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Abstract. A Langford sequence of order m and defect d can be identified with a labeling of the
vertices of a path of order 2m in which each labeled from d up to d + m − 1 appears twice and in
which the vertices that have been label with k are at distance k. In this paper, we introduce two
generalizations of this labeling that are related to distances.
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1. Introduction

For the graph terminology not introduced in this paper we refer the reader to [14, 15]. For m ≤ n,
we denote the set {m, m + 1, . . . , n} by [m, n]. A Skolem sequence [8, 11] of order m is a sequence
of 2m numbers (s1, s2, . . . , s2m) such that (i) for every k ∈ [1,m] there exist exactly two subscripts
i, j ∈ [1, 2m] with si = sj = k, (ii) the subscripts i and j satisfy the condition |i − j| = k. The
sequence (4, 2, 3, 2, 4, 3, 1, 1) is an example of a Skolem sequence of order 4. It is well known that
Skolem sequences of order m exist if and only if m ≡ 0 or 1 (mod 4).

Skolem introduced in [12] what is now called a hooked Skolem sequence of order m, where there exists
a zero at the second to last position of the sequence containing 2m + 1 elements. Later on, in 1981,
Abrham and Kotzig [1] introduced the concept of extended Skolem sequence, where the zero is allowed
to appear in any position of the sequence. An extended Skolem sequence of order m exists for every
m. The following construction was given in [1]:

(1) (pm, pm − 2, pm − 4, . . . , 2, 0, 2, . . . , pm − 2, pm, qm, qm − 2, qm − 4, . . . , 3, 1, 1, 3, . . . , qm − 2, qm),

where pm and qm are the largest even and odd numbers not exceeding m, respectively. Notice that
from every Skolem sequence we can obtain two trivial extended Skolem sequences just by adding a
zero either in the first or in the last position.

Let d be a positive integer. A Langford sequence of order m and defect d [13] is a sequence (l1, l2, . . . , l2m)
of 2m numbers such that (i) for every k ∈ [d, d+m−1] there exist exactly two subscripts i, j ∈ [1, 2m]
with li = lj = k, (ii) the subscripts i and j satisfy the condition |i− j| = k. Langford sequences, for
d = 2, were introduced in [4] and they are referred to as perfect Langford sequences. Notice that, a
Langford sequence of order m and defect d = 1 is a Skolem sequence of order m. Bermond, Brower
and Germa on one side [2], and Simpson on the other side [13] characterized the existence of Langford
sequences for every order m and defect d.

Theorem 1.1. [2, 13] A Langford sequence of order m and defect d exists if and only if the following
conditions hold: (i) m ≥ 2d− 1, and (ii) m ≡ 0 or 1 (mod 4) if d is odd; m ≡ 0 or 3 (mod 4) if d is
even.

For a complete survey on Skolem-type sequences we refer the reader to [3]. For different constructions
and applications of Langford type sequences we also refer the reader to [5, 6, 7, 9, 10].
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1.1. Distance labelings. Let L = (l1, l2, . . . , l2m) be a Langford sequence of order m and defect d.
Consider a path P with V (P ) = {vi : i = 1, 2, . . . , 2m} and E(P ) = {vivi+1 : i = 1, 2, 2m − 1}.
Then, we can identify L with a labeling f : V (P ) → [d, d + m − 1] in such a way that, (i) for every
k ∈ [d, d + m − 1] there exist exactly two vertices vi, vj ∈ [1, 2m] with f(vi) = f(vj) = k, (ii) the
distance d(vi, vj) = k. Motivated by this fact, we introduce two notions of distance labelings, one of
them associated with a positive integer l and the other one associated with a set of positive integers
J .

Let G be a graph and let l be a nonnegative integer. Consider any function f : V (G) → [0, l]. We
say that f is a distance labeling of length l (or distance l-labeling) of G if the following two conditions
hold, (i) either f(V (G)) = [0, l] or f(V (G)) = [1, l] and (ii) if there exist two vertices vi, vj with
f(vi) = f(vj) = k then d(vi, vj) = k. Clearly, a graph can have many different distance labelings. We
denote by λ(G), the labeling length of G, the minimum l for which a distance l-labeling of G exists.
We say that a distance l-labeling of G is proper if for every k ∈ [1, l] there exist at least two vertices
vi, vj of G with f(vi) = f(vj) = k. We also say that a proper distance l-labeling of G is regular of
degree r (for short r-regular) if for every k ∈ [1, l] there exist exactly r vertices vi1 , vi2 , . . . , vir with
f(vi1) = f(vi2) = . . . = f(vir

) = k. Clearly, if a graph G admits a proper distance l-labeling then
l ≤ D(G), where D(G) is the diameter of G.

