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ABSTRACT 

Transition metal oxides (TMOs) have recently attracted interest as an alternative to 

boron/phosphorous doped layers in crystalline silicon heterojunction solar cells. In this 

work, the interface between n-type c-Si (n-Si) and three thermally evaporated TMOs 

(MoO3, WO3 and V2O5) was investigated by transmission electron microscopy and 

secondary ion-mass/x-ray photoelectron spectroscopy. For the oxides studied, chemical 

passivation of n-Si was attributed to an ultra-thin (1.9 – 2.8 nm) SiOx~1.5 interlayer formed 

by chemical reaction, leaving oxygen-deficient species (MoO, WO2 and VO2) as 

byproducts. Field-effect passivation was also inferred from the inversion (hole-rich) layer 

induced on the n-Si surface, a result of Fermi level alignment between two materials with 

dissimilar electrochemical potentials (work function delta Δφ ≥1 eV). Therefore, the hole-

selective and passivating functionality of these TMOs, in addition to their ambient 

temperature processing, could prove an effective means to lower cost and simplify solar 

cell processing. 
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I. INTRODUCTION 

As today’s photovoltaic market continues to be dominated by crystalline silicon (c-

Si) technology, two cost-reduction efforts are being contemplated: thinner silicon wafers (< 

100 µm) and the use of novel materials deposited at low temperatures with high throughput 

processes. Maximization of the solar cell open-circuit voltage (VOC) to record values of 750 

mV [1] has been possible by combining two principles of solar cell design [2]: (1) chemical 

passivation of surface dangling bonds with hydrogenated amorphous silicon (a-Si:H) and 

other dielectrics (SiO2, Al2O3, Si3N4, SiC); and (2) field-effect passivation by inducing a 

carrier-concentration gradient via electron- and hole-selective contacts, traditionally 

achieved by phosphorous/boron doping. Eventually, the ideal and simplest strategy would 

require a passivating/selective contact, dual-functionality materials that effectively 

passivate the c-Si surface while selectively conduct a specific charge carrier [3,4].  

In parallel, thin-film photovoltaics including organic and perovskite solar cells, have 

introduced a wide variety of electron- and hole-selective materials whose optoelectronic 

properties are comparable or superior to the standard p- and n-doped layers used in c-Si. 

Despite being quite different from silicon’s properties and technology, such materials have 

been successfully applied to c-Si heterojunction devices by low temperature (T < 200ºC) 

and solution-based processes, including organics [5], alkali salts [6,7] and transition metal 

oxides (TMOs) [8–18]. TMOs offer themselves as excellent candidates to substitute 

traditional c-Si dopants given their wide range of work function values (3 – 7 eV) and 

marked p- or n-type semiconductivity [19]. Additionally, their semi-insulating properties 

allow for passivation of the c-Si surface without compromising carrier-conductivity, 

although their passivation potential in abrupt TMO/c-Si heterojunctions is limited to 

experimental VOC values of ~680 mV [11,20]. This has prompted the use of a-Si:H 



passivating interlayers in order to surpass the 700 mV barrier, as has been demonstrated by 

a 725 mV VOC and a 22.5% conversion efficiency device with MoO3 hole contacts [21]. 

Therefore, a detailed understanding of the surface passivation mechanisms occurring at the 

TMO/c-Si interface (either by chemical bonding, charge selectivity or both) is still needed 

to potentiate the use of these passivating/carrier-selective materials.  

In this work we will explain the origin of passivation in three TMO/n-type c-Si (n-

Si) heterojunctions, molybdenum trioxide (MoO3), tungsten trioxide (WO3) and vanadium 

pentoxide (V2O5), deposited by vacuum thermal evaporation. The heterojunction interface 

will be characterized in detail by microscopy (TEM) and spectroscopy (ToF-SIMS, XPS) 

techniques, establishing two contributions to c-Si surface passivation: 1) through chemical 

reaction between c-Si and TMOs; and 2) via carrier-concentration gradients established 

during Fermi level alignment under equilibrium. 

