Component-Based
Software Engineering (CBSE), such as modularization, encapsulation and reuse,
favor the development of self-adaptive systems [17].

This software paradigm allows us to manage the components as black-boxes
by describing their syntax, semantic, and properties through formal specifica-
tions, as in the case of COTS components [6]. Thus, a component can be replaced
by other element that matches its specification. Consequently, an architecture
can be modified by replacing the parts which need to be adapted.

Model Transformation and Software Architecture Evolution. Model
transformation is a common approach to adapt the component-based architec-
ture of software systems [10]. In this context, Model-Based Engineering (MBE)
techniques facilitate the development of software architectures, defining them
(including the structure, components’ specifications, and run-time interaction)
by models. Moreover, manipulating architecture models at run-time allows us to
generate different alternatives based on the same definition [4].

Depending on the model transformation nature (e.g., vertical, horizontal, en-
dogenous, and exogenous) and within the context of software architectures, it is
possible to develop refactoring transformations for obtaining different software
alternatives. Our goal is to modify the transformation schema proposed in [10]
for generating more than one alternative and consider quality information to
select the best transformation.

Quality Attributes in Model Transformation. Existing model transforma-
tion processes focus on the functionalities of systems, giving less importance to
the QA, also known as non-functional requirements or -ilities [3]. A notable ex-
ception are the guidelines for quality-driven model transformations [12], in which
quality is introduced early on the design of the transformation process, avoiding
quality evaluation as a separate activity once a model has been transformed.
A more recent work presented a model transformation framework designed to
automate the selection and composition of competing architectural model trans-
formations [14]. However, up to our knowledge, there is a lack of support to
select among alternative architectural transformations considering software ar-
chitecture metrics at run-time.

Some approaches enable the annotation of model transformations [9] and
can be applied for describing QAs in transformation rules. Other proposals ex-
tend existing languages with the aim of expressing alternatives and their impact
to quality properties at design time [18]. Furthermore, not all QAs share the
same importance while adapting or evolving software systems. A recent litera-
ture review shows that self-adaptation is primarily used to improve performance,
reliability, and flexibility [20]. In this context, an important challenge is to find
software architecture metrics that measure quality attributes. The awareness of
this problem by the software engineering community is increasing and even dedi-
cated events have been organized [16]. For instance, dependency structure matrix
metric has been used to measure maintainability [7, 15]. Another examples are
the number of components, connections, symbols, and interfaces to measure ar-
chitectural understandability [19, 22]. In the next section, we use these metrics
and propose others to measure the relevant QAs in adaptive systems.

3 QA-aware Model Transformation Approach

This section presents a QA-aware transformation approach to adapt and evolve
software systems by measuring the quality of different transformation alterna-
tives. Such QA-aware transformation approach consists of three steps:

(1) Asking the relevant QAs and constraints to developers, architects, and ex-
perts in the application domain.

(2) Measuring QAs and constraints at run-time.

(3) Ranking iso-functional alternative software architectures of the model trans-
formation by considering the relevant QAs and constraints at run-time. With
this ranking, the software architecture with the best values in architecture
metrics is selected.

Next subsections describe the aforementioned steps respectively, which are
also depicted in Figure 1. Once the last step is carried out and the transformation
alternatives have been ranked, the transformation with the best value is executed
for adapting the software architecture.

3.1 Step 1: Relevant QAs and Constraints

Depending on a system’s targeted goals and architecturally-significant QAs (e.g.,
improve its flexibility, maximize the modifiability, minimize the cost, or opti-
mize the execution performance), architectural design decisions can be oriented
in different ways. Therefore, decisions about the construction of software ar-
chitectures, such as component selection, may differ from each other by con-
sidering them. For this reason, the first step of the approach is to gather the
architecturally-significant QAs as part of the rationale to make such decisions.