Let G be a graph and let J be a set of nonnegative integers. Consider any function f : V (G) → J .
We say that f is a distance J-labeling of G if the following two conditions hold, (i) f(V (G)) = J
and (ii) for any pair of vertices vi, vj with f(vi) = f(vj) = k we have that d(vi, vj) = k. We say
that a distance J-labeling is proper if for every k ∈ J \ {0} there exist at least two vertices vi, vj

with f(vi) = f(vj) = k. We also say that a proper distance J-labeling of G is regular of degree
r (for short r-regular) if for every k ∈ J \ {0} there exist exactly r vertices vi1 , vi2 , . . . , vir with
f(vi1) = f(vi2) = . . . = f(vir ) = k. Clearly, a distance l-labeling is a distance J-labeling in which
either J = [0, l] or J = [1, l]. Thus, the notion of a J-labeling is more general than the notion of a
l-labeling.

In this paper, we provide the labeling length of some well known families of graphs. We also study
the inverse problem, that is, for a given pair of positive integers l and r we ask for the existence of
a graph of order lr with a regular l-labeling of degree r. Finally, we study a similar question when
we deal with J-labelings. The organization of the paper is the following one. Section 2 is devoted to
l-labelings, we start calculating the labeling length of complete graphs, paths, cycles and some others
families. The inverse problem is studied in the second part of the section. Section 3 is devoted to the
inverse problem in J-labelings. There are many open problems that remain to be solve, we end the
paper by presenting some of them.

2. Distance l-labelings

We start this section by providing the labeling length of some well known families of graphs. By
definition, λ(K1) = 0. In what follows, we only consider graphs of order at least 2.

Proposition 2.1. Let n ≥ 2. The complete graph Kn has λ(Kn) = 1.

Proof.
By assigning the label 1 to all vertices of Kn, we obtain a distance 1-labeling of it. 2

Proposition 2.2. Let n ≥ 2. The path Pn has λ(Pn) = bn/2c.

Proof.
By previous comment, we know that a Skolem sequence of order m exists if m ≡ 0 or 1 (mod 4). This
fact together with (1) guarantees the existence of a proper distance bn/2c-labeling when n 6≡ 4, 6 (mod
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8). By removing one of the end labels of (1), we obtain a (non proper) distance labeling of length
bn/2c. Thus, we have that λ(Pn) ≤ bn/2c. Since, there are not three vertices in the path which are
at the same distance, this lower bound turns out to be an equality. 2

The sequence that appears in (1) also works for constructing proper distance labelings of cycles. Thus,
we obtain the next result.

Proposition 2.3. Let n ≥ 3. The cycle Cn has λ(Cn) = bn/2c.

Proof.
Since, except for C3 there are not three vertices in the cycle which are at the same distance, we have
that λ(Cn) ≥ bn/2c. The sequence that appears in (1) allows us to construct a (proper) distance
bn/2c-labeling of Cn when n is odd. Moreover, if n is even we can obtain a distance bn/2c-labeling of
Cn from the sequence that appears in (1) just by removing the end odd label. 2

Proposition 2.4. The star K1,k has λ(K1,k) = 2, when k ≥ 3, and λ(K1,k) = 1 otherwise.

Proof.
For k ≥ 3, consider a labeling f that assigns the label 1 to the central vertex and to one of its leaves,
and that assigns label 2 to the other vertices. Then f is a (proper if k ≥ 4) distance 2-labeling of
K1,k. For 1 ≤ k ≤ 2, the sequences 1− 1 and 0− 1− 1, where 0 is assigned to a leaf, give a (proper)
distance 1-labeling of K1,1 and K1,2, respectively. 2

Proposition 2.5. Let m and n be integers with 2 ≤ m ≤ n. Then, λ(Km,n) = m. In particular, the
graph Km,n admits a proper distance l-labeling if and only if, 1 ≤ m ≤ 2.

