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Abstract  

This paper presents a method for identification of modal parameters during flutter flight testing when 

excitation is employed and the aircraft possesses several acquisition sensors. The method takes advantage 

of the capacity of SVD for the analysis and identification of matrix rank, the power of QR factorization to 

reorder the files in a matrix in accordance with the information provided, general vector field properties 

as well as the features of exponentially-damped harmonic functions and the properties of the response 

resulting from the convolution of this type of functions with an excitation signal. The method is a 

generalization of an algorithm used at CLAEX (Spanish Flight Test Centre) to identify the free response 

of the aircraft structure after fix frequency excitation during in-flight flutter testing. Application to 

analytic signals as well as structural response of modern fighter aircraft using frequency sweep excitation 

is provided in order to demonstrate the effectiveness, robustness and noise immunity of the proposed 

method.  
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Background  

During Flutter Flight Testing, contrary to Ground Vibration Tests, the short duration of the signals and 

the closeness of the frequencies as well as difference in energy of such signals, make modal identification 

of critical modes (those responsible of flutter phenomena) particularly difficult.  

Two types of excitations are frequently employed in modern fighter Flutter Flight Testing: Sweep 

Frequency aileron deflection excitation that is used to identify structural modal parameters and Dwell 

(few seconds fixed frequency) aileron deflection excitation that is used to obtain an estimation of 

damping and to identify non-linear effects.  

The Singular Value Decomposition (SVD) and Column Pivoting Method works in the time domain and 

has been employed successfully after Dwell excitation to analyze the short free response of close modes. 

The basic methodology has been extended to enable modal analysis of the forced response.  

The proposed method operates in the time domain, but contrary to some tradicional time domain fitting 

algorithms as the Least Square Complex Exponential, or the Ibrahim Time Domain, does not make use of 

the impulse response function
3
 and so does not need to employ the Inverse Fourier transform of the FRF 

(Frequency Response Function), since the proposed method uses directly excitation and response signals. 

A time domain method using directly excitation and response signals is ERA (Eigenvalue Realization 

Algorithm) that has been developed by Juang and Pappa
12 

and employed by Brennen for the analysis of 

flutter data
13

.  
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These mentioned methods are very sensitive to the presence of noise and non-linearities. In order to 

overcome this problem, several new methodologies have been developed. The HHT (Hilbert-Huang 

Transform), employed by Brennen and Prazenica for the analysis of flutter data
10

 as well as by Islam 

Moya for the analysis of Climate Variability
11

, decomposes the signal in intrinsic mode functions by 

means of EMD (Empirical Mode Decomposition) and applies the Hilbert Transformation to each one of 

these functions. Alternatively, time-frequency domain, in particular Waveltet filtering, can be employed 

in the cases of sweep excitation to try to eliminate the contributions of non-linear phenomena
7-9

. The 

Wavelet Transformation, specifically the Morlet Wavelet, is employed by Kijewski and Kareem
2
 as well 

as by Slavic and Boltezar
4-6

 for system identification. The method proposed is able in some cases to 

surmount noise and non-linearities by looking in a interval of time where these problems are negligible.  
 

Principles of the Method  

The method is based on several principles and hypothesis being linearity of the system the basic one. As a 

direct consequence the structural modes are represented by exponentially-damped harmonic functions. 

Hypotesis of linearity  

The basic hypothesis used in this method is that there is a structural equivalent system in which the 

structural modes can be represented by harmonic signals exponentially damped
1-3

. This assumption 

implies the existence of a standard set of linearized equations of motion: 

 0 KhhChM    (1) 

where M, C and K denote the mass, damping and stiffness matrices respectively and h(t) is the 

displacement vector. Since in this case the equation is homogeneous without excitation, h(t) is the 

impulse response or the free response of the system. The solution of Eq. (1) can be expressed as a 

function of the modal coordinates as: 

 )()()(
1

tqtqth r
N

r

r


   (2) 

In equation (2) Φ denotes the modal matrix whose rows are the modal shape vectors φ
r
. This matrix 

depends on the initial conditions of the system. The vector q(t) contains the values of the modal 

coordinates q
r
(t). The time evolution of the modal coordinates is given by: 

                                           

22
1)2sin()( rr
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rr
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tfr fftfetq
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                                          (3)  

r

df denotes the damped frequency of mode r, whose natural frequency and damping ratio are 
r

nf and ξ
r
; 

on its side,Ø
r
 is the phase of the mode r. 

