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Abstract

We present SKETCH’NDO, a framework for the interactive design and cre-
ation of task-based serious games in 3D virtual environments. The games
are single-user in 3D environment. They are dimensionally congruent: in-
herently 2D tasks such as reading and writing are done in 2D, while ma-
nipulation tasks are 3D. The architecture of the system allows educators to
design the tasks with a graphical editor that creates the game automatically.
This editor does not require gaming expertise. It only needs educators to
specify the correct ways of doing the task, without having to consider all
possible erroneous learner’s decisions. SKETCH’NDO provides a complete
mechanism of monitoring and evaluation of the learner’s performance that
allows a precise assessment of the learning process. It offers a gradation of
levels of assistance that can be fixed by educators or automatically adjusted
to the trainee’s skills. This way, the same task can be trained from a strictly
conductist strategy to a fully constructivist one.

Keywords: Serious Games, Task training, Task evaluation, Authoring
tools, 3D Virtual Environments

1. Introduction

Computer Games are playing a major role in children, youngster and even
older adults leisure. Serious Games (SGs) capitalise on the motivation that
persons show towards games in order to help them learn, train or rehabilitate
[Fre06]. The so-called ”digital game based learning” [Pre03] is emerging as5
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an alternative to traditional learning methods, because, in addition to moti-
vation and fun, games bring repetition, adaptive levels of difficulty and the
possibility of automatically reporting the learners’ behaviour and extracting
deeper and broader data about the learning process.

A field in which SGs seem particularly promising is teaching procedural10

knowledge, i.e. training the cognitive abilities needed to perform a procedu-
ral task: to remember the steps, to apply protocols, to identify critical cases,
to evaluate risks and, in general, to solve problems. For this type of training,
the learning approach is typically based on the constructivist theory [Jon94]:
learners build up their knowledge by themselves through their experiences,15

and instructors are ”facilitators” of the process rather than teachers. SGs are
suitable for this learning approach, because they can present a Virtual Envi-
ronment (VE) as similar as possible to a real one where users can experience
in a safe and cheap way.

Various SGs for task training have been described in the bibliography with20

very diverse applications in medicine [SCK∗10] [CSK∗11], disaster emergen-
cies [FM13] and industry [RJ97] [GMG∗08]. However, in spite of their po-
tential, the use SGs for task training is still limited. Several authors argue
that this is probably due to unclear standards and guidelines [YCGW09]
and to an incorrect balance between the contribution of educational-domain25

experts and game experts in the game design. As mentioned by Marne et
al. [MWHKBL12], depending on the relative weight of one or the other pro-
file in the game development, games are either educationally efficient but
little engaging, or on the contrary, entertaining but invalid for knowledge
acquisition. Different methodologies for game design have been proposed30

[vSdF11], all recommending a strong interrelation between the two teams.
Still, it is difficult for educational-domain experts to be aware of the poten-
tial and limitations of gaming technology and, for game designers, to truly
understand the pedagogical goals [TB08]. A promising solution is to provide
tools with which non-game experts are able to design games by their own.35

This strategy allows not only educators to design games, but also learners
to modify them. Game design is thus integrated in the learning process,
an educational approach called game-development-based learning (GDBL)
[WI12]. This methodology has been successfully used to learn programming
and software engineering [SHA∗11], but there are very few examples of GDBL40

for task training and with unclear capabilities [GMG∗08] or restricted to 2D
point-and-click games [TBEF∗13].

Finally, a key-aspect of SGs is assessment through the game and at its
end [BKL∗13]. Assessment during the game is necessary to adapt on-the-fly
its level of difficulty to the capabilities that the user has shown until the45

moment. It is needed at the end in order to measure the acquired skills
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and knowledge. Therefore, SGs must provide mechanisms to evaluate every
user’s action and determine if it is correct within the context of execution
and according to what educators consider to be the protocolary way of doing
the task. These mechanisms are difficult to implement when the procedures50

can be done in equally valid ways and when the spectrum of user’s actions
at each stage of the game is wide, in particular, for SGs in rich 3D virtual
environments.

