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1 Data Preparation

1.1 Data extraction
The data needed to perform the MOR is the stiffness matrix K; the mass
matrix M; the nodal forces vector F; the coordinates matrix COOR; the dis-
placements dL; the connectivities matrix CN; the pressures at the surfaces
P; the normals of the surfaces and the area of the surfaces.

The various data has been extracted using different methods that will
be addressed in this chapter.

Extraction of dL

There is no need to modify the Kratos source code to obtain the displace-
ments. In fact, the displacements are one of the most common results
obtained from structural simulations. For that reason, the default GID
problem type will already export them into a GID post-process format.

As explained, Kratos is a Python library written in C++ for speed,
so the final user configures and executes the simulation via a high-level
programming through Python, and this runs the fast C++ code. All the
data is fed into Kratos through Python, and the data is then extracted
through Python as well. If GID is used, a GID function that helps import
and export the data can be employed.

In Python both the initial properties and the results are stored in
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the model_part variable created by Kratos. Then, the results might be
printed into a file using the function gid_print.write_results that takes as
arguments: the model_part; an array with the results that need to be
written, in this case, [”DISPLACEMENT”]; the number of Gauss points;
the current time; the current step; and an individual id for the file. Overall,
the line should look like this:

Listing 1.1: Python example

g id_pr int . w r i t e_ r e s u l t s ( model_part ,
g e n e r a l_va r i a b l e s . noda l_re su l t s ,
g e n e r a l_va r i a b l e s . gaus s_po in t s_re su l t s ,
current_time , current_step , cur rent_id )

where general_variables.nodal_results = [”DISPLACEMENT”].

Extraction of K, M and F

The K, M and F matrices are usually considered internal and thus, cannot
be extracted using the method described in the previous section. That
would be possible if the Kratos kernel exported the elemental matrices and
vector to the Python level but this is not the case.

Simple extraction of Kll and Fll

There is, however, a simple way to extract the K and F matrix and vector.
To do so, it is only necessary to change the Kratos echo level from 0 to 4.
This echo level is meant for debugging and will print a lot of intermediate
states and internal data to assist developers in finding bugs. Taking advan-
tage of this function, it is possible to write the Kll matrix and the Fll in
different files following the MatrixMarket file format.
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This process, however, has two limitations. It does not extract the
mass matrix and it is not possible to obtain the full K and F matrices -
only the degrees of freedom are obtained. For that reason, a more powerful
method is presented in the next section.

Extraction of Ke, Me and Fe

To extract all matrices, it will be necessary to modify the Kratos C++
source. All the same, this process is made as simple as possible by the
developers who understand that advanced usages of their product might
need more than what is exposed to Python. Their solution has been to
create a system of applications that can interact with the Kratos kernel at
a lower level with C++.

This low-level access is required to extract the matrices, and so a new
application has been created. This app will contain a single utility function
that will be called from Python. This utility will take the model_part as
input, like the gid_print function did in the previous section. In this case,
however, it will be possible to access the full information contained in the
model_part and not only the information exposed to Python because the
utility is written in native C++. Among this newly accessible information,
there are the elemental matrices of stiffness (Ke), the elemental matrices of
mass (Me) and the nodal forces vector (Fe).

To export the matrices, a simple loop that iterates over all the elements
is used. At each iteration, a new line is written to a file using the <fstream>
C++ library. Writing the file directly from C++ avoids the need to export
the matrices to Python and the overall outcome is faster.

After the matrices have been extracted, a simple script is necessary to
import them into Matlab. This Matlab script parses the file line by line (or
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element by element) and uses a cell matrix to store the element number,
the Ke, the Me and the Fe on a single row per element; thus this matrix
will have dimensions 4× numberofelements

Finally, the elemental matrices will need to be assembled into the sys-
tem matrix of degrees of freedom, the Kll, the Mll and the Fll. This process
is described in the Section 1.2.

Extraction of COOR and CN

The coordinates matrix (COOR) and the connectivities matrix (CN) are
input variables to Kratos and are directly exported by GID. It is possible
to generate an ASCII file from GID with this information and parse it in
Matlab to make them available.

