

Treball realitzat per:

Guillermo Arregui Bravo

Dirigit per:

Ramon Codina Rovira
Joan Baiges Aznar

Màster en:

Enginyeria de Camins, Canals i Ports

Barcelona, 23 de Juny de 2016

Departament d’Enginyeria Civil i Ambiental

 T
R

EB
A

LL
 F

IN
A

L
D

E
M

À
ST

ER

Approximate Dirichlet boundary
conditions in time-evolving
physical domains

Abstract

In many coupled fluid-structure problems of practical interest the domain of at least one of

the problems evolves in time. The most often applied approach to deal with such motion

in numerical methods is the use of the Arbitrary Eulerian-Lagrangian (ALE) framework.

However, the use of a pure fixed-mesh could allow us to get rid of choosing the arbitrary

mesh velocity and is often more adapted for fluid motion. Nevertheless, several other

problems arise from such a strategy when applied to the finite element method (FEM),

especially regarding the application of Dirichlet boundary conditions (BCs).

The usual strategy to prescribe Dirichlet BCs in FEM is to define the boundary of the

domain by placing nodes and facets on it, which allows us to strongly impose the condition

by defining the unknown as such in the given nodes. However, it is quite straightforward

to see that if a fixed-mesh strategy is to be used on, for example, a solid moving domain

inside a fluid, non-matching or non-conforming grids will appear at every time step of

calculation. In this cases, the boundary geometry intersects the boundary cells in an ar-

bitrary way. To solve such a problem several techniques have been developed, such as the

immersed boundary method, the penalty method, Nitsche’s method, the use of Lagrange

multipliers and other techniques that combine several of these strategies. These methods

impose the BCs in an approximate way once the discretization has been carried out, ei-

ther by modifying the differential operators near the interface (in finite differences) or by

modifying the unknowns near the interface.

In this work we describe such numerical techniques for approximating Dirichlet BCs

for the transient incompressible Navier-Stokes (N-S) equations. Some of these techniques

have been programmed on FEMUSS (Finite Element Method Using Subscale Stabilitza-

tion), one of the multiphysics Fortran code used at the International Centre for Numerical

Methods in Engineering (CIMNE) and we applied them to study the flow of fluids around

time-evolving prescribed solids.

1

Acknowledgements

I would like in this preamble to show my gratitude to the people that have helped me to

give a meaningful content to this report and that have contributed to improve my knowl-

edge in the field of numerical methods during these last four months.

I would like to sincerely thank Prof. Ramon Codina who, as the tutor of this the-

sis, was very attentive and helpful throughout the semester, always willing to cast some

light on the non-trivial theoretical aspects of the incompressible Navier-Stokes equations.

I wanted to show my strong gratitude to Dr. Joan Baiges, who co-tutored this Master

Thesis and was my main reference for all aspects related to the existing code and to the

implementation of new parts of it.

These acknowledgments are also for all the other researchers at CIMNE who were

always ready to answer my questions with appropriate answers. I would specially like

to thank the PhD student Arnau Pont for taking much of his time to help me run the

simulations and understand many practical problems that arise when solving specific flow

cases.

2

Contents

List of Figures 4

1 Introduction 6

1.1–Motivation . 6

1.2–Outline . 8

2 Theoretical background 10

2.1–The incompressible Navier-Stokes equations 10

2.2–The Galerkin Finite Element Method for the Navier-Stokes equations . . 14

2.3–The Variational Multiscale Method (VMS) 22

3 Approximate imposition of Dirichlet boundary conditions 28

3.1–Penalty-based methods . 36

3.1.1–Penalty method . 37

3.1.2–Penalty method with boundary tractions 38

3.1.3–Nitsche’s method . 39

3.1.4–Convergence analysis 40

3.2–A linked Lagrange multiplier symmetric method 44

3.3–Using external degrees of freedom 49

3.4–The flow past a circular cylinder 52

4 Numerical treatment of moving domains 58

4.1–The Fixed-Mesh Arbitrary Lagrangian-Eulerian method 58

4.2–Numerical tests on a rotating fan 64

5 Conclusions and future work 73

Appendix A Matricial form VMS incompressible Navier-Stokes equations 76

Bibliography 79

3

List of Figures

2.1–Triangulation Ph of a physical domain Ω 15

2.2–Basis function φi for linear triangular elements 16

3.1–Fixed solid domain inside a fluid domain Ω 29

3.2–Rotating solid domain inside a fluid domain Ω 29

3.3–Setting of the mesh near the boundary for the class of problems of interest.

Taken from [1]. 30

3.4–Integration splitting of the cut elements. Taken from [2]. 31

3.5–Interface cut leading to instabilities in the red nodes 32

3.6–Domain Ωcut defined to stabilize the system of equations 32

3.7–Example of instabilities due to interface cut with the background mesh . . . 33

3.8–Detail of instability from Figure 3.7 33

3.9–Geometry and boundary conditions of the problem used for convergence

analysis. 35

3.10–Plots of the analytical solution for the problem used for convergence analysis

(using strong Dirichlet BC imposition) 35

3.11–Log-log convergence curves (strong Dirichlet BC imposition). 36

3.12–Plots of the numerical errors (penalty-based methods). 41

3.13–Log-log convergence curves with linear fits (penalty-based methods). . . . 41

3.14–Log-log convergence curves of the boundary error (penalty-based methods). 43

3.15–Plots of the numerical errors (Linked Lagrange multiplier method). 47

3.16–Log-log convergence curves with linear fits (Linked Lagrange multiplier

method). 48

3.17–Plots of the numerical errors (external degrees of freedom). 51

3.18–Log-log convergence curves with linear fits (external degrees of freedom). . 51

3.19–Geometry and boundary conditions for the flow past a cylinder benchmark

problem . 52

3.20–Solution ‖uh‖ for the flow past a cylinder for Re=20 and Re=100 53

3.21–Solution ph for the flow past a cylinder for Re=20 and Re=100 54

3.22–Problem in pressure field when using the ghost stabilization and possible

explanation by the loss of the incompressibility condition. 56

4

3.23–Solutions ‖uh‖ and ph of a 3D case of a flow at Re ' 30 in a cylinder with an

embedded sphere using strong Dirichlet BCs and the Linked Lagrange multiplier

method. 57

4.1–(a) Mappings between referential, spatial and material domains, (b) One-

dimensional example of Lagrangian, Eulerian and ALE mesh and particle motion.

Both taken from [3]. 60

4.2–Two dimensional FM-ALE schematic. Top-left: background original fixed

mesh M0. Top-right: Position of Γmov at time tn in blue and induced compu-

tational domain Mn, the red lines being the splitting of the cut elements for

subintegration. Bottom-left: updating of Mn to Mn+1,virt with old Γmov in dot-

ted blue. Bottom-right: computational domain Mn+1 with interesction points in

green. 63

4.3–Geometry and boundary conditions of the rotating fan in a cavity problem. . 64

4.4–Unstructured meshes: (a) Meshing of the helix inside a circle to solve a level-

set problem (b) Meshing of the background fixed mesh and (c) Computational

mesh after some time steps with adaptive refinement around the projection of

the level-set in the background. 65

4.5–Solution ‖uh‖ for µ = 1.86 · 10−5 Pa·s, ρ = 1.09 kg/m3 66

4.6–Solution ph for µ = 1.86 · 10−5 Pa·s, ρ = 1.09 kg/m3 67

4.7–Time evolution of eu, L2(Γ) for the rotating fan problem. 68

4.8–Module of the velocity ‖uh‖ - distance r to the center of rotation for different

angular velocities ω. 69

4.9–Solution ‖uh‖ for µ = 1.86 · 10−5 Pa·s, ρ = 1.09 kg/m3 70

4.10–Solution ph for µ = 1.86 · 10−5 Pa·s, ρ = 1.09 kg/m3 71

5

Chapter 1

Introduction

1.1 Motivation

Fluid mechanics is a large and important area of science and engineering due to the many

phenomena that fall under its umbrella. The associated numerical simulation discipline,

computational fluid dynamics, is an influential branch that leads to breakthroughs in de-

signs and general understanding of how the world works. Modeling fluid behavior allows

the obtention of very valuable results; from engineers that manage to design the most ad-

vanced aircraft to doctors that learn how biological substances move through the human

body. At the heart of fluid mechanics and its modeling are the fundamental equations of

motion, the Navier-Stokes (N-S) equations. The equations are known for over 150 years,

yet their behavior is still not fully understood: mathematicians and physicists continue to

search for the existence and uniqueness of its solution, with the goal of solving a Millenium

prized problem [4].

In the last decade, wind energy has proved to be a promising building block for a

future sustainable energy supply. Human-induced climate change and the evidence of the

constraining political consequences of our strong dependence on every day less-available

fossil fuels are at the forefront of this just-starting shift towards a renewable energy supply,

where wind energy will definitely play a major role. Even though with a simple principle

- just some well-designed blades that turn as a result of wind impacting on them and

that make a shaft turn to produce energy- the assessment of wind’s energy potential and

impact requires solving the above-mentioned N-S problem coupled to the solid motion of

the blades. The resolution of such a coupled problem requires the use of advanced numer-

ical methods. Having a deep interest in renewable energies and in numerical schemes to

solve the equations that rule real complex systems, the study of the problem of a solid, as

for example a wind turbine, embedded in a flow was at the crossroad of two of my main

interests. The broad goal of this Master Thesis being to learn numerical techniques to deal

with time-evolving physical domains, the case of a wind turbine was always an inherent

ambition.

6

1.1 Motivation

Classical introductory courses to the Finite Element Method (FEM) as the ones I have

taken stick to formulations which are hard to use while finding the solution of real com-

plex problems. One of the usual limitations of this kind of courses is that they restrict

to meshes that fit the domain of interest and, by consequent, use a strong imposition of

Dirichlet boundary conditions (BCs) due to its algebraic simplicity. Nevertheless, in prac-

tical problems boundary conditions are very difficult to deal with, not only when it comes

to their definition, but when it comes to implementation as well. If, for example, we have

a solid with an externally imposed high-amplitude harmonic movement inside a fluid, it is

easy to see that imposing Dirichlet BC in a classical/strong way will imply a lot of mesh

distortion and recalculation around the position of the solid if we always want to have a

fitted mesh. The possibility to use a fixed mesh appears as very appealing. However, it

is quite straightforward to see that if a fixed-mesh strategy is to be used non-conforming

grids will appear. In this cases, the boundary geometry intersects the boundary cells in

an arbitrary way and we need to use what we call approximate BCs. Through my short

academic background in numerical methods I did not have the chance to go abroad the

limits of these FE introductory courses and to work on this project constituted a very

interesting opportunity to do so.

In addition to its usefulness for moving domain problems, approximate BCs strate-

gies, often called immersed boundary methods, are of extreme interest for computational

cost reduction. The classical way to represent complex boundaries is the employment of

unstructured meshes, where the boundary is represented by the mesh facets. Generat-

ing an unstructured mesh generates both a computational and storage overhead, espe-

cially in parallel computations requiring load-balanced domains and having a distributed

memory system. This practical bottleneck constitutes another important reason for the

development of ways to physically describe (or impose) boundary conditions on physical

problems[5]. Being interested in computer science and complexity issues related to large-

scale calculations, this work also provided a good frame for exploration.

We also wanted to emphasize that the interest of weak imposition of BCs goes beyond

unfitted meshes. As it is discussed in [6, 7] strongly imposing, for example, no-slip con-

ditions on high Reynolds number problems can be problematic since the sharp transition

from the free-stream flow to the adherence boundary generates large amounts of vorticity

which (at sufficient levels) can cause detachment of boundary layers. In some cases all

vorticity is generated in the boundary and diffused into the fluid’s interior, something that

becomes very difficult to capture and very likely not resolvable on a given mesh, leading

to nonphysical vortex structures [8]. Therefore, relaxation of BC imposition is sometimes

important even in fitted meshes to avoid having non-physical results on FEM. It is im-

portant to have this idea in head for the further results since a very good approximation

of the BC through parameter control, i.e. a stronger imposition, can lead to worse results

7

1 Introduction

in the rest of the domain.

Despite our interest to go very deep in the subject, in this study we will restrict our-

selves to studying the flow of fluids across prescribed rigid solids, which is definitely not

enough to fully understand the physics and mechanics of the fluid-structure interaction

problem that arises from, for example, wind energy production, but can give us a first

insight into the distortion of the flow by a moving solid or the fluid flow generated by

a moving solid. Flow problems are usually numerically solved using finite volume tech-

niques [9], because of their conservative nature. Nevertheless, we will be using FEM for

this project.

1.2 Outline

To get a clear picture of all the numerical elements needed to solve such a problem, a

progressive approach will be used. This work will be divided in six chapters, the first

being this Introduction.

The structure of the report to come will be the following:

• Chapter 2 will introduce the reader to the theory necessary to understand the code

as it was before the beginning of this project. We will first briefly present the incom-

pressible Navier-Stokes equations as derived from the basic equations of Continuum

Mechanics. After presenting its weak formulation and some main aspects of the exis-

tance of a solution, the standard Galerkin FEM for space discretization and a typical

finite-difference time scheme will be introduced. Finally the Variational Multiscale

Method (VMS) used to solve the problems that arise from the classical Galerkin

FEM approach will be presented.

• Chapter 3 will go to the core of this work. After briefly commenting on the difficul-

ties that arise when dealing with non-matching grids and its advantages, the chapter

will be devoted to introducing the different approximate boundary condition (BC)

techniques that were programmed, seeing what elements should be added or changed

on the final formulation to solve and what terms need to be added on an elementary

level when computing the matrices of the system at the element level. The conver-

gence order and the error on the approximation of the BC of the different methods

will be assessed numerically. Some benchmark will be used to confirm the validity

of the methods.

• Chapter 4 will show the results of applying the diverse methods to a 2D problem

consisting of a fan rotating on an cavity and to a rotating fan embedded on a piped-

flow. This case was used for two main purposes; first, it is in some way a 2D

version of the geometrically more complicated problems that we would like to deal

8

1.2 Outline

with by using these approximate BC techniques and, secondly, it provides a quicker

and visually easier way to check the added parts to the code than large-scale 3D

simulations. Since FEMUSS is a vast FEM code used by a lot of researchers at

CIMNE, a lot of precautions need to be taken before uploading a new version of the

code and this case was used with such a purpose. The idea was to make a simple

test that the future uploads of the code should pass.

• Chapter 5 will be devoted to draw some conclusions and to discuss further possible

work.

9

Chapter 2

Theoretical background

2.1 The incompressible Navier-Stokes equations

The beginning of this report is going to be devoted to present the most general case of the

problem we want to deal with, which is solving the flow of a fluid in a given domain, in our

case the flow of air around a prescribed solid. Since the beginning we will assume already

some basic knowledge in continuum mechanics from the reader. Usually three equations

including energy balance are considered to solve mechanical problems in a domain, but

we will here consider isothermal problems. The limit of this hypothesis will be discussed

by the end of this report. Let’s then first of all recall the two basic conservation laws we

will need to deal with in its differential form, where we already considered temperature

independent properties [10]:

∂ρ

∂t
+∇ · (ρu) = 0 Conservation of mass (2.1a)

∂ (ρu)

∂t
+∇ · (ρu⊗ u)−∇·σ = ρ f Conversation of linear momentum (2.1b)

with ρ the density of the continuum, u its velocity, f the volume body forces acting on

the continuum and σ the Cauchy tensor representing the internal stresses.

For the work developed in this report, these equations can be further simplified. First

of all we will have to deal with a Newtonian fluid, whose Cauchy stress tensor σ can be

written as σ = −p I + 2µ∇Su, where µ is the kinematic viscosity of the fluid, that we

will assume as constant. We will also consider incompressibility, which implies a constant

ρ in space and time. Therefore, the incompressible Navier-Stokes (N-S) problem for a

Newtonian fluid consist of finding a velocity u and a pressure p solution of the non-linear

10

2.1 The incompressible Navier-Stokes equations

Cauchy and boundary value problem1

ρ
∂u

∂t
+ ρu · ∇u− µ∆u +∇p = ρf in Ωt, t>0 (2.2a)

∇ · u = 0 in Ωt, t>0 (2.2b)

u = ud on Γd, t>0 (2.2c)

n · [2µ∇Su− pI] = gn on Γn, t>0 (2.2d)

u = u0 in Ωt, t=0 (2.2e)

where u0 is the initial condition that satisfies the incompressibility condition 2, Γd rep-

resents the part of the boundary where Dirichlet boundary conditions (BCs) apply, Γn

the part where Neumann3 BCs apply and the subindex t in Ωt is used to show that the

domain can change over time. More general BCs can be used to solve the incompressible

N-S equations by dividing velocity and stress into their normal and tangent components

or using combined boundary conditions often called Robin-type conditions. However the

extension to those is straightforward.

The first equation imposes Newton’s fundamental dynamics law in a continuum ob-

served in an Eulerian referential, which means looking at the fields of interest at given

points in space. The first term in the equation represents the local variation of the velocity

in a point, while the second arises from the convective term that appears when comput-

ing the material derivative of the velocity. The other terms represent the different forces

acting over a point in the fluid, which are internal forces related to pressure or viscosity

and external volume forces which are grouped under term f. The second equation imposes

the incompressible nature of the given flow, which can result from both a pure physical

material property or from low Mach number flows. The latter explains the incompressible

nature of the standard flow of air around a wind turbine in typical wind conditions that

we would like to end up explaining and therefore justifies the hypothesis of working with

the incompressible N-S equations throughout this Master Thesis. These two equations

with the given BCs are the problem that we will like to solve, despite the fact of being

unable to guarantee the well-posedness of the boundary value problem4.

Let us assume, for the sake of simplicity, that Γn = 0 and Γd ≡ Γ. The extensions to

the most general case require slight modifications, but the general methodology is easier to

1It is important to note now that first equation could be treated numerically under the given form
or explicitly treating the divergence of the symmetric gradient of u, since the incompressibility condition
(2.2b) that allows us to write equation (2.2a) with only the ∆u term is not perfectly satisfied once the
problem is discretized.

2A commonly applied initial condition is the still fluid, which implies that several time steps need to
be computed before having a fully-developed flow.

3As it can be seen using the definition of the stress tensor for Newtonian fluids, those are imposed
traction conditions.

4It is as mentioned in Chapter 1 one of the most well-known unsolved mathematical problems. It has
in fact been proven for two dimensions but not still for a general 3D problem.

11

2 Theoretical background

understand doing these assumptions and adapts better to the goal of this project, which

is to define methods to weakly impose Dirichlet BCs.

We know that the first step to construct valid numerical methods in the framework of

the Finite Element Method (FEM) is to find the weak or variational formulation of the

problem in question by testing with a given function v. Let us first define the following

spaces [11]:

H1(Ω) = {v ∈ L2(Ω) | ∂v
∂xi
∈ L2(Ω),∀i = 1, ..., d} (2.3a)

H1
0 (Ω) = {v ∈ H1(Ω) | v = 0 in Γ = ∂Ω} (2.3b)

Q = L2
0(Ω) = {q ∈ L2(Ω) |

∫
Ω
q dΩ = 0} (2.3c)

where the derivatives ∂
∂xi

need to be understood as weak derivatives.