This step requires two inputs: stakeholders who know the system’s targeted
QAs, and a quality model to help the stakeholders to reason about QAs (e.g.,
ISO/IEC 25010 standard [13]). To gather the architecturally-significant QAs,
stakeholders can either conduct a focus group, or directly set them in the settings
of an admin interface of the model transformation process. The output of this
step is the set of relevant QAs and constraints for the adaptive software system.

Step 1. Identifying

the relevant QAs

and constraints

Quality Models

(e.g., ISO 25000, FURPS+)

Expert knowledge from

stakeholders (e.g., software

architects, developers)

Relevant QAs

and constraints

for the system

Step 2. Measuring

QAs and constraints

at run-time

Software architecture metrics to measure QAs and constraints

Metamodels and models of components and architectures

(stored in a database)

Alternative architectures from the model transformation process

Step 3. Raking

alternative software

architectures

Values measuring

relevant QAs and

constraints for each

software architecture

Priority of metrics Ranked iso-

functional model

transformations

(repeat steps 2

and 3 for each

transformation

process)

: step

: generated information

: flow of information/artifact

: flow of the approach

Fig. 1. Steps of the QA-based Trasformation Approach

3.2 Step 2: Measuring QAs and Constraints at Run-Time

Once the set of relevant QAs and constraints are elicited, the goal of the second
step is to find specific software architecture metrics to measure QAs. This enables
to quantitatively evaluate several alternative software architectures, since the
QA satisfaction of these alternative architectures is measured at run-time. The
metrics presented here are focused on our particular domain of component-based
systems, but they can be adapted according to the needs.

This step requires three inputs: the set of alternative software architectures
(generated by the default model transformation process), a set of metrics to
measure QAs and constraints (see Table 1 for QAs and Table 2 for constraints),
and the specification of the components to feed the metrics at run-time (stored
in the metamodel [8, 10]). It is important to emphasize that Tables 1 and 2
show metrics elicited and validated by an expert in the domain architecture
of component-based systems, but they may be adapted to the needs of other
domains. Table 1 shows simple metrics for important QAs in adaptive systems:
performance, reliability, flexibility [20], and a few more among other important
metrics that we used in the ENIA study (modifiability, testability and consumed
resource). These QAs are meaningful at run-time in our case study as it is
described in Section 4. Simple and realistic metrics allow easier adoption in
industry [15]. Also, the proposed metrics are just an indicator of a QA, and
their improvement must not be seen as a complete satisfaction of any QA. The
output of this step is a set of quantitative values measuring the targeted QAs
and constraints supporting the selection of the best transformation.

QA Metric Description Derived Expression

m

c Number of components n —
pro Number of provided interfaces n —
req Number of required interfaces n —
pro Average number of provided interfaces y pro/c
σ2
pro Variance of provided interfaces y

∑c
i=1(proi − pro)2/c

hpro Homogenization of provided interfaces y 1 − σ2
pro

mdep Number of mandatory dependencies n —
odep Number of optional dependencies n —
dep Total number of dependencies y mdep+ odep

rmdep Ratio of mandatory dependencies y mdep/dep
rodep Ratio of optional dependencies y odep/dep
dsm Dependency structure matrix y (described in [7])
pc Propagation cost y (described in [7])

f

r Number of resizable components n —
m The highest c from all alternatives y max(c1, ... , cn)
rc Ratio of components according to m y rc = c/m
rr Ratio of resizable components y rr = r/c

r/a
er Error rate (and type of error) n —
ec Error cost n —

p
extm Execution time of a component n —
rextm Ratio of execution time of all components y

∑
(extmi)/c

t
ndiag Num. of ops. (in pro) intended for diagnostics n —
ntest Num. of ops. (in pro) intended for tests n —

cr
tsize Total size of components (in KB) n —
avgsize Ratio of components’ sizes (in KB) y tsize/c

QAs: m: modifiability – f : flexibility – r/a: reliability/analizability
p: performance – t: testability – cr: consumed resources