Property of exponentially damped harmonic signals
1
 

If in an exponentially damped sinusoidal signal, three portions corresponding to three intervals of time of 

the same length are taken, then the vectors describing these three portions are linearly dependent, unless 

two of them have the same phase. This means any of these three vectors can be built as linear 

combination of the other two. In case the signal is formed by two  exponentially damped sinusoidal 

signals, then four portions corresponding to four intervals of time have to be taken to build any other 

portion of the signal and so on. 
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Response of the system to excitation 

When the system is submitted to an exciting force: 

 )(tfKxxCxM     (4) 

And assuming that h(t) is the solution of equation (1), the system response x(t) is: 

  
t

dthftx
0

)()()(  (5) 

It has to be taken into account that the signal from a sensor of the aircraft contains electrical noise, forced 

response to turbulence and the effect of nonlinearities. If the noise and response to turbulence are random 

and Gaussian distributed and only weak nonlinear effects are present, the method proposed hereafter is 

applicable. 

Superposition principle 

The superposition principle states that for a linear system, the net response at a given time caused by two 

or more excitation forces is the sum of the responses which would have been caused by each force 

individually. This means that equation (4) can be written as: 
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  (6) 

Taking into account the superposition principle, the Eq. (5) can be rewritten as: 

 )(~)(
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t

T
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
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In equation (7) 
~

 denotes the modal matrix whose rows are the modal shape vectors 
r~ . This matrix 

depends on the initial conditions of the system at the moment T. 

The response of the system after the moment T is a composition of the response due to an excitation f(t) 

beginning at T and the free response of the system.  

Multiple sensors 

Flutter flight testing is performed using a test aircraft with several accelerometers and strain gauges 

embedded in the structure and in the loads (external fuel tanks, bombs, pods, missiles, etc) corresponding 

to the configuration under test. Since the aircraft structure is excited by two signals moving both ailerons, 

either in phase or in 180 degrees out-of-phase phase, in order to detect symmetric and antisymmetric 

modes respectively, it can be modeled by a single input system. 

Each modal shape vector φ
r
 of the modal matrix Φ in equation (2) represent the amplitudes of the modes 

detected by a sensor. Every sensor detects each mode with an amplitude that depends on its location. If, 

however, the sensor is placed close to a node, the corresponding mode cannot be detected because the 

signal it creates is too weak (i.e. the relevant component of the modal vector is small) . 

Considering that the aircraft has P sensors and N structural modes, that the impulse response of sensor i is 

hi(t), and that its response xi that begins at t = 0 and is sampled and evaluated between t = T1 and t = Tn, 

then: 

 )]()()([)]()()([)]()()([ 212121 nniiiiniiii TfTfTfThThThfhTxTxTxx     (8) 

And representing the impulse response by its modes: 
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  (9) 

 

It can be noticed that in this equation system the left side is known and the right side is unknown. In the 

right side there are PxN unknown parameters  
r

i and N unknown ][ rqf   vectors. This means that 

taking N vectors in the left side xi and in case they are not linearly dependent, it is possible to form a base 

equivalent to the ][ rqf   vectors.  

 

Proposed method for system identification  

 

Number of modes 

In order to be able to use the method the number of sensors available must be equal or higer than the 

number of modes, that means P > N. Even when the aircraft has infinite modes of vibration, in most of the 

cases the method is valid since only a few modes are excited enough to be detected and relevant in the 

analysis. 

Let us take the response signals between T1 and Tn and recorded with sampling frequency fs: 

 PiTxTxTxx niiii  1)]()()([ 21    (10) 

The first step of the method is to build a matrix A with the response signals: 
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In light of equation (9), for a linear and free of noise, the rank of matrix A (the number of nonzero 

singular values on its SVD) should match the number of modes. On the other hand, in a real system with 

noise, turbulence and weak nonlinearity all the singular values are nonzero. The smallest singular values 

appear due to these additional factors. 
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If the conditions under which the method is applicable are met, there will be N dominant singular values 

with the rest being considerably smaller. This provides a direct measure of the modal order of the system. 