Let us now introduce V = H1(Ω)d, V0 = H1
0 (Ω)d the generalization of the spaces

given to vector fields in Rd. Let us also introduce L2(0, T ;V) the set of functions whose

V -norm in space is L2((0, T]) in time, L∞(0, T ;L2) the functions whose L2-norm in space

is L∞((0, T]) in time and D′(0, T ;Q) the set of functions whose Q-norm in space is a

distribution in time. The natural solution space for the variational problem to be well-

written is L2(0, T ;V) × D′(0, T ;Q), but due to the equation itself it can be shown that u

needs also to belong to L∞(0, T ;L2). Then the weak form of the incompressible Navier-

Stokes equations can be written as follows: find [u, p] ∈ (L2(0, T ;V) ∩ L∞(0, T ;L2)) ×
D′(0, T ;Q) such that

ρ(∂tu,v) + ρ〈u · ∇u,v〉+ µ(∇u,∇v)− (p,∇ · v) = ρ〈f ,v〉 ∀v ∈ V0 (2.4a)

(q,∇ · u) = 0 ∀ q ∈ Q (2.4b)

u = ud in Γ (2.4c)

where 〈·, ·〉 is understood as the integral of the component-wise product of the two given

functions and (·, ·) applies when both functions are in L2(Ω). Some integration by parts

have been carried out and the property of v = 0 on Γ coming from V0 = H1
0 (Ω)d has been

used.

The problem with this well-defined formulation is that no proof of uniqueness has

been found yet for a general 3D case. Some steps have already been done towards the

proof of existence, uniqueness and smoothness of a solution to the N-S equations, but still

some very important issues need to be resolved. The goal of this work is obviously not to

deal with a theoretical analysis of the N-S equations, but we wanted to give some of the

standard ideas that anyone facing their numerical resolution should know. Even though

the problem is not linear, giving the linear framework of existence and uniqueness of the

12

2.1 The incompressible Navier-Stokes equations

solution can be interesting as we will see. Let’s use here the typical notation to explain the

conditions that are needed in the generalized Lax-Milgram’s theorem or Banach-Nec̆as-

Babus̆ka (BNB) theorem5 [12]. With W and V Hilbert spaces with respect to norms ‖·‖W
and ‖·‖V , let us suppose we have an abstract variational problem as follows:

find u ∈W such that B(u, v) = L(v) ∀v ∈ V (2.5)

and the following conditions are satisfied

1. L(·) is a continuous linear form, which implies that v → L(v) is linear from V to R
and that ∃ C> 0 such that

|L(v)| ≤ C ‖v‖V , ∀v ∈ V (2.6)

2. B(·, ·) is a continuous bilinear form, which implies that v → B(u, v) is linear from

V to R ∀u ∈ W , that u → B(u, v) is linear from W to R ∀v ∈ V and that there ∃
M> 0 such that

|B(u, v)| ≤M‖u‖W ‖v‖V , ∀(u, v) ∈W × V (2.7)

3. There exists γ> 0 such that the following inf-sup condition (often called W-stability)

is satisfied:

inf
u∈W

sup
v∈V

B(u, v)

‖u‖W ‖v‖V
≥ γ (2.8)

4. The following condition -on the adjoint operator- is satisfied:

{B(u, v) = 0, ∀u ∈W} =⇒ {v = 0} (2.9)

Then there exists a unique solution to Problem (2.5).

It could be surprising that the general conditions of existence and uniqueness of a

solution to a linear stationary variational problem are introduced when we are dealing

with a well-known non-linear transient problem. The reason is that it happens to be

true that to proof existence -not possible for uniqueness- of the solution to the variational

problem (2.4), the specific form of the inf-sup condition (2.8) for the Stokes problem needs

also to be satisfied [13]. The interpretation of such a condition is not straightforward, but

it could eventually be seen as follows. Let us rewrite (2.4) as the abstract problem: find

[u, p] ∈ L2(0, T ;V) × D′(0, T ;Q) such that(
ρ
∂u

∂t
,v

)
+B([u, p], [v, q]) = L([v, q]), ∀[v, q] ∈ V0 ×Q (2.10)

5Several versions of those conditions exist depending on the field to which they apply. They can also
be called Ladyzhenskaya-Babus̆ka-Brezzi (LBB) conditions when written on finite element spaces or just
Babus̆ka-Brezzi conditions.

13

2 Theoretical background

where

B([u, p], [v, q]) = ρ〈u · ∇u,v〉+ µ(∇u,∇v)− (p,∇ · v) + (q,∇ · u) (2.11a)

L([v, q]) = ρ〈f ,v〉 (2.11b)

If a time discretization and a non-linearity iterative algorithm are introduced (as it

will be done on Section 2.2), the resulting infinite dimension space problem can be treated

in the framework described in (2.5) and will inherit many of the features of a Stokes and

a convection-diffusion-reaction problem. It makes sense then that the conditions given

need to be satisfied. This heuristic approach is far from being mathematically justified

but gives the reader an idea of why the inf-sup condition, that will appear later, needs to

be tackled for the N-S problem despite being a transient non-linear problem.

2.2 The Galerkin Finite Element Method for the Navier-

Stokes equations

With the weak formulation derived in (2.4) the numerical problem starts. The goal of this

section is to present how we discretize the different elements appearing in this problem:

the physical domain, the function spaces and the variational/weak formulation. Again for

the sake of simplicity, what we call triangular Lagrange finite elements of order one will be

used to show how the standard 2D Galerkin FEM is constructed and what is the system

that we finally have to solve. The extension to higher order elements and 3D problems

follows the same idea but will make the notation harder to understand. The reader with

previous knowledge on FEM will be able to skip this section if necessary.

The idea of Galerkin methods in general is very simple: we choose a functional space

Vh×Qh ⊂ V ×Q of finite dimension and solve for a solution [uh, ph] in the new functional

space tested against functions in Vh,0 × Qh ⊂ V0 × Q. This allows us to transform our

infinite dimension problem into a finite dimension -and thus computationally resolvable-

problem due to the possibility of defining functions in the space as a linear combination

of the elements in a basis of the finite dimension functional space chosen. The two most

well-known Galerkin methods are the Ritz method [14] and FEM, which we will be using

here.

In the framework of FEM the typical approach consists in decomposing the physical

domain in which the weak formulation is written and to impose a given shape to a function

u(x)6 inside this partition, that we will call Ph, where h stands for the size of the mesh

(the smaller h, the more refined the mesh). In 2D, a triangulation of Ωt is a subdivision of

6Herein u will represent any of the components of the solution: the three components of the velocity
field ux, uy, uz or the pressure p.

14

2.2 The Galerkin Finite Element Method for the Navier-Stokes equations

this domain into triangles. The standard choice is to choose triangles that cover all Ωt but

no more and that fulfill the following rule: triangles having some intersection, this should

be either on common vertex or a common full edge. In particular, two different triangles

do not overlap. This implies, more technically said, that Ph is a simplical complex [11].

The partition must also respect the division of the boundary into Dirichlet or Neumann

boundaries. A typical partition, or what we call mesh, for an arbitrary polygonal domain

is found in Figure 2.1. Partitioning the domain represents a first approximation to the

problem, since the boundary’s shape can be arbitrary and not be captured by the edges

of the triangles, as it can be seen in the inner circle of Figure 2.1.

Figure 2.1: Triangulation Ph of a physical domain Ω

Once the partitioning Ph is done, what we need to do is to find the right subspace

of functions Vh where we want to solve our discretized physical problem. For the sake of

constructing such a space, let us for example think about polynomial functions of degree

at most one in a 2D space:

h(x, y) = a0 + a1x+ a2y, a0, a1, a2 ∈ R (2.12)

which are uniquely determined by its values on three different non-aligned points or the

vertices of a non-degenerate triangle. The three values of the function in the vertices -that

we call nodes- will be called from now on the local degrees of freedom. Another important

property of (2.12) is that the value of h ∈ P1 on the edge that joins two vertices of the

triangle depends only on the values of h in these two nodes. Therefore, we can think of

taking two triangles K and K
′

sharing an edge and constructing the function that is linear

in each triangle and has the given values in the vertices. Since the value on the common

edge depends only in the values in the nodes, this function will be continuous. This can

be done triangle by triangle until we end up with a piecewise linear function that is overall

continuous. We have ended up constructing the following space:

Vh = {uh ∈ C (Ω) |uh|K ∈ P1,∀K ∈ Ph }

If the values on the set of vertices/nodes are fixed there exists a unique uh ∈ Vh with

those values in the vertices. Even though the construction of the space has been carried

out for triangular linear elements, the procedure done can be understood for higher order

15

2 Theoretical background

elements if the proper points are added in the elements.

Let pi denote the nodes of our domain, with i going from 1 to the number of nodes

Nnodes. Due to what has just been explained, if a node is fixed and we associate the value

one to this node and zero to all other nodes there exists a unique function φi ∈ Vh that

has these values, that is,

φi(pi) = δi,j = {
1, j = i

0, j 6= i
(2.13)

as can be seen in Figure 2.2. Let us define Nnodes as the total number of nodes and

nDirichlet as the nodes where Dirichlet boundary conditions for u are imposed. With the

help of the set of functions φ = {φi , i = 1, ..., Nnodes} ordered in such a way that we have

put at the end all Dirichlet-prescribed nodes, we have constructed a basis of our finite

element space that has the advantage of letting us write the solution in the following way

uh =

Nfree∑
i=1

uh(pi)φi +

Nnodes∑
j=Nfree

ud(pj)φj (2.14)

where Nfree = Nnodes − nDirichlet. This means that the coefficients of the solution on the

basis φ are nodal values of the function. A possible generalization of this basis to our

finite dimension solution space Vh ×Qh for the incompressible N-S equations in 2D could

be as follows:

φ = {(φi, 0, 0), (0, φi, 0), (0, 0, φi) , i = 1, ..., Nnodes} (2.15)

Figure 2.2: Basis function φi for linear triangular elements

A Galerkin FEM method for the 2D incompressible N-S equations consists in replacing

in (2.4) u and p by

uh = (

Nfree∑
i=1

uxi φi +

Nnodes∑
j=Nfree

uxd(pj)φj ,

Nfree∑
i=1

uyi φi +

Nnodes∑
j=Nfree

uyd(pj)φj) (2.16)

ph =

Nnodes∑
i=1

piφi (2.17)

where we have supposed as in (2.4) that Dirichlet BCs are imposed on all components of

the velocity ud. If it were not the case we would need to take different nDirichlet depending

16

2.2 The Galerkin Finite Element Method for the Navier-Stokes equations

on the direction.

Since the test functions [vh, qh] are taken in Vh,0 × Qh we can use the functions in the

already mentioned basis, except those centered in nodes in the Dirichlet boundaries where

we already now the value of the function, to test the weak form (2.4) of our problem once

uh and ph have been inserted. We are finally left with a set of (Ndimension + 1) ·Nnodes −
Ndimension · nDirichlet time-dependant non-linear equations. For the system of equations

to be written algebraically as a function of the unknown nodal values of fields uh and ph

a discretization in time needs to be used. Here many choices are possible, but for the

sake of simplicity in this quick review on how to numerically solve the incompressible N-S

equations, we will use a one step first order Euler backward difference time discretization

which consists in saying that

∂un+1
h

∂t
=

un+1
h − unh

∆t
+O(∆t) (2.18)

and taking all other terms in the equation at step n + 1. This scheme is unconditionally

stable but is in reality rarely used since it is only first order. Nevertheless, it allows for a

simple and clear writing of the system. Other schemes taking the u-terms in the convective

part on different time steps could lead to avoiding non-linearity but those are very seldom

used and we decided to deal with non-linearity in an explicit way.

Once this simple time discretization performed, the system to solve has the following

form

1

∆t
DUn+1 − 1

∆t
DUn + SUn+1 + N(Un+1)− LTP

n+1
= Fn+1 (2.19a)

LUn+1 = 0 (2.19b)

where Un+1 denotes the vector of unknowns composed of uxi and uyi for all unknown nodes

at time (n + 1)∆t and Pn+1 denotes the vector of unknowns pi at the same time step.

The first terms represent terms coming from the time derivation, SUn+1 the discretization

of viscous terms, N(Un+1) the discretization of the non-linear convective terms, LUn+1

stands for the discretization of the divergence of u and −LTP
n+1

discretizes the gradient

of p. On the other side, the right hand side comprises contributions from the source term,

from the Dirichlet prescribed nodes and eventually terms from Neumann prescribed BCs

if the assumption on Γn had not been done in Section 2.1. We want to find ourselves with

a linear system of equations, therefore the non-linear term N(Un+1) needs to be treated.

Several ways of dealing with non-linearity independently of time integration exist, among

which the most well known are Newton, quasi-Newton and Picard type iterative methods.

The general solving of the non-linear system of equations consists mainly in using an

iterative procedure which linearizes the system according to one of the mentioned methods.

We will here restrict ourselves to show how Picard’s method works for Equation (2.19a).

The non-linear term u · ∇u at iteration k + 1 can render the system linear if one of the

17

2 Theoretical background

two u-dependant terms in or both are taken from the previous iteration. The following

possibilities are available,

(u · ∇u)k+1 ' uk+1 · ∇uk (2.20a)

' uk · ∇uk+1 (2.20b)

' uk · ∇uk (2.20c)

Several numerical experiments [15] have shown that the only constructor showing good

convergence is (2.20b). Picard’s method has the advantage that the initial estimate does

not need to be in a neighborhood of the final solution in comparison with Newton method,

which is in fact a linearization technique that uses a linear combination of the terms (2.20).

Therefore a simple Stokes-like problem with convection can be solved in order to produce

an initial guess for the iterative procedure even though this can lead to convergence prob-

lems for high Reynolds number flows where convection predominates. The final system of

linear equations to solve reads as follows: find Uk+1
n+1 and Pk+1

n+1 such that,

1

∆t
DUk+1

n+1 −
1

∆t
DUn + SUk+1

n+1 + N(Uk
n+1)Uk+1

n+1 − LTP
k+1
n+1 = Fn+1 (2.21a)

LUk+1
n+1 = 0 (2.21b)

It is important to note that in Equation (2.21b) the number of rows and columns

that define the matrix is imposed by the order of the element that is chosen to inter-

polate velocity and pressure respectively. The reader will have noted that the writing in

(2.15) implies that we have implicitly decided to choose same interpolation for velocity and

pressure, however this choice is arbitrary. To have a non-singular matrix out of (2.21b)

we see that not all elements are capable of giving a well-posed system since we need to

ensure that the number of pressure unknowns never exceeds the number of velocity un-

knowns. This is automatically satisfied for the interpolation orders chosen. Nevertheless,

our same order interpolation scheme leads to some complications that will be studied later.

Since the methods that have been programmed and that will be later discussed in

Chapter 3 happen to add terms to the above matrices, we will introduce here the notation

that we will be using in this report. The system to be solved is:

 Kuv Kpv

Kuq 0

 ·
 Uk+1

n+1

Pk+1
n+1

 =

 F̂n+1

0

 (2.22)

where the 4th block matrix is 0 since we have no terms for ph coming from testing with

18

2.2 The Galerkin Finite Element Method for the Navier-Stokes equations

qh. Obviously we have:

Kuv =
1

∆t
D + S + N(Uk

n+1) (2.23a)

Kpv = LT (2.23b)

Kuq = L (2.23c)

F̂n+1 = Fn+1 +
1

∆t
DUn (2.23d)

for the simple time integration and non-linearity schemes that have been used. Extension

to more complicated schemes only requires some simple algebraic manipulation. In (2.23)

no subscript for iteration is used for F because the integrals defining the matrices do not

depend on the iteration. If the following arrangement of the degrees of freedom (DOFs)

is chosen:
Kuxvx Kuyvx Kpvx

Kuxvy Kuyvy Kpvy

Kuxq Kuyq 0

 ·

Uk+1
x,n+1

Uk+1
y,n+1

Pk+1
n+1

 =

F̂vx,n+1

F̂vy,n+1

0

 (2.24)

then the definition of the matrices for the introduced numerical scheme correspond to the

ones in Table 2.1.

Block UV

[Kuxvx]ij = ρ
∆t

∫
Ω φiφj + ρ

∫
Ω u

x
k,n+1

∂φj
∂x φi − µ

∫
Ω∇φj ·∇φi

[Kuyvy]ij = ρ
∆t

∫
Ω φiφj + ρ

∫
Ω u

y
k,n+1

∂φj
∂y φi − µ

∫
Ω∇φj ·∇φi

[Kuyvx]ij = ρ
∫

Ω u
y
k,n+1

∂φj
∂x φi

[Kuxvy]ij = ρ
∫

Ω u
x
k,n+1

∂φj
∂y φi

Block PV

[Kpvx]ij =
∫

Ω φj
∂φi
∂x

[Kpvy]ij =
∫

Ω φj
∂φi
∂y

Block UQ

[Kuxq]ij =
∫

Ω φi
∂φj
∂x

[Kuyq]ij =
∫

Ω φi
∂φj
∂y

RHS FV

[F̂vx,n+1]j =
∫

Ω(fx + uxn)φj −
∑Nnodes

m=Nfree

ρ
∆t

∫
Ω u

x
d(pm)φmφj +

19

2 Theoretical background

ρ
∫

Ω(uk,n+1·ud(pm))∂φm∂x φj − µ
∫

Ω u
x
d(pm)∇φm·∇φj

[F̂vy ,n+1]j =
∫

Ω(fy + uyn)φj −
∑Nnodes

m=Nfree

ρ
∆t

∫
Ω u

y
d(pm)φmφj

+ ρ
∫

Ω(uk,n+1·ud(pm))∂φm∂y φj − µ
∫

Ω u
y
d(pm)∇φm·∇φj

Table 2.1: Definition of the matrices and vectors required to construct the linear system
of equations to be solved at time step tn+1 in iteration k + 1.

One of the various strengths of FEM is its capacity to construct the matrices in Table

2.1 in a very straightforward way. Due to the choice of functions (2.15), the integrals

defining the coefficients of the above matrices vanish in most of the cases since no function

overlap between φi and φj exists unless the nodes are connected. This allows the matrix

to be computed by what is called an assembly process which uses shape functions Ni(x)

at an element level, those being the restrictions to element K of the test functions φi

which have K in their support. Afterwards the matrix of connectivity is used to place the

elements in the elemental matrix Kelem in the appropriate place in K. We will not get

herein in the details of such construction since it is a very standard process and we refer

the reader to reference [16] or any other basic FEM introductory course if the notion is

unknown. Furthermore, the computation of the integrals that define Kelem also raise a

problem. We need either and effective way of evaluating the shape functions Ni(x) or a

closed form for the resulting integrals. Both possibilities are done usually by moving to

the so-called reference element and assuming an isoparametric transformation [17], which

means a change of variables using the same interpolation order as the order of the FE

method itself. Once the integral is written in the reference variables they need to be cal-

culated numerically and we have in this work used the standard Gauss quadratures.