Extraction of P, the normals, and areas

The pressure results from the fluid simulation are nodal variables. Since
the nodes do not have surface nor normal vectors, the computation of the
aerodynamic forces are not trivial.

For that reason, instead of working directly with the results of the fluid
simulation, the boundary conditions applied to the structural problem are
used. These boundary conditions are applied over surfaces, so they already
have an area and normal vector. Moreover, it will be possible to generate
new high-resolution structural simulations using the ROM results of the
pressures if necessary. To do so, a new structural problem will be able to
be formulated using the new pressures as boundary conditions.

The only caveat of using the boundary conditions instead of the nodal
results is that some resolution is lost because there are fewer boundary
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conditions than nodal results. Nevertheless, the results of the total aerody-
namic forces should not vary much because the mean of the nodal pressures
is used to calculate the surface pressure.

Since the CAD software applies the boundary conditions, the easiest
way of obtaining the pressures, the area and the normal is to modify the
exporter module in the CAD software. Moreover, the software already has
functions that calculate the normal vector and the area of a surface, so the
implementation is almost trivial.

The newly modified software generates a new file in the exported GID
project that contains the pressures, the normals of each surface and it is
area.

This text file can later be parsed in Matlab to obtain a matrix with
the requested data.

1.2 Assemble Matrix

Basic algorithm

This section refers to the stiffness matrix K. Nevertheless, the same process
is valid for the mass matrix M.

Assembling the matrix in Matlab presented a technical challenge be-
cause working with a full matrix would require too much memory. The
size of the K matrix would be (nNodes * nDOF) by (nNodes * nDOF); the
mesh in this project has 11073 nodes and 6 DOF per node, hence the array
would have (11073 · 6)2 = 4, 414, 007, 844positions if each number uses 64
bits, the total memory used by the array would be 4, 414, 007, 844 ∗ 64/8 =

35, 312, 062, 752bytes = 35.3Gb. However, the stiffness matrices contain a

6



Rodeja Ferrer, Pep Chapter 1. Data Preparation June 2016

vast amount of zeros and hence, it is inefficient to store every single element.

In order to store all the elements, the matrix is compressed using a
system called ”compressed row sparse matrix”. This system uses three vec-
tors to store only the elements different than 0. Two of the vectors (AJ
and AI) are used to calculate the position of each value stored in the A
vector. Using this system two vectors (A and AI) have a length equal to
the number of elements different than 0; the other vector (AJ) has a length
equal to the number of rows plus 1. This system is very efficient in terms
of memory usage as well as computational requirements when doing com-
mon matrix operations. Matlab has its own implementation of this method
built-in with the sparse matrix function.

There is, however, one drawback: the elements must be stored in order.
And it is inefficient to retrieve the elements one by one. This, in turn,
makes adding elements to an existing array very resource hungry. Since the
elements must be stored in order, adding a new element requires retrieving
the already stored elements to determine the right position in the vector for
the new value. For this reason, adding new elements to an existing matrix
is not recommended.

The solution, in this case, has been to store the values in three vectors
(A, J and I). This is not, however, a compressed row sparse matrix since a
position is created in every array for each element. Hence, this system uses
more memory than a Matlab sparse matrix but does not require its values
to be sorted and it is faster to operate with. Additionally, an addresses
matrix has been built with the dimensions of nNodes by nNodes. This
addresses matrix will become handy when an element must be added to a
position that has already been registered in the vector. Instead of doing an
expensive search through the vector to find the existing one, the addresses
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matrix will be used to find the requested position.

The dimensions of the final stiffness matrix will be (nNodes * nDOF)
by (nNodes * nDOF) and, as previously demonstrated, it must be stored
as a sparse matrix. However, if we want to store the position where each
element in the array is in our sparse vectors, it is not necessary to have a
matrix that big. Considering that all the DOF of each node will be stored
together, we can store only the position of the first DOF for each node and
the rest DOF will be calculated from that. Thereby the address matrix will
be nNodes by nNodes in size.

