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IMMUNITY AND SIMPLICITY IN RELATIVIZATIONS OF
PROBABILISTIC COMPLEXITY CLASSES (*)

by José L. BALCAZAR (') and David A. Russo (?)

Communicated by J. Diaz

Abstract. — The existence of immune and simple sets in relativizations of the probabilistic
polynomial time bounded classes is studied. Some techniques previously used to show similar results
for relativizations of P and NP are adapted to the probabilistic classes. Using these results, an
exhaustive settling of all possible strong separations among these relativized classes is obtained.

Résumé. — On étudie les relativisations des classes de complexité probabiliste polynémiale. On
adapte aux classes probabilistes des techniques déja utilisées pour établir des résultats similaires
pour les relativisations de P et NP. On obtient a partir de ces résultats une classification de toutes
les propriétés de séparation forte pour ces classes relativisées.

INTRODUCTION

Immunity and simplicity in relativizations of complexity classes have been
studied by Homer and Maass {7], Schéning and Book [13], and Balcazar
[3]. Previous work on these concepts in the complexity-theoretic setting,
without mentioning relativizations, appears in Flajolet and Steyaert [6]. The
purpose of this paper is to translate these results to the relativizations of the
probabilistic complexity classes.

The probabilistic classes ZPP, R, BPP and PP were introduced by Gill
[5]. The class R is denoted VPP there. We follow here the notation R as in
Adleman and Manders [1]. These classes can be defined by focusing on
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228 J. L. BALCAZAR, D. A. RUSSO

the number of accepting and rejecting computations of nondeterministic
polynomial time machines. If each nondeterministic step is considered as a
random event (a coin toss), and acceptance is defined in terms of the
probability of finding an accepting computation, the above-mentioned classes
arise naturally by bounding the error probability in different ways.

We show that certain modifications of known techniques for relativizing
complexity classes apply to the probabilistic classes. Our constructions, based
on the theorems of Baker, Gill, and Solovay {2], are similar to the “slow
diagonalizations™ of Schoning and Book [13] and Balcazar [3], and yield
sets in different probabilistic classes that are immune with respect to other
classes. As a consequence, strong separations of the classes under considera-
tion are obtained. A strong separation among two classes is a separation
witnessed by an infinite set in one class with no infinite subset in the other
class.

It is known from the work of Baker, Gill, and Solovay [2] that for any
P SPACE-complete set E, P(E)=P SPACE(E), which implies that all of the
classes studied here collapse to P(E). On the other hand, oracles separating
different classes can be constructed by diagonalization; some of our results
are of this type. Having a question about nonrelativized classes answered in
different ways for different relativizations is often used as evidence for the
difficulty of finding an answer to the unrelativized case. This is because
almost all currently known methods for proving equalities and inequalities
of complexity classes remain valid under relativization. This suggests that the
study of the relativizations of these classes might provide a better understand-
ing of the properties of the corresponding computation models.

Considering together all our constructions, we can show that every strong
separation consistent with the known results can be achieved in the appro-
priate relativization. For instance, it holds by definition that R NP "\ BPP
(see [15]). However, it is not known if this inclusion is proper. We show that
no proof solving this problem can relativize: the oracles C and D, constructed
in section 4, have the properties that R(C)<=NP(C) N\ BPP(C) and
R(D)=NP(D) "\ BPP(D)c NP(D). Here “ <" denotes strict inclusion.

In order to obtain these results, two kinds of modifications must be made
to the slow diagonalizations. In some cases, instead of constructing the
relativization “one word at a time”, the words must be decided “a lot at a
time’” to preserve the acceptance probability. In other cases, a problem arises
since probabilistic machines may query exponentially broad spaces of the
oracle set, and therefore its result might depend of “many” queried words.
This problem arises also in [3], but the same solution cannot be applied here.
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IMMUNITY AND SIMPLICITY IN PROBABILISTIC CLASSES 229

To solve it, a definition of “critical string” is given, so that the result of a
probabilistic machine only depends essentially on these critical strings; then,
a combinatorial argument is presented that ensures the existence of a small
number of these critical strings. Our argument is similar to that of Rackoff
[10], although we found it independently.