We present SKETCHN’DO, a framework for the interactive design and
assessment of task-training games in 3D environments. SKETCH’NDO pro-55

vides a simple and fast way of defining task-based games through a visual
editor, without need of technical skills. Thus, it can be used by educators
and even by trainees themselves, to create or modify games within a reac-
tive environment. In addition, it provides a powerful task engine parser that
evaluates all user’s actions in comparison to what they are expected to do60

as expressed by domain experts in the visual editor. Thus, SKETCH’NDO
allows a wide range of pedagogical approaches: from a purely conductist
orientation with the interactions restricted to valid actions only, to a con-
structivist perspective leaving users free to interact in the environment, while
keeping control on the feasibility of the task.65

In the next sections of the paper, after reviewing the related work, we
describe the pedagogical requirements towards the definition of pedagogical
contents, and we explain the solutions that our system provides to match
these requirements. We illustrate the features of the system with three dif-
ferent case studies.70

2. Related work

Serious Game Content Edition
The development of games is generally based on a three-level structure

(see Figure 1): on the bottom level the graphical libraries for rendering and
simulation, for instance OpenGL and PhysX; at an intermediate level, a75

Game Engine such as Unity, Unreal and Blender GE, that provide an in-
tegrated environment with a suite of tools that ease the creation of games
and the reusing of parts of them [PDdFP10]; and, at the top level the game
scripting. Although many game engines, for instance Game Maker and Unity,
integrate a visual editor to define parts of the game, they all rely on program-80

mer’s scripting to implement the logics of the game, specially if it is complex,
thus they are not readily usable by non-game experts.

Many game studios have developed scripting languages on top of the
game engines APIs in order to define at a high level the behaviour of objects
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and characters [WCKJG09]. These scripting languages facilitate the modi-85

fication of games and the re-use of components from one game to the next.
However, they are primarily intended at programmers. Some games provide
virtual interfaces to their scripting languages that allow modding, i.e. that
provide users restricted means of modifying the game contents. Nevertheless,
although some experiences of Leisure Games (LGs) modifications to create90

SGs have been described [AML∗09], these scripting language interfaces are
generally insufficient for domain experts to express their pedagogical con-
tents. Moreover, in general, LGs do not integrate an evaluation mechanism
suitable for the required per-action contextualised user assessment.

Pedagogical research has shown that there is a need for tools allowing to95

express visually the learning processes [MWHKBL12]. The models proposed
by [PLLC∗06] include interesting concepts such as the use of visual languages
and state diagrams of the learning process. However, these models are too
abstract to be straightforwardly transferred into games creation. Thus, an in-
termediate layer between game scripting and pedagogical models is needed:100

the domain expert editor (see Figure 1). Visual Programming Languages
[Pap80] provide this intermediate layer for computing learning, for instance
Alice [PBCea95], Squeak Etoys [Kay05] and, later, Scratch [RMea09]. For
SGs development, a few game development architectures have been described.
Nadolski et al. [NHvdBea08] have proposed the EMERGO methodology to105

design web-based learning environments based on combinations of images
and videos, but not on 3D games. Other authors describe very field-specific
expert-domain editor: for industrial training simulation [GMG∗08], neurore-
habilitation tasks [MTG12], medical training [CC09] and 2D point-and-click
games for healthcare procedural knowledge teaching context [TBEF∗13].110

Evaluation
Task-based games require a control on the activities carried on in the

VE in order to evaluate if learners fulfil correctly the task, give them in-
structions and demonstrate how to perform the task. The HCSM framework
[CKP95] defines a hierarchical communication model based on concurrent115

state machines for autonomous agents simulations that provides this control.
This model was successfully applied to traffic control and driving simula-
tions. However, the low level of abstraction of this model makes it difficult
to integrate in a re-usable game scripting architecture.