II. EXPERIMENTAL 

Sample structures were fabricated on polished float-zone Si wafers (100 orientation) 

with a thickness of 280 μm and 2.5 Ω-cm resistivity. After RCA standard cleaning, wafers 

were dipped in 1% HF during 1 min to etch SiO2 away. In this step, the surface Si atoms 

become bonded to hydrogen to form a continuous H-terminated surface. Unfortunately, this 

configuration is unstable and will be substituted by an ultra-thin native SiO2 layer after only 

a few minutes [22]. Therefore, special care was taken to avoid a long air exposure (<30 

seconds) by transferring the HF-cleaned wafers into a N2 glovebox before TMO deposition. 

The three transition metal oxides, MoO3, WO3 and V2O5 (powdered 99.99%, Sigma 

Aldrich) were thermally evaporated under vacuum (<8x10-6 mbar) from a tantalum boat at 

a rate ~0.2 Ȧ/s. Films thicknesses were measured by quartz crystal micro-balance at 70, 25 

and 5 nm for MoO3, WO3 and V2O5 respectively. During the evaporation process, heating 



of the Si substrate was negligible and remained at ambient temperature. After a brief air 

exposure, samples were transferred to a RF-magnetron sputtering chamber for deposition of 

an 80 nm indium-tin oxide (ITO) film, under an argon partial pressure of 3.5x10-3 mbar and 

50 W power. This ITO layer, which works as a transparent conducting layer in a TMO/n-Si 

solar cell, protects the layers beneath from degradation and work function changes [23]. 

These ITO/TMO/n-Si structures were first characterized by High Resolution 

Transmission Electron Microscopy (HR-TEM), using lamellas prepared by Focused Ion 

Beam (FIB) milling with Ga+ ions (Carl Zeiss NEON40). Cross-sectional HR-TEM 

imaging (Jeol 2010F) was done with a field-emission electron source at 200 KV and lattice 

resolution. Secondly, Time of Flight Secondary Ion-Mass Spectroscopy (ToF-SIMS) depth 

profiling (IONTOF Model IV) was performed by sputtering a sampling area of 300 x 300 

μm2 with Cs+ ions (1 keV) at high vacuum (3.8 x10-8 mbar). The analysis of the sputtered 

secondary ions (negative) was done with a Bi+1 source (25 keV) and a time resolution of 

200 ps. Charge compensation (<20 eV) was applied via electron flooding, given the semi-

insulating character of TMOs.  

For the X-ray Photoelectron Spectroscopy (XPS) scans, separate samples were 

prepared ex-situ by thermally evaporating V2O5 at different thicknesses (1 – 8 nm) on n-Si 

substrates (same conditioning as before). After oxide evaporation, each sample was 

transferred from the glovebox into the XPS chamber after a brief air exposure. The XPS 

analysis (SPECS, Phoibos 150 detector) was performed at 3x10-9 mbar using a non-

monochromatic Al-Kα source (1486.6 eV) and a 90º incidence angle guaranteeing a 

probing depth of at least 10 nm. Deconvolution of the core level spectra was done by 

Gaussian-Lorentzian fittings after Shirley background substraction, while percentage 

atomic concentrations were calculated from the integration of the fitted peak areas. When 



quantifying the oxygen content, correction for adventitious carbon C–OH and C–O 

contamination (<15% atomic C content) was performed. Unless stated otherwise, all 

binding energies were referenced to the Si2p 3/2 peak (99.5 eV) of the clean Si sample. 

III. RESULTS AND DISCUSSION 

A. Interlayer in TMO/c-Si interfaces 

As a first approach, detailed imaging of the fabricated ITO/TMO/c-Si structures was 

performed by HR-TEM, revealing the presence of an unknown 1 – 2 nm thick interfacial 

layer between the TMOs and the HF-cleaned (and therefore SiO2 free) c-Si surface. This 

interlayer (IL), amorphous in nature, is clearly distinguished at the lowest magnifications 

[Fig. 1(a)] because of its high contrast to the adjacent materials. Its thickness varies among 

the three TMOs [Fig. 1(b) – (d)] but is relatively uniform and without pinholes. Moreover, 

its shows an abrupt interface with c-Si and a somewhat diffused one with the oxides. The 

maximum IL thicknesses are ~2.8 nm (WO3), ~2.5 nm (MoO3) and ~2.2 nm (V2O5), all of 

which are greater than the maximum threshold for tunneling (~1.2 nm) [2], suggesting 

another charge conduction mechanism must be present.  