The paper is organized as follows. Definitions, notation and some basic
results are stated in section 1. Section 2 contains a result that uses a variation
of the techniques of [13] for strongly separating the smallest among the
above-mentioned probabilistic classes, ZPP, from the class P. In section 3
we present a result that uses a technique based in [3], obtaining a strong
separation of NP from co-R. Many consequences follow from this result.
The most important new ideas are introduced in section 4, where more
careful applications of the immunity technique are presented. The results are
summarized in section 5, and it is argued that they completely settle all
possible relationships among the classes studied.

PRELIMINARIES

Our computational model is the nondeterministic oracle multitape Turing
machine, with input alphabet £={0,1}. Decisional problems are assumed to
be coded as subsets of £*. For undefined notions see [8] and [12].

We denote by | x| the length of xeZ*, and by =" the set of all xe £* with
| x|=n. We denote Z="=1J{|0<i<n}. A total ordering is defined on Z*
by letting x<y if and only if |x|<|y| or |[x|=|y| and x<y in the lexico-
graphic ordering,.

For a subset L of =*, the complement of L, i.e. £*-L, is denoted by L. The
symmetric difference L, AL, is defined by L, AL,=(L, N\ L,)\U L, NL,).

Let C be a class of subsets of Z*. A set L is C-immune if and only if L is
infinite and no infinite subset of L is a member of C. A set L is C-simple if
and only if Le C and its complement L is C-immune.

We assume the existence of easily computable tupling functions, i.e.,
bijections from (X*)" to X*, which we denote with angular brackets: <. ..).

A recursive enumeration of the polynomially clocked deterministic (nonde-
terministic) oracle Turing machines is assumed, and denoted by P;(NP,
respectively). The set of all words accepted by P;(NP; respectively) under
oracle A is denoted L(P;, A)(L(NP, A) respectively). Recall that for
xe L (NP, A) it is enough to have one accepting computation. Without loss
of generality we assume that polynomials p; are simultaneous bounds for the

vol. 22, n° 2, 1988



230 J. L. BALCAZAR, D. A. RUSSO

running times of both P, and NP, Notice that there are infinitely many
machines that reject every input no matter what the oracle is; i. e., there exist
infinitely many M such that for all 4, L (M, A)=5. This fact will be used
later.

We will focus on the following complexity classes:

P (A) is the class of sets accepted by some P; with oracle 4;
NP(A) is the class of sets accepted by some NP; with oracle A4;
co-NP(A) is the class of complements of sets in NP(4);

PP(A) is the class of sets “probabilistically accepted” by some NP; with
oracle A, where a string x is probabilistically accepted by NP; if and only if
more than half of the computations of NP, accept x;

BPP(A) is the class of sets probabilistically accepted by some NP; with
oracle A with bounded error probability [S]; this is equivalent to saying that
for each x either more than one half of the computations accept x (and x is
considered accepted) or less than one-fourth the computations accept x (and
x is considered rejected);

R(A) is the class of sets probabilistically accepted by some NP, with oracle
A with one-sided errors: for each x either more than half the computations
accept or no computation accepts;

co-R(A) is the class of complements of sets in R (A4);

ZPP(A) is R(A) M co-R(A); characterizations of ZPP(A) in terms of the
number of accepting or rejecting computations may be found in [5] and [11};

PSPACE(A) is the class of sets accepted by any Turing machine in
polynomial space with oracle A; we assume that the polynomial space bound
holds for the query tape.

The relative inclusion structure of all of these class is depicted in figure 1.
Each arrow indicates that the first class is included in the second. Most of
the inclusions presente in figure 1 are known to be either proper inclusions

R(A) —® NP(A)

P(A) —® ZPP(A) # NP(A)nco-NP(A) __ BPP(A)—®_PP(A) ——®>PSPACE(A)

co-R(A) ———Pco-NP(A)

Figure 1
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IMMUNITY AND SIMPLICITY IN PROBABILISTIC CLASSES 231

or equalities for the appropriately constructed oracles. In the unrelativized
case, all are open problems.

Let A be any oracle set. Suppose that the machine M is a probabilistic
machine that witnesses the fact that L (M, A)e ZPP(A4). Then we say that M
is a “ZPP machine”” under oracle A. Similarly, we apply the shorthands “R
machine under A” and “BPP machine under A” to probabilistic machines
M witnessing the fact that L (M, A)e R(A) or BPP(A) respectively.