With the system of equations to solve written in (2.22) and a way to calculate all terms

in Table 2.1 we could think now that the problem is ready to be solved using any linear

system solver, except that one of the steps at the beginning of our system construction

was not appropriate. The standard Galerkin approximation as defined above does not

ensure stability of our system. Instability sources are the following:

• The convective term in singularly perturbed problems, which leads to oscillating

solutions when the Reynolds cell number is too large and requiring extremely fine

meshes to be overcomed.

• The requirement of compatibility conditions between the velocity and the pressure

approximation spaces due to the BNB inf-sup conditions discussed in Section 2.1

cannot be guaranteed with the Galerkin formulation using same interpolation order

for pressure and velocity.

We already stated back in Section 2.2 that the inf-sup condition would appear later

and already mentioned that the N-S transient incompressible equations are in some way

20

2.2 The Galerkin Finite Element Method for the Navier-Stokes equations

a generalization of the Stokes equations and the convection-diffusion-reaction equations.

Therefore, in terms of the conditions that the first need to satisfy for solutions to exist,

the latter will naturally give a lot of information. The condition (2.8) applied to the

continuous Stokes problem can be written as the two following conditions:

‖∇v‖2L2≥ η‖v‖2V , ∀v ∈ V (2.25a)

inf
q∈Q

sup
v∈V

(q,∇ · v)

‖q‖Q ‖v‖V
≥ γ∗> 0 (2.25b)

where the first condition is the coercivity of the bilineal form a(u,v) = (∇u,∇v)Ω and

the second a new inf-sup condition that arises from the most general one. The spaces V

and Q are the same ones as for the N-S problem.

Now we see that the choice of FE spaces for the pressure p and velocity u is in fact

of extreme importance since the inf-sup condition in (2.25) needs to be satisfied on the

discrete space:

inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)

‖qh‖Qh
‖vh‖Vh

≥ γ∗ (2.26)

the problem being that the condition above is not inherited from the infinite dimensional

counterpart in (2.25) except for some special circumstances, while the coercivity is di-

rectly inherited. One, therefore, has to prove the non-trivial discrete inf-sup condition

(2.26). When conforming spaces are chosen such that Vh ⊂ V and Qh ⊂ Q the problem

that arises is that the supreme and the infimum can live in different spaces and there-

fore the conditions do not hold. For the Galerkin FEM used on the incompressible N-S

equations this is the case except for some very special interpolation spaces, whose pairs

Vh −Qh will be called compatible and will satisfy the condition by construction. For the

simple case of equivalent interpolation space we have chosen to work with, this condition

does not hold and therefore something needs to be done to guarantee condition (2.26) [18].

Two possible approaches exist to solve the mentioned problem. The most straight-

forward is obviously to choose one of the aforesaid compatible pairs. Nevertheless, the

choice for same interpolation has not been arbitrary; it allows for much simplicity in im-

plementation and reduces computational cost. Therefore another approach will be chosen

here, which consists on writing the variational problem (2.11) in a way that the form

B([u, p], [v, q]) can guarantee stability of all the terms. This will allow us as well to have

control of the convective term, since for the standard form of the problem no specific con-

dition is known to guarantee the stability with respect to the advection velocity a = ukh,n.

Even more, we do not know any error estimate for the convection-diffusion-reaction equa-

tion not exploding for |a|� ν [12], which shows the necessity of writing the variational

problem for the N-S equations in a different way.

In the next section we will present the Variational Multiscale Method (VMS) used to

21

2 Theoretical background

stabilize the standard Galerkin approximation of the incompressible N-S weak formula-

tion, which will ensure both stabilizing the convective term and satisfying the resulting

inf-sup condition. Even though the underlying mathematical content will not be assessed

in depth and the reader could sometimes have the impression of lack of justification, it

is important to get an insight into the formulation since it is the basis of the formula-

tion programmed in FEMUSS that we will be using later on. The interested reader can

refer to the chapter accorded to this issue in [3] for a more general and detailed explanation.

2.3 The Variational Multiscale Method (VMS)

This section presents the Variational Multiscale (VMS) framework via its application to

the problem of interest. Introduced in the 90s [19], this framework has been applied to

design stabilized FEM in problems in which stability of the standard Galerkin method is

not ensured, as are the incompressible N-S equations with equal interpolation. Most of

what will be said in this section is taken from the chapter accorded to the issue in [3],

written precisely by the tutors of this thesis.

The key idea of the VMS approach is to split the space where the solution lives into a

finite element space and a subscale space. For our space V ×Q this writes as:

V ×Q = (Vh ⊕ V
′
)× (Qh ⊕Q

′
) (2.27)

where spaces with subindex h are the FE space and spaces with superindex ′ are any

complement to them in V ×Q. A particular VMS method is precisely defined by the way

the subscale space V
′

and Q
′

are approximated from the FE spaces Vh and Qh. For the

moment we let V
′

and Q
′

be the complementary spaces, but later on the notation will be

used for an approximation of the same.

The obvious consequence of splitting the functional space will be the associated split-

ting of the unknowns and tests functions. For the sake of simplicity and for practical

reasons7 we take Q
′ ' 0 and we will only perform a splitting on velocity. If we take

u = uh + u
′

and v = vh + v
′

in (2.11), the problem can be written as follows:

ρ(∂tuh,vh) + ρ(∂tu
′
,vh) + ρ〈u · ∇uh,vh〉+ ρ〈u · ∇u

′
,vh〉+ µ(∇uh,∇vh) + µ(∇u

′
,∇vh)

−(ph,∇ · vh) + (qh,∇ · uh) + (qh,∇ · u
′
) = ρ〈f ,vh〉, ∀ (vh, qh) ∈ V0,h × Qh

(2.28)

ρ(∂tuh,v
′
) + ρ(∂tu

′
,v

′
) + ρ〈u · ∇uh,v

′
〉+ ρ〈u · ∇u

′
,v

′
〉+ µ(∇uh,∇v

′
)

+µ(∇u
′
,∇v

′
)− (ph,∇ · v

′
) = ρ〈f ,v

′
〉, ∀v

′
∈ V

′
0

(2.29)

7Instability is mostly associated to the convective term, therefore a splitting only in velocity can both
ensure stability for singularly perturbed problems and for same interpolation order spaces for pressure and
velocity

22

2.3 The Variational Multiscale Method (VMS)

where the reader will note that in the convective term we have not developed explicitly

the splitting in the advection velocity. This is because we are going to do the assumption

that the advection velocity u = u∗ ' uh. This assumption will simplify the following

developments and makes sense if we recall that the equations will need to be linearized at

some point using (2.20b). The original VMS formulation [19] was in fact developed having

linear problems in mind and its extension to the N-S equations was implicitly based on

a linearization, fixing the advection velocity and applying the multiscale splitting to the

rest of the terms. We will now use Equation (2.29) to construct an approximation of u
′

as a function of uh, which will require the definition of V
′

as a function of Vh and by

prolongation a definition of V
′

0 as a function of V0,h. We will first decompose the domain

Ω with a FE partition Ph and rewrite the inner-products in the equations above as sums

over elements K ∈ Ph of inner products in K, i.e. (·, ·)Ω =
∑

K(·, ·)K . Equation (2.29)

now reads the following way:

ρ(∂tu
′
,v

′
) +

∑
K

[
ρ(∂tuh,v

′
)K + ρ〈u∗ · ∇uh,v

′
〉K + ρ〈u∗ · ∇u

′
,v

′
〉K +

A︷ ︸︸ ︷
µ(∇uh,∇v

′
)K

+

B︷ ︸︸ ︷
µ(∇u

′
,∇v

′
)K −

C︷ ︸︸ ︷
(ph,∇ · v

′
)K
]

= ρ〈f ,v
′
〉, ∀v

′
∈ V

′

0

(2.30)

where we are going to do K-wise integration by parts on terms A, B and C in order

to get an equation which is fully written again with v
′

on the second argument of the

inner-products. After i.b.p. the equation leads to

1︷ ︸︸ ︷
ρ(∂tu

′
,v

′
) +

2︷ ︸︸ ︷∑
K

(ρ∂tuh + ρu∗ · ∇uh − µ∆uh +∇ph,v
′
)K +

3︷ ︸︸ ︷∑
K

(ρu∗ · ∇u
′
− µ∆u

′
,v

′
)K

+

4︷ ︸︸ ︷∑
K

(µn · ∇uh − phn,v
′
)∂K +

5︷ ︸︸ ︷∑
K

(µn · ∇u
′
,v

′
)∂K =

6︷ ︸︸ ︷
ρ〈f ,v

′
〉, ∀v

′
∈ V

′

0

(2.31)

Now, some assumptions can be done in order to further simplify Equation (2.31).

Those are the following:

• We will deal with what we call quasi-static subscales, which mean neglecting term

1 [20].

• For every element K, we choose u
′

and v
′

to be zero in the element boundary ∂K

[21]. Therefore terms 4 and 5 can be neglected. This is usually stated as choosing

V
′

as a bubble functions space.

• As already stated, we choose u∗ to be equal to uh

With these assumptions we can group terms 2 and 6 to make the residual R([uh, ph])

of the momentum equation for [uh, ph] appear. The reader will note that now we have a

23

2 Theoretical background

set of Nelem independent problems that read:

ρu∗ · ∇u
′ − µ∆u

′
= R([uh, ph]) + v⊥

′
in K, ∀K (2.32)

for any v⊥
′ ∈ V

′
⊥. The next step to reach the desired expression u

′
= f(uh) would

be to invert the operator in the left side of Equation (2.32). This inversion cannot be

accomplished exactly, and an approximation of the inverse operator is needed. This is

exactly what we do in the VMS framework, choosing to write

u
′ |K ' τK · (R([uh, ph]) + v⊥

′
)|K (2.33)

where the inversion is done on each element K and τK , called the matrix of stabilization

parameters is an approximate of the inverse of the differential operator in (2.32). Several

ways exist to appropriately construct matrices τK , but going through the details of these

constructions is out of the scope of this work. The interested reader could refer to [3] for a

construction through approximate Green functions and to [22] if an approximate Fourier

analysis is more appealing.

The actual form of matrix τK that we used for the simulations is the following:

τK =

(
c1µ

h2
K

+
c2ρ‖u∗‖L∞(K)

hK

)−1

I (2.34)

where c1 and c2 are constants which only depend on the degree of the FE approxima-

tion, and that try to ensure that numerical dissipation is not excessive. The reader will

note that the two terms that appear in the definition of τK could be interpreted as the

characteristic diffusion time in the element K and the time it takes for a particle to go

across an element or advection characteristic time, both weighted by constants c1 and c2

respectively. As already mentioned ‖u∗‖L∞(K) is taken from the previous iteration when

constructing the linear system and we have precisely used the fact that it is known to do

the approximation of the inverse operator.

Finally, we need to give a certain form to v⊥
′

to achieve our goal. This means choosing

a space V
′
. For such a purpose we would like to impose the orthogonality condition to

(2.33) by testing it with a given w
′⊥, which yields:

v
′⊥ = −P

′
τ
⊥R([uh, ph]) (2.35)

where P
′
τ
⊥ is the projection onto V

′⊥ associated to the special weighted inner-product

(·, ·) =
∑

K〈τK ·, ·〉K . Using P
′
τ = I−P

′
τ
⊥, we finally get:

u
′ |K= τK ·P

′
τ (R([uh, ph)])|K (2.36)

24

2.3 The Variational Multiscale Method (VMS)

Two typical choices exist for the subscales space, which are:

• P
′
τ = I, which consists in taking v⊥

′
= 0 and is called the Algebraic Subgrid-Scale

formulation (ASGS)

• P
′
τ = I−Ph, Ph being the L2(Ω)-projection onto the FE space, the resulting VMS

formulation being called the Orthogonal Subscales Stabilization (OSS)

We would like to note here that since V
′

has been approximated we have no longer

V = Vh ⊕ V
′

but we are looking for a solution on V∗ = Vh ∪ V
′
approx which may not be

a conforming space of V . This is in fact obvious for example for the ASGS formulation

when using linear elements to build space Vh since the residual comprises the gradient of

uh which is obviously discontinuous across element boundaries. Therefore u
′ 6∈ H1(Ω)d

and consequently we could have V∗ 6⊂ V the space where we are looking for the approxi-

mated solution.

In what follows, we have precisely chosen the ASGS formulation to write the final

stabilized formulation because it is easier to read since no projection operators appear.

The additional ingredientt added by the OSS formulation is that the projection is done

using information from the last iteration. With some rewriting of Equation (2.28), notably

using (u∗·∇u
′
,vh) = (∇·(u∗⊗u

′
),vh)− (u

′
(∇ · u∗),vh) and integrating by parts the first

term while neglecting the second one due to incompressibility, we find:

ρ(∂tuh,vh) + ρ(∂tu
′
,vh) + ρ〈u∗ · ∇uh,vh〉+ µ(∇uh,∇vh)

−(ph,∇ · vh) + (qh,∇ · uh)−
∑
K

〈u′
, ρu∗·∇vh + µ∆vh +∇qh〉K

+
∑
K

〈u′
, µn · ∇vh + qhn〉∂K = ρ〈f ,vh〉, ∀ [vh, qh] ∈ V0,h × Qh

(2.37)

We recall now that we already did some hypothesis on u
′

and u∗. Using them and

replacing (2.36) into (2.37), we end up with a final equation only written in terms of uh,

vh, ph and qh,

ρ(∂tuh,vh) + ρ〈uh · ∇uh,vh〉+ µ(∇uh,∇vh)− (ph,∇ · vh) + (qh,∇ · uh)

−
∑
K

〈τK · R(uh, ph), ρuh·∇vh + µ∆vh +∇qh〉K = ρ〈f ,vh〉, ∀ [vh, qh] ∈ V0,h × Qh
(2.38)

With such an equation, we can do again all that we did on Section 2.2 regarding time

integration and non-linearities, the main difference being that now, due to the terms that

come from stabilization, block matrix 0 in the left-hand-side (LHS) and vector 0 in the

right-hand-side (RHS) in the system in Equation (2.22) are no longer 0, since we have

terms combining qh and ph.

25

2 Theoretical background

Therefore the system to solve is the following: K̃UV K̃UQ

K̃PV K̃PQ

 ·
 Uk+1

n+1

Pk+1
n+1

 =

 F̃
k+1
n+1

F̃q
k+1
n+1

 (2.39)

where the ˜ is used to show that the current matrices are not the same as the ones in (2.22)

since they contain a lot of new terms that ensure the stability of the numerical method.

The interested reader can refer to Table A.1 in Annex A, where the system is fully defined.

Even though we do not want to fill this project with code8, we will here show the

main structure of the algorithm that is used to solve the incompressible N-S equations

under the assumptions done. The meaning of the Hooks that appear on the code will

be understood later, but it corresponds to parts of the main routine where subroutines

can and would be added when the new approximate boundary condition methods will be

introduced. The only important idea now is that in hook Hook.PreDirichlet the rows and

columns associated to nodes with strong Dirichlet BCs are eliminated and the proper RHS

is added. We want precisely to find alternatives to this way of proceeding when it is not

available due to the nature of our mesh, as we will see on next chapter.

Algorithm 1 Stabilized formulations ASGS and OSS to solve the incompressible NSE

1: read Uh,0 (initial condition)
2: set Ph,0 = 0
3: for j = 0, ..., N − 1 do
4: set i = 0
5: set U0

h,j+1 = Uh,j , P0
h,j+1 = Ph,j

6: while not converged do
7: i← i+ 1
8: set Ui

∗,j+1 = Ui−1
h,j+1

9: for ielem=1,....,nelem do
10: elem ← elems(ielem)
11: load Ui−1

h,j+1|elem
12: load Pi−1

h,j+1|elem
13: load Uh,j |elem
14: load fh,j+1|elem
15: compute τelem

16: set K̃UV|elem = 0, K̃UQ|elem = 0, K̃PV|elem = 0, K̃PQ|elem = 0
17: F̃u|elem = 0, F̃q|elem = 0
18: compute Hook.PreGauss
19: if elem ∈ BCelems then
20: if Neumann BC then
21: for igaus=1,...,elem.boundary.gauss do
22: elem.bound.igaus ← igaus
23: compute F̃u,N|elem.bound.igaus

8It would in fact be useless to do it since the complicated and multiphysics structure of the code will
impede a clear reading

26

2.3 The Variational Multiscale Method (VMS)

24: F̃u|elem = F̃u|elem + F̃u,N|elem.bound.igaus
25: end for
26: end if
27: end if
28: for igaus=1,...,elem.ngauss do
29: elem.igaus ← igaus
30: if OSS case then
31: compute Ph(R(Ui−1

h,j+1|elem,P
i−1
h,j+1|elem)

32: end if
33: compute K̃UV|elem.igaus, K̃UQ|elem.igaus, K̃PV|elem.igaus, K̃PQ|elem.igaus
34: compute F̃u|elem.igaus, F̃q|elem.igaus
35: set K̃UV|elem = K̃UV|elem + K̃UV|elem.igaus
36: set K̃UQ|elem = K̃UQ|elem + K̃UQ|elem.igaus
37: set K̃PV|elem = K̃PV|elem + K̃PV|elem.igaus
38: set K̃PQ|elem = K̃PQ|elem + K̃PQ|elem.igaus
39: set F̃u|elem = F̃u|elem + F̃u|elem.igaus
40: set F̃q|elem = F̃q|elem + F̃q|elem.igaus
41: compute Hook.InGauss
42: end for
43: compute Hook.PreDirichlet
44: assembly K̃UV,UQ,PV,PQ|elem to K

45: assembly F̃u,q|elem to F
46: end for
47: solve K · [Ui

h,j+1P
i
h,j+1] = F

48: check convergence
49: end while
50: set Uh,j+1 = Ui

h,j+1,
51: end for

Until this point a lot of theoretical background on the way we are going to solve the

incompressible N-S equations using FE has been given. Even if this is not absolutely

necessary to assess the real core of this project, we believe it is important for the reader to

understand what was implemented in FEMUSS (Finite Element Method Using Subgrid

Scales) before the beginning of this Master Thesis. The overall idea of the work itself will

be to add new terms to the matrices that compose (2.39) that will help to weakly impose

Dirichlet BCs when the domain of interest evolves in time and a fixed-mesh is used for

computing the solution to the problem. The algorithm was given to explain where the

newly created code was introduced, always choosing the structure that minimizes both

structural change of the code and repetition of code lines.

27

Chapter 3

Approximate imposition of

Dirichlet boundary conditions

In the numerical simulation of physical phenomena many times one is faced with the need

of simulating problems where the physical domain evolves in time. Such is the case for the

numerical simulation of structural problems involving large deformations, multifluid flow

problems, fluid-structure interaction or problems involving a free surface, amongst others.

The question that arises is how to tackle with the movement of the domain(s). Even

though some meshless techniques exist [23], we will focus here on assessing the problems

for mesh-based methods, in our case Finite Element Method (FEM).