 

 

 

 

 

 

 

 



FIG. 1. HR-TEM images of the ITO/TMO/c-Si heterostructures showing an interlayer 

between c-Si and MoO3 (a–b), WO3 (c) and V2O5 (d).  

 

Next, the interlayer composition was qualitatively determined by ToF-SIMS. Figure 

2(a) shows the global depth profile of the ITO/MoO3/n-Si sample, where the three distinct 

materials are clearly differentiated by their respective ions InO2
–/SnO2

–, MoO3
– and Si–. 

Extraneous elements include carbon and fluoride (C–, F–), found mainly at the material 

interfaces and related to organic contamination during air exposure and to the HF dips 

respectively. By increasing the resolution of the time scale [Fig. 2(b)], a signal with an 

atomic mass unit (amu) of 59.97 and a peak intensity of 3x103 counts is observed in the 

MoO3/n-Si interface, corresponding to SiO2
– ions. Since the HF-cleaned silicon surface is 

free of any native oxide (as will be confirmed later by XPS), the presence of SiO2
– ions 

suggests that a thin silicon oxide IL has grown during thermal evaporation of MoO3, 

proving that chemical passivation of dangling bonds by oxygen actually occurs. Within the 

same time window, a reduced Mo+2 oxide (MoO–) signal is detected, indicating it is a by-

product of the incomplete oxidation of the Si surface by MoO3 (Si + MoO3 → SiO2 + 

MoO). Since remnants of the HF etch are also observed, it can be confirmed that such 

interlayer is restricted to the TMO/n-Si interface. A compound SiO2-MoO3 signal was also 

detected but at quite low intensities (<102 counts), more than two orders of magnitude 

lower than the SiO2 signal and following the same trend. Therefore, the probability of a 

having a silicate-like MoxSiyO3 composition in the IL is low although it cannot be fully 

discarded. Finally, a SiOH– ion signal is also detected but 10 times smaller than SiO2, 

suggesting it is also related to adventitious contamination.  

 



 

 

 

 

 

 

 

 

 

 

 

FIG. 2. ToF-SIMS depth profile for the ITO/TMO/c-Si heterostructures showing a SiO2
– 

signal at the interface between c-Si and MoO3 (a–b), WO3 (c) and V2O5 (d). For each TMO,  

related reduced species (MoO–, WO2
–, VO2

–) are also detected near the interface. Also 

shown in (a) are the F–, C– and SiOH– signals, attributed to surface contamination of the 

HF-treated c-Si substrate after air-exposure. (Color Online). 

 

Similarly, the silicon oxide peak is also detected in the WO3/n-Si and V2O5/n-Si 

interfaces in Fig. 2(c-d), at similar intensities and associated with reduced TMO species 

located adjacent to the interface (WO2, V2O4). In fact, since the vanadium oxide layer is the 

thinnest, the extent of the reduction reaction is greater and VO2
– species surpass V2O5 in 

intensity. Moreover, since the SiO2
– peak intensities are about the same order of magnitude 

as their respective TMO signals (3.0–6.0 x104 counts), it means that the SiO2 layer is 

conformal and uniform across the analyzed area, in agreement with the TEM images. 



Finally, SiOH– and silicate signals were also detected in the WO3 and V2O5 samples but at 

the low intensities mentioned before, leading to the same conclusions. 

With respect to the abundant presence of the F– ions (1.0 x104 counts) and its effect 

on the interface, a separate V2O5 sample was washed with abundant deionized water after 

the HF dip, decreasing the F– intensity by a factor of 2 (not shown) while the SiO2
– 

remained unchanged. Since Si–F terminations are not kinetically viable during HF etching, 

it is probable these F– are only physisorbed [22]. However, preliminary tests on finished 

solar cell devices prepared with and without the deionized H2O quench indicate that F– is 

not detrimental to the passivation or transport properties of these structures.    