A set A is PSPACE-complete if and only if A€ PSPACE and any set in
P SPACE is reducible to 4 in polynomial time; for related definitions see [8]
and [12]. The following result has been pointed out in the introduction, and
is due to Baker, Gill, and Solovay [2].

ProposiTion 1.1: If A is PSPACE-complete then P(A)=PSPACE (4)=
PSPACE.

Relative to such a set, polynomial space computable functions are computa-
ble in polynomial time (we assume that the polynomial space bound holds
for the output tape). We state this fact in the following theorem, which
follows from essentially the same prefix-searching argument applied in [14]
to the unrelativized classes P and NP.

Fact 1.2. P(A)=PSPACE(A) if and only if any function computable
relative to A in polynomial space is computable relative to 4 in polynomial
time.

THE “IMMUNITY” TECHNIQUES

We show in this section the tightest possible result for P-immunity in the
context of the probabilistic polynomial time classes. We construct an oracle
A such that a P(A4)-immune set exists in ZPP(A4), the smallest of the classes
considered here.

In fact, the proof is close to the basic immunity construction in [13], the
key difference being that the “test language” L (A) that diagonalizes over
P(A) must be accepted with oracle A by a “ZPP” machine. During the
process, we make sure that each machine P; in an enumeration of all
polynomial time clocked deterministic oracle machines is “spoiled”. A mach-
ine P; is spoiled as soon as we guarantee that L (P, A) is not an infinite
subset of L(A).

THEOREM 2. 1: There is a recursive oracle A such that ZPP(A) has a P(A4)-
immune set.

vol. 22, n° 2, 1988



232 J. L. BALCAZAR, D. A. RUSSO

Proof: The set A will be constructed in such a way that it satisfies a very
strong condition. Namely, for each n, either no word of length nin A begins
with O and less than half the words of length n beginning with 1 are in 4, or
more than half the words of length n beginning with 0 and all the words of
length n beginning with 1 are in A.

It can be seen that if A satisfies this requirement then the set

L(A)={0"|3y,

y|=n, such that 0ye A}
can be defined as well as
L(A)={0"|Vy with|y|=n, 1yeA4}

and that a “ZPP” machine accepts it with oracle A. We now construct 4 in
stages. In stage n, the set 4, is defined in an attempt to spoil a “P”” machine
whose index is in the set R,. The oracle set A is defined as the union U A4,

nz0

Stage 0: Let Ao=, Ro=, and k (0)=0.

Stage n: Add a new index to be considered, R,=R,_, U {n};
let k(n) be a “sufficiently large” integer; more precisely,
k(m)=min{m| Y p,(m)<2™"! and max {p;(k(n—)[i<n}<m};

initially define A,=4,_, U {1z||z|=k®m)};
if there is a je R, such that 0" e L (P, 4,)
then
let j (n) be the least such j;
define A4, so that 0*™ is not a member of the “test
language” [i.e., sroil the machine with index j (n)] by setting
V4

A,=A,—{1z]|z|=k(n), 1z was not queried by P, on 0*®};
let Rn=Rn—1 —{](n) };
else

define A, so that 0*™ is a member of the test language
by setting A,=A, U {0z||z|=k (n), 0z was not queried by
any P; on 0F®};
end if.

The conditions imposed on k(n) guarantee that the oracle meets the

conditions stated above. This is so since the condition Y. p;(k (n))<2*"~1
i<n

ensures that more than half the words of length k (n) are never queried by a
machine P; on input 0, and therefore adding to A4 or restraining from A4
sets of words as in the construction yields A4 fulfilling these conditions. On
the other hand, the condition max {p;(k(n—1))|i<n} <k (n) ensures that
modifications performed at stage n do not disturb the computations of
machines P; at previous stages, and therefore the computations of P;, jeR,,
on input 0™ are the same with oracle 4, as with oracle A.
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IMMUNITY AND SIMPLICITY IN PROBABILISTIC CLASSES 233

Notice that all of the infinitely many indices of machines for which
L (M, A)= for all A are never deleted from R,. This implies that the “else”
case occurs infinitely often. Each time the “else” case occurs one more word
enters L (A4), and so L (A4) is finite.