Table 1. Example of software architecture metrics to measure QAs

Metric Description Derived Expression

c Number of components n —
pro Number of provided interfaces n —
req Number of required interfaces n —
tsize Total size of components (in KB) n —
avgsize Ratio of components’ sizes (in KB) y tsize/c

t Component technology n —
st No. of components sharing the same technology n —
ht Homogenization among components’ technologies y max(st/c)
p Component provider n —
sp No. of components sharing the same provider n —
hp Homogenization among components’ providers y max(sp/c)
type Component type n —
stype No. of components sharing the same type n —
htype Homogenization among components’ types y max(stype/c)

Table 2. Example of metrics to measure constraints

3.3 Step 3: Ordering Alternative Software Architectures

In our approach, we first generate the various possible architectures by applying
alternative transformation processes, and then we assess the quality of each ar-
chitecture. After computing at run-time the corresponding metrics to measure
the QAs and constraints, it becomes necessary to rank the alternative software
architectures considering the relevant QAs and constraints. Thus, the goal of the
third step is to select the “best” software architecture. Consequently, the oper-
ation responsible for obtaining this architecture, i.e., the corresponding model
transformation, is selected as the best alternative.

This step requires one input: the priority of the architecturally-significant
QAs and constraints. This order of importance can be established by system’s
developers or by users for describing their own priorities. In all cases, it must be
specified before the adaptation process starts and could be subsequently modi-
fied at run-time to vary this priority. The output is a ranked list of iso-functional
model transformation. Finally, the model transformation with the best software
architecture is performed. The second and third steps of the approach can be
performed at run-time if the number of relevant QAs and alternative architec-
tures to be analyzed is delimited in order to guarantee a proper execution.

4 Application of the QA-aware Transformation Approach

In order to demonstrate the feasibility of the QA-aware transformation process,
this section applies it to a particular case of software architectures: mashup UIs
[11, 21]. Next subsection respectively show the context of ENIA (mashup UIs),
two scenarios at ENIA in which the approach was used, and discussions about
how the approach improved the model transformation process.

4.1 The Model Transformation Adaptive Context of ENIA

We addressed this research work focusing on component-based software systems
for human-computer interaction. More specifically, we validated the approach

presented in Section 3 by using the scenario of ENIA UIs, which are used for
managing a GIS through coarse-grained components implemented as widgets.
Some examples of these components are maps for showing geographic layers,
visual charts for representing datasets, or social widgets for enabling the com-
munication with other GIS entities and the community.

ENIA UIs development highlighted the different alternatives that exist when
a new architecture is constructed, whether it is determined at design time or it is
generated dynamically at run-time. Moreover, such alternatives may be equally
valid depending on the quality factors that are taken into account for its con-
struction. For this reason, a quality-aware transformation approach is addressed.
Hence, ENIA has been chosen as our test scenario, since the UIs offered by this
system are represented and managed as architectures of coarse-grained compo-
nents. Each component in ENIA architectures contains the required functional-
ity to perform a task by itself or using its dependencies with other components
(e.g., a geographical information map, an e-mail manager, a report generator, or
a visual chart of datasets). Furthermore, UIs in ENIA are reconfigured at run-
time with the aim of adapting their structure to the user interactions, profile
preferences, context changes and pro-active system decisions. Since UIs are rep-
resented by models, this adaptation process is based on model-to-model (M2M)
transformations of component-based architectures (see [10] for further details).

Model transformations in charge of adapting ENIA’s UIs are not preset. On
the contrary, these operations are dynamically built depending on the initial
UI, context information and available transformation rules. In this sense, it is
possible to build different transformation operations for the same inputs. In our
previous work [10] we proposed a transformation scoring mechanism that allows
us to generate only one possible transformation which ensures the functional
resolution of the architecture, taking also into account some extra-functional
restrictions. In the present paper, we analyze the possibility of incorporating ad-
ditional quality information into the adaptation process to improve its behavior.