 

B. Thermodynamic feasibility 

The formation of a SiO2 layer on a H-terminated Si surface can only be explained 

by chemical reaction with TMOs during deposition. The growth of SiOx interlayers on c-Si 

has been previously reported for dielectric oxides Al2O3, HfO2, Ta2O5, LaAlO3 and SrTiO3, 

with interlayers varying from 0.7 to 9 nm in thickness and diverse stoichiometries (SiOx, 

Hf1-xSixO2) [24–26]. This is partially explained by the high reactivity of H-terminated Si [22], 

but also from purely thermodynamic considerations. Parting from the oxidation of metallic 

Si and V by molecular O2, the feasibility of these reactions is given by their negative Gibbs 

formation energies (ΔG): 

5/2Si + 5/2 O2  →  5/2SiO2   ΔGSi-O2   = –858 kJ/mol 

  2V + 5/2 O2  →  V2O5   ΔGV-O2   = –573 kJ/mol 

For the case where Si is oxidized by V2O5, the vanadium oxidation reaction should be 

subtracted from the silicon one, leading to: 

5/2Si + V2O5  →  5/2SiO2 + 2V      ΔGSi-V2O5 = ΔGSi-O2 – ΔGV-O2 = –285 kJ/mol 



Hence, the oxidation of Si by a deposited metal oxide is thermodynamically feasible 

(spontaneous) if its Gibbs formation energy is less negative than the Gibbs formation 

energy of SiO2. The same condition is met for the rest of the TMOs under study, with ΔGSi-

WO3 = –348 and ΔGSi-MoO3 = –406 kJ/mol, using the standard Gibbs formation energies from 

[27] at 300 K. An exception to this rule is observed for HfO2 and Al2O3 (ΔG positive), 

indicating that the spontaneity of these reactions is also affected by the initial equilibrium 

conditions, kinetic rates and the reactivity of the interface. Note also that any oxidation 

reaction essentially takes place by electron transfer, meaning that an electron loss in 

metallic Si yields an oxidized species (Si0 – 2ē → Si+2). This interpretation will be 

important when explaining Fermi level alignment between TMOs and n-Si (see Section E). 

Regarding the relative ΔGs magnitude (V2O5 > WO3 > MoO3), no correlation was found 

with IL thickness (Fig. 1) or the work function of air-exposed TMOs (φV2O5 ~5.3, φWO3 

~5.0, φMoO3 ~5.4 eV)[16]. 

 

C. XPS of TMO/interlayer/c-Si region 

As suggested before, the degree of completion of TMO-Si reactions could be less 

than unity, so that Si could partially oxidize (Si + V2O5 → SiOx + V2O5-x) and a mixture of 

sub-stoichiometric species would coexist in the interlayer. Therefore, a detailed chemical 

composition of the TMO/IL/n-Si interfaces was obtained from XPS analyses of V2O5 films 

deposited on n-Si at incremental thicknesses (1 – 8 nm), as a way to monitor film growth 

and the chemical/electronic changes taking place in the interface. Figure 3(a) shows the 

Si2p core level spectra as a function of binding energy, deconvoluted for the Si2p3/2 

doublet. For the reference case where no V2O5 is present, only one peak centered at 99.5 eV 



binding energy can be observed, characteristic of the metallic Si0 substrate [28]. As soon as 

1 nm V2O5 is deposited, an additional chemical state is detected at a higher binding energy 

of 102.0 ± 0.1 eV [Fig. 3(a) inset] and is discernible for thicker V2O5 films. This peak is 

attributed to sub-stoichiometric SiOx~1.5 species (Si+3) [28,29] and is identified as one of the 

components of the interlayer revealed by HR-TEM and ToF-SIMIS. As a reference, a 

stoichiometric SiO2 oxide grown by wet etching of c-Si with HNO3 is shown with its Si+4 

peak at 103.2 eV. The sub-stoichiometry of the SiOx interlayer is quite relevant because it 

explains why its thickness (as measured by HR-TEM) does not represent a barrier for the 

transversal conduction of carriers. Instead, the conduction mechanism is via defects 