Suppose that there exists an infinite subset C of L(A4) such that for some
j» C=L(P;, A). Since C is infinite and C< L (4), there are infinitely many n
such that 0*eC. The index j was put into R; at stage j. Since there
are only finitely many indices less than j, there is a stage m=j such that
0“™eL (P, A,_,). However, at this stage A4,, is defined so that 0™ ¢ L (4,,),
and by the second condition on k (n), 0™ ¢ L (4). Hence, C ¢ L (A4), contra-
dicting our assumption. Thus, L (A4) is P (A)-immune. O

Since ZPP is included in all of the classes, we obtain the following corollary.

CoROLLARY 2.2: There is a recursive oracle A such that all of the following
classes have a P (A)-immune set:
R(A), co-R(A), NP(A)Nco-NP(A),
NP(A4), co-NP(A4), BPP(A), PP(A).

A similar construction of an oracle A exhibiting a P (A)-immune set in
R (A) appears in corollary 2.2 of [4].

THE “SIMPLICITY” TECHNIQUES

The constructions in [3] leading to simple sets for NP and other complexity
classes are based also on the slow diagonalizations of [13]. It is possible to
extend these results to some interesting ones relating NP and R.

Again we consider the strongest possible result. Clearly, the smallest class

among the classes considered here in which an NP-immune set can lie is co-
R.

THEOREM 3.1: There is a recursive oracle B such that co-R(B) has an
NP(B)-immune set.

Proof: The oracle B will be constructed in such a way that for each length
n either no words of this length are in B or more than half the words are in
B. This implies that the “‘test language”

L(B)={0"|Vx with|x|=n, xe B}
is in co-R (B).
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234 J. L. BALCAZAR, D. A. RUSSO

Now, a slow diagonalization allows us to construct B so that for any
infinite set L in NP(B) some word in L is not in L(B).
Stage 0: Let Bo=X*, Ro=J and k (0)=0.

Stage n: Add a new index to be considered, R,=R,_, U {n};
let k (n) be a “sufficiently large” integer; more precisely,
k(@=min{m | ¥ p;(m) <2 * and max {p;(k(n—1)) | i <n} <m};

i<n
initially define B,=B,_; —Z*® so that 0™ is not in the
‘“test language’’;

if there is a je R, such that 0* e L(NP;, B,)
then
let j(n) be the least such j;

fix an accepting computation of NP;,, on 0%

spoil the machine with index j(n) by defining
B,=B, U {all words of length & (n) not queried in the fixed
computation};
let R,=R,_,—{j(m};
end if.

By the first condition, the set of words not queried includes at least half
the words of length k(n). Hence, the oracle B meets the conditions stated
above and L (B) eco-R (B). By the second condition on k (n), the computations
at earlier stages are preserved (i. e., machines spoiled in earlier stages remain
spoiled).

Again no index of the empty set is ever deleted from R,. Since there are
infinitely many indices of the empty set, infinitely often the “‘else” case occurs
and no word of length k (n) remains in B. Hence L (B) is infinite.

If a set in NP (B) consists of infinitely many words of the form 0*®™ then
at some stage a word of this kind is found and put out of L (B) by adding
words to B. Thus, no infinite set in NP (B) can be included in L (B), and
L (B) is NP (B)-immune. ¢

The inclusion relations between the classes considered lead to the following

CoROLLARY 3.2: There is a recursive oracle B such that

(i) an R(B)-simple set exists;
(i) an NP (B)-immune set exists in BPP (B);
(iii) an NP (B)-immune set exists in PP (B).

THE “CRITICAL STRING CONTROL” TECHNIQUES

The previous sections use adaptations of known techniques of [13] and [3].
More care is taken in the number of words that enter or leave the oracle at
each stage of the construction, but most ideas work correctly because the
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IMMUNITY AND SIMPLICITY IN PROBABILISTIC CLASSES 235

“base” classes over which the constructions diagonalize are the same: P and
NP, respectively.

However, when we are interested in performing a diagonalization over,
say, R, the control on the number of queries which an “R” machine can
make becomes more complicated. Preserving an accepting computation is
easy: only polynomially many queries have to be controlled. However, pre-
venting the creation of accepting computations is difficult for nondeterministic
machines: potentially all of the strings have to be controlled.

Fortunately the restriction which R places on the class of machines over
which we diagonalize allows us to control only the “important™ queries. We
will show that controlling only polynomially many words is enough to either
preserve all the computations or destroy the particular character of the
machines. The existence of this polynomial bound indicates a rather severe
restriction on the access to the oracle by “R” machines.