The computational meshes that we use to numerically solve large and computationally

expensive problems obviously need to deal with the displacement of the physical domain.

The most straightforward approach is to set a mesh that adapts to the shape of the do-

main by using Lagrangian formulations [24] which can deal with large displacements and

geometric non-linearities, or Arbitrary Lagrangian-Eulerian (ALE) formulations [3], which

will be discussed on Chapter 4. When we deal with anchored solids in both pure solid

dynamics or fluid-structure interaction these two approaches can perform well because

element distortion or folding can be avoided [25], but in some low viscosity fluid problems

displacements and deformations are too large to have a mesh that adapts to it.

The solution seems a priori pretty evident: remeshing. This is obviously one possi-

bility; when the mesh is excessively deformed we can compute a new mesh which covers

the deformed configuration and project the previous results from the original deformed

mesh to a well-suited mesh. The main problem is that meshing is by itself a time and

memory consuming labor and it is rarely an integral part of the FE code. Very often

external software is used for meshing and this can be a complicated task, mostly when

running in parallel environment, which is the most likely case when running vast numerical

experiments. In addition, for large deformations this could be necessary at nearly every

time step, thus becoming computationally unachievable.

28

We already said that the goal of this project is to deal with a very different approach:

embedded or fixed mesh methods. In fact, the equations we wrote in Chapter 2 already

assumed a purely Eulerian point of view, thus fixed meshes in space. In fixed mesh methods

the boundary of the physical domain does not need to match with the boundary of the

mesh1. In this case boundary conditions (BCs) need to be applied in a boundary which

is immersed, and the discrete version of the variational problem does only have physical

meaning over the part of the mesh which is occupied by the physical domain. The reader

will note that another difficulty when dealing with fixed meshes is that time and space

integration may need nodal information that we may not necessarily have. To have a

better understanding of the problem we are dealing with, let’s imagine the solid domain

in Figure 3.1 to be, first of all, still and fixed inside a flow domain. Let’s imagine that

far from what we see we have some imposed BCs that give rise to a flow. We are aware

that if the solid is fixed the use of approximate BCs might not required, but, since it is

as well a possibility to apply approximately Dirichlet BCs in fixed interfaces and it allows

for clarity we will first consider this case.

Figure 3.1: Fixed solid domain inside a
fluid domain Ω

Figure 3.2: Rotating solid domain inside a
fluid domain Ω

Imagine that we want to solve at a given time t = tn the system that we end up having

at Section 2.3. The problem stated as it is now, Dirichlet BCs cannot be directly applied

by building function uh in the way we did in (2.16) because the physical boundary where

we impose the velocity condition does not coincide with nodes. This is precisely the reason

why this Chapter 3 is called Approximate imposition of Dirichlet boundary conditions; we

are going to change the system we are solving to weakly impose the BCs. To account for

the presence of the boundary -where the condition needs to be imposed in a weak way- we

see that the domain where we want to solve the incompressible N-S equations is composed

of all the points in the mesh outside of the domain occupied by the solid and the nodes

that are in the first layer inside the same, that we have marked in Figure 3.1 with a ⊗.

We will call this layer from now on layer L−1. The way in which the different methods

1We obviously need to have the domain inside the domain covered by the mesh

29

3 Approximate imposition of Dirichlet boundary conditions

impose the condition will be seen in the following sections, but they all need to include

such nodes. Now, imagine that the solid is a rigid solid turning at a given speed ω and that

at t = tn+1 the solid is occupying the physical space defined in blue in Figure 3.2. What

we see is that, when we want to solve for [uh, ph] at time tn+1 we will need information

from at least the previous time step tn from nodes that were not a part of the computed

domain on the previous time step. Those are marked in Figure 3.2 as ⊗. Therefore we

also need some strategy that deals with how to have some information about these nodes

in order to calculate time derivatives.

Existing families of fixed mesh methods are precisely often classified depending on those

two strategies [26]. Firstly, on the way each method deals with the imposition of BCs, and

secondly, on the way they deal with time and sometimes space integration over the fixed

mesh. Even though we will comment on the additional ingredients added by the latter

at the beginning of Chapter 4, we are focusing here on the former. Let us before getting

into the specifics describe the notation used for the problem to be solved. Consider the

situation depicted in Figure 3.3. A domain Ω ⊂ Rd, d=1,2,3, and with boundary Γ = ∂Ω

-red curve in the figure- is covered by a mesh that occupies a domain Ωh = Ωin ∪ ΩΓ.

Ωin ⊂ Ω is composed by the elements interior to Ω and ΩΓ by the set of elements of the

mesh cut by Γ. Let us also split ΩΓ = ΩΓ,in ∪ ΩΓ,out, where part ΩΓ,in = Ω ∩ ΩΓ and

ΩΓ,out = ΩΓ ΩΓ,in.

Figure 3.3: Setting of the mesh near the boundary for the class of problems of interest.
Taken from [1].

One assumption that we will do in the following is to force the intersection of Γ with

the element domains to be piecewise polynomial of the same order of interpolation as the

FE interpolation. This will simplify much the calculations since the operations will be

performed on a straight line in the reference element if isoparametric elements are used

[5], allowing for an easy integration rule. Suppose that we want to solve a boundary value

30

problem for an unknown u in Ω with the mesh of Ωh given and boundary conditions

u = ud. The reader’s first reaction would certainly be the following:

• Obtain the nodes of Γ, that we will call from now on xΓ,i and that are the white

circles in Figure 3.3, from the intersection with the element edges

• Split the elements in ΩΓ in order to obtain a grid matching the boundary Γ. This

would be possible due to the piecewise polynomial assumption we just did.

• Prescribe the boundary condition on the discrete system uh = ud in the classical

way explained in Section 2.2

We already see that the strategy above leads to a local remeshing. We already dis-

cussed the problems related to remeshing from a computational point of view. In addition,

the method does not apply for Cartesian meshes and would imply a permanent change in

the sparsity of the connectivity matrix. It is actually a rare practice to impose BCs this

way. In reality, several approaches exist such as the use of penalty terms as in the original

immersed boundary method [27], using Lagrange multipliers [28, 6], which may require

the use of additional unknowns and the proper choice of a new inf-sup stable space, or the

well-known Nitsche’s method [29].

Before starting the description of the methods, we wanted to note that since the

equations are solved only in Ω the elements cut by Γ will not be triangular elements and

we need to set the numerical integration points in an adapted way. This subintegration

is shown in Figure 3.4 for the case of 2D linear elements that we discussed before. The

numerical integration points (red points) required in each triangle resulting from this

splitting were set before the numerical integration points loop (Hook.PreGauss in 1) in

order to keep the structure of the code. The degrees of freedom (DOFs) of the problem

remain the same since the splitting is only for integration purposes.

Figure 3.4: Integration splitting of the cut elements. Taken from [2].

Nevertheless, arbitrary cutting of the interface on the background mesh and the sub-

sequent subintegration may cause instabilities. The nature of this instabilities is due to

an ill-conditioning of the matrix K in (2.39) defining the resulting linear system. This

ill-conditioning appears when the boundary Γ cuts the elements close to the interior fluid

nodes and far away from the external solid/other fluid nodes. This causes the contribution

31

3 Approximate imposition of Dirichlet boundary conditions

of the element integral in the external nodes to be small compared to contributions in other

nodes, and instabilities appear in those due to a bad matrix conditioning. Such nodes are

depicted in Figure 3.5. The solution to this ill-conditioning was introduced by Burman

with what he called a ghost penalty stabilization technique [30] for general finite element

problems. The idea is to add terms in order for the condition number of the matrix to be

upper bounded independently of how the domain boundary intersects the computational

mesh. We now extend to the present setting the ideas presented on the cited article by

adding the following to (2.38):

Sghost([vh, qh]; [uh, ph]) =
∑
KΩcut

γ1K〈∇vh,P
⊥
h (∇uh)〉K

+
∑
KΩcut

γ2K〈∇qh,P⊥h (∇ph − ρf)〉K
(3.1)

where Ωcut is a patch that extends over the elements cut by Γ and the first neighbour layer

in the fluid as can be depicted in Figure 3.6 and the sums only extend for K ∈ Ωcut. The

constants γ1K and γ2K were defined as:

γ1K = c3 h
2 τ−1

K (3.2a)

γ2K = c4 τK (3.2b)

where constants c3 and c4 are algorithmic constants that we set to c3 = c4 = 1.

Figure 3.5: Interface cut leading to insta-
bilities in the red nodes

Figure 3.6: Domain Ωcut defined to stabi-
lize the system of equations

For the orthogonal projections involved in these non-consistent stabilization terms 2,

we rely on L2(Ωcut)-projections which are evaluated after each non-linear iteration in

order to optimize the sparsity pattern of the linear system matrix. These terms were by

2The terms are in fact weakly consistent, which means that the error induced converges to zero optimally
with the mesh size h.

32

definition not active in our simulations and we only decided to use them in case some

local instabilities as the ones that can be seen in Figures 3.7 - 3.8 appeared. The resulting

terms added to the system felt under Hook.PreGauss in pseudo-code (1) in order to perform

integration using the basic integration points due to integration over all the element area in

elements K in Ωcut, in opposition to the other terms that should be integrated only over the

physical domain Ω with the subsequent subintegration mentioned above. The calculation

of the projections was done at the end of each iteration in a routine not explicitly included

in the pseudo-code and using a lumped-mass matrix for simplicity purposes. We will later

in this work see that the use of the stabilizing terms used to solve such issues led as well

to some problems on the interface that would require further work.

Figure 3.7: Example of instabilities due to
interface cut with the background mesh

Figure 3.8: Detail of instability from Fig-
ure 3.7

Once this subintegration and the ghost stabilization mentioned the common ingredients

to all the methods presented have been given and we need now to go to the specific methods

that allow us to weakly impose Dirichlet BCs at a given time step. Every single method

will be presented separately, even though penalty-based methods have been grouped. The

numerical and/or physical reasoning behind them will be first explained and then the

notion of convergence will be assessed. We decided in this work to do convergence tests

towards an exact solution [uex, pex] using only space norms and we will not deal with

norms in time. More precisely, we will use the following norm-induced errors in the rest

of the chapter:

eu, L2(Ω) =
‖uex − uh‖L2(Ω)

‖uex‖L2(Ω)
=

(∫
Ω(uex − uh)2

) 1
2(∫

Ω u2
ex

) 1
2

(3.3a)

ep, L2(Ω) =
‖pex − ph‖L2(Ω)

‖pex‖L2(Ω)
=

(∫
Ω(pex − ph)2

) 1
2(∫

Ω p
2
ex

) 1
2

(3.3b)

eu, L2(Γ) =
‖uex − uh‖L2(Γ)

‖uex‖L2(Γ)
=

(∫
Γ(uex − uh)2

) 1
2(∫

Γ u2
ex

) 1
2

(3.3c)

33

3 Approximate imposition of Dirichlet boundary conditions

where u = u|Γ. Therefore, in order to assess the convergence properties an exact solution

[uex, pex] is required. Two possible options exist. The first simple option is to solve a

given problem of interest with a very fine mesh and to set the solution for this mesh,

that we will note by h∗, to be an analytical solution to our problem and then compare

the solution with solutions obtained from other coarse meshes. This is obviously not the

best option since the problem could be converging to a wrong or non stable solution for a

stationary problem. The most adapted is to set a simple problem on a simple geometry

and to insert on the momentum equation a divergence-free solution verifying some given

BCs, which will give us the body forces required for the particular solution to be a feasible

solution. Then a simulation with such forces has to be performed. Even though we said

the interest of weakly imposing Dirichlet BCs is mainly to deal with moving subdomains,

since we want to assess the space convergence of the methods we will use the stationary

N-S equations to test the methods.

It is not obvious how to practically define such a problem since if we, for example,

aimed at creating a divergence-free solution on a square with a fixed rotating sphere in

the middle, it would be extremely hard to find a solution such that it satisfies that the

velocity is what it needs to be at the contact with the sphere. If, otherwise, the domain of a

given immersed solid changed over time a time independent solution would be impossible.

What we finally did was to take a divergence-free field in a square and impose the velocity

given by the field in a immersed boundary directly, without using the velocity boundary

condition obtained from a solid motion as we will do later. Still, a solid case was used in

order to solve and project a level-set function tracking the interface and used to identify

cut elements on the background fixed mesh. More detail on the level-set problem will be

given on Chapter 4. The problem that we actually used to test the methods is depicted

in Figure 3.9, where the divergence-free velocity field u and the pressure p are given by:

u(x, y) = 2x2y(x− 1)2(y − 1)(2y − 1) (3.4a)

v(x, y) = −2y2x(x− 1)(y − 1)2(2x− 1) (3.4b)

p(x, y) = µ sin (2πx) cos (2πy) (3.4c)

u(x, y) and v(x, y) being the x- and y-velocity components respectively, where premultiply-

ing the pressure by µ turned out to be necessary if we wanted the existing error estimates

to be low. It is straightforward to verify that this field satisfies ∇ · u = 0. The compu-

tational domain is the unit square, discretized using simple unstructured meshes of linear

triangular elements, the range of element sizes being 0.003 ≤ h ≤ 0.05. The problem will

be analyzed for various values of the dynamic viscosity µ in order to guarantee robustness

of the different methods as we are aware that high Reynolds number flows can lead to some

numerical complications regarding the convergence of the non-linearity iterative algorithm.

34

Figure 3.9: Geometry and boundary conditions of the problem used for convergence anal-
ysis.

The Dirichlet BCs that we imposed are also depicted in Figure 3.9, and are obviously

inherited from the solution itself:

u = 0, on Γ1,2,3,4 (3.5a)

u(x, y) = 2x2y(x− 1)2(y − 1)(2y − 1), on (x, y) ∈ Γ5 (3.5b)

v(x, y) = −2y2x(x− 1)(y − 1)2(2x− 1), on (x, y) ∈ Γ5 (3.5c)

where BCs in (3.5a) will be strongly imposed and (3.5b-3.5c) will be weakly imposed.

(a) ‖uh‖ (b) ph

Figure 3.10: Plots of the analytical solution for the problem used for convergence analysis
(using strong Dirichlet BC imposition)

We show in Figures 3.10a-3.10b the solution expected, the precise values in pressure

depending on the choice of µ. In this case the solution was obtained using strong Dirichlet

BCs on all boundaries for a fine mesh of size h=0.003. The optimal convergence rate

of the errors expected when the mesh size is reduced using linear triangular elements is

two in velocity for the L2(Ω)-norm and at least one in L2(Ω)-norm for the pressure field

35

3 Approximate imposition of Dirichlet boundary conditions

for the incompressible N-S equations [12]. From now on, all the convergence plots given

will correspond to the described problem in this section. Since it could also be useful to

compare the convergence curves of the methods we will be describing with the convergence

curves if Dirichlet BCs were imposed in a classical way in the inner circle, we have plotted

these in Figure 3.11, where curves exhibit slopes higher than two for both velocity and

pressure.

Figure 3.11: Log-log convergence curves (strong Dirichlet BC imposition).

3.1 Penalty-based methods

Penalty-based methods’ main idea is, as its name says, to penalize distance of the real so-

lution to the imposed value in the boundary. Even though the nature of this penalization

has been interpreted differently, all the methods have a similar form. Throughout this

section some of the methods that could lie inside this family will be presented.

Their origin can be found in the immersed boundary method [27], that is due to C.

Peskin in 1972. The key point of the original immersed boundary method is the introduc-

tion of a force in the momentum equation. In principle this force is introduced only in the

fluid-solid interface by means of a Dirac-delta function, but in practice this function has

to be extended to the nodes surrounding the interface due to the discrete nature of finite

element meshes, and the Dirac-delta function is smoothed. The simpler option and the

most commonly used [31] is to consider this force as proportional to the deviation of the

boundary value of the velocity to the boundary condition, in a spring-like model. This

36

3.1 Penalty-based methods

is actually done in a very large class of constrained optimization problems as well. For

this case, k being the constant of proportionality, the punctual force added to the N-S

equations is

f =

P∑
i

k (u− ud) δ(|x− xΓ,i|) (3.6)

which in weak form adds the term 〈vh ,
∑P

i k(uh − ud) δ(|x − xΓ,i|) 〉Ω to the left-hand

side (LHS) of the equation. We have herein smoothed the Dirac-delta function due to

discrete nature of the FEM. Here k has to be chosen large enough to correctly impose

the BC. The problem is that large values of k can render the linear system highly ill-

conditioned or diminish the accuracy in the surrounding solution. We will see that this

user-defined parameter is a feature of penalty methods. We will study the sensibility of

the solution to it, since the variability of the performance of the method with respect to

this parameter is said to be one of their main drawbacks. The first group of methods

that were implemented in FEMUSS look very similar to the one just described, but the

reasoning behind is far more numerical than physical. Two possible formulations arising

from different interpretations are going to be associated to the penalty method and we

will just call them penalty method and penalty method with boundary tractions.

3.1.1 Penalty method

Let us imagine that the problem to solve is now the following: find [u, p] ∈ L2(0, T ;V) ×
D′(0, T ;Q) satisfying

ρ
∂u

∂t
+ ρu · ∇u− µ∆u +∇p = ρf in Ωt, t > 0 (3.7a)

∇ · u = 0 in Ωt, t > 0 (3.7b)

n · [2µ∇Su− pI] =
1

ε
(ud − u) on Γd, t > 0 (3.7c)

where Γd is the boundary where Dirichlet boundary conditions were imposed on the orig-

inal problem and where we have now imposed a Robin-type boundary condition. It has

been shown [32] that by applying this same transformation to a Poisson problem with

Dirichlet BCs, the solution of the Robin-type BC converges to the solution of the stan-

dard Poisson problem with Dirichlet BC when ε → 0. Although no formal proof has

been found to show that the solution to Problem (3.7) converges to the solution to Prob-

lem (2.2) with ε for the incompressible N-S equations, we will numerically show that the

method produces good solutions. The idea of the penalty method is to solve this penalized

problem by FEM instead of the original problem. It is therefore obvious that ε needs

to converge to 0 at least with the same rate as h converges to 0; i.e ε = O(h). In the

most general case and with a stronger background in numerical analysis it is possible to

show for the Poisson problem that if ε = C hλ, an optimal convergence rate of the method

can be achieved. We will, as a departure point, choose λ = 1, and analyse what hap-

37

3 Approximate imposition of Dirichlet boundary conditions

pens with the convergence rate, hoping that optimal convergence could be ensured for

the method. For an interesting approach to this subject, which is far more general than

how it is presented here, and to the relation between differential problems and their varia-

tional form the reader could refer to Courant’s analysis of vibrational problems [33]. The

main idea that the penalty method takes from the issues discussed in [33] is that Dirichlet

BCs should be seen as a limit case of the natural boundary conditions of the given problem.