Proof.
Let X and Y be the stable sets of Km,n, with |X| ≤ |Y |. We have that D(Km,n) = 2, however the
maximum number of vertices that are mutually at distance 2 is n. Thus, by assigning label 2 to all
vertices, except one, in Y , 1 to the remaining vertex in Y and to one vertex in X, 0 to another vertex
of X we still have left m− 2 vertices in X to label. 2

Proposition 2.6. Let n and k be positive integers with k ≥ 3. Let Sn
k be the graph obtained from

K1,k by replacing each edge with a path of n edges. Then

λ(Sn
k ) =





2(n− 1), if k = n− 1,
2n− 1, if k = n,
2n, if k > n.

Proof.
Suppose that Sn

k admits a distance l-labeling with l < 2n. Then, all the labels assigned to leaves
should be different. Moreover, although each even label could appear k-times, one for each of the
k paths that are joined to the star K1,k, odd labels appear at most twice (either in the same or in
two of the original forming paths). Thus, at least 2n − 2 labels are needed for obtaining a distance
labeling of Sn

k , when k ≥ n − 1. The following construction provides a distance 2(n − 1)-labeling
of Sn

k , when k = n − 1. Suppose that we label the central vertices of each path using the pattern
2− 4− . . .− 2(n− 1). Then, add odd labels to the leaves. For the case k = n, we need to introduce
a new odd label, which corresponds to 2n − 1. Finally, when k > n, we cannot complete a distance
l-labeling without using 2n labels. Fig. 1 provides a proper 2n-labeling that can be generalized in
that case. 2
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Fig. 2 and 3 show proper distance labelings of S5
4 and S5

5 , respectively, that have been obtained by
using the above constructions, and then, combining pairs of paths (whose end odd labels sum up to
8) for obtaining a proper distance 8-labeling and 9-labeling, respectively.
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Figure 1. A proper distance 10-labeling of S5
6 .
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Figure 2. A proper distance 8-labeling of S5
4 .
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Figure 3. A proper distance 9-labeling of S5
5 .

The case k < n − 1 in Proposition 2.6 requires a more detailed study. Consider the labeling of Sn
k

obtained by assigning the labels in the sequence 0 − 2 − 4 − . . . − 2(n − o) − si
1 − si

2 − si
o to the

vertices of the path P i, i = 1, . . . , k, where 0 is the label assigned to the central vertex of Sn
k , and

{si
j}j=1,...,o

i=1,...,k is the (multi)set of odd labels, if necessary, we replace some of the even labels by the
remaining odd labels. By considering the patern 1 − 1, 3 − 1 − 1 − 3, 5 − 3 − 1 − 1 − 3 − 5 to the
vertices of one of the paths, it can be checked that, the graph Sn

k admits an l-distance labeling with
l ∈ {2(n− o), 2(n− o) + 1} and

b2n− 1
2k + 1

c ≤ o ≤ b2n + 2
2k + 1

c.
More specifically, if b(2n − 1)/(2k + 1)c = b(2n + 2)/(2k + 1)c then o = b(2n − 1)/(2k + 1)c and
l = 2(n−o). If b(2n−1)/(2k+1)c+1 = b(2n)/(2k+1)c then o = b(2n)/(2k+1)c and l = 2(n−o)+1.
Finally, if b(2n)/(2k +1)c+1 = b(2n+1)/(2k +1)c then o = b(2n+1)/(2k +1)c and l = 2(n− o)+1.

Proposition 2.7. For n ≥ 3, let Wn be the wheel of order n + 1. Then λ(Wn) = dn/2e.

Proof.
Except for W3, all wheels have D(Wn) = 2. The maximum number of vertices that are mutually at
distance 2 is bn/2c and all of them are in the cycle. Thus, by assigning label 2 to all these vertices, 0
to one vertex of the cycle and 1 to the central vertex and to one vertex of the cycle, we still have to
label dn/2e − 2 vertices. 2 .
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Proposition 2.8. For n ≥ 2, let Fn be the fan of order n + 1. Then λ(Fn) = bn/2c.