DerNiTiON 4.1: A word w is R-critical for the word x with respect to the
machine M and the oracle A4 if and only if the following holds:

(i) either none of the computations of M with oracle 4 accept x, or at
least half of these computations accept;

(ii) either none of the computations of M with oracle 4 A {w} accept x, or
at least half of these computations accept;

(i) xeL(M, A) if and only if x¢ L (M, AA{w}).
Thus, w is critical for x if the fact of whether xe L (M, A) is entirely

dependent on whether w is in 4 or not, and in either case the machine
behaves correctly on x, i. e., it does not lose its “R’’ character.

A weaker concept of “critical”” appears in Rackoff [10], although we defined
ours independently. Rackoff’s definition is harder to work with. In fact, our
definition of “‘critical” allows us to recover and generalize an easier, but
erroneous, proof that appeared in an earlier version of [10] (namely in [9]).

LemMmA 4.2: Let M be a nondeterministic oracle Turing machine with a
polynomial time bound p, and an oracle A. Then for all inputs x there are at
most 2p (| x|) R-critical strings for x with respect to M and A.

Proof: Any critical word w for x must be queried on at least half of the
computation paths of M on input x, because either half the computations
accept with oracle 4 and no computation accepts with oracle A A{w}, or
vice versa. Let ¢ be the number of critical words. Consider a square matrix
in which each row corresponds to the list of queries made during a computa-
tion of M on input x. At least c2?4*D~1 entries exist in the whole matrix,
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236 J. L. BALCAZAR, D. A. RUSSO

since each of the c critical queries must be queried in at least 2P(U*D-1
computations. But each computation path of M queries 4 less than p(|x|)
times; the dimensions of the matrix are at most p(|x|) by 224D, and hence
c2pdxh-1 Sp(lxl)zp(lxl)_ o

LeMMA 4.3: For each nondeterministic oracle Turing machine M and oracle
A, the function that gives for each x the encoding of the set of R-critical words

for x (with respect to M and A) is computable in polynomial space with
oracle A.

Proof: By systematically searching through the words we Z* up to length
p(x|]), simulating M using oracle AA{w} and counting the number of
accepting computations, we can construct the set of critical words in polyno-
mial space. ¢

Now we can use this concept of “critical” to diagonalize over R. Again,
we consider the strongest possible result, in the context of the classes consi-
dered here.

THEOREM 4.4: There is a recursive oracle C such that there is a R(C)-
immune set in NP (C) (N co-R(C).

Proof: The set C will be constructed so that for each n either some word
of length 2n and no word of length 2n+1 is in C, or no word of length 2n
and more than half the words of length 2n+1 are in C. Under such a
condition, the set

L(C)={0"|3x, |x|=2n, such that xe C}
has as complement the set
{0}* U {0" | 3x, | x|=2n+1, suchthat xe C}

and furthermore the complement of L (C) belongs to R (C).

We construct the oracle C so that C meets the condition above and L (C)
is R (C)-immune.

Stage 0: Let Co={xeX* | |x|is odd}, Ro= and m,=0.

Stage n: Add a new index to be considered, R,=R,_, U {n};
let k (n) be “sufficiently large”, in particular,
k (ny=min {m | Y pi(m) <22™ ' and max {p,(k(n—1)) | i < n} <m};

ign
initially define C,=C,_;—{x | |x|=2k(m)+1};
if there is an index je R, such that 0*™®eL (NP, C))
then
let j, be the least such j;
fix an accepting computation of NP; on 0*®;
spoil the machine with index j, by defining
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IMMUNITY AND SIMPLICITY IN PROBABILISTIC CLASSES 237

C,=C, U {all words of length 2k (n)+1 not queried in the
fixed computation};
let R,= Rn— 1= {Jn}’
else
let w, be the least word of length 2k (n) that is not
critical for 0™ with respect to any NP, jeR,, and C,;
define C, so that 0™ is a member of the test language by
setting C,=C, U {w,};
end if.

The fact that L(C) is infinite follows from arguments similar to the ones
used in sections 2 and 3.