(oxygen vacancies) and is not limited by the maximum tunneling thickness of SiO2 

passivation layers. The atomic Si3+ concentration in the IL was 0.9 – 2.0% and fairly 

constant for every sample, suggesting SiOx formation takes place during the first deposition 

stages until it saturates, remaining constant afterwards.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

FIG. 3. XPS analysis of the V2O5/interlayer/c-Si region at increasing V2O5 thicknesses (1 – 

8 nm). (a) Si2p3/2 doublet spectra showing the characteristic features of the silicon substrate 

(Si0, 99.5 eV), an stoichiometric SiO2/c-Si reference (Si+4, 103.2 eV) and a sub-

stoichiometric SiOx~1.5 (Si+3, ~102.0 eV) attributed to the TMO/c-Si interlayer. Inset shows 

a detailed view of these features. The peak maxima, marked with a vertical line, shifts to 

lower energies as thickness increases. The Si2p1/2 doublet, shifted 0.63 eV to higher 

binding energies and smaller by a ratio 1:2, is omitted for clarity. (b) Evolution of the 

vanadium cation species V+4 and V+5 close to the c-Si interface. Inset shows the V2p3/2 

doublet spectra showing the characteristic features of V+4 (516.5 eV) and V+5 (518.1 eV) 

states. The V2p1/2 doublet is shifted 7.6 eV to higher binding energies. (Color Online). 

 

Since the Si → SiOx partial oxidation reaction implies a complementary V2O5 → 

V2O5-x partial reduction, the XPS analysis of the vanadium V2p core level spectra should 

show the vanadium oxidation states involved. This is depicted in Fig. 3(b) inset where the 



V2p3/2 doublet is deconvoluted into two peaks centered at 518.1 and 516.5 ± 0.1 eV 

binding energies, corresponding to the V+5 and V+4 cation species [30]. The area of each 

cation provides the relative V+4 and V+5 atomic concentrations as a function of V2O5 film 

thickness [Fig. 3(b)]. The observed tendency is the following: V+4 species, associated to 

oxygen-deficient films (V2Ox<5) and generated by reduction (V+5 → V+4), are primarly 

found in the vicinity of the SiOx IL and tend to decrease as the V2O5 film thickens; 

inversely, V+5 species are lowest (but still predominant) close to the IL and tend to increase 

until reaching a relatively fixed concentration in the bulk (away from the interface and its 

electronic influence). Similar trends have been observed previously for MoO3/metal [31] 

and MoO3/Si [32] systems, where reduced cation states (Mo+5) exist near the oxidized 

interface. The presence of V+4 cations was already expected from the ToF-SIMS depth 

profiles, where VO2
– ions were detected adjacent to the SiOx interlayer. Therefore, although 

no detailed XPS analyses were performed with incremental WO3 and MoO3 thicknesses, 

the similarity between the ToF-SIMS/HR-TEM results indicate that analogue interlayers 

with SiOx≤2 composition and reduced cation transitions (Mo+6 → Mo+5, W+6 → W+5) can be 

expected as well, as has been recently confirmed by [33,34]. 

 

D. Film stoichiometry and growth mode 

Compared to the qualitative composition obtained from ToF-SIMS, XPS allows the 

quantification of film stoichiometries as oxygen to metal ratios (O/M). However, the 

specific distribution of oxygen species (SiOx, V2Ox) from the total oxygen content is not 

straightforward. To clarify this issue, we focus on the oxygen O1s XPS spectra shown in 

Figure 4 for the V2O5/IL/n-Si region. From the deconvolution of the spectra, two 

components representing different chemical states are recognized. The first (larger) 



component is centered at 530.9 ± 0.3 eV, attributed to O in vanadium oxide [30]. The 

second (smaller) component is centered at a higher binding energy (532.3 ± 0.3 eV) and is 

detected for every V2O5 thickness (1 – 8 nm), comprising ~25% of the total O1s area. This 

secondary-O, which has been previously described as a defective oxide inherent to many 

other TMOs [30], has its source on surface hydroxides (V–OH) and adventitious carbon (C–

O) physisorbed during exposure to humid air [31,35] when transferred out of the glovebox 

into the XPS chamber. Additionally, the sub-stoichiometric SiOx of the underlying 

interlayer also contributes to this secondary-O, as it lies very close to the SiO2 reference 

(centered at 532.8 eV).  