An example of an address matrix is illustrated in the Figure 1. In this
figure two matrices are superposed, the real full K matrix and the address
matrix. The small indices indicate the position of the full matrix and the
big ones indicate the position of the addresses matrix. In this example, the
problem has 2 nodes and 2 DOFs per node, hence the full stiffness matrix
is 4 by 4 and the addresses, matrix is 2 by 2. The numbers inside the
matrix indicate the indexes in our vectors where these values are stored.
The addresses matrix will contain only the circled values and the rest will
be calculated using the equation XX.

Ad(nodeI, nodeJ) + ((DOFi− 1) ∗ 6 +DOFj)− 1 (1.1)

In the equation 1.1 the Ad(nodeI, nodeJ) function represent the ad-
dress matrix and the indexes (nodeI, nodeJ) are the nodes where the values
must be stored. This part of the expression will return the position in the
vectors of the first DOF for the requested combination of nodes (nodeI,
nodeJ). The rest of the equation is needed to calculate the position of the
requested DOF and the indices (DOFi,DOFj) represent the combination
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j 1 2
i 1 2 3 4

1 1 9 10 5 6

2 11 12 7 8

2 3 1 2 13 14

4 3 4 15 16

Figure 1: Example matrix, superposition of the full stiffness matrix (small indexes)
and the address matrix (big indexes and circled values)

of DOFs requested inside that combination of nodes.

It must be noted that in a real case the vectors and the address matrix
are filled while the element stiffness matrix is being red. As a result, the
elements in the vectors will not be sorted. Also, not all the positions in the
address matrix will be filled because not all the positions in the stiffness
matrix will have values. Since the address matrix will contain lots of zeros
too, it might be reasonable to use a sparse matrix. Nevertheless, if the
memory is not a limitation a full matrix will produce much faster results.
However, if a sparse matrix must be used, this system will still be faster
than filling the final stiffness matrix directly because the address matrix
is much smaller than the stiffness matrix and each position must only be
edited the first time an element is added. If it is the second time that a
combination of nodes is requested it will not be necessary to create a new
address, however, it will still be necessary to add the new value to the
existing one in the final stiffness matrix; and, as seen, this is very expensive
to do directly in a sparse matrix.

It can be argued that this system uses more memory than needed
because the position of each element in the values vector A is stored in the
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vector J and I as well as in the address matrix. While it is true that more
memory is used, this is done for a faster operation. The vectors J and I
are necessary to create the K-sparse matrix faster, and the address matrix
is necessary to build the vectors J, I and A. In the end, this system uses
moderate memory and is very fast when assembling medium-large sparse
matrices.

Modification to compute Kll directly

In most cases the matrix that will be used in the end is not the stiffness
matrix K but the stiffness matrix of the unrestricted nodes. This matrix
is so-called Kll. In order to speed up the generation of the Kll matrix, the
algorithm has been modified to generate the Kll directly instead of the K
matrix.

To do this some things must be taken into consideration:

Previously every time a new combination of nodes was requested,
nDOF·nDOF positions were reserved in the values vectors. However, since
now there are entire columns and rows missing it should be checked if the
requested nodes have restricted DOFs and limit the amount of positions
reserved in the vectors. This has been implemented with a series of condi-
tionals.

Similarly, this must also be taken into account when calculating the
positions i and j inside the final stiffness matrix. Previously it was possi-
ble to do numberOfPreviousNodes·nDOF but since now the number of
DOFs per node are different in each node this is no longer true. The nDOFs
must be computed per each previous node. In our case however, there are
only two types of nodes: completely free (6 DOFs) and displacement locked
(3 DOFs). Because of this its possible to implement it like this in Matlab:
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Listing 1.2: Calculation of the previous number of coordinates

prevJCoords = ( nodeJ − sum( r<=nodeJ ) )*6 + sum( r<=nodeJ ) * 3 ;

Also, if the current combination of nodes has restricted DOFs the com-
putation of the position of each DOF inside the vectors will change. The
equation 1.1 will no longer be valid. Now, it possible that the rows or
columns are different than 6. In our case, there will be four possible equa-
tions depending on which node has restricted DOFs.