In order to show that every machine accepting an infinite set in R (C) is
“spoiled”, first note that a machine whose index leaves R, at some stage is
spoiled, whether or not it is an “R” machine for oracle C. Suppose that j
does not leave R, at any stage, i.e., j #j, for all n. Then there exists an n,
such that j, > j for all n > n,, and hence 0™ ¢ L (NP, C,_,) for all n > n,.

We want to show that if L(NP;, C) £ L(C), and NP; is an “R” machine
under oracle C, then L(NP;, C) is finite, i.e., 0*®¢L(NP;, C) for all n > n,.
The construction guarantees that if 0“™¢L (NP, C,) then 0™ ¢ L (NP, C).
Hence it is sufficient to show that if L (NP}, C) < L(C) then 0™ ¢ L (NP;, C,)
for all n > n,,.

Thus, consider any stage n with n > n, and assume L(NP; C) < L(C),
where NP; is an “R” machine under C. Suppose first that the condition at
the “if”” statement is true. Since 0™ is kept out of L(C), it cannot be in
L(NP,, C).

Now suppose that the condition at the “if”’ statement is false. The word
chosen for w, is not critical for 0*® with respect to NP; and
C,—1—{x||x|=2k (n)+1}. However, conditions (i) and (ii) of the definition
of critical word hold, since the machine rejects 0™ under
C,-1—{x||x|=2k(m)+1} and is an “R” machine under C. So, condition
(iii) must fail, and therefore the machine still rejects 0* ™ under oracle C.

Thus, if NP; is an “R” machine under oracle C and L(NP;, C) € L(C)
then L (NP; C) must be finite, and so L(C) is R(C)-immune. &

The inclusion relations between the classes yield the following corollary.

CoROLLARY 4.5: There is a recursive C such that ZPP(C) < R(C) and an
R (C)-immune set exists in BPP(C) \ NP (C) N\ co-NP(C).

Observe that this corollary implies that R(C) <« BPP(C)\NP(C). In
corollary 2.2 of [4], the relationship of R with the class U of sets accepted
by unambiguous nodeterministic Turing machines [14] is discussed, and a
construction similar to that of our theorem 4.4 is presented.
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238 J. L. BALCAZAR, D. A. RUSSO

The polynomial bound on the number of critical strings is useful not only
for separating, but also for collapsing classes. Constructions in [10] making
P=R < NP become easier with our definition. An interesting result is shown
in the next theorem, strengthening those in [10] in two ways: first by collapsing
all BPP (D) to P (D), and second by separating P (D) and NP (D) via a P (D)-
immune set in NP (D).

Some definitions are still needed. We begin by adapting the definition of
critical to the BPP case, in an intuitively simple manner:

DEerINITION 4.6: A word w is BPP-critical for the word x with respect to
the machine M and the oracle A if and only if the following holds:

(i) either less than 1/4 or more than 1/2 of the computations of M on
input x under oracle A accept;

(ii) either less than 1/4 or more than 1/2 of the computations of M on
input x under oracle 4 A {w} accept;

(ii1) x is accepted by less than 1/4 of the computations of M under oracle
A if and only if x is accepted by more than 1/2 of the computations of M
under oracle 4 A {w}.

This definition is the immediate analog of the definition of R-critical in
the setting of BPP. The following lemmas have analogous proofs to the ones
for R-critical words.

LemMMA 4.7: Let M be a nondeterministic oracle Turing machine with a
polynomial time bound p, and an oracle A. Then for all inputs x there are at
most 4p (| x|) BPP-critical strings for x with respect to M and A.

LemmMmA 4.8: For each nondeterministic polynomial time oracle Turing machine
M and oracle A, the function that gives for each x the encoding of the set of
BPP-critical words for x (with respect to M and A) is computable in polynomial
space with oracle A.

We now present the construction of oracle D. The facts about D are
established after the construction. The oracle D will be a slight variation of
an oracle E for which P(E)=PSPACE (E). The variation consists of a set
of words that are added so that the set L(D)={0"|3x, |x|=n, such that
xe D} diagonalizes out of P (D) [in fact, it becomes P (D)-immune], but the
diagonalization is so “‘tiny” that for any “BPP” machine we are able to
compute the “important” (i. e., critical) added words and reduce it to operate
under oracle E.