As the Step 1 of the approach indicates, the relevant QAs that should be
considered for constructing and adapting the UIs have been discussed for the
ENIA scenario. This work is focused on the highest priorities of ENIA, the
modifiability attribute of the product quality model and the flexibility attribute
of the quality in use model of the ISO/IEC 25010 standard, the total size of the
UI, the homogenization of the components’ providers, and the homogenization of
the components’ types. These QAs and constraints have been selected because,
from the stakeholders’ perspective, ENIA UIs must be reconfigurable and provide
a friendly interaction by accomplishing the following objectives:

— UI components must encapsulate the required functionality to resolve a do-
main task but their size must match the coarse-grained concept.

— UIs with a greater number of simple components are preferred over UIs with
a lower number of complex components gathering more functionality.

— UIs must be elastic and flexible with the aim of allowing the modification of
their structure and visual representation.

— Users can reconfigure and customize their interfaces, e.g., resizing the compo-
nent displayed in the interface, changing its position, adding new components,
and removing existing ones.

— The time for loading the UIs must be the minimum possible.
— UIs with an homogeneous representation are better managed and more un-

derstandable by users, generating less confusion for the interaction.

Next, we present two scenarios in the context of ENIA. In the first scenario,
we analyzed four metrics related to modifiability and flexibility QAs. Metrics
to measure modifiability, flexibility, analyzability, performance, testability and
consumed resources are shown in Table 1. In the second scenario, we applied
three constraints related to the aforementioned objectives. Metrics to measure
constraints are shown in Table 2. Both scenarios share components related to
the GIS domain: a map (M) for displaying geographical information layers, a
component showing the messages of a social network account (T), a layer list
for selecting the information to be displayed on the map (LL), and a legend
for visualizing the correspondence of the displayed layers (L). Furthermore, the
number of the component name represents different alternatives of the same
component type. For example, M1, M2 and M3 are different alternatives of the
map component type (M). It is important to remark that we are not representing
the identifier of the instance and therefore an architecture can contain elements
with the same component name, but these are different component instances.

4.2 Scenario 1: Considering Modifiability and Flexibility

This scenario focuses on two QAs from Step 1, flexibility and modifiability, and
following Step 2 applies four corresponding metrics from Table 1: (rc, rr, hpro
and pc). These metrics will help to select the best transformation process in
charge of adapting a UI from ENIA system based on those QAs. Assuming
an initial UI as the one shown in Figure 2 with four components (map, twit-
ter, legend and layer list), a transformation process for incorporating a session
component must be performed. Furthermore, the twitter component must be
replaced by a new element of the same type which must be connected to the
session component for using its information in the social network account.

We address the use of the following four metrics as worthy information to
determine the quality of the resulting architecture and consequently the quality
of the transformation process in charge of adapting the UI:

(a) rc for flexibility – The number of components must be maximized because
the more pieces constitute a UI, the more reconfiguration and modification
operations can be performed on its architecture.

(b) rr for flexibility – The number of resizable components must be maximized
since this property favors the flexibility of a UI due to it allows the modifi-
cation of the components’ sizes.

(c) hpro for modifiability – The homogenization of the distribution of provided
interfaces must be maximized because this property avoids the imbalance

in the functionality which is offered by each component and fosters the
modifiability of the architecture.

(d) pc for modifiability – The propagation cost must be minimized due to indi-
rect dependencies between components of an architecture affect the modifi-
ability in a negative manner.

Figure 3 shows the four transformation alternatives that can be obtained from
the initial UI represented by A11. The architecture A21 incorporates a session
component S1, replaces the previous twitter by T2 and connects both elements.
A22 is similar to A21 but the session component S2 has an optional required
interface for querying geo-localization information. The alternative A23 gathers
a session component S3 and a geo-localization component LC1 in a container C2.
In the case of the last alternative, the component S4 in A24 provides some geo-
localization and weather information apart from the session functional interface.