 

 

 

 

 

 

 

 

 

FIG. 4. O1s spectra of the V2O5 (6 nn)/interlayer/c-Si region. The larger feature (labeled I, 

530.6 eV) belongs to oxygen in vanadium oxide, while the smaller one (labeled II, 532.0 

eV) is attributed to oxygen in the SiOx~1.5 interlayer and to a defective-oxide associated to 

adventitious oxygen physisorbed during air exposure. Also shown is a reference spectra for 

SiO2/c-Si (532.8 eV). (Color Online). 

 



Under these assumptions, the approximate stoichiometry of the V2O5 films can be 

calculated from the oxygen to metal (O/V) ratios, where O is the total oxygen minus the 

surface hydroxides, adventitious carbon and interlayer contributions. Figure 5 (left axis) 

shows the variation of O/V ratios with film thickness, observing over-stoichiometric ratios 

O/V >2.5 for the thinnest films (V2Ox~6.3). Considering that other oxygen sources have 

already been neglected, an excess of oxygen near the interface seems correct but in conflict 

with the presence of V+4 cations attributed to oxygen deficient films [Fig. 3(b)]. Similar 

ratios have been reported for Al2O3/n-Si interfaces where excess oxygen is explained as the 

source of a negative fixed charge in Al2O3 [25,36]. Finally, it is worth noting that oxygen-

deficient stoichiometries have been reported as inherent to the bulk of these TMOs (>8 

nm), with oxygen vacancies, or defect states lying deep within the bandgap, being 

responsible for their conductivity [31]. 

 

 

 

 

 

 

 

 

 

FIG. 5. (Left axis) Evolution of O/V ratios as a function of V2O5 film thickness, indicating 

a high stoichiometry (V2Ox>5) close to the interface. (Right axis) Normalized area of the 

substrate Si2p3/2 peak for each V2O5 thickness, identifying three growth regimes: (A) SiOx 



interlayer formation, (B) layered growth of V2O5 and (C) nucleation of V2O5 islands. 

(Color Online). 

 

A qualitative measure of silicon substrate coverage by V2O5 can be obtained from 

plotting the normalized Si2p peak areas as a function film thickness, as shown in Figure 5 

(right axis). At a first glance, three growth regimes are observed. During the first 

nanometers, a rapid linear increase of oxide coverage is observed until a critical thickness 

of ~3 nm is reached, followed by a less steep linear growth. Given that the IL thicknesses in 

Fig. 1 are quite uniform, we propose that the first regime (labeled A) is limited by the 

reaction rate between Si and the TMO, where SiOx is formed until it saturates at a fixed 

thickness (and atomic concentration). Next (regime B), V2O5 continues to deposit on a 

layer-by-layer basis for several mono-layers until growth occurs by island nucleation 

(regime C), in what is called a Stranski–Krastanov growth mode [26,37]. Diffusion of species 

is also possible [26] but improbable at the low substrate temperatures (~25ºC) at which 

thermal evaporation takes place. 

 

E. Band bending in c-Si and interface dipole 

Figure 6 depicts the proposed energy band diagram for TMO/n-Si before contact (a) 

and after the formation of the SiOx IL has taken place (b). In the previous sections, 

passivation of the surface dangling bonds by SiOx was proposed as the origin of chemical 

passivation. Additionally, the TMOs under study tend to induce an inversion (hole-rich) 

layer on n-Si as a result of their particularly large work functions (φTMO > 5.5 eV), forming 

the contact needed for photogenerated holes extraction [16,38,39]. This transition from n-

doping in the Si bulk to p-doping near the surface manifests as a band bending whose 



magnitude is the built-in potential (Vbi) of the heterojunction. Thus, passivation thorough 

field-effect is established by driving photogenerated electrons away from the interface.  