For i and j restricted:

Ad(nodeI, nodeJ) + ((DOFi− 4) ∗ 3 + (DOFj − 3))− 1 (1.2a)

For i restricted:

Ad(nodeI, nodeJ) + ((DOFi− 4) ∗ 6 +DOFj)− 1 (1.2b)

For j restricted:

Ad(nodeI, nodeJ) + ((DOFi− 1) ∗ 3 + (DOFj − 3))− 1 (1.2c)

For none restricted:

Ad(nodeI, nodeJ) + ((DOFi− 1) ∗ 6 +DOFj)− 1 (1.2d)

As seen, if there are none restricted nodes the equation is the same. The
conditions used to trigger one or another equation are functions that return
1 or 0 depending on whether a node has or not restricted DOFs. Knowing
this it would be possible to implement all this functionality in a single line
of code. However, this line would be too large and too complicated to edit.
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Finally, since the code loops for every element in each Ke matrix, there
must be implemented a condition to determine whether a particular position
of the Ke matrix must be included in the final Kll matrix. In our case, it
suffices to check wheter or not the nodeI or nodeJ are restricted and, if
one is, check if its DOF is greater or smaller than 4 (remember that in this
matrix a node is either free or has restricted the first 3 DOFs).
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2 Test interpolation in the
DOFs

Three different interpolation methods have been tested. A custom algo-
rithm that worked really well for some specific cases -like the one shown
on Figure 2- (the results from this method are marked in green circles in
the figure); direct interpolation between the two nearest points (marked in
red circles); and a regression using all the available data (marked in black
circles). Additionally, in the figure the real values calculated using FE
methods are indicated by a black cross.

2.1 The algorithm
The following text will use ”HF points” or ”HF data” to refer to the data
obtained using the FE analysis and will use ”requested point” or ”requested
value” to refer to the new angle of attack who’s pressure value is not yet
known.

Since the data seem to have a linear shape, the algorithm uses both a
linear regression and a direct interpolation from the nearest two values. In
order to decide how much of each method is used in the final interpolation,
two variables are taken into account: the R2 coefficient from the regression
and the position of the requested value relative to the two nearest HF
points. With this algorithm, the interpolation will coincide with the FE
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Figure 2: Plot of the selected DOF and their computed approximations for the 6º angle
(without using the 6º value) using two different approches (red and green circles)

result if the required position is already calculated using the HF method;
on the other hand, the algorithm will start to use more from the regression
if the requested point is far away from any HF data. The idea behind this
behavior is that the if a required location -for example at x = 0.99- is near
a solution -for instance at x = 1-, the y-coordinate will probably be near
too. All the same, when the requested point is farther away -for example at
x = 3- the y-coordinate may have less to do with the nearest values -that
in that case are not near- and more with the regression since maybe the
calculated points are ”exception” from the general trend of the results.

The algorithm is described in the following equations from 2.1 to 2.4.

c = (xi − x1)/(x2 − x1) (2.1)
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where xi is the desired abscissa coordinate, and x1 and x2 are the
nearest points to the approximation; c ranges from 0 to 1 depending on the
position of xi inside the segment defined by x1 and x2.

k = abs(c− 0.5) ∗ 2 (2.2)

Since c is fenced between 0 and 1, k is delimited too by 0 and 1. The
value of k = 1 if c = 0.5 (the farthest away from the points); and k = 0 if
c = 0 or c = 1, ergo, if the desired value happens to be one of the points.

z = max(c, 1− c) ∗ k + (1−Ra) ∗ (1− k) (2.3)

z is the weight of the interpolated solution in the final equation 2.4.
If z = 1, the final result will be exactly like an interpolation between the
two nearest HF points; if z = 0, however, the result will be exactly like a
regression using all the HF points available.