T1

L1

M1

LL2

A11

M

L

LL

T

: provided interface

: mandatory required interface

: optional required interface

: dependency

Fig. 2. Initial UI and its architecture

A21 (performing MT1)

L1

LL2

M1

T2S1

A23 (performing MT3)

L1

LL2

M1

T2

S3 LC1

A24 (performing MT4)

L1

LL2

M1

T2
S4

C2

A22 (performing MT2)

L1

LL2

M1

T2S2

LC

S

T

M
L

LL

LC

S

LC
S

T

M
L

LL

M
L

LL

M
L

LL

T

LC

S
W

T
S

rc = 5 / 7 = 0.714

rr = 4 / 5 = 0.800

hpro = 1 - 0 = 1.000

pc = 8 / 25 = 0.320

dsm = M4 S1 T2 M1 L1 LL2

S1 1 0 0 0 0

T2 4 1 0 0 0

M1 0 0 1 0 0

L1 0 0 4 1 0

LL2 0 0 4 0 1

M4 S2 T2 M1 L1 LL2

S2 1 0 0 0 0

T2 4 1 0 0 0

M1 0 0 1 0 0

L1 0 0 4 1 0

LL2 0 0 4 0 1

rc = 5 / 7 = 0.714

rr = 3 / 5 = 0.600

hpro = 1 - 0 = 1.000

pc = 8 / 25 = 0.320

dsm = M4 S4 T2 M1 L1 LL2

S4 1 0 0 0 0

T2 4 1 0 0 0

M1 0 0 1 0 0

L1 0 0 4 1 0

LL2 0 0 4 0 1

rc = 5 / 7 = 0.714

rr = 4 / 5 = 0.800

hpro = 1 – 0.4571 = 0.5429

pc = 8 / 25 = 0.320

dsm =

rc = 7 / 7 = 1.000

rr = 4 / 7 = 0.571

hpro = 1 – 0.1224 = 0.8776

pc = 15 / 49 = 0.306

dsm = M4 S3 LC1 C2 T2 M1 L1 LL2

S3 1 4 0 0 0 0 0

LC1 0 1 0 0 0 0 0

C2 4 10 1 0 0 0 0

T2 6 10 4 1 0 0 0

M1 0 0 0 0 1 0 0

L1 0 0 0 0 4 1 0

LL2 0 0 0 0 4 0 1 average = 0.6842

average = 0.7856

average = 0.7485average = 0.7985

Fig. 3. Transformation alternatives using four example QAs’ metrics

In order to select the best model transformation alternative among MT1,
MT2, MT3 and MT4, the bottom of Figure 3 depicts the values of the metrics
calculated for A21, A22, A23 and A24. Note that components M1, T2, L1, C2,
S1 and S4 are resizable, and components LL2, S2, S3, and LC1 cannot be
resized. Moreover, delegation of interfaces is considered as a dependency, similar
to the connections between required and provided interfaces.

Focusing only on rc, the architecture A23 has the best value because it owns
the maximum number of components among all the alternatives. In the case
of rr, architectures A21 and A24 are the best alternatives since both gathers
four resizable components among the five possible. Architectures A21 and A22
have the best value for the hpro metric because each component provides one
functional interface. On the contrary, the distribution of provided interfaces in
A24 is the worst possible alternative. With regard to the propagation cost, pc,
the architecture A23 is the best alternative, as shown in the values obtained from
dependency structure matrices (DSMs). We normalized pc value with respect to
the rest of metrics with the expression npc = 1 − pc.

Finally, we applied Step 3 to select the best alternative by calculating the
average of the four metrics. Therefore, the resulting values for A21, A22, A23
and A24 are 0.7985, 0.7485, 0.7856 and 0.6842, respectively. Consequently, we
can follow this strategy to select T1 as the best transformation process that
can be performed to (1) adapt the UI and also (2) get the best value for QAs
considered in the transformation. Figure 4 shows the graphical representation of
the UI described by the architecture A21.