 

 

 

 

 

 

 

 

 

 

FIG. 6. Proposed band diagram for the TMO/n-Si heterojunction. (a) Before contact, 

depicting the transfer of electrons from n-type c-Si (oxidation) towards the higher work 

function TMO (reduction). (b) After contact, following the formation of a passivating SiOx 

interlayer. Electron transfer also induces a p+ inversion layer on the c-Si surface and 

possibly a negative dipole Δ(–) until Fermi levels reach equilibrium. (Color Online). 

 

Evidence of silicon band bending resulting from TMO deposition can be found in 

the Si2p core level spectra in Figure 2(a). A shift of the Si2p3/2 peak maximum to lower 

binding energies is observed as the V2O5 film thickness increases. This shift implies the 

‘distance’ between the Fermi level (EFermi) and the valence band (EVB) is decreasing, or in 

other words, up-bending occurs as V2O5 is deposited [40]. A maximum shift of 0.36 eV is 

obtained for the 5 nm film, although these values are only approximate given the sources of 



error in these measurements, mainly 1) the mismatch between the photoelectron sampling 

depth (<10 nm) and the inversion layer full width (> 100 nm), and 2) the generation of a 

surface photovoltage from x-ray illumination [40].  

The formation of an inversion layer in n-Si by high work function TMOS can also 

be explained as a consequence of band alignment across the interface [41,42]. Before both 

materials are contacted, a large electrochemical potential difference exists between them, as 

defined by the difference in their work functions Δφ = φTMO – φnSi = 5.4 – 4.2 eV. Such 

energy mismatch is the driving force that initiates EFermi alignment in a series of steps. First, 

electron transfer occurs from the valence band of n-Si (EVB ~5.2 eV) into the defect states 

lying deep within the TMO bandgap (Estates > 6 eV) (see Fig. 6). As explained in Section B, 

an electron loss in Si results in its oxidation to SiOx, while the TMO suffers a reduction to 

lower valence states due to electron gain. Then, as the Si surface is depleted of electrons, 

the valence band of silicon approaches EFermi and a p+ layer is induced. This inversion-

effect might be reinforced by negative charges fixed in the IL or in the first V2Ox>5 layers, 

as evidenced from the high O/V ratios. Since band bending cannot occur indefinitely, we 

presume the n-Si surface reaches a strong inversion condition with built-in voltage values 

close to Vbi ~0.7 eV. At this point, the large Δφ has only been distributed partially in the Si 

surface and the remaining energy difference needed for equilibrium is allocated by a 

negative dipole Δ(–), so that Δφ= Vbi – Δ. Similar mechanisms have been previously 

described for TMO/organic semiconductor systems where electron transfer into the TMO 

results in the formation of interfacial dipoles and p-doping of the organic Highest Occupied 

Molecular Orbital (HOMO) levels  [23,43]. Regarding the origin of the dipole, it is most 

probably located in the SiOx/c-Si interface as surface states, although it could also lie in the 



TMO in the form of uncoordinated (dangling) oxygen atoms, an inherent characteristic of 

TMOs with large stoichiometries (Mo2O6, W2O6 and V2O5) and multi-layered bulk 

structures [44,45].  

 

IV. CONCLUSIONS 

The mechanisms behind the passivation of n-type c-Si surfaces by thin layers of 

transition metal oxides MoO3, WO3 and V2O5 were investigated by probing the TMO/c-Si 

interface by HR-TEM, ToF-SIMS and XPS. Chemical passivation due to silicon bonding 

with oxygen was identified as a sub-stoichiometric SiOx~1.5 interlayer with thickness 

averaging 1.9 – 2.8 nm. This silicon sub-oxide is formed during the partial oxidation of H-

terminated silicon by the first TMO monolayers, leaving behind reduced and oxygen-

deficient species (MoO, WO2 and VO2). The redox reaction was determined to be 

thermodynamically favorable (–ΔGrxn) and driven by the large difference in the 

electrochemical potentials (Fermi levels) of both materials. Therefore, Fermi level 

equilibration across the interface results not only in SiOx formation but also on electron 

depletion (inversion) of the n-Si surface. Such inversion layer (band bending) thus acts as 

the hole-selective contact in this type of heterojunction solar cells.  