Throughout the construction the set R, contains two types of indices. Odd
indices, j=2i+1, remain in R, unless it is possible to “spoil” the behavior
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of NP, making it a non-BPP machine; even indices, j=21i, remain in R, until
we are able to ensure that L (P, D) ¢ L(D), as in the construction in
Section 2. This construction will yield an oracle D so that
BPP(D)=P (D) # NP (D), the latter being witnessed by a P (D)-immune set
in NP (D).

Now let E be a PSPACE-complete set. Without loss of generality, we
assume that no word of even length is in E. Inductively define e(0)=2,
e(n+1)=22". Construct D as follows.

Stage 0: Let D, =E, Ry=(, and r,=0.
Stage n: if 2°®< Y p,(e(n)
2jeEp—1
thenlet D,=D,_,, R,=R,_,, r,=r,_,, and go to next stage; else
add a new index to be considered, R,=R,_, U {r,_ };
letr,=r,_,+1;
for each j in R, loop
if j=2i+1 and there is a word x such that
e(n—1)<log(|x|)<p;(Jx])<e(n+1) on wich NP; with
oracle D,_, is not a “BPP” machine
then
let D,=D,_, and R,=R,—{j };
exit from loop and proceed with next stage;
comment NP; is not BPP under D: no longer care required;
else
ifj=2iand 0°*®eL(P, D,_,)
then
let D,=D,_, and R,=R,—{j};
exit from loop and proceed to next stage;
comment diagonalization over P; accomplished;
end if
end if;
end loop;
if no j was found satisfying the conditions above
then
let w, be a word of length e (n) such that no machine
P; queried the string w, on input 0°®);
let Dn=Dn—l U {Wn};
comment make L (D) infinite
end if
end if.

Some lemmas will lead to our final result.

LemMA 4.9: The function that gives for each x the BPP-critical words for
x with respect to machine NP,, and oracle E is computable in polynomial time
relative to E.

Proof: This function is computable in polynomial space relative to E, and
P(E)=PSPACE(E). Apply Fact 1.2. o

As no words of even length are in E, we assume without loss of generality
that no such words are queried in the computation of the critical words. This
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implies that the oracle D suffices for this computation, i. e. the function that
gives for each x the BPP-critical words for x with respect to machine NP,
and oracle E is computable in polynomial time relative to D.

Our next lemma shows that a “BPP” machine working under oracle D on
a fixed input x can be transformed quickly into a “BPP” machine on the
same input, working under oracle E. It formalizes and develops some ideas
close to those in the proof of theorem 6 in [2].

LEMMA 4.10: Let NP; be a “BPP” machine under oracle D. Then there is
a function f; computable in polynomial time with oracle D such that for each x
the machine with index f;(x) runs in time O (| x|.p;(|x|)) and either

(i) more than half the computations accept x in both NP; under D and
M, () under E, or

(i1) less than 1/4 of the computations accept x in both NP; under D and
Mg, () under E.

Proof: The function f; (x) computes, for each x, an index of a nondeterminis-
tic Turing machine which accepts (rejects) x using oracle E, if and only if M;
accepts (rejects) x using oracle D. This is accomplished by adding a finite
“look-up” table to M; and altering M; so that it consults the look-up table
prior to querying the oracle. In this way, M, will only need the oracle E
for its computations since the important portions of D —E will be coded into
the finite look-up table.

More precisely, let n, be such that NP; is a “BPP”’ machine under D, for
n>n (i.e., no odd index less than 2i+1 is deleted from R, at stage n>ny).
Consider the following algorithm.

function f;
input x;
find n such that e(n—1)<log(|x|)<p;(|x|)<e(n+1);
if no such n exists or n<ng then
check whether x is accepted by more than half the
computations of NP; under D by looking up in a finite table;
output an index of a machine that always accepts or always
rejects, accordingly;
else
compute D,_; —E by querying D about all the words of length
e(f), j<n
“patch” this portion of the oracle into a look-up table in NP,
and let i, be the resulting index;
compute the BPP-critical words for x with respect to
machine i, and oracle D, _,;
query D about the BPP-critical words of length e (n);
if no one of them is in D then
output i,
else
comment there is exactly one of them
“patch” D,—E=(D,-,—E)\ {the BPP-critical word in D}
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into a table in NP; and let i, be the resulting index;
output i,;
end if
end if.