4.3 Scenario 2: Considering Components’ Size, Provider, and Type

Continuing with the UI represented by A21 in the scenario 1, the next transfor-
mation process is intended to incorporate a new map into the workspace. Since

A21

L1

LL2

M1

T2S1

M
L

LL

T
S

Fig. 4. Transformed UI in scenario 1 and its architecture

the presence of the new map may generate confusion about what is the relation-
ship between the layer list, the legend and the two maps, the components in the
initial UI must be restructured accordingly. Figure 5 shows the three alternatives
that can be reached from A21. The architecture A31 replaces the previous map
M1 by M2 and uses C3 for containing it. In addition, C3 also contains previous
LL2 and L2 components. The new map is resolved with an M1 component.
The second alternative, A32, replaces the initial map M1 by M3, a map which
includes the layer list and legend functionality. The new map is M1 type. The
alternative A33 includes the same replacement of A31 but, in this case, the new
map is M2 type and it is contained in a C3 component.

In this transformation process, we want to show that the approach could be
used not only for QAs, but also for constraints. In this case, we consider three
constraints from Step 1 as drivers to chose a valid alternative for the stakeholders.
As a part of Step 2, the metrics used to measure the constraints are:

(a) tsize for components’ size constraints – The total size of components must be
minimized and architectures with a value over 5MB will be rejected. Thus,
we try to improve the response time of the browser by reducing the payload
of the web components that must be initialized in the UI.

(b) hp for components’ provider constraints – The homogenization among com-
ponents’ providers must be maximized because, in this scenario, UIs with
similar representation are preferred over components with heterogeneous
representations. The use of the same provider does not guarantee the pur-
sued homogenization, but the possibilities are greater if the entity providing
the components is the same.

(c) htype for components’ type constraints – The homogenization among com-
ponents’ types must be maximized because it is important to offer the max-
imum degree of consistency in the structure and representation of the UI’s
components. Therefore, components of the same type offer their functional-
ity in the same manner.

Regarding the alternatives of Figure 5, each architecture accomplishes the
best value for a different metric. In the case of tsize, the value of 925 MB
from A32 is the best alternative. Focusing on hp, the best alternative is the
architecture A31 because it gathers four components (M1, M2, L2 and LL2)
from the same provider among the total of seven. With respect to htype, the
best alternative is A33, because it contains four components (M2 * 2 and C3
* 2) having elements of the same type in the architecture. Therefore model
transformation MT4 is chosen in the case of prioritize hp, whereas MT5 and
MT6 are selected if tsize and htype are prioritized, respectively.

4.4 Discussion about Using the Approach in ENIA

Answering the research question stated in Section 1, we can say that considering
QAs at run-time has improved the modifiability and flexibility of generated
architectures by model transformations in the ENIA case.

A21

L1

LL2

M1

T2S1

A31

T2S1

M3

A32

T2S1

M1

L2

C3

LL2

M2
M1

Provider 1 : S1, T2, C3

Provider 2 : M1, M2, M3, L2, LL2

S1 : 400 KB

T2 : 75 KB

C3 : 100 KB

M1 : 200 KB

M2 : 200 KB

M3 : 250 KB

L2 : 120 KB

LL2 : 50 KB

M
L

LL

T
S

A33

T2S1

C3

M2

LL

LL

L

L

M

M

M

T
S

T
S

T
S

L2

C3

LL2

M2

LL

LL

L

L

M

M
M

M

LL

M

L

M

tsize = 1145

hp = max(3/7, 4/7) = 0.5714

htype = 0/7 = 0.0

tsize = 925

hp = max(2/4, 2/4) = 0.5

htype = 0/4 = 0.0

tsize = 1245

hp = max(4/8, 4/8) = 0.5

htype = 4/8 = 0.5

MT4 MT5 MT6

Fig. 5. Transformation alternatives using three example constraints

The main advantage of using metrics related to QAs and constraints in ENIA
is the incorporation of quality information in the process of selecting the best
transformation operation that can be applied in UI adaptation. This allows us to
use additional information (to functional interfaces) for solving the transforma-
tion process. In this sense, if these metrics are not applied, the transformation
can generate architectures which may result in some drawbacks for the present
use or future modifications.