Additionally, the detailed investigation of the V2O5/SiOx/c-Si region by XPS 

determined that 1) film stoichiometry (V2Ox) varies with thickness, 2) different growth 

regimes (layer-by-layer, island nucleation) are present, and 3) band bending is observed as 

a shift of the Si2p core level spectra to lower binding energies, confirming that field-effect 

passivation (i.e. carrier-concentration gradients) is present as well.  

Overall, the described behavior of the TMO/c-Si interface allows for further 

improvements in its passivating properties, including surface functionalization, H2 diffusion 



to enhance chemical passivation or fine-tuning of TMO stoichiometry by other deposition 

methods (sputtering, atomic layer deposition). Once a genuine passivating/selective contact 

is developed, while maintaining (or improving) the conversion efficiency of the device, its 

eventual implementation could lower processing costs and enhance the competitiveness of 

c-Si photovoltaics. 
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FIGURE LIST 

FIG. 1. HR-TEM images of the ITO/TMO/c-Si heterostructures showing an interlayer 

between c-Si and MoO3 (a–b), WO3 (c) and V2O5 (d). 

 

FIG. 2. ToF-SIMS depth profile for the ITO/TMO/c-Si heterostructures showing a SiO2
– 

signal at the interface between c-Si and MoO3 (a–b), WO3 (c) and V2O5 (d). For each TMO,  

related reduced species (MoO–, WO2
–, VO2

–) are also detected near the interface. Also 

shown in (a) are the F–, C– and SiOH– signals, attributed to surface contamination of the 

HF-treated c-Si substrate after air-exposure. (Color Online). 

 

FIG. 3. XPS analysis of the V2O5/interlayer/c-Si region at increasing V2O5 thicknesses (1 – 

8 nm). (a) Si2p3/2 doublet spectra showing the characteristic features of the silicon substrate 

(Si0, 99.5 eV), an stoichiometric SiO2/c-Si reference (Si+4, 103.2 eV) and a sub-

stoichiometric SiOx~1.5 (Si+3, ~102.0 eV) attributed to the TMO/c-Si interlayer. Inset shows 

a detailed view of these features. The peak maxima, marked with a vertical line, shifts to 



lower energies as thickness increases. The Si2p1/2 doublet, shifted 0.63 eV to higher 

binding energies and smaller by a ratio 1:2, is omitted for clarity. (b) Evolution of the 

vanadium cation species V+4 and V+5 close to the c-Si interface. Inset shows the V2p3/2 

doublet spectra showing the characteristic features of V+4 (516.5 eV) and V+5 (518.1 eV) 

states. The V2p1/2 doublet is shifted 7.6 eV to higher binding energies. (Color Online). 

 

FIG. 4. O1s spectra of the V2O5 (6 nn)/interlayer/c-Si region. The larger feature (labeled I, 

530.6 eV) belongs to oxygen in vanadium oxide, while the smaller one (labeled II, 532.0 

eV) is attributed to oxygen in the SiOx~1.5 interlayer and to a defective-oxide associated to 

adventitious oxygen physisorbed during air exposure. Also shown is a reference spectra for 

SiO2/c-Si (532.8 eV). (Color Online). 

 

FIG. 5. (Left axis) Evolution of O/V ratios as a function of V2O5 film thickness, indicating 

a high stoichiometry (V2Ox>5) close to the interface. (Right axis) Normalized area of the 

substrate Si2p3/2 peak for each V2O5 thickness, identifying three growth regimes: (A) SiOx 

interlayer formation, (B) layered growth of V2O5 and (C) nucleation of V2O5 islands. 

(Color Online). 

 

FIG. 6. Proposed band diagram for the TMO/n-Si heterojunction. (a) Before contact, 

depicting the transfer of electrons from n-type c-Si (oxidation) towards the higher work 

function TMO (reduction). (b) After contact, following the formation of a passivating SiOx 

interlayer. Electron transfer also induces a p+ inversion layer on the c-Si surface and 

possibly a negative dipole Δ(–) until Fermi levels reach equilibrium. (Color Online). 

 