The advantage of solving Problem 3.7 is that when the weak form is computed we find

ourselves with a new term on u coming from using the Robin boundary condition (3.7c)

after integration by parts, which will approximate the Dirichlet BC when the mesh size h

is small enough. Now, the simplest penalty method consists in adding∫
Γ

α

h
(uh − ud) · vh (3.8)

to the LHS of the discrete weak form3, where we have set ε = h
α for the reason already

mentioned. In order to ensure consistency (invariance to unit changes) without requiring

further characteristic lengths the parameter α has been chosen for every element K as

follows:

α = s1µ+ s2h‖u∗‖L∞(K) (3.9)

which obviously leads to a consistent system and where parameters s1 and s2 (or making

it short, the penalty parameter α) depend in the geometry of the mesh, mostly in the

geometry of the cut elements. It is precisely these mesh-dependent parameters that control

the stability of the method [34]. The problem is that the value of the parameters that

guarantee stability are not known a priori, and they have therefore been introduced as a

degree of freedom set by the user in order to both decide the degree of enforcement of the

boundary condition in diffusion-dominated problems and convective-dominated problems

and to ensure stability. The natural choice of s1 and s2 will be to take them as high as

possible to be in the sure side of stability; nevertheless, a trade-off could exist between

accuracy in the boundary and ill-conditioning of the system if they are chosen too high.

We have here decided to add the term (3.8) once the stabilization discussed in Section

2.3 has been carried out. This means that in the weak form resulting from (3.7) we have

considered u = uh without splitting on the boundary term that results from integrating

by parts the divergence of the stress tensor σ and that yields (3.8). The reader will see

that from now on in the methods presented we assume that the terms to add are added

after the stabilization and directly on the equation only depending on uh.

3.1.2 Penalty method with boundary tractions

Now we will explain what we have called penalty method with boundary tractions, which

is what people usually describe as the penaly method. It yields a very similar formulation

3The term itself can be split on a part on the LHS and a part on the RHS

38

3.1 Penalty-based methods

than the previous one and consists in directly imposing the boundary condition in a weak

way on the original problem. What we mean by this is that the boundary condition

u = ud in Γ can be directly tested by v, or more specifically by the trace of v on Γ. After

multiplying the BC by av (a ∈ R) and integrating, we get in the discrete form:∫
Γ
a (uh − ud) · vh (3.10)

It turns out to be necessary, here for stability reasons, to have a = α
h [35]. The

geometry-dependent stability similarly arises in this case, so we decided to set α with

the same form (3.9). However, the problem that arises from adding term (3.10) to the

original discrete problem with a boundary Γ not fitting the mesh boundary is that there

is no reason why the test function associated to the boundary nodes must vanish. As

a consequence the contribution from the boundary integral coming from integration by

parts of the constitutive tensor σ must be accounted for, otherwise a poor approximation

of the unknowns close to the interface is obtained even if the boundary condition is well

approximated 4. By defining the operator [1]:

[n·σ](u, p) = −2µn · ∇Su + pn (3.11)

we need to add as well to the LHS term 〈[n·σ](uh, ph),vh〉Γ. These boundary tractions

give its name to the method.

3.1.3 Nitsche’s method

Even though the method we just introduced usually performs well, it has one main draw-

back. Mainly, it is neither symmetric nor skew-symmetric even for the Stokes case.

Nitsche’s method is precisely an extension of the penalty method with boundary tractions

that renders the system antisymmetric or symmetric for symmetric problems, allowing

for an important computational cost reduction. The choice depends on how the sign for

the incompressibility equation is chosen in the formulation. In our case, to render the

system antisymmetric what we do is that we weight the boundary condition uh = ud by

the skew-symmetric counterpart of the operator (3.11). This adds the following new terms

to the LHS of the discrete moment equation:

−
∫

Γ
(2µn · ∇Svh + qhn) ·uh (3.12)

and the following to the RHS

−
∫

Γ
(2µn · ∇Svh + qhn) ·ud (3.13)

These terms produce contributions that can be added to the matrices in system (2.39).

4We would like the poor approximation to be irrelevant, because those tractions are precisely the only
practical difference between this method and the simple penalty method

39

3 Approximate imposition of Dirichlet boundary conditions

Since all terms imply integration over Γ they were performed previous to the main numer-

ical integration points loop, where only volume integrals are performed in FEMUSS. The

routines required where therefore placed under hook Hook.PreGauss in the pseudo-code

(1). The integration points for the surface integration were set to be the intersection points

for simplicity purposes.

3.1.4 Convergence analysis

We will here present how the three methods introduced in this section perform on the

problem presented at the beginning of this chapter and depicted in Figure 3.9. For the

three methods, we will present convergence curves, separately on velocity, pressure and on

the boundary error. Let us first present how the errors on velocity and pressure behave as

a function of the penalty parameters s1,2 introduced in the previous subsections and the

mesh size h. The color plots shown in Figure 3.12 correspond to a viscosity µ = 1 and use

s1 as varying parameter since the flow is diffusion-dominated.

(a) eu, L2(Ω), Penalty (b) ep, L2(Ω), Penalty

(c) eu, L2(Ω), Penalty with tractions (d) ep, L2(Ω), Penalty with tractions

40

3.1 Penalty-based methods

(e) eu, L2(Ω), Nitsche (f) ep, L2(Ω), Nitsche

Figure 3.12: Plots of the numerical errors (penalty-based methods).

The main conclusions that can be drawn from Figure 3.12 are that choosing s1=1 may

lead to results which show low-order convergence for the simplest penalty method and

higher error values in pressure for the penalty method with tractions. As soon as the

penalty parameter is high enough (in our case for s1=100 it is the case) the results do

nearly not depend on the penalty parameter and are accurate (Figure 3.13). Nevertheless,

we are dealing with a pretty smooth analytical solution (see Figure 3.11 for the conver-

gence orders of the same case with strong imposition of Dirichlet BC) which can help us

make the numerical performance more s-independant. We also see that Nitsche’s method

is even more robust since for s1=1 the results on pressure have the same absolute error

than for higher values of the penalty parameter.

(a) eu, L2(Ω) (b) ep, L2(Ω)

Figure 3.13: Log-log convergence curves with linear fits (penalty-based methods).

41

3 Approximate imposition of Dirichlet boundary conditions

We also show the log-log convergence plots of the penalty-based methods. The curve

using a value s1=100 for the simplest penalty method is used due to the very bad perfor-

mance of the same with s1=1. For the other two methods the same curves are depicted

in Figure 3.13 but using s1=1 as parameter. We can see that the methods are performing

as expected and even better than expected. We get a slope considerably higher than 1 for

the pressure error, approaching 2. We were first extremely surprised to get slopes even

higher than two for the velocity error but those can be assigned, as said, to the smooth-

ness of the solution itself. The slopes achieved are of the same order as the ones depicted

in Figure 3.11 for strong Dirichlet BC on the inner circle, which confirms the validity of

those to effectively solve the N-S incompressible equations in non-matcing grids. This

similarity is even stronger for Nitsche’s method for which even the absolute value of the

errors is the same. Additionally, the penalty method without boundary tractions, where

an unreal module and direction of the tractions in the boundary are imposed due to (3.7c),

performed only slightly worse than the other two penalty-based methods. Nevertheless,

the linear fits are not perfect for this method, and the scatter of the points shows some

convexity, which would imply lower convergence orders.

Even though the slopes of the convergence curves for all the methods are similar,

the convergence of the error on the boundary eu, L2(Γ) could present some considerable

differences since it is precisely on how those impose the condition that they differ. So let

us now show the same convergence plots shown above for the boundary error for the three

methods and with various penalty parameter (s1 or s2 as a function of the nature of the

case) and viscosity µ values.

(a) eu, L2(Γ), Penalty (b) eu, L2(Γ), Penalty with tractions

42

3.1 Penalty-based methods

(c) eu, L2(Γ), Nitsche

Figure 3.14: Log-log convergence curves of the boundary error (penalty-based methods).

We see that the slopes of the curves for the simple penalty method differ considerably

from the slopes achieved by the penalty method with tractions and Nitsche’s method.

Nevertheless, a convergence order of approximately 1 on the former is still satisfying due

to the boundary nature of the integrals. Another interesting aspect is the dependence of

both the absolute errors and the slopes of the curves as a function of the penalty param-

eter. We were surprised to see that higher values of s1,2 yielded lower convergence orders,

with the exception of the simple penalty method.

The main difference between the methods is the distinct nature of the approximation

done with the penalty method. This method is not a consistent method since [u, p], solu-

tion of the original problem with Dirichlet BCs, does not satisfy the weak formulation used

to derive the discrete system of equations, so we are not surprised that the convergence

order on the boundary differs from the other two penalty-based methods. In addition, the

method showed a strong under-performance of the convergence order with low viscosities,

which is another sign of such feature. The difference between the methods was predictable

since with the simplest penalty method the convergence of the discrete solution to the

approximated analytical solution and the convergence of the approximated analytical so-

lution to the real analytical solution need to be coupled. Further studying the different

approach used with the penalty method should be undertaken to fully understand the

method, which, at least to our knowledge, has not been used for the resolution of the

N-S equations with approximate Dirichlet BCs. Nevertheless, the practical interest of the

method is relative, since adding the corresponding tractions to the formulation is, from a

computational point of view, not complicated or time-consuming.

43

3 Approximate imposition of Dirichlet boundary conditions

3.2 A linked Lagrange multiplier symmetric method

The method to be exposed in this section is a method theoretically developed and imple-

mented in another code at CIMNE in 2011, and everything concerning the formulation

can be consulted in Reference [34], which will here be used as a source.

The main goal of the development of this method is to find a solution to the drawbacks

of the methods presented in the last section. Having a user-defined parameter whose value

determines the stability of the method is, as we said, the main drawback, since the choice

of this stabilization parameter is not straightforward: if the parameter is not large enough,

the problem becomes unstable; if it is too large, the resulting system of equations becomes

ill-conditioned. This drawback could be addressed by doing a stability analysis of the

formulation using the inverse estimates in order to define the minimum value for the

stabilization parameter. However the inverse estimates still have some non-dimensional

constants that need to be defined and those are hard to find for non-symmetric problems.

Therefore, the method we would like to construct for weakly imposing Dirichlet bound-

ary conditions has the following desired properties:

• No additional degrees of freedom should be introduced in the final system of equa-

tions5. Traditional Lagrange multiplier techniques make the system of equations

become larger, and the space for the Lagrange multipliers has to be carefully chosen

so that the final formulation remains stable.

• No user-defined penalty parameters upon which the stability of the method relies

should be part of the formulation. This will help us avoid as well ill-conditioning of

the matrix defining the resulting system of equations.

• A symmetric system should be constructed for symmetric problems, but being able

to deal with non-symmetric problems

• Rate of convergence should approach the optimal

The last of this requirements will not be tackled theoretically, but will be tested nu-

merically as it has been done in the previous section for penalty-based methods. Let us

therefore see how the other requirements are achieved.

The main idea of what we have called the linked Lagrange multiplier method is to

introduce a third field representing an additional element-wise discontinuous flux field.

However, this is only required in the elements which are cut by the immersed bound-

ary, and because it is discontinuous across interelement boundaries, it can be condensed

prior to solving the resulting system of equations. Let us consider the next three-field

5This is mainly a requirement imposed by the existing code itself. Everything added should be able to
minimize the number of changes to make in the general structure of the code

44

3.2 A linked Lagrange multiplier symmetric method

incompressible Navier-Stokes problem, consisting of finding u : Ω → Rd, p : Ω → R and

σ : Ω→ Rd×d such that:

∂u

∂t
+ u · ∇u− ν∆u +∇p = f in Ω, t > 0 (3.14a)

∇ · u = 0 in Ω, t > 0 (3.14b)

1

ν
σ = ∇u, in ΩΓ,in, t > 0 (3.14c)

u = ud on Γd, t > 0 (3.14d)

u = u0 in Ω, t = 0 (3.14e)

Now, to construct a weak formulation for the problem, let’s multiply the first equation

by v, (3.14b) by q, (3.14c) by ∇v
n and by

τ
n , and (3.14d) by τ · n and by a

2v, where

a ∈ R will be defined later. To obtain a symmetric method, let us also test the normal

component of the boundary condition (3.14d) by qh. We will consider the finite element

spaces Vh ⊂ H1(Ωh)d, Qh ⊂ L2(Ωh) and Sh ⊂ L2(Ωh)d×d, where functions in Sh will be

considered piecewise discontinuous in the elements cut by Γ and zero elsewhere.

We get, after grouping and introducing the ASGS stabilization terms described in

Section 2.3, the following discrete problem:

(δtuh,vh) + 〈uh · ∇uh,vh〉+ ν(∇uh,∇vh)− (ph,∇ · vh)− 〈σh·n,vh〉Γ

+ 〈n · vh, ph〉Γ +
1

n
(∇vh,σh)ΩΓ,in

− ν

n
(∇vh,∇uh)ΩΓ,in

+ 〈a
2
vh,uh〉Γ+∑

K

τK(ν∆vh + uh·∇vh, δtuh − ν∆uh + uh·∇uh +∇ph)K = 〈f ,vh〉

+
∑
K

τK(ν∆vh + uh·∇vh, f)K + 〈a
2
vh,ud〉Γ, ∀vh ∈ Vh

(3.15)

− (qh,∇ · uh)−
∑
K

τK(∇qh, δtuh − ν∆uh + uh·∇uh +∇ph)K + 〈n · uh, qh〉Γ

= −
∑
K

τK(∇qh, f)K ,vh〉+ 〈n · ud, qh〉Γ, ∀ qh ∈ Qh
(3.16)

− 1

nν
(τ ,σ)ΩΓ,in

+
1

n
(τ ,∇uh)ΩΓ,in

− 〈τ h·n,uh〉Γ = 〈τ h·n,ud〉Γ, ∀ τ
h
∈ Sh (3.17)

where we already introduced δtuh the time discretization of our equation and where the

VMS-stabilization splitting was only done for variable u in the momentum and incompress-

ibility equations. For the moment the desired property of having no additional variables

is not achieved and the method resembles a traditional Lagrange multiplier technique, so

let us take a look at the obtained system to see how to condense it in order to have a

system only written as a function of the initial variables Uk+1
n+1 and Pk+1

n+1.

45

3 Approximate imposition of Dirichlet boundary conditions

The system reads as follows:
Kuv Kpv Kσv

Kuq Kpq 0

Kuτ 0 Kστ

 ·

Uk+1
n+1

Pk+1
n+1

σk+1
n+1

 =

Fv

k+1
n+1

Fq
k+1
n+1

Fτ
k+1
n+1

 (3.18)

where the two 0 blocks result from the absence of crossed terms in pressure-pseudostress.

Now, in this system submatrices Kuτ , Kσv and Kστ are mostly sparse since the only

non-zero rows and columns will be the corresponding to nodes in elements in ΩΓ. This

could be of interest for solving the system easily. In fact, the reason to choose Sh as a

space of piecewise discontinuous functions in the elements cut by Γ and zero elsewhere

is that it allows us to very easily deal with elements independently and condense in an

elementary level for all elements K cut by Γ. This is practically very convenient since it

allows for the elemental operations in FEMUSS described in Section 2.3 to remain mainly

unchanged and solve a system with the initial degrees of freedom.

Since the integrals defining the third block of equations in (3.18) span only over each

element due to the discontinuous nature of the tensor field, we can write the following on

the element level:

σk+1
n+1 = Kστ

−1 ·
(
Fτ

k+1
n+1 −Kuτ ·Uk+1

n+1

)
(3.19)

The matrix in system 3.18 can be rewritten as: Kuv −KσvK−1
στKuτ Kpv

Kuq Kpq

 ·
 Uk+1

n+1

Pk+1
n+1

 =

 Fv
k+1
n+1 −KσvK−1

στFτ
k+1
n+1

Fq
k+1
n+1

 (3.20)

where only the arrays of interest Uk+1
n+1 and Pk+1

n+1 are kept as unknowns and everything

can be assembled element-wise. The actual implementation of this method was done by

adding the computation of the boundary terms in hook Hook.PreGauss and the volume

terms in hook Hook.InGaussElmats in pseudo-code 1. The new terms were stored in in-

dependent arrays and later condensed as in (3.20) in hook Hook.PreDirichlet.

We still have not given any information on the shape of the test functions in Sh except

from the fact that they are element-wise discontinuous, which allowed us to perform the

condensation in (3.20) element-wise. It can be shown [34] that as soon as the interpolation

order for the tensor field σ is at least one order lower than the order for the pressure and

46

3.2 A linked Lagrange multiplier symmetric method

velocity fields, the formulation is stable if the following conditions are met:

n > 1 (3.21a)

a ≥ max(0,n · ukh,n+1) (3.21b)

independently of the the geometry of the cut mesh. Having an a priori estimate -since

ukh,n+1 is known from the previous iteration k- of the minimum value of the parameters

involved in the formulation is clearly the main attribute of the linked Lagrange multiplier

method in comparison to the penalty-based methods previously presented. However, en-

suring stability does not necessarily ensure a proper imposition of the BC, and we will

therefore also include two constants s1 and s2 that will be used to decide the strength of

the BC imposition 6. Therefore we will have n = 2 · s1 and a = s2 · ‖ukh,n+1‖LΩ(K), where

the normal component has been replaced by the norm since stability is ensured due to

positivity of the norm and it has been taken for each element K.

In the particular case of the code implemented, only constant piecewise discontinuous

interpolation was considered. Therefore the linked Lagrange multiplier symmetric method

being presented could only ensure stability when using linear elements in any dimension

on FEMUSS. The reason for such an implementation was simplicity, since due to the dou-

ble contraction nature of the terms in Kστ and to this constant interpolation it makes

the matrix diagonal. Computing the inverse required for condensation is therefore trivial.

Nevertheless the changes to produce on the code in order to extend the method to higher-

order interpolations is minimal.

(a) eu, L2(Ω), Linked Lagrange (b) ep, L2(Ω), Linked Lagrange

Figure 3.15: Plots of the numerical errors (Linked Lagrange multiplier method).

6In analogy with what has been done for the penalty-based methods, s1 will multiply constant n or the
diffusive term and s2 the convective term (or a).

47

3 Approximate imposition of Dirichlet boundary conditions

(a) eu, L2(Ω), Linked Lagrange (b) ep, L2(Ω), Linked Lagrange

(c) eu, L2(Γ), Linked Lagrange

Figure 3.16: Log-log convergence curves with linear fits (Linked Lagrange multiplier
method).

Having already presented the main idea of the method we are now able to show the

results of te numerical tests that show convergence of the method and the influence of

parameters n or a in the formulation, as well as its behaviour for various viscosities µ. For

the color plots shown in Figure 3.15 s1 is the varying parameter and a was hold constant

as given above, since, for µ = 1, what we want to compare is the effect of a user-set

parameter on the diffusive part of the equation. The same plots than those explained for

the penalty-based methods are presented on Figures 3.15 and 3.16, the log-log convergence

plots given for s1=100 or s2=100 depending on the values of the viscosity µ. The method

proves to be extremely robust and extremely invariant to a large range of viscosities since

the curves for viscosities higher than 10−3 completely overlapped. Due to its robustness

and to the stability guarantees, we decided to use this method in what follows as reference

method to weakly impose Dirichlet BCs and figures showing results of simulations with

embedded boundaries will be the result of using this method. Nevertheless, some results

on the penalty-based methods could be given since, after all, we see that the absolute

errors of those are nearly equivalent to the ones sown in this subsection.