Proof.
Except for F2, all fans have D(Fn) = 2. The maximum number of vertices that are mutually at
distance 2 is dn/2e and all of them are in the path. Thus, by assigning label 2 to all these vertices, 0
to one vertex of the path, 1 to the central vertex and to one vertex of the path when n is even and to
two vertices when n is odd, we still have to label bn/2c − 2 vertices. 2

2.1. The inverse problem. For every positive integer l, there exists a graph G of order l with a
trivial l-labeling that assigns a different label in [1, l] to each vertex. In this section, we are interested
on the existence of a graph G that admits a proper distance l-labeling.

We are now ready to state and prove the next result.

Theorem 2.1. For every pair of positive integers l and r, r ≥ 2, there exists a graph G of order lr
with a regular l-labeling of degree r.

Proof.
We give a constructive proof. Assume first that l is odd. Let G be the graph obtained from the
complete graph Kr by identifying r− 1 vertices of Kr with one of the end vertices of a path of length
bl/2c and the remaining vertex of Kr with the central vertex of the graph S

bl/2c
r+1 . That is, G is obtained

from Kr by attaching 2r paths of length bl/2c to its vertices, r + 1 to a particular vertex v1 of Kr

and exactly one path to each of the remaining vertices F = {v2, v3, . . . , vr} of Kr. Now, consider the
labeling f of G that assigns 1 to the vertices of Kr, the sequence 1− 3− . . .− l to the vertices of the
paths attached to F and one of the paths attached to v1, and the sequence 1− 2− 4− . . .− (l− 1) to
the remaining paths. Then f is a regular l-labeling of degree r of G. Assume now that l is even. Let
G be the graph obtained in the above construction for l − 1. Then, by adding a leave to each vertex
of G labeled with l− 2 we obtain a new graph G′ that admits a regular l-labeling f ′ of degree r. The
labeling f ′ can be obtained from the labeling f of G, defined above, just by assigning the label l to
the new vertices. 2
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Figure 4. A regular 5-labeling of degree 4 of a graph G.

Notice that, the graph provided in the proof of Theorem 2.1 also has λ(G) = l. Fig. 4 and 5 show
examples for the above construction. The pattern provided in the proof of the above theorem, for
r = 2, can be modified in order to obtain the following lower bound for the size of a graph G as in
Theorem 2.1.

Proposition 2.9. For every positive integer l there exists a graph of order 2l and size (l+2)(l+1)/2−2
that admits a regular distance l-labeling of degree 2.



6 S. C. LÓPEZ AND F. A. MUNTANER-BATLE

b

1

b
1

b
1

b

1

b
3

b
5

b
3

b
5

b
3

b
5

b
3

b
5

b
2

b
2

b
2

b
2

b
4

b 4 b 4

b
4

b
6

b
6

b
6

b
6

Figure 5. A regular 6-labeling of degree 4 of a graph G′.

Proof.
Let G be the graph of order 2l and size (l + 1)l/2 + l − 1, obtained from Kl+1 and the path Pl by
identifying one of the end vertices u of Pl with a vertex v of Kl+1. Let f be the labeling of G that
assigns the sequence 1− 2− 3− . . .− l to the vertices of Pl and 1− 1− 2− . . .− l to the vertices of
Kl+1 in such a way that f(u ≡ v) = 1. Then, f is a 2-regular l-labeling of G. 2

Thus, a natural question appears.

Question 2.1. Can we find graphs that admit a regular distance l-labeling of degree 2 which are more
dense that the one of Proposition 2.9?

3. Distance J-labelings

It is clear from definition that to say that a graph admits a (proper) distance l-labeling is the same
as to say that the graph admits either a (proper) distance [0, l]-labeling or a (proper) distance [1, l]-
labeling. That is, we relax the condition on the labels, the set of labels is not necessarily a set of
consecutive integers. In this section, we study which kind of sets J can appear as a set labels of a
graph that admits a distance J-labeling.

The following easy fact is obtained from the definition.

Lemma 3.1. Let G be a graph with a proper distance J-labeling f . Then J ⊂ [0, D(G)], where D(G)
is the diameter of G.