For example, looking at the first scenario (see Figure 3), it is possible to obtain
A22 as a solution instead of A21. In this case, we are ‘loosing’ the capability
of having a session component which can be resized. On the contrary, using
our approach we are able to offer ‘resizability’ of the components through the
maximization of the rr metric. If we do not give the maximum priority to rr
but we take it into account in the adaptation, at least the transformation at
run-time will be enriched to improve the flexibility of generated UIs.

With regard to the future modifications, let us suppose that in the scenario 2
none of the metrics are applied and consequently, the generated transformation
is equivalent to T5 and the resulting architecture is A32. In this case, if the next
adaptation step is aimed to remove the capability of selecting the layers to be
displayed on the map (i.e., LL provided interface), we faced two options: (1)
the component M3 must be modified for hiding this interface and disabling its
functionality, or (2) the component M3 must be replaced by other map which
does not include this functionality, such as M1 or M2. In both options, we
have to perform additional operations compared to those required in the case of
starting the adaptation from the architectures A31 or A33, scenario in which we
only should remove the component LL2.

Apart from these advantages, nothing is free in software engineering, and the
performance of the QA-aware model transformation approach is an important
trade-off that must be noted. Performance is related to the computation time
necessary to (a) build each transformation alternative, (b) execute them obtain-
ing the resulting architecture, and (c) measure each architecture to decide which
transformation alternative is the best in terms of the quality information. The
cost of these three execution times must be incorporated to the evaluation of the
adaptation process described in [10] and, consequently, may not be possible to
evaluate a large number of alternatives at run-time, having to limit the number
of architectures evaluated to satisfy performance requirements.

5 Conclusions and Future Work

It is well accepted in the software architecture community that QAs are the
most important drivers of architecture design [2]. Therefore, QAs should guide
the selection of alternative software architectures from a model transformation
process, considering the synergies and conflicts among them [5].

This work has analyzed how considering QAs at run-time can improve model
transformation processes. Results in the ENIA case, a dashboard UI, show
that using a quality-aware architectural transformation at run-time can improve
architectural-significant QAs such as modifiability and flexibility. The main con-
tribution of this paper is a quality-aware transformation approach at run-time,
which consists of three steps: identifying relevant QAs and constraints, measur-
ing them at run-time, and selecting the best alternative model transformation.

Future work spreads in several directions. First, once we analyzed in the
ENIA case that quality-aware transformations can improve significant require-
ments in adaptive dashboards UIs, the presented set of metrics can be refined.
Thus, we plan to work further in a reference set of QAs and their corresponding
metrics for adaptive dashboard UIs out of practice, and then provide guidelines
for using those metrics (e.g., combination of metrics). Second, more experimen-
tations and reports can be done in other adaptive domains besides dashboard
UIs. Third, we will study the possibility of handling the QAs during the genera-
tion of the alternative architectures to reduce the number of variants. Finally, a
formal validation process in terms of execution times and model checking of the
generated architectures could improve the proposed approach.

Acknowledgments. This work was funded by the Spanish MINECO and the
Andalusian Government under TIN2013-41576-R and P10-TIC-6114 projects.