48

3.3 Using external degrees of freedom

3.3 Using external degrees of freedom

For the moment the methods we have presented are based on adding weak terms to the

elemental formulation of our problem. Nevertheless other much more intuitive approaches

exist. Another possibility in order to avoid the ill-conditioning due to penalty terms and

the need of adding new degrees of freedom to the system of equations (which appears if

pure Lagrange multipliers are used) is to use currently existing degrees of freedom in order

to enforce BCs. What we mean by this is to directly replace momentum equations that

result from testing with functions centered in the nodes adjacent to the fluid-solid interface

-those in L−1- with the equations that enforce BCs by minimizing the boundary error.

Let’s first of all indicate that no change on the matrices of the system to solve will occur

on the equations due to testing with test functions on the component of the pressure in

(2.15). Since the Dirichlet BC is a condition on u we will here only refer to these degrees

of freedom (DOFs), but the assembly of these DOFs to the whole system is straightforward.

There are several methods which use pre-existing degrees of freedom to enforce BCs.

We will focus herein in the method described in detail in [36] to prescribe Dirichlet BC on

a generic immersed boundary. For the notation used we ask the reader to refer to previous

Figure 3.3. Let us suppose that the solution uh can be written in the following way:

uh =

nin∑
i

φiu
x
i +

nout∑
j

φjuj ,

nin∑
i

φiu
y
i +

nout∑
j

φju
y
j ,

nin∑
i

φiu
z
i +

nout∑
j

φju
z
j

 (3.22a)

= (φxin ·Ux
in + φxout ·Ux

out,φ
y
in ·U

y
in + φyout ·U

y
out,φ

z
in ·Uz

in + φzout ·Uz
out) (3.22b)

where φi are the standard interpolation functions, nin is the number of nodes in Ωin and

nout the number of nodes in layer L−1. We have here only split the solution in a sum of

the terms associated to inner nodes and the sum associated to the nodes in layer L−1.

Suppose as well that the system of equations obtained when testing the weak discrete

formulation by all the velocity FE test functions centered in the inner nodes nin yields:

Kin,inUin + Kin,outUout = Fin (3.23)

where vectors Uin and Uout are made of the x, y and z components defined in (3.22).

This system is undetermined and therefore needs to be completed with some equations

imposing the BCs, the objective being to compute Uout. As uh needs to be equal to ud

in Γ, let us minimize the following functional with respect to Uout

J(Uin,Uout) =

∫
Γ

(uh(x)− ud(x))2 dS (3.24a)

=

∫
Γ

∑
k=x,y,z

(
φkin(x) ·Uk

in + φkout(x) ·Uk
out − ukd(x)

)2
dS (3.24b)

49

3 Approximate imposition of Dirichlet boundary conditions

which yields

∂J(Uin,Uout)

∂Uk
out

= 0→ Nk
Γ Uk

in + Mk
Γ Uk

out = Fk
Γ, for k=x,y or z (3.25)

where

Nk
Γ =

∫
Γ
φkout

tφkin dS, Mk
Γ =

∫
Γ
φkout

tφkout dS, Fk
Γ =

∫
Γ
φkout

t ukh,d dS (3.26)

By regrouping in the right order the terms in matrices Nk
Γ,M

k
Γ, and vectors Fk

Γ, Uk
in and

Uk
out we end with a system of the form: Kin,in Kin,out

NΓ MΓ

 ·
 Uin

Uout

 =

 Fin

FΓ

 (3.27)

obviously taken at a given time step n+ 1 and at a given iteration k + 1.

The construction of the above matrix can be computed at the elementary level and

without changing the main structure of the code. After having computed the elemental

matrix contributions in the main numerical integration points loop one can delete the rows

associated to the testing of the equation with velocity shape functions in the nodes of the

cut elements that lie inside the solid (L−1) and add the proper terms defined by (3.26).

All the code required for this method was therefore included in hook Hook.PreDirichlet

in pseudo-code (1). The problem is that the ghost stabilization terms on such nodes are

deleted and therefore stability issues could arise. In addition, since the equations are no

more the same on those nodes, some other stabilization technique should be developed.

Nevertheless, this method can be very accurate to impose the BC if the cutting of the

boundary is not too close to the nodes inside the fluid in the cut elements, as it turned

out to be the case for the errors shown here.

(a) eu, L2(Ω), Using external degrees of freedom (b) ep, L2(Ω), Using external degrees of freedom

50

3.3 Using external degrees of freedom

(c) eu, L2(Γ), Using external degrees of freedom

Figure 3.17: Plots of the numerical errors (external degrees of freedom).

(a) eu, L2(Ω), Using external degrees of freedom (b) ep, L2(Ω), Using external degrees of freedom

(c) eu, L2(Γ), Using external degrees of freedom

Figure 3.18: Log-log convergence curves with linear fits (external degrees of freedom).

On Figures 3.17 and 3.18 can be seen the color plots with the absolute errors as a

function of mesh size h and viscosity µ and the log-log convergence plots for some of those

51

3 Approximate imposition of Dirichlet boundary conditions

viscosities. We recall the reader that this method has no additional parameter.

The convergence orders obtained are satisfactory, even though slightly suboptimal in

velocity. This was due to the fact that the cutting of the boundary on the background

mesh for very fine meshes produced localized instabilities, that cannot be resolved with

this method as explained above. This can be seen in both Figures 3.18a and 3.18c, where

for the finer mesh the boundary error does not follow the trend of the aligned points and

therefore provoques as well an increase on the full velocity error since the effect of these

localized instabilities can span over quite a large layer of elements.

3.4 The flow past a circular cylinder

Once all the methods to approximate Dirichlet boundary conditions have been described

and their numerical convergence with respect to an analytical solution assessed, we decided

that a good exercise to see their performance in a more or less comparative way was

to perform a well-known benchmark, the flow past a circular cylinder, which yields the

well-studied Von Karman vortexes from a given Reynolds number. The geometry of the

problem and its boundary conditions are shown on Figure 3.19, where the weak Dirichlet

BC will be imposed in the inner cylinder. We first wanted to assess in a simple visual

way if the methods were powerful enough to induce the typical behaviour of the flow for

such geometric conditions and finally found out, as we will see, that it pointed out an

important drawback of our formulation.

Figure 3.19: Geometry and boundary conditions for the flow past a cylinder benchmark
problem

The parabolic inflow profile is defined as:

u((0, y) , t) = 4
Umaxy(0.41− y)

0.412
(3.28)

where by varying Umax the Reynolds number of the problem can be controlled. If the

Reynolds number is computed with the mean velocity in the profile U we find te following

52

3.4 The flow past a circular cylinder

values:

Re =
UD

ν
= 20 if Umax = 0.3m/s (3.29a)

= 100 if Umax = 1.5m/s (3.29b)

where D is the diameter of the cylinder cross-section and ν has been chosen as 0.001 to

compare all our results with the various existing results of the benchmark. The chosen

Reynolds numbers are known to produce a steady flow for case Re=20 and an unsteady

periodic flow for Re=100 with the characteristic Von Karman vortex shedding [37].

Let us first see on Figures 3.20 and 3.21 how the solution looks like when no approx-

imate boundary conditions are used on the immersed fixed cylinder and when the linked

Lagrange multiplier method is used.

(a) Strong Dirichlet BC, Re=20, steady solution

(b) Linked Lagrange multiplier method, Re=20, steady solution

(c) Strong Dirichlet BC, Re=100, unsteady solution at t=5s

(d) Linked Lagrange multiplier method, Re = 100, unsteady solution at t=5s

Figure 3.20: Solution ‖uh‖ for the flow past a cylinder for Re=20 and Re=100

53

3 Approximate imposition of Dirichlet boundary conditions

(a) Strong Dirichlet BC, Re=20, steady solution

(b) Linked Lagrange multiplier method, Re=20, steady solution

(c) Strong Dirichlet BC, Re=100, unsteady solution at t=5s

(d) Linked Lagrange multiplier method, Re=100, unsteady solution at t=5s

Figure 3.21: Solution ph for the flow past a cylinder for Re=20 and Re=100

The solutions exhibit mostly the same result, the small differences may be due to the

different approaches, but still we see that all the physics are captured, as for example

the vortex street that appears for Re=100. The phase difference in the time-dependent

solutions (and therefore the visible differences in the solutions themselves) should not be

surprising since the time for which the vortexes start to detach depends on a large amount

of numerical parameters. Other slight differences could be assigned to differences in the

mesh, since for the weak imposition case we had to create a finer mesh around the projected

level-set. For such vortexes to appear in both cases the mesh had to be fine enough and the

time step smaller than ∆t = 1/100 for a second order backward differences scheme (BDF2).

Let us now define some values that were computed to assess the validity of our methods

other than visually. Several values are used in the framework of this benchmark but we

want here to focus on the calculation of the drag and lift coefficients. For such a purpose,

let us introduce the drag and lift force as the forces exerted by the flow on the solid along

54

3.4 The flow past a circular cylinder

the positive x-axis and the positive y-axis and the corresponding coefficients:

FD =

∫
S

(µ
∂vt
∂n

ny − pnx)dS −→ cD =
2FD

ρU
2
D

(3.30a)

FL =

∫
S
−(µ

∂vt
∂n

nx + pny)dS −→ cL =
2FL

ρU
2
D

(3.30b)

For the case with Re=20 the drag and lift coefficients cD and cL will be constant and

their values will be given for the different methods, while their maximum values once the

periodic flow is stable will be used as benchmarks for the unsteady flow case with Re=100.

On Table 3.1 the results of the benchmark are given for the methods described previously

in this chapter (except for the penalty method) and for the values described in this section,

where the missing data was not computed due to the large computational times taken for

the transient-periodic solution to develop and due to evidence from the low Reynolds case

that the methods were already not performing as expected.

Re=20 Re=100
Method Parameters cD cL cmaxD cmaxL

Strong imposition - 5.5357 0.0109 3.2234 0.9572

Lagrange
s1 = 100 4.9731 0.0094 3.0219 0.9172
s1 = 1000 5.1361 0.0127 - -
s1 = 10000 3.7329 0.1098 - -

Penalty with tractions
s1 = 100 5.1732 0.0137 3.0935 0.8761
s1 = 1000 5.2342 0.0122 - -
s1 = 10000 2.8131 0.1321 - -

Nitsche
s1 = 100 5.1561 0.0138 2.9875 0.8692
s1 = 1000 5.2271 0.0121 - -
s1 = 10000 2.8291 0.1451 - -

External degrees - 3.128 -0.1251 6.1691 1.4592

Table 3.1: Results of the benchmark of the 2D flow past a cylinder

We see that results with all of the methods are not accurate enough (the mesh used

was very fine) and none of the possible calculated values fall into the expected ranges [37],

with obviously the exception of the strong imposition. We were first extremely shocked

by these results since we had assessed the convergence of the methods and the solutions

produced were visually nearly equivalent to the solutions obtained with strong imposition

for the Re=20 and Re=100 cases. Nevertheless, we realized that the ghost stabilization

terms described at the beginning of the chapter were not necessary during the case used

for the convergence analysis but they were here (it is precisely the fact of not having this

stabilization that yields poor results for the method using external DOFs, which is not

stabilized).

That made us analyze a bit further the nature of this stabilization but no clear con-

55

3 Approximate imposition of Dirichlet boundary conditions

clusion has been achieved for the moment. It is important to note that the stabilization

terms on velocity that the research community normally uses [38, 39] are the following:

Sghost(vh; uh) =
∑
f∈Fg

αf 〈J∂nuhK, J∂nvhK〉f (3.31)

where Fg is the set of faces cut by the interface and the ones from the first fluid inner layer

connected to those. These terms formally differ from the ones we used and presented.

However one can proof that the velocity term in (3.1) is equivalent to the one in (3.31)

if the orthogonal projection is also taken for the gradient of vh in (3.1). We have used

only ∇vh and not P⊥h (∇vh) due to orthogonality, however this property is only ensured in

the whole physical domain Ω and not strictly in Ωcut. This is one of the possible reasons

why the stabilization terms could be giving raise to problems. Nevertheless, coding the

orthogonal projection to the FE space of the gradient of the velocity test function implied

an important change in the structure of the code and it has not yet been decided what will

be done. A first easy alternative/try would be to compute the projections in the whole

domain and take their restriction to the layers of interest inside Ωcut. Another possibility

would be that the addition of the non-consistent ghost stabilization terms could provoke

a loss in the divergence-free property of the flow coming from the continuity equation.

A sign of such purpose can be seen on Figure 3.22, where we see that the pressure,

whose associated test function qh is the multiplier for the continuity equation, is having

an improper behaviour and the projection of the divergence of the velocity on the two

affected layers is high.

(a) ph (b) Ph(∇ · uh)

Figure 3.22: Problem in pressure field when using the ghost stabilization and possible
explanation by the loss of the incompressibility condition.

Solving the issues related to these terms is of utter importance and we will carry on

doing the tests that we have in mind. If those did not solve the issues, the terms in (3.31)

will need to be explicitly implemented, since other research groups are applying them and

obtaining satisfying results.

To end this chapter, where approximate BCs are used in fixed domains, we wanted to

56

3.4 The flow past a circular cylinder

say that a similar problem was used in order to check the validity of our methods when

simulating 3D problems. The approach followed until now has been quite progressive due

to the harder nature of 3D problems, both in terms of physics and numerical issues. Indeed,

the implementation of FEM routines for a 3D problem is always more subtle and we faced

many unexpected problem when 3D cases were first analyzed. Very few 3D simulations

were run, but we show in Figure 3.23 the results of a simulation of a sphere inside a cylinder

with a parabolic inflow profile (Umax=4.5 m/s) using both strong Dirichlet BCs and the

Linked Lagrange multiplier method. The Reynolds number was approximately Re ' 30

for which we find a stationary solution with some recirculation behind the sphere. The

reader will note that the results using approximate Dirichet BCs are accurate if compared

to a strong imposition. The blue sphere seen for the Linked Lagrange multiplier method

corresponds to zero-valued iso-surface of the level-set projection into the background mesh.

(a) ‖uh‖, Strong Dirichlet BC (b) ‖uh‖, Linked Lagrange multiplier

(c) ph, Strong Dirichlet BC (d) ph, Linked Lagrange multiplier

Figure 3.23: Solutions ‖uh‖ and ph of a 3D case of a flow at Re ' 30 in a cylinder with an
embedded sphere using strong Dirichlet BCs and the Linked Lagrange multiplier method.

57

Chapter 4

Numerical treatment of moving

domains

In the last chapter of this thesis we dealt with approximate imposition of Dirichlet bound-

ary conditions (BCs) on non-matching grids using a stationary domain. Nevertheless, the

reader will recall that the goal of this project is to use such techniques in problems where

the physical domain Ω evolves with time. We already mentioned in the introduction of

Chapter 3 that such movement requires the use of additional numerical techniques in order

to gather information of the previous time step(s) to compute time derivatives. We refer

the reader to Figure 3.2 to recall what is the problem when a pure fixed-mesh is used

regarding time integration.

Several solutions exist to deal with moving domains when using fixed meshes. The

most straightforward idea is to extend the solution to the nodes of the background mesh

inside the solid domain in what is usually called a fictitious domain method [40]. In

such framework, several possibilities concerning the extension exist; the problem being

that none of them provides a physical solution since time derivatives near the boundary

could be calculated using velocity values from the non-physical meaningless domain. We

will therefore use a method currently used at CIMNE called the Fixed-Mesh ALE method

(FM-ALE), which can be summarized as an Arbitrary Lagrangian Eulerian (ALE) method

that projects back into the original fixed mesh to avoid large distortions. In the following

sections we will introduce the FM-ALE method, which will require explaining what is

an ALE method and rewriting the Navier-Stokes (N-S) equations in the mesh system of

reference. We will then solve a 2D case of a rotating fan using all the notions introduced

until now in this work.

4.1 The Fixed-Mesh Arbitrary Lagrangian-Eulerian method

In order to cope with the issue of time integration over fixed meshes, the Fixed-Mesh

Arbitrary Lagrangian-Eulerian method (FM-ALE) [2] was developed with the objective

58

4.1 The Fixed-Mesh Arbitrary Lagrangian-Eulerian method

of accurately computing the temporal derivative at nodes close to the boundary by using

an ALE strategy followed by a projection step back to the original background mesh. In

order to understand the algorithmic steps involved in such numerical approach, we need

here to briefly introduce the reader to ALE formulations.

A fundamentally important consideration when developing a computer code for sim-

ulating mechanical problems is the choice of an appropriate kinematical description of

the continuum we need to deal with. This is of utter importance since the choice deter-

mines the relationship between the deforming continuum and the finite grid or mesh and

therefore conditions the ability of the numerical method to deal with large distortions and

to provide an accurate resolution of material interfaces and mobile boundaries. During

our academic program we have been introduced and led to use algorithms of continuum

mechanics that make use of the two classical descriptions of motion: the Lagrangian de-

scription and the Eulerian description. The first description produces algorithms where

the computational mesh follows the particles during motion, potentially provoques large

distortions, while the second uses fixed computational meshes where boundaries are diffi-

cult to track in a direct way 1. The Arbitrary LagrangianEulerian (ALE) description was

developed in an attempt to combine the advantages and minimize the drawbacks of the

above classical kinematical descriptions. The idea of the ALE description is that the nodes

of the computational mesh may be moved in an arbitrary manner with the continuum to

give a continuous rezoning. Figure 4.1b is illustrative of this definition. If such approach

is to be used, we see that a technique to choose the arbitrary mesh velocity will need to

be implemented.

The form of the different conservation-balance equations on an ALE kinematical de-

scription is obviously different from the form when written in purely Eulerian or La-

grangian description. The ALE description can in fact be understood as a generalization

of the classical Lagrangian and Eulerian descriptions of motion if a so-called referential

domain is introduced as well as the mapping between the referential domain and the clas-

sical, material, and spatial domains, depicted in Figure 4.1b. If the bijective mapping

Ψ−1 ≡ χ between the material and referential domain which for every point X ∈ Ω(0)

and time instant t returns a point x = χ(X, t) ∈ Ω(t) is introduced, we can define the

following quantity:

udom(x, t) =
∂χ(X, t)

∂t
(4.1)

where udom can be interpreted as the velocity of the mesh with respect to the material

domain. With the introduction of this notion the ALE form of the two conservation

1What has been introduced since this point was obviously using an Eulerian description

59

4 Numerical treatment of moving domains

(a) (b)

Figure 4.1: (a) Mappings between referential, spatial and material domains, (b) One-
dimensional example of Lagrangian, Eulerian and ALE mesh and particle motion. Both
taken from [3].

equations we are dealing with (mass and momentum) can be written as:

∂ρ

∂t

∣∣∣∣
χ

+ a · ∇ρ = −ρ∇ · u Conservation of mass (4.2a)

ρ
∂ u

∂t

∣∣∣∣
χ

+ ρ (a · ∇) u−∇·σ = ρ f Conversation of linear momentum (4.2b)

with a := u− udom. It is pretty straightforward to see that the Lagrangian and Eulerian

forms are contained in such formulation for a = 0 and a = u respectively.