If there is no clear distinction between both sets of singular values this means the method is not applicable 

(e.g. there are strong nonlinearities in the response). By dropping the small singular values it is possible to 

filter out most of the noise. This is achieved by building the matrix AC which is almost noise-free, in 

which small singular values have being equalled to zero: 
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QR factorization and file pivoting 

Any set of N files from matrix AC would form a base equivalent to the N vectors ][ rqf  . It is 

important, however, to choose the most adequate vectors. These are the vectors that are the most 

orthogonal to each other and have maximum norm. An efficient means of achieving this goal is QR
[12,15] 

factorization with file pivoting using the permutation matrix E such that: 
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The matrix B is ordered in such a way that its first N rows are the best base available to represent the 

space spanned by the vectors vectors ][ rqf  . Therefore, it is enough to keep these N rows and the rest 

can be discarded. A truncated matrix Bt can be built keeping only the first N rows: 

 rowsN

TxTxTx

TxTxTx

TxTxTx

B

n

n

n

t























)()()(

)()()(

)()()(

21

21

21















  (11) 

Since matrix Bt is of rank N, its SVD has a singular matrix S (N by n) with N nonzero singular values. 

Column pivoting
[6]

 based on QR decomposition in order to optimize row selection in matrix A is not 

employed in other modal analysis methods and is inspired by Prof. Kanjilal
[6]

 subset selection. 

 

Frequency and damping determination 

An augmented matrix B
*
 can be obtained adding an additional row to Bt. If the new row is linearly 

independent from the old ones (i.e. it is linearly independent from the N vectors ][ rqf  or equivalently 

from the N vectors xi for i = τ, π, …ψ) B* will be of rank 2n+1. On the other hand, if the new vector is a 

linear combination of the rows of Bt, the ranks of Bt and B
*
 shall remain equal due to the additional 

singular value being null. 

A sensor able to detect a single mode would measure the response of such structural mode to the 

excitation and could provide a vector that would be linearly dependent of the files of matrix Bt. 

In order to find the modes contained in the signal a parametric family of exponentially-damped sinusoidal 

functions (normalized with their Euclidean norm) is created. The free parameters are the frequency and 
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the reduced damping (fj, ξj). An additional parameter would be the phase, but in order to avoid it, two 

functions in 90 degrees out of phase are generated. 
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Evaluating the convolution of these two functions with the excitation force considering that such a force 

is equal to zero outside the period between t = T1 and t = Tn, then: 
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In case the parameters of frequency and reduced damping correspond to one structural mode, then due to 

the superposition principle the response of the system due to this mode to the excitation force is a 

combination of the four vectors S

j
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j RRYY ,,, 11 . 

The S
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j RRYY ,,, 11  vectors are used to build a family of augmented matrices *

jB . The SVD 

transformation is then applied to each member of this family: 
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To evaluate the rank of  *

jB  the product of the N+4 singular values of Sj is taken. Let us denote it by j. 
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Note that K is actually the determinant of the reduced matrix obtained retaining only the first N+4 

columns of Sj. This determinant vanishes if matrix *

jB  is of rank N+3. For each pair of parameters (fj, ξj) a 

j value can be computed which assesses to what degree the combination of the four vectors 
S

j

C

j

S

j

C

j RRYY ,,, 11 is independent from the ][ rqf   base. Those combinations which more closely match the 

modes of the system yield minimum values of j. 
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In order to obtain a comprehensive coverage a sequence of (fj, ξj) pairs must be built which spans the 

range of interest with an adequate resolution. For each frequency different values of the damping ratio are 

tested in order to determine the minimum Ψ for a given frequency. Then, the process is repeated for all 

the remaining values of the frequency. The local minimums of the Ψ function indicate the (fj, ξj) pairs 

which more closely approximate the modal parameters (frequency and damping) of the structure.  

Robustness of the Results 

While SVD is a very robust algorithm for matrix analysis it cannot always avoid spurious matches 

between the S

j

C

j

S

j

C

j RRYY ,,, 11  vectors and noise present in the signal. Nevertheless, it must be noted that 

the analytical  vectors were built using the sine and cosine functions, but could have been built from 

arbitraries phases between the functions. In case a real mode has been identified the values of Ψj for 

vectors built with both sine and cosine functions or any arbitrary phase must reach a local minimum. 

Failure to this condition indicates that the mode identifies is spurious and must be discarded. 

The method proposed is not overly sensitive to the order of the system (the number of modes retained N) 

contrary to other techniques of Modal Analysis. Experiments with real and analytical signals have 

demonstrated that the results do not change appreciably when the number of rows retained in matrix Bt is 

larger than the number of modes. 