In the equation 2.3 R is the R2 factor of the linear regression. The
calculation of z is defined by the weighted mean between the max of c and
a value that depends on R. The first factor -max of c- is defined between 1
and 0.5 and the second is defined between 0 and 1. The weighted average
can then take values between 0 and 1. The parameter a can take different
values, in this case is set to 10.

It’s important to notice that if the k = 0 (that means the requested
value is exactly in the middle of two nearest HF points), z will only depend
on R (and, unless R = 1, the approximated value will be a mix of the
interpolated result and the linear regression). If k = 1 => z = 1, thus the
requested value is over one of the HF points and the result will be the based
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Method Error relative to the HF value

Interpolation 7.17%

Regression 7.82%

Algorithm 7.52%

Table 1: Results showing the mean errors using three interpolation methods

only on the interpolation. Therefore, the result will be exactly the value of
the HF point.

finalAprox = z ∗ interpolatedV al + (1− z) ∗ regresionV al; (2.4)

2.2 The tests
The algorithm seems to work very well on the previous image, however,
after some testing, the best solution appeared to be the simple interpolation
between the two nearest HF points. To state that, the three propositions
have been tested against all known values, the mean error of each method
compared to the HF value can be seen on table 1. The results show that
the best method is the simple interpolation and the worse is the regression
line with the algorithm falling in between.
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3 Comprehensive list of
available parameters and
options in the CAD software

A comprehensive list of options has been listed below with its corresponding
function and explanation.

• Wing parameters
These parameters handle the exterior shape of the wing.

Figure 3: Screenshot of the software
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– Length
The total span of the semiwing.

– Root chord
The chord of the airfoil at the root.

– Tip chord
The chord of the airfoil at the root.

– Sweep angle
Angle of the attack border with the line perpendicular to the
plane fuselage.

• Structure parameters
These parameters handle the internal structure of the wing.

– Number of ribs
The total number of ribs in the internal structure.

– 1st Beam position
The position of the first beam in percentage to the airfoil chord.

– 2nd Beam position
The position of the second beam in percentage to the airfoil
chord.

– Beam extension
Length of the part of the beam that extends into the fuselage

• Airfoil parameters
These parameters handle the airfoil and its discretitzation.

– Airfoil source
The source of the airfoil (NACA 4 equations or .dat files).

– Airfoil name
NACA4 name or name of the .dat file.
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– Number of discretization points
The total number of discretization points per airfoil.

– Point distribution mechanism
Linear distribution or sinusoidal distribution for better resolution
on the border of attack.

• Display settings
These parameters handle how the wing is seen on the live 3D view.
They have no effect on the exported geometry.

– Internal structure

* Visible
Whether or not the internal structure is visible in the pre-
view.

* Visualization type
Solid or wireframe. Wireframe example on Figure 3

– External structure

* Visible
Whether or not the external structure is visible in the pre-
view.

* Visualization type
Solid or wireframe. Wireframe example on Figure 3

– Fluid box

* Visible
Whether or not the fluid box is visible on the preview.

* Visualization type
Solid or wireframe. Wireframe example on Figure 3
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• Internal structure
Change the element type fo the internal structure. Right now only
shell can be selected.

– Type
Element type: Solid or shell. Only shell is suported now.

• External structure
Change the element type fo the external structure. Right now only
shell can be selected.

– Type
Element type: Solid or shell. Only shell is suported now.

• Fluidbox parameters
Change the size and position of the fluid box.

– Width

– Length

– Height

– x coordinate

– Angle of attack

• Export settings
Change the groups that will be exported, the problem type and apply
some boundary conditions.

– GID problem type
Problem types available are none, Kratos fluid and Kratos struc-
tural.
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– Fluid simulation results
Select the results of the fluid simulation to apply the resultant
pressures as boundary conditions for the structural problem.

– GID mesh file
Select an ASCII mesh file to use with the current configuration.

– Export separate vertices
Whether or not the different objects (internal structure and ex-
ternal structure) should share the same vertices and segments if
possible.

– Export external mesh
Whether or not the external mesh should be exported.

– Export internal mesh
Whether or not the internal mesh should be exported.

– Export fluid box
Whether or not the fluid box should be exported.
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