Let us consider a region Ω0 ⊂ Rd (d = 2,3) where a flow will be taking place during the

time interval [0;T]. We consider the case in which the fluid at time t occupies a subdomain

Ω(t) ⊂ Ω0 and that the boundary of Ω(t) is defined by part of ∂Ω0 and by a moving

boundary that we call Γmov = ∂Ω(t)�∂Ω0
2. The incompressible N-S equations in an

ALE formulation read as:

ρ
∂u

∂t

∣∣∣∣
χ

+ ρa · ∇u− µ∆u +∇p = ρ f in Ω(t), t>0 (4.3a)

∇ · u = 0 in Ω(t), t>0 (4.3b)

with the appropriate BCs 3. We see that the only difference in practice with respect to

the Eulerian version used until now is that the advective velocity a is now different from

2This moving boundary Γmov could represent an interface in various situations: a solid with an imposed
movement, a solid in a fluid-structure interaction problem, a free surface, etc.

3On Γmov those will be Neumann conditions for a free surface and Dirichlet conditions for an immersed
body

60

4.1 The Fixed-Mesh Arbitrary Lagrangian-Eulerian method

u. When it comes to the variational or weak formulation of the problem the only differ-

ence will be as well the role of the advective velocity. Therefore everything that had been

exposed in Chapters 2 and 3 holds, including the use of approximate BCs if non-matching

grids are used and Dirichlet conditions have to be applied. The only added element is the

choice of udom and that the mesh should be deformed after every time step.

For the Arbitrary Lagrangian-Eulerian mesh movement udom various possibilities for

defining the mesh velocity exist. The essential requisite for the mesh movement is that

the area of the mesh which covers Ω at time tn is deformed in such a way that it covers Ω

at tn+1. This obviously translates into a boundary condition on the mesh velocity normal

to the boundaries:

n · udom = n · u in Γ(t), t>0 (4.4)

and for the movement in the rest of the domain, a smooth extension of the mesh dis-

placement in the boundaries needs to be obtained. Several methods exist for this which

minimize the element distortion, such as solving elastic problems with elementally vary-

ing stiffness coefficients or using Laplace problems [41]. We opted for the last choice and

therefore solved:

∆udom = 0, in Ω0 (4.5a)

n · udom = n · u in Γ(t) (4.5b)

where Ω0 represents a fixed domain for which Ω(t) satisfies that Ω(t) ⊂ Ω0, ∀t ∈ [0;T].

This problem is solved using a standard Galerkin finite element approximation, where

the Dirichlet slip boundary condition has to be weakly enforced in the part of Γ(t) which

is immersed in Ω0. We relied for this problem on a simple penalty method as the one

exposed on Section 3.1.2 adapted to a Laplace problem. We used u computed from the

deformation of the boundary Γmov to define u in the boundary.

The problem of a pure ALE approach in which we deform the mesh at every time step

and solve the discretized version of system (4.3) is that, as explained in the introduction

of Chapter 3, they are in practice unfit for use when we deal with simulations where the

computational domain undergoes very large deformations since the necessary remeshing

process to build a new mesh with good element geometrical properties requires to stop the

parallel simulation in order to call a mesh generator. The main idea behind the FM-ALE

method is that since the mesh does not match the boundary of the physical domain and

Ω(t) ⊂ Ω0, the original undistorted mesh covering domain Ω0 can always be used as the

new mesh when element distortion becomes too large and is in fact the only mesh in which

the solution is computed if approximate BCs are used. The reader will be therefore able

to understand why the method has been called Fixed-mesh Arbitrary Lagrangian-Eulerian

method.

61

4 Numerical treatment of moving domains

We are now ready to define the algorithmic steps of the FM-ALE method, which are

the following:

• Step 1: Boundary function update. The moving boundary Γmov is updated in

a way which is completely problem dependent. The updating may be due to the

movement induced from the solid in a fluid-structure interaction problem or from

the movement of a free surface using the velocity from the previous step. Therefore,

the blue line in the top-right configuration of Figure 4.2 is updated to the position

defined in the bottom-left configuration.

• Step 2: Compute mesh velocity. The update of the boundary function defines

the deformation of the domain from Ω(tn) to Ω(tn+1). As a consequence, the mesh

Mn (depicted on the top-right configuration of Figure 4.2) needs to be deformed to

adapt to the domain Ω(tn+1), task that is done by means of a mesh velocity. The

mesh velocity on the boundary points can be computed from their position xn+1

with a simple first-order finite difference scheme, while it is extended using Equation

(4.5a).

• Step 3: Write down the ALE incompressible Navier-Stokes equations on

the deformed mesh. The previous two steps define the domain Ω(tn+1) and a mesh

that will be here called Mn+1,virt (bottom-left) that is obtained from deforming mesh

Mn using a finite differences approach with udom,n+1 obtained in Step 2. We now

can write the incompressible N-S equation using the discretized stabilized version

of the system in (4.3) in the deformed mesh. We will call our solution on mesh

Mn+1,virt, [uvirth,n+1, p
virt
h,n+1]. The velocities uh,n from the previous step are known

since the nodes in Mn+1,virt are obtained from deforming mesh Mn. Therefore, a

pure ALE formulation obviously resolves the issue of time integration that is at the

core of this Chapter.

• At this point, two options -whose idea is mostly the same and whose difference should

converge to zero- exist:

– Step 4: Solve the ALE incompressible Navier-Stokes equations on

the deformed mesh and project the solution back to the background

mesh. Let Pn+1 be the projection of finite element functions defined on

Mn+1,virt to Mn+1, that, when approximate BCs are used and therefore no

new boundary nodes are created and the red lines in Figure 4.2 are only for in-

tegration purpses, corresponds with M0 (top-left in Figure 4.2). To define such

a projection, for each node on Mn+1 = M0 the element in Mn+1,virt where it is

placed has to be identified. The way the projection is constructed, or transfer

information between finite element meshes, could be a Master Thesis by itself

so we will not give details of the procedure here. We solve for [uvirth,n+1, p
virt
h,n+1]

the equations obtained from Step 3 and then project the results from Mn+1,virt

into Mn+1 using Pn+1.

62

4.1 The Fixed-Mesh Arbitrary Lagrangian-Eulerian method

– Step 4bis: Project the ALE incompressible Navier-Stokes equations

written on the deformed mesh on the background mesh and solve

them on the background mesh. If we want to always solve in a fixed mesh

this last step is necessary. The idea is to solve at time step n + 1 the ALE

incompressible N-S equations in the background mesh using the projection to

gather the necessary information for the time integration. Let us define:

uh,n+1 = Pn+1(uvirth,n+1) (4.6)

the problem becomes finding uh,n+1 and ph,n+1 on mesh M0 using as values of

the velocity from the previous step n and as domain velocity the following:

uh,n = Pn+1(uvirth,n) (4.7a)

udom,h,n+1 = Pn+1(uvirtdom,h,n+1) (4.7b)

Figure 4.2: Two dimensional FM-ALE schematic. Top-left: background original fixed
mesh M0. Top-right: Position of Γmov at time tn in blue and induced computational do-
main Mn, the red lines being the splitting of the cut elements for subintegration. Bottom-
left: updating of Mn to Mn+1,virt with old Γmov in dotted blue. Bottom-right: computa-
tional domain Mn+1 with interesction points in green.

We therefore end up with a system to solve on the background mesh Mn+1 = M0

(bottom-right) that uses the ALE framework to obtain the velocities of newly created

nodes, that are now, with no doubt, known (Step 4bis) or solve the equations directly on

the deformed mesh, projecting them afterwards (Step 4). In any case, the underlying idea

63

4 Numerical treatment of moving domains

is the same, but, since we want to work with a fully fixed mesh we have chosen the second

approach.

This brief description of the FM-ALE method completes our description of the nu-

merical techniques required to solve evolving-domain incompressible flow problems. The

only side ingredient that has not been described yet is how we deal with the tracking of

Γmov. In general, we can assume that this part of the boundary of the flow domain is

defined by what we call generically a boundary function, that may be defined analytically

or by discrete means, for example through interpolation from some nodes that define the

location of Γmov. In some applications, as the ones that will be developed herein, Γmov is

represented with a level set function ψ, which is basically a function whose value is 0 on

Γmov and different than 0 elsewhere. This function has to be advected at each time step

to find the position of Γmov. For further detail on level set problems we ask the reader to

refer to [42].

4.2 Numerical tests on a rotating fan

We are now ready to solve a specific problem using all the numerical techniques discussed

until now. We will use a FM-ALE framework with adaptive refinement near Γmov. In order

to use Dirichlet approximate BCs and not get into more complicated fluid-solid interaction

problems we will deal with a solid with a prescribed motion, in our case a rotating fan.

The position of the fan blades on the background mesh will be obtained by projecting a

level-set function from a physical problem with only the rotating blades surrounded by a

circle where a level-set problem is solved exactly (Figure 4.4a). The problem to solve is

depicted in Figure 4.3 and in Figure 4.4 the reader can see the meshes used, including the

mesh produced after some steps once some refinement has been produced around the zero

level-set isosurface.

Figure 4.3: Geometry and boundary conditions of the rotating fan in a cavity problem.

64

4.2 Numerical tests on a rotating fan

(a) (b)

(c)

Figure 4.4: Unstructured meshes: (a) Meshing of the helix inside a circle to solve a level-
set problem (b) Meshing of the background fixed mesh and (c) Computational mesh after
some time steps with adaptive refinement around the projection of the level-set in the
background.

The problem therefore consists of a rotating fan at angular speed ω inside a cavity.

We can already see that the flow is created by the rotation of the fan, and, since the BC

is imposed weakly, this gives the imposition of the BC a prominent role in the problem.

After having proven that the different approximate BC methods performed well, we will

here only use the linked Lagrange multiplier method to impose u = ω×r on the blades,

while the condition on the walls of the cavity will be applied in a classical way. In what

follows, if any reference to the mesh size h is done, it will be referring to the background

mesh, since the helix mesh was kept fix. The reason why we used a fine mesh for the

helix was only to capture the shape of the blades as accurately as possible, even though

the projection of the level-set was done in such a way that the cuts were represented as

straight-lines inside each element on the background mesh. Nevertheless this fine mesh

on the helix allowed us to capture the boundary properly when the background mesh was

sufficiently refined.

To check the proper functioning of the code and see the actual solution, we first set

ω = ez and used a very fine mesh. The physical parameters were set for the fluid to be air

65

4 Numerical treatment of moving domains

at 25◦C, therefore ρ = 1.09 kg/m3 and µ = 1.86 · 10−5 Pa·s. In Figures 4.5 and 4.6 can be

seen the solutions for the module of the velocity and the pressure at times approximately

t = i 2π
‖w‖ , i = 1

4 ,
1
2 , 1.

(a) t = π
2

(b) t = π

(c) t = 2π

Figure 4.5: Solution ‖uh‖ for µ = 1.86 · 10−5 Pa·s, ρ = 1.09 kg/m3

66

4.2 Numerical tests on a rotating fan

(a) t = π
2

(b) t = π

(c) t = 2π

Figure 4.6: Solution ph for µ = 1.86 · 10−5 Pa·s, ρ = 1.09 kg/m3

As expected for a high Reynolds number (Re ∼ 106 using the rotation speed imposed

and the maximum radius) we see that vortexes are created at the edges of the blades

of the fan4. Both the results in velocity and pressure are conforming to reality, with

4A caption of a region with the velocity vector field has been added on Figure 4.5a to show that the
BC is well imposed in direction as well. The size of the arrows plotted being constant, the color gives the

67

4 Numerical treatment of moving domains

overpressure related to the front side of the blades and viceversa, combined with the

pressure distribution due to gravity and to localized depressions induced by vorticity.

Nevertheless, since the evolution along the blade of the imposed boundary condition is

hard to assess with these plots and even harder as soon as the vortexes are generated due

to the colormap properties, we have plotted in Figure 4.7 the evolution with time of the

error on the boundary condition using the same procedure as in Chapter 3. We profit here

to show in Figure 4.7 such error for the different methods to weakly impose Dirichlet BCs

presented previously, all of the simulations done in the same conditions, except from the

setting of the penalty parameter s2, which was chosen as varying parameter due to the

convection-dominated nature of the flow. Even though we saw that parameters s were not

extremely relevant in the last chapter, that was only for a given case where the solution

happened to be very smooth and simple. For this case, the value of the parameter turned

out to be of extreme importance for two reasons: the BC validity required high values

of s2 and the convergence of the non-linearity iterative algorithm using a Picard iterative

method was harder to achieve for low values. As a consequence, values for s2 higher than

100 were used for the further simulations.

Figure 4.7: Time evolution of eu, L2(Γ) for the rotating fan problem.

We see that the error is reduced with increasing parameter s2 for the methods that

are defined through a parameter and that the method using external degrees of freedom

performs very well in boundary condition imposition, since no local instabilities appeared

during the 20 time steps of calculation.

In order to have as well an assessment of how the error in the boundary was distributed

spatially, we plotted the modules of the velocities along with their radial distance to the

center of rotation for different rotation speeds. The 20th time step was used since we

have seen in Figure 4.7 that the error is stabilizing for those times, since previously the

flow, that starts from a still fluid at t = 0, is being developed. We see that rotation speed

is well imposed along all the blade independently of the rotation angular speed chosen

module of the velocity.

68

4.2 Numerical tests on a rotating fan

as a Dirichlet BC (Figure 4.8), except from the points at the edges of the blades, where

the fit is less accurate. This may be due to the fact that vorticity is being generated at

those points and we would maybe need a stronger imposition of the boundary condition.

We actually performed the same fits by multiplying parameter a in the Linked Lagrange

method by a constant and saw that the adequacy of the points at the edge of the blade

to the imposed velocity could be improved.

Figure 4.8: Module of the velocity ‖uh‖ - distance r to the center of rotation for different
angular velocities ω.

Now, since the case we wanted to end up studying was the flow around a wind turbine,

we decided to assess how the approximate imposition of the Dirichlet BCs with non-zero

inflow conditions performed on the case of the rotating fan. Even though here the rotation

direction and the inflow velocity are in-plane, it will allow us to see the robustness of

our methods to impose Dirichlt boundary conditions. The validity of the linked Lagrange

method has been proved in a more or less systematic way since we did a series of simulations

varying Umax in the inflow parabolic profile as well as the rotation velocity ω. The results

obtained from doing the same fits as in Figure 4.8 can be seen on Table 4.1. We see that

the methods are approximating the conditions with much precision for all the considered

situations and the higher errors, which are still very small since the fitted slopes are very

accurate, are found around the blades edges. We can therefore confirm that this particular

method is suited for a broad simulation spectra. The reader can see in Figures 4.9 and

4.10 the solutions with the same conditions as previously except from an inflow condition

in Γ1 as the one in (3.28) using Umax = 2 m/s and a height of 8 m, as well as a free outflow

at Γ3. Maybe a finer mesh on the non-slip boundaries would have been necessary since

gradients are extremely strong in those at some points.

69

4 Numerical treatment of moving domains

(a) t ' π
2

(b) t ' π

(c) t ' 2π

Figure 4.9: Solution ‖uh‖ for µ = 1.86 · 10−5 Pa·s, ρ = 1.09 kg/m3

70

4.2 Numerical tests on a rotating fan

(a) t = π
2

(b) t = π

(c) t = 2π

Figure 4.10: Solution ph for µ = 1.86 · 10−5 Pa·s, ρ = 1.09 kg/m3

71

4 Numerical treatment of moving domains

Angular velocity ω
0.5 1.0 1.5 2.0 2.5 3.0

In
fl

ow
ve

lo
ci

ty
U
m
a
x

0
ωfit 0.49997 0.99984 1.49981 1.99973 2.49923 2.99889
R2 0.99988 0.99991 0.99992 0.99993 0.99995 0.99995
emax 2.17251 2.17317 2.17310 2.17358 2.13553 2.14684

0.5
ωfit 0.49999 0.99987 1.49981 1.99970 2.49925 2.99880
R2 0.99976 0.99990 0.99992 0.99993 0.99995 0.99994
emax 2.16355 2.17317 2.17384 2.17258 2.13553 2.14684

1.0
ωfit 0.50002 0.99992 1.49982 1.99967 2.49925 2.99870
R2 0.99960 0.99989 0.99993 0.99993 0.99995 0.99994
emax 2.16355 2.17317 2.17384 2.17258 2.13553 2.14684

1.5
ωfit 0.50006 1.00001 1.49984 1.99965 2.49925 2.99860
R2 0.99941 0.99987 0.99993 0.99992 0.99995 0.99994

e˙max 2.16355 2.17317 2.16757 2.17258 2.13553 2.14684

2.0
ωfit 0.50012 1.00013 1.49990 1.99966 2.49928 2.99851
R2 0.99917 0.99982 0.99992 0.99991 0.99995 0.99993
emax 2.16355 2.17317 2.16757 2.17258 2.13553 2.14684

2.5
ωfit 0.50012 1.00013 1.49990 1.99966 2.49928 2.99851
R2 0.99915 0.99982 0.99992 0.99991 0.99995 0.99993
emax 2.16355 2.17317 2.16757 2.17258 2.13553 2.14684

Table 4.1: Results of fitting the data points of the module of the velocity ‖uh‖ against
the distance to the rotation point r. ωfit represents the fitted slope, R2 the determination
coefficient of the fit and emax the radius r for which the actual velocity ‖uh‖ is further
from the fit.

72

Chapter 5

Conclusions and future work

The study carried and summarized within this pages was set out to explore the concept

of approximate Dirichlet boundary conditions in grid-embedded boundaries and has pre-

sented some methods that fall under its umbrella. It has sought to gently introduce the

notions involved and the formulation of the methods, assessing their validity by carrying

a convergence analysis. The additional ingredients required to deal with time-evolving do-

mains have been introduced and the Fixed-Mesh ALE framework presented as a solution

to the issues raised by this movement. Application of the methods has been also explored

to the 2D problem of a rotating fan inside a cavity and to very simple 3D problems. De-

spite not having achieved the goal of carrying out large numerical simulations of the flow

around a turbine, several conclusions can be drawn from all the numerical ingredients that

we have worked with and that we have implemented in FEMUSS.

Some of the aforementioned conclusions are the following:

• The methods to weakly impose Dirichlet BCs presented in Chapter 3 are all in-

trinsically appropriate and exhibit convergence orders optimal or close to optimal

and very similar to the ones exhibited by the same problem with strong imposi-

tion of Dirichlet BCs. Those are therefore a powerful numerical tool that leads to

simpler numerical formulations and implementations due to the possibility of hav-

ing a fixed mesh. Moreover, the final resulting methods are easy to implement,

because they only require some additional boundary integrals to be added to the

original variational form. Upon those methods, the simple penalty method exhibits

a lower performance and the method using external degrees of freedom completely

fails when the arbitrary cutting of the moving interface with the background fixed

mesh gives raise to instabilities that, for this method, cannot be solved using the

ghost stabilization technique.