3.1. The inverse problem: distance J-labelings obtained from sequences. We start with
a definition. Let S = (s1, s1, . . . , s1, s2, . . . , s2, . . . , sl, . . . , sl) be a sequence of nonnegative integers
where, (i) si < sj whenever i < j and (ii) each number si appears ki times, for i = 1, 2, . . . , l. We say
that S is a δ-sequence if there is a simple graph G that admits a partition of the vertices V (G) = ∪l

i=1Vi

such that, for all i ∈ {1, 2, . . . , l}, |Vi| = ki, and if u, v ∈ Vi then dG(u, v) = si. The graph G is said
to realize the sequence S.

Let Σ = {s1 < s2 < . . . < sl} be a set of nonnegative integers. We say that Σ is a δ-set with n degrees
of freedom or a δn-set if there is a δ-sequence S of the form S = (s1, s1, . . . , s1, s2, . . . , s2, . . . , sl, . . . , sl),
in which the following conditions hold: (i) all, except n numbers different from zero, appear at least
twice, and (ii) if s1 = 0 then 0 appears exactly once in S. We say that any graph realizing S also
realizes Σ. If n = 0 we simply say that Σ is a δ-set. Let us notice that an equivalent definition for
a δ-set is the following one. We say that Σ is a δ-set if there exists a graph G that admits a proper
distance Σ-labeling.
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Proposition 3.1. Let Σ = {1 = s1 < s2 < . . . < sl} be a set such that si−si−1 ≤ 2, for i = 1, 2, . . . , l.
Then Σ is a δ-set. Furthermore, there is a caterpillar of order 2l that realizes Σ.

Proof.
We claim that for each set Σ = {1 = s1 < s2 < . . . < sl} such that si − si−1 ≤ 2 there is a
caterpillar of order 2l that admits a 2-regular distance Σ-labeling in which the label sl is assigned to
exactly two leaves. The proof is by induction. For l = 1, the path P2 admits a 2-regular distance
{1}-labeling, and for l = 2, the star K1,3 and the path P4 admit a 2-regular distance {1, 2}-labeling
and a 2-regular distance {1, 3}-labeling, respectively. Assume that the claim is true for l and let
Σ = {1 = s1 < s2 < . . . < sl+1} such that si − si−1 ≤ 2. Let Σ′ = Σ \ {sl+1}. By the induction
hypothesis, there is a caterpillar G′ of order 2l that admits a regular distance Σ-labeling of degree 2
in which the label sl is assigned to leaves, namely, u1 and u2. Let u ∈ V (G′) be the (unique) vertex in
G′ adjacent to u1. Then, if sl+1− sl = 2, the caterpillar obtained from G′ by adding two new vertices
v1 and v2 and the edges uivi, for i = 1, 2, admits a regular distance Σ-labeling of degree 2 in which
the label sl+1 is assigned to leaves {v1, v2}. Otherwise, if sl+1 − sl = 1 then the caterpillar obtained
from G′ by adding two new vertices v1 and v2 and the edges uv1 and u2v2 admits a regular distance
Σ-labeling of degree 2 in which the label sl+1 is assigned to leaves {v1, v2}. This proves the claim. To
complete the proof, we only have to consider the vertex partition of G defined by the vertices that
receive the same label. 2

Proposition 3.1 provides us with a family of δ-sets, in which, if we order the elements of each δ-set, we
get that the differences between consecutive elements are upper bounded by 2. This fact may lead us
to get the idea that the differences between consecutive elements in δ-sets cannot be too large. This
is not true in general and we show it in the next result.

Theorem 3.1. Let {k1 < k2 < . . . < kn} be a set of positive integers. Then there exists a δ-set
Σ = {s1 < s2 < . . . < sl} and a set of indices {1 ≤ j1 < j2 < . . . < jn}, with jn < l − 1, such that

sj1+1 − sj1 = k1, sj2+1 − sj2 = k2, . . . , sjn+1 − sjn = kn.

Moreover, s1 can be chosen to be any positive integer.

Proof.
Choose any number d1 ∈ N and choose any Langford sequence of defect d1 (such a sequence exists by
Theorem 1.1. We let d1 = s1. (Notice that if d1 = 1 then the sequence is actually a Skolem sequence).
Let this Langford sequence be L1. Next, choose a Langford sequence L2 with defect max L1 + k1.
Next, choose a Langford sequence L3 with defect max L2 +k2. Keep this procedure until we have used
all the values k1, k2, . . . , kn. At this point create a new sequence L, where L is the concatenation of
L1, L2, . . . , Ln+1 and label the vertices of the path Pr, r =

∑n+1
i=1 |Li|, with the elements of L keeping

the order in the labeling induced by the sequence L. This shows the result. 2

The next result shows that there are sets that are not δ-sets.