By the construction of D and our choice of n>ng, M; is a “BPP” machine
for input x under oracles D,_, and D,. Suppose d is a word contained in
D,—D,_;. Notice that d is the only word of its length in D. If d is critical
for x with respect to M; under D,_, then we will be able to compute all of
D,—E, and the patched machine with index i, will work correctly. If, on the
other hand, d is not critical for x with respect to M; under D, _, then condition
(iii) in the definition of BPP-critical must fail. Hence, either condition (i) or
condition (ii) of the lemma is satisfied. Of course, if D,—D,_, is empty then
again we are able to compute all of D,—E, and the machine with index i,
will work properly.

The computation by “brute force” of D,_,—E is linear in |x |, since
e(n—1)<log(|x|). By the previous lemma, it is possible to compute the
BPP-critical words in polynomial time, and so f; is computable in polynomial
time. o

LemMMA 4.11: The set

K(E)={<{x, i, 0" |more than 1/2 of the computations

of NP; on x with oracle E accept within n steps}

is in P (E).
Proof- Immediate since K(E)e P SPACE (E)=P (E). O

Again, we may assume that a machine Py computes K(E) deterministically
in polynomial time without querying words of even length. Thus,
L (Pg, D)=K(E). We are ready for our last result.

THEOREM 4.12: There is a recursive oracle D for which BPP(D)=P (D)
and a P (D)-immune set exists in NP (D).

Proof: The construction of the set D has been presented before. The set
L(D)eNP (D) is P(D)-immune, as can be easily shown following the same
arguments as in our previous results.

We will show that BPP (D)= P (D). Let NP, be any “BPP’’ machine under
D, and let f; be the corresponding polynomial time computable function
described in Lemma 4. 10. Let g;(| x|) be the polynomial time bound of the
machine with index f; (x) on input x. The following algorithm uses the oracle
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D to decide in polynomial time whether more than half the computations of
NP; under oracle D accept x.
input x;

compute f; (x);
if {x, fi(x), 0%U*1"> e L(Py, D) then accept else reject

The correctness of this algorithm follows from the previous lemmas. O

COROLLARY 4.13: There is a recursive D such that R(D)=P(D) and a
P (D)-immune set exists in NP (D).

It should be noticed that a similar proof using R-critical words instead of
BPP-critical words yields this corollary without collapsing all of BPP (D) to
P (D).

Finally, from the fact that R(D)=BPP (D)=P (D)< NP (D) we obtain:

COROLLARY 4. 14: There is a recursive D such that BPP(D)# NP (D) but
R(D)=BPP(D) NP (D).

CONCLUSIONS

Let us mention some interesting remarks to the results shown in the
previous sections. First, note that several conclusions of the kind “no proof
solving such and such open problem relativizes” follow from our results. For
instance, as stated in the introduction, no proof settling the question “is
R=NP N\ BPP?’ can relativize: for the oracle C the answer is no, but for
the oracle D the answer is yes. Some other similar statements can be derived,
although generally there is no need of showing a strong separation to derive
them.

Secondly, notice that from the results proven here all possible strong
separations can be derived, in the sense that for any two classes C1 and C2
chosen among P, ZPP, R, NP, BPP, and PP, either C1 is always contained
in C2 in every relativization, or there is an oracle for which a strong
separation holds. All the strong separations are withessed by a C l-immune
set in C2, with the only exception that the strong separation of ZPP from R
is witnessed by a ZPP-co-immune set.

We show this in the diagram of figure 2. The letters labeling each arrow
indicate the oracles which exhibit a set in the target class which is immune
with respect to the source class.

Finally, note the crucial role of the concept of critical string in the diagonal-
izations and collapses presented in theorems 4.4 and 4.12. The statement in
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the introduction of section 4, that probabilistic bounded-error oracle machines
have inherent restrictions in their use of the information provided by the
oracle, has its formal counterpart in lemmas 4.2 and 4.7. We have shown
that the polynomial bound on the number of critical strings allows us both
to diagonalize against the probabilistic complexity classes and to decide them
in relativized deterministic polynomial time. Possibly, this idea can be useful
in the study of other complexity classes. Thus, whether the definition of
critical (or a similar one) may play an interesting role in other contexts like,
for instance, the class U of sets decided by unambiguous nondeterministic
machines (see [14] and [4]), is a question that we consider worth to investigate.

—

vol.
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