References

1. ACG. ENIA Poject – Development of an intelligent web agent of environmental
information, http://acg.ual.es/projects/enia/

2. Ameller, D., Ayala, C., Cabot, J., Franch X.: Non-functional requirements in ar-
chitectural decision making. IEEE Software. 30(2), 61–67 (2013)

3. Ameller, D., Franch, X., Cabot, J.: Dealing with non-functional requirements in
model-driven development. In: RE’2010, pp. 189–198. IEEE (2010)

4. Bencomo, N., Blair, G.: Using architecture models to support the generation and
operation of component-based adaptive systems. In: Software Engineering for Self-
Adaptive Systems, pp. 183–200. Springer Berlin Heidelberg (2009)

5. Boehm, B.: Architecture-based quality attribute synergies and conflicts. In:
SAM’2015, pp. 29–34. IEEE Press (2015)

6. Carney, D. Leng, F.: What do you mean by COTS? Finally, a useful answer. IEEE
Software. 17(2), 83–86 (2000)

7. Carriere, J., Kazman, R., Ozkaya, I.: A cost-benefit framework for making archi-
tectural decisions in a business context. In: ICSE’2010, pp. 149–157. IEEE (2010)

8. Criado, J., Iribarne, L., Padilla, N., Ayala, R.: Semantic matching of components
at run-time in distributed environments. In: OTM 2015 Workshops, LNCS 9416,
pp. 431–441. Springer International Publishing (2015)

9. Criado, J., Mart́ınez, S., Iribarne, L., Cabot, J.: Enabling the reuse of stored
model transformations through annotations. In: ICMT’2015, LNCS 9152, pp. 43–
58. Springer International Publishing (2015)

10. Criado, J., Rodŕıguez-Gracia, D., Iribarne, L., Padilla, N.: Toward the adaptation
of component-based architectures by model transformation: behind smart user in-
terfaces. Software: Practice and Experience. 45(12), 1677–1718 (2015)

11. Daniel, F., Matera, M.: Mashups – Concepts, Models and Architectures. Springer-
Verlag Berlin Heidelberg (2014)

12. Insfran, E., Gonzalez-Huerta, J., Abrahão, S.: Design guidelines for the develop-
ment of quality-driven model transformations. In MODELS’10, LNCS 6395, pp.
288–302. Springer Berlin Heidelberg (2010)

13. ISO/IEC. ISO/IEC 25000. Systems and software engineering – Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) – Guide to SQuaRE (2014)

14. Loniewsli, G., Borde, E., Blouin, D., Insfran, E.: An Automated Approach for
Architectural Model Transformations. In: Information System Development: Im-
proving Enterprise Comm., pp. 295–306. Springer International Publishing (2014)

15. Mart́ınez-Fernández, S., Ayala, C.P., Franch, X., Marques, H.M.: REARM: A
Reuse-Based Economic Model for Software Reference Architectures. In: ICSR’2013,
LNCS 7925, pp. 97–112. Springer Berlin Heidelberg (2013)

16. Ozkaya, I., Nord, R.L., Koziolek, H., Avgeriou, P.: Second Int. Workshop on Soft-
ware. Architecture and Metrics. In: ICSE’2015, pp. 999–1000. IEEE Press (2015)

17. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009)

18. Solberg, A., Oldevik, J., Aagedal, J.Ø.: A framework for qos-aware model trans-
formation, using a pattern-based approach. In: CoopIS, DOA, and ODBASE, pp.
1190–1207. Springer Berlin Heidelberg (2004)

19. Stevanetic, S., Javed, M.A., Zdun, U.: Empirical evaluation of the understandabili-
ty of architectural component diagrams. In: WICSA’2014 Companion, pp. 4:1–4:8.
ACM New York (2014)

20. Weyns, D., Ahmad, T.: Claims and Evidence for Architecture-Based Self-
adaptation: A Systematic Literature Review. In: ECSA’2013, LNCS 7957, pp.
249–265. Springer Berlin Heidelberg (2013)

21. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development.
IEEE Internet Computing. 12(5), 44–52 (2008)

22. Zimmermann, O.: Metrics for architectural synthesis and evaluation: Requirements
and compilation by viewpoint: An industrial experience report. In: SAM’2015, pp.
8–14. IEEE Press (2015)