Proposition 3.2. The set Σ = {2, 3} is not a δ-set.

Proof.
The proof is by contradiction. Assume to the contrary that Σ = {2, 3} is a δ-set. That is to say,
we assume that there exists a sequence S consisting of k1 copies of 2 and k2 copies of 3 that is a
δ-sequence. Let G be a graph that realizes S and V1 ∪ V2 the partition of V (G) defined as follows: if
u, v ∈ Vi then dG(u, v) = i + 1, for i = 1, 2. It is clear that V1 must be formed by the leaves of a star
with center some vertex a ∈ V . Since a is at distance 1 of any vertex in V1, it follows that a must
be in V2 and furthermore, all vertices adjacent to a must be in V1. Thus, there are no two adjacent
vertices in the neighborhood of a. At this point, let b ∈ V2 \ {a}. Then, there is a path of the form
a, u1, u2, b, where u1 ∈ V1 and hence, u2, b ∈ V2. This contradicts the fact that dG(u2, b) = 1. 2
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The above proof works for any set of the form Σ = {2, n}, for n ≥ 3. Thus, in fact, Proposition 3.2
can be generalized as follows.

Proposition 3.3. The set Σ = {2, n} is not a δ-set.

Notice that, although Σ = {2, n} is not a δ-set, it is a δ1-set, since we can consider a star in which
the center is labeled with n and the leaves with 2.

The next result gives a lower bound on the size of δ-sets in terms of the maximum of the set.

Theorem 3.2. Let Σ be a δ-set with s = max Σ. Then, |Σ| ≥ d(s + 1)/2e.

Proof.
Let Σ be a δ-set with s = max Σ. Let G be a graph that realizes Σ and let V (G) = ∪i∈ΣVi be
the partition defined as follows: if u, v ∈ Vi then dG(u, v) = i. Let a1, a2 ∈ Vs. At this point,
let P = b1b2 . . . bs+1 be a path of length s starting at a1 and ending at a2. We claim that there
are no three vertices in V (P ) belonging to the same set Vj , j ∈ Σ. We proceed by contradiction.
Assume to the contrary that there exist vertices u, v and w ∈ V (P ) such that u, v, w ∈ Vj . That is,
dG(u, v) = dG(u,w) = dG(v, w) = j. However, it is clear that the above cannot happen if we take
the distances in the path. Without loss of generality assume that dp(u, v) = k 6= j. Clearly, k > j.
Otherwise, we have that dG(u, v) ≤ k instead of dG(u, v) = j. Let P ′ be a path in G of length j that
joins u and v. Then, the subgraph of G obtained from P by substituting the subpath of P joining
u and v by P ′ contains a subpath of length strictly smaller than s. Thus, we obtain a contradiction.
Hence, each set in the partition of V (G) can contain at most two vertices of P . Since |V (P )| = s + 1,
it follows that we need at least d(s + 1)/2e sets in the partition of V (G). Therefore, we obtain that
|Σ| ≥ d(s + 1)/2e. 2

It is clear that the above proof cannot be improved in general, since from Proposition 3.1 we get
that the any set of the form {1, 3, 5, . . . , 2n + 1} is a δ-set and |{1, 3, 5, . . . , 2n + 1}| = d(2n + 2)/2e.
Furthermore, Proposition 3.3 is an immediate consequence of the above result. It is also worth to
mention that there are sets which meet the bound provided in Theorem 3.2, however they are not
δ-sets. For instance, the set {2, 3} considered in Lemma 3.2. From this fact, we see that we cannot
characterize δ-sets from, only, a density point of view. Next we want to propose the following open
problem.

Open problem 3.1. Characterize δ-sets.

Let Σ be a set. By construction, a path of order |Σ| in which each vertex receives a different labeling
of Σ defines a distance |Σ|-labeling. That is, every set is a δ|Σ|-set. So, according to that, we propose
the next problem.

Open problem 3.2. Given a set Σ is there any construction that provides the minimum r such that
Σ is a δr-set.

Thus, the above problem is a bit more general than Open problem 3.1.
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