 

Results and discussion  

Tests were conducted using the basic MATLAB 6.5 software without specialized toolboxes, applying the 

method to both synthetic data and real flight data. 

Application to synthetic data 

The synthetic data has been built up with a sweep frequency excitation signal f and ten responses x
i
 that 

where produced by convolution of this excitation signal with four impulse responses that represents four 

structural modes q
i
.  
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  (14) 

Gaussian noise was superimposed with the excitation signal in order to simulate the noise in the aircraft 

ailerons and the result was convolved with impulse signals. In addition Gaussian noise has been added as 

well to the response signal in order to simulate the noise in the sensors and in the telemetry signal.  

In a real flutter flight testing the frequencies are relatively well known, or at least the surroundings of 

such frequencies, since vibration tests on ground as well as analysis variation of the modal frequencies 

with speed have been performed before the flight. The main task is to identify the final frequency and 

most important the damping indicating the remaining structural stability. In order to find the frequency 

around 3 Hz, the method is applied the signal between the instant t=0.5 sec. and t=3.5 sec.  
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Figure 1– Method application to Synthetic Data Signals 

For each frequency investigated, there is a damping value that gives a minimum for Ψ parameters, that is 

a minimum for rank measurement.  

Frequency (Hz) 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 

Damping 0.01 0.01 0.01 0.095 0.08 0.07 0.075 0.085 0.01 0.01 0.01 

Ψ (1e5) 1.4295 1.8856 2.2878 1.9553 1.3314 0.90529 1.423 1.8661 1.9142 1.5856 1.2599 

Table 1– Numerical Results of Method application to Synthetic Data Signals 

 

Application to flight data 

The method has been applied to real signals from sensors embedded on the wing of the modern fighter 

aircraft during an representative SRAAM missile integration flutter test-flight. The computing time 

(around 2 to 3 second) with MATLAB software can be considered for this type of testing real time and 

indicates that the method could be working combined with prediction algorithms (Flutter Margin) to 

assist to the flight test engineer in the decision on whether to proceed to a more critical point during in-

flight testing.  

 

Figure 2– Frequency Response Function of modern fighter Sensors 
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The method identifies the damping value of the modes corresponding to the frequency 5.8 Hz and 

frequency 7.4 Hz  with values of 0.01 and 0.045 respctively when applied in a quite broad set of instants. 

It can be observed in the figure 2 that these two modes correspond to those with the higest energy. 

However the it is not able to identify undoubtedly the damping value of the mode corresponding to a 

frequency of 6.8 Hz, that wanders between 0.03 and 0.055.  Additionally in order to identify the mode the 

instant had to be precisely determined in a very narrow interval of time. This mode of 6.7 Hz is shadowed 

by the 7.3 Hz mode since they are very close and the latter one has much more energy. Finally the method 

fails to identify the last mode corresponding to a frequency of 9.4 Hz. The results of the analysis are 

summarized in figure 3. 

 

Figure 3– Modern fighter Sensors and method application 

Conclusions  

A method based in SVD, QR factorization, vector field properties and  features of exponentially-damped 

harmonic functions, considering a lineal system has been presented when excitation is employed and 

several acquisition sensors are available in the aircraft. The method uses only segments of time to identify 

the modal parameters instead of using the complete period of excitation. The method remains in the 

domain of time and does not need to identify the impulse response of the system as most of the modal 

identification methods
3
. Time-shifting of the response signal yields a symmetric square matrix from 

which, the modal order of the system is determined. Next, using QR factorization, a base of the space 

spanned by the modal vectors is built. Finally, SVD is utilized for modal parameters identification using a 

family of sinusoidal exponentially-damped functions. 

The method overcomes the signal identification limitations found with testing flight conditions near 

flutter, due to the proximity of adjacent modes and the short sample length. The proposed method 

successfully deals as well the so frequent short time signal loss since not the complete signal is required.  

The method described was applied to an anlystic example as well as to flutter flight-test data gathered 

during the SRAAM / modern fighter integration campaign. The technique demonstrated adequate modal 

identification performance (in terms of damping and frequency). 

Further studies to evaluate the impact in accuracy of non-linearity, sampling frequency, signal length, 

noise content and relative amplitude and damping of neighbouring modes as well as  the development of 

an error-estimation criteria are underway. Additional work will be devoted in order to reduce the current 

time using tools as Simulink Coder in order to mígrate the Matlab algorithm to C Coding.  
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