• Concerning precisely this ghost stabilization technique, the necessary stabilization

when the cutting is inappropriate allows to produce an overall adapted solution far

from the boundary where weak Dirichlet BCs are imposed but induces a considerable

73

5 Conclusions and future work

error in the approximated pressure field ph that make the methods less robust for

accurate measurements along the boundary (i.e. tractions).

• If the stabilization terms of the cuts are not active and not required, physically

meaningful solutions can be obtained for the case of a 2D rotating fan inside a cavity.

Vortex shedding appearing with decreasing viscosity µ, an adequate imposition of

the boundary condition, a plausible pressure distribution and properly converged

non-linear iterative algorithms and solvers were signs of proper functioning of the

methods.

• The validity of the methods for 3D simulations was checked, leading to trustful so-

lutions when compared to the solutions obtained when dealing with strong Dirichlet

BC imposition.

In order to go further in the subject and to find a solution or deeper understanding to

some of the issues raised in these pages, still a lot can be done. The main limitation of

this work if conceived in the mindset we had half a year ago -being able to simulate the

influence of a wind turbine rotating in the fluid motion- is the lack of results produced

in terms of 3D simulations. Several unexpected problems were faced when implementing

the methods described, leading to a shortcut in the objectives of the thesis. Another

limitation, but already made as an assumption at the beginning of the thesis, is that we

only considered prescribed rigid solids, which leaves us far from the real simulation of flow-

induced rotations, where energy transfer between the fluid and the solid is precisely the

main mechanism and usually the objective of the whole system. Therefore, fluid-structure

interaction or at least fluid-rigid solid interaction should be considered and the required

changes in the approximate BCs subroutines introduced. Apart from these general remarks

concerning what should be done to go further on the issue and on the application of such

methods to practical cases, some other more specific are the following:

• In order to find a solution to the problem that appears when using the stabilization

terms and to assess it in more depth, we propose to try to create a mesh for such cases

that allows us to decouple the imposition of the BC and the stabilization. What we

mean by this is, for example, to create a stationary case using quadrilateral elements

all cut by the projected level-set or by a given analytical function in its middle line.

That would allow us to deactivate the cut stabilization terms and actually only see

the effect of the BC approximate imposition. Another approach would be to slightly

change the shape of the interface in case the cut is close enough to the fluid node to

give raise to instabilities by taking the node itself as intersection point.

• Working with analytical functions to define the interface could be an interesting so-

lution if the shape of the interface is a priori known. We did not follow this approach

since we wanted to set the problem for the most general case. The projection of a

level-set function is more versatile to deal with, for example, fluid-solid interaction.

74

• Regarding the ghost stabilization terms, the implementation of the commonly used

terms (3.31) seems unavoidable in order to be able to benchmark our results. Even

though the stabilization we implemented should be equivalent, its numerical im-

plementation uses assumptions such as a lumped mass on the calculation of the

projections that can make the gap between both methods wider than it seems a

priori.

• One of the unmentioned things in the formulation presented resulting from applying

approximate Dirichlet BCs is the role of the subscales u
′

on the immersed boundary.

The assumption we did in Section 2.3 was that u
′

= 0 in ∂K, the edges of the

elements, but therefore u
′ 6= 0 in Γ for non-matched grids. This fact has been

neglected and has in fact not been much investigated yet. It could therefore be an

interesting field for further work.

Those are only some ideas that we had in mind during these last months but we

are aware that a broad field of research can make use of the methods exposed here and

therefore some other diverse applications could be considered. Nevertheless, we believe

that the work developed lays the foundations of some of the methods that could be used

for large-scale numerical simulations in numerous disciplines.

75

Appendix A

Matricial form VMS

incompressible Navier-Stokes

equations

The goal of this appendix is to present the exact definition of the matrices involved in solv-

ing the linear system of equations issued from the applications of the Variational Multiscale

Method (VMS) to the incompressible Navier-Stokes equations, as explained in Section 2.3.

Using a simple Picard iterative method for non-linearity and a first order backward

Euler finite time differences approach and with a problem with full Dirichlet boundary

conditions, in the exact same conditions as the ones explained in detail in Chapter 2, the

linear system of equations within the VMS framework writes: K̃UV K̃UQ

K̃PV K̃PQ

 ·
 Uk+1

n+1

Pk+1
n+1

 =

 F̃v
k+1
n+1

F̃q
k+1
n+1

 (A.1)

If the following ordering of the degrees of freedom involved in such system is chosen:
K̃uxvx K̃uyvx K̃pvx

K̃uxvy K̃uyvy K̃pvy

K̃uxq K̃uyq K̃pq

 ·

Uk+1
x,n+1

Uk+1
y,n+1

Pk+1
n+1

 =

F̃vx,n+1

F̃vy,n+1

F̃q,n+1

 (A.2)

then the matrices involved can be defined as in Table A.1, where matrices Kuxvx ,

Kuyvy , Kuyvx , Kuxvy , Kpvx , Kpvy , Kuxq, Kuyq, F̂vx,n+1 and F̂vy ,n+1 where already de-

fined in the Section 2.2 and the terms added come from the stabilization performed in the

VMS framework. uk,n+1 represents the finite element solution from the previous iteration,

un the solution from the previous time step, ∆t the time step, ρ the density, µ the dynamic

viscosity and τK the stabilization coefficient defined in (2.34).

76

Block UV

[K̃uxvx]ij = [Kuxvx]ij −
∑

K τK(ρ
2

∆t

∫
K u

x
k,n+1φj

∂φi
∂x + ρµ

∫
K φj∆φi + ρ2

∫
K(uxk,n+1)2∇φj ·∇φi

+ ρµ
∫
K u

x
k,n+1

∂φj
∂x ∆φi − ρµ

∫
K u

x
k,n+1

∂φi
∂x ∆φj − µ2

∫
K ∆φi∆φj)

[K̃uyvy]ij = [Kuyvy]ij −
∑

K τK(ρ
2

∆t

∫
K u

y
k,n+1φj

∂φi
∂y + ρµ

∫
K φj∆φi + ρ2

∫
K(uyk,n+1)2∇φj ·∇φi

+ ρµ
∫
K u

y
k,n+1

∂φj
∂y ∆φi − ρµ

∫
K u

y
k,n+1

∂φi
∂y ∆φj − µ2

∫
K ∆φi∆φj)

[K̃uyvx]ij = [Kuyvx]ij −
∑

K τK(ρ
2

∆t

∫
K u

y
k,n+1φj

∂φi
∂x + ρ2

∫
K u

x
k,n+1u

y
k,n+1∇φj ·∇φi

+ ρµ
∫
K u

y
k,n+1

∂φj
∂x ∆φi − ρµ

∫
K u

x
k,n+1

∂φi
∂y ∆φj)

[K̃uxvy]ij = [Kuxvy]ij −
∑

K τK(ρ
2

∆t

∫
K u

x
k,n+1φj

∂φi
∂y + ρ2

∫
K u

y
k,n+1u

x
k,n+1∇φj ·∇φi

+ ρµ
∫
K u

x
k,n+1

∂φj
∂y ∆φi − ρµ

∫
K u

y
k,n+1

∂φi
∂x ∆φj)

Block PV

[K̃pvx]ij = [Kpvx]ij −
∑

K τK(ρ
∫
K u

x
k,n+1∇φj ·∇φj + µ

∫
K ∆φi

∂φj
∂x)

[K̃pvy]ij = [Kpvy]ij −
∑

K τK(ρ
∫
K u

y
k,n+1∇φj ·∇φj + µ

∫
K ∆φi

∂φj
∂y)

Block UQ

[K̃uxq]ij = [Kuxq]ij −
∑

K τK(ρ
∆t

∫
K φj

∂φi
∂x + ρ

∫
K u

x
k,n+1∇φj ·∇φj − µ

∫
K ∆φj

∂φi
∂x)

[K̃uyq]ij = [Kuyq]ij −
∑

K τK(ρ
∆t

∫
K φj

∂φi
∂y + ρ

∫
K u

y
k,n+1∇φj ·∇φj − µ

∫
K ∆φj

∂φi
∂y)

Block PQ

[K̃pq]ij = −
∑

K τK
∫
K ∇φj ·∇φj

RHS FV

[F̃vx,n+1]i = [F̂vx,n+1]i −
∑

K τK(ρ2
∫
K((f + un

∆t)·∇φi)u
x
k,n+1 + ρµ

∫
K(fx + uxn

∆t)∆φi)

+
∑Nnodes

m=Nfree

∑
K τK(ρ

2

∆t

∫
K(uk,n+1·ud(pm))φm

∂φi
∂x + ρµ

∫
K u

x
d(pm)φm∆φi

+ ρ2
∫
K(uxk,n+1)2 uxd(pm)∇φm·∇φi + ρµ

∫
K(uk,n+1·ud(pm))∂φm∂x ∆φi

- µ2
∫
K u

x
d(pm)∆φi∆φm + ρ2

∫
K u

x
k,n+1u

y
k,n+1 u

y
d(pm)∇φm·∇φi

- ρµ
∫
K u

x
k,n+1(∇φi·ud(pm))∆φm)

[F̃vy ,n+1]i = [F̂vy ,n+1]i −
∑

K τK(ρ2
∫
K((f + un

∆t)·∇φi)u
y
k,n+1 + ρµ

∫
K(fy + uyn

∆t)∆φi)

+
∑Nnodes

m=Nfree

∑
K τK(ρ

2

∆t

∫
K(uk,n+1·ud(pm))φm

∂φi
∂y + ρµ

∫
K u

y
d(pm)φm∆φi

+ ρ2
∫
K(uyk,n+1)2 uyd(pm)∇φm·∇φi + ρµ

∫
K(uk,n+1·ud(pm))∂φm∂y ∆φi

- ρµ
∫
K u

y
k,n+1(∇φi·ud(pm))∆φm − µ2

∫
K u

y
d(pm)∆φi∆φm

77

A Matricial form VMS incompressible Navier-Stokes equations

+ ρ2
∫
K u

y
k,n+1u

x
k,n+1 u

x
d(pm)∇φm·∇φi

RHS FQ

[F̃q,n+1]i = −
∑

K τKρ
∫
K(un

∆t + f)·∇φi

Table A.1: Definition of the matrices and vectors required to construct the linear system
of equations to be solved at time step tn+1 in iteration k + 1 in the VMS framework.

78

Bibliography

[1] R. Codina and J. Baiges. Fixed mesh methods in computational mechanics.

[2] R. Codina, G. Houzeaux, H. Coppola-Owen, and J. Baiges. The fixed-mesh ALE

approach for the numerical approximation of flows in moving domains. Journal of

Computational Physics, 228(5):1591–1611, 2009.

[3] E. Stein, R. de Borst, and T. JR. Hughes, editors. Encyclopedia of computational

mechanics. John Wiley, Chichester, West Sussex, 2004.

[4] Clay mathematics institute. http://www.claymath.org/millennium-problems/

navier%E2%80%93stokes-equation, 2016. [Online; accessed 1-January-2016].

[5] J. Benk, M. Ulbrich, and M. Mehl. The Nitsche method of the Navier-Stokes equations

for immersed and moving boundaries. In Proceedings of the Seventh International

Conference on Computational Fluid Dynamics, ICCFD7. International Conference

on Computational Fluid Dynamics, 2012.

[6] J.M. Urquiza, A. Garon, and M-I. Farinas. Weak imposition of the slip boundary

condition on curved boundaries for Stokes flow. Journal of Computational Physics,

256:748–767, January 2014.

[7] W. Layton. Weak imposition of no-slip conditions in finite element methods. Com-

puters & Mathematics with Applications, 38(56):129–142, September 1999.

[8] J. Serrin. Mathematical Principles of Classical Fluid Mechanics. Fluid Dynamics i.

Number 3 in Encyclopedia of Physics, pages 125–263. Springer Berlin Heidelberg,

1959.

[9] L. Mu and X. Ye. A finite volume method for solving Navier Stokes problems. Non-

linear Analysis: Theory, Methods & Applications, 74(17):6686–6695, December 2011.

[10] P. Le Tallec. Modelisation et calcul des milieux continus. Ecole Polytechnique,

Palaiseau, September 2009.

[11] G. Allaire. Analyse numérique et optimisation. Ecole Polytechnique, Palaiseau,

September 2006.

79

http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation

5 Bibliography

[12] A. Ern and J-L. Guermond. Theory and Practice of Finite Elements. Springer Science

& Business Media, March 2013.

[13] D.N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equa-

tions. CALCOLO, 21(4):337–344, December 1984.

[14] M. Gander and G. Wanner. From Euler, Ritz, and Galerkin to Modern Computing.

SIAM Review, 54(4):627–666, January 2012.

[15] W. Layton and W. Lenferink. Two-level Picard and modified Picard methods for the

Navier-Stokes equations. Applied Mathematics and Computation, 69(23):263–274,

May 1995.

[16] F-J. Sayas. A gentle introduction to the Finite Element Method. March 2008.

[17] M.A. Celia and W.G. Gray. An improved isoparametric transformation for finite

element analysis. International Journal for Numerical Methods in Engineering,

20(8):1443–1459, August 1984.

[18] L.P. Franca and S.L. Frey. Stabilized finite element methods: II. The incompressible

Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering,

99(2):209–233, September 1992.

[19] T. JR Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann

formulation, subgrid scale models, bubbles and the origins of stabilized methods.

Computer Methods in Applied Mechanics and Engineering, 127(1):387–401, 1995.

[20] R. Codina. Stabilized finite element approximation of transient incompressible flows

using orthogonal subscales. Computer Methods in Applied Mechanics and Engineer-

ing, 191(3940):4295–4321, August 2002.

[21] A. Masud and R. Calderer. A variational multiscale method for incompressible tur-

bulent flows: Bubble functions and fine scale fields. Computer Methods in Applied

Mechanics and Engineering, 200(33), 2011.

[22] J. Principe and R. Codina. On the stabilization parameter in the subgrid scale approx-

imation of scalar convectiondiffusionreaction equations on distorted meshes. Com-

puter Methods in Applied Mechanics and Engineering, 199(2122):1386–1402, April

2010.

[23] V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot. Meshless methods: A review

and computer implementation aspects. Mathematics and Computers in Simulation,

79(3):763–813, December 2008.

[24] T. Belytschko, W.K. Liu, and B. Moran. Nonlinear Finite Elements for Continua

and Structures. Wiley, Chichester, 1 edition, September 2000.

80

[25] S. Turek and J. Hron. Proposal for Numerical Benchmarking of Fluid-Structure

Interaction between an Elastic Object and Laminar Incompressible Flow. In Fluid-

Structure Interaction, number 53 in Lecture Notes in Computational Science and

Engineering, pages 371–385. Springer Berlin Heidelberg, 2006.

[26] H. Luo. Immersed Boundary Method. In Encyclopedia of Microfluidics and Nanoflu-

idics, pages 805–808. Springer US, 2008.

[27] C. Peskin. Flow patterns around heart valves: A numerical method. Journal of

Computational Physics, 10(2):252–271, October 1972.

[28] R. Glowinski, T.-W. Pan, and J. Periaux. A Lagrange multiplier/fictitious domain

method for the Dirichlet problem Generalization to some flow problems. Japan

Journal of Industrial and Applied Mathematics, 12(1):87–108, February 1995.

[29] W. Ritz. Über eine neue Methode zur Lsung gewisser Variationsprobleme der mathe-

matischen Physik. Journal fr die reine und angewandte Mathematik, 135:1–61, 1909.

[30] E. Burman. Ghost penalty. Comptes Rendus Mathématique, 348(2122):1217–1220,

November 2010.

[31] S. Marella, S. Krishnan, H. Liu, and H.S. Udaykumar. Sharp interface Cartesian grid

method I: An easily implemented technique for 3d moving boundary computations.

Journal of Computational Physics, 210(1):1–31, November 2005.

[32] J.W. Barrett and C.M. Elliott. Finite element approximation of the Dirichlet problem

using the boundary penalty method. Numerische Mathematik, 49(4):343–366, July

1986.

[33] R. Courant. Variational methods for the solution of problems of equilibrium and

vibrations. Bulletin of the American Mathematical Society, 49(1):1–23, January 1943.

[34] J. Baiges, R. Codina, F. Henke, S. Shahmiri, and W.A. Wall. A symmetric method for

weakly imposing Dirichlet boundary conditions in embedded finite element meshes.

International Journal for Numerical Methods in Engineering, 90(5):636–658, May

2012.

[35] M. Juntunen and R. Stenberg. Nitsche’s method for general boundary conditions.

Math. Comput., 78(267):1353–1374, 2009.

[36] R. Codina and J. Baiges. Approximate imposition of boundary conditions in immersed

boundary methods. International Journal for Numerical Methods in Engineering,

80(11):1379 – 1405, 2009.

[37] M.S. Engelman and M-A. Jamnia. Transient flow past a circular cylinder: A bench-

mark solution. International Journal for Numerical Methods in Fluids, 11(7):985–

1000, November 1990.

81

5 Bibliography

[38] A. Massing, M.G. Larson, A. Logg, and M.E. Rognes. A Stabilized Nitsche Fictitious

Domain Method for the Stokes Problem. Journal of Scientific Computing, 61(3):604–

628, March 2014.

[39] B. Schott, U. Rasthofer, V. Gravemeier, and W.A. Wall. A face-oriented stabilized

Nitsche-type extended variational multiscale method for incompressible two-phase

flow. International Journal for Numerical Methods in Engineering, 104(7):721–748,

November 2015.

[40] R. Glowinski, T-W. Pan, and J. Periaux. A fictitious domain method for Dirichlet

problem and applications. Computer Methods in Applied Mechanics and Engineering,

111(3):283–303, January 1994.

[41] M. Nazem, J.P. Carter, and D.W. Airey. Arbitrary Lagrangian Eulerian method for

dynamic analysis of geotechnical problems. Computers and Geotechnics, 36(4):549–

557, May 2009.

[42] S. Osher and J.A Sethian. Fronts propagating with curvature-dependent speed: Al-

gorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics,

79(1):12–49, November 1988.

82

	List of Figures
	List of Figures (1)
	Introduction
	Motivation
	Outline

	Theoretical background
	The incompressible Navier-Stokes equations
	The Galerkin Finite Element Method for the Navier-Stokes equations
	The Variational Multiscale Method (VMS)

	Approximate imposition of Dirichlet boundary conditions
	Penalty-based methods
	Penalty method
	Penalty method with boundary tractions
	Nitsche's method
	Convergence analysis

	A linked Lagrange multiplier symmetric method
	Using external degrees of freedom
	The flow past a circular cylinder

	Numerical treatment of moving domains
	The Fixed-Mesh Arbitrary Lagrangian-Eulerian method
	Numerical tests on a rotating fan

	Conclusions and future work
	Appendix Matricial form VMS incompressible Navier-Stokes equations
	Bibliography