The VET system [RJ97] introduces the figure of virtual teacher for pro-120

fessional training. The system is based on a model of causal links between
task steps and goals. A virtual agent monitors continuously the state of the
system and keeps track of the goals already fulfilled, thus, it is able to give
new instructions on the next goals. The specification of constraints and goals
may not be simple in complex tasks, indeed VET lacks from a visual editing125
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tools to define them.
Ponder et al. [PHM∗03] describe an immersive VR decision training sys-

tem based on a scenario graph of all possible user’s interactions. The main
drawback of this approach is that when users are allowed to interact freely
in the environment, and all their actions need to be controlled, the scenario130

graph can be huge, and even impossible to specify if the task is complex.
The Q language [Ish02] was defined to describe the behaviour of interactive
agents in driving simulators and free walking of virtual agents. It presents
the same drawback of requiring a complete description of all the potential
events in the scenario.135

The GVT platform [GMG∗08] for industrial task training is composed by
a 3D reactive and behavioural environment [MGA07], a scenario engine and
a pedagogy engine. The scenario engine is a multi-agent system. Its input
is a description of what can be done at each moment of the training session,
which can also be very extensive, because the possibilities of interactions140

in reactive VEs can be very numerous. This description can be specified
through a graphical editor. It is encoded with the LORA language [MA06]
based on a hierarchical parallel transition model composed of step machines
implemented as agents. The pedagogy engine reacts to trainees actions, and
adapts the system reaction to each trainee’s particularities. The system is145

designed for a specific training environment, and its generalisation to other
scenarios is unclear. In addition, it does not bring the possibility of mixing
2D and 3D interfaces.

Cabas and Chittaro [CC09] use the CTT formalism to describe tasks
in form of a hierarchical tree-like structure with temporal relations among150

subtasks defined by a series of temporal operators. The structure allows to
control at each step of the game if the user’s actions are correct according
to what expected. The main drawback of the system is that the formalism
is difficult to understand for a non-expert user, and even if the hierarchical
structure makes the specification easier, it still requires to describe all possible155

transitions, which is very complex in 3D interactive scenarios.
Finally, Torrente et al. [TBEF∗13] have recently proposed an educational

tool for the development of 2D game-like simulations in a healthcare procedu-
ral knowledge teaching context. The description of the story-flow is based on
a transition diagram. In order to reduce the complexity of the graph-like rep-160

resentation, the system uses hierarchical representations of the state nodes
[MBJMO11]. This solution is sufficient for the 2D point-and-click games,
but it is not suitable for games in rich 3D virtual scenarios where the domain
of user actions is very large, and thus specifying all possible user actions is
impossible.165
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3. SKETCHN’DO

The analysis of the previous work has shown that in order to facilitate and
shorten the design of SGs, it is necessary to provide SGs development plat-
forms with visual editing tools adapted to domain experts allowing them to
specify educational contents and assessment criteria. With this goal in mind,170

based on our previous experience of SGs development for neurorehabilitation
tasks [MTG12], we have designed SKETCH’NDO a platform for SGs de-
sign in 3D environments that offers a domain expert visual editor usable for
very diverse training domains, and that provides an effective mechanism of
trainers assessment.175

The games that can be designed with SKETCH’NDO are ambiented in 3D
VEs (see top images of Figure 2, for instance), but they can accommodate 2D
interaction contexts (see the examples bottom right image of Figure 2). They
are single-user and based on a first-person perspective. Users are trainees
that perform virtually the tasks by interacting with the reactive objects of180

the VE. The tasks are dimensionally congruent: inherently 2D actions such
as reading and writing are done in 2D, while manipulation tasks are done in
3D.

In the games, there is a system-driven character called task supervisor
that represents the trainer. This character provides instructions and feed-185

back, forbids some actions, realises others by her own, and scores the trainee’s
performance. The games can be played with different levels of difficulty, and
the task supervisor can adjust the difficulty dynamically during the game.
Neither the trainee character nor the supervisor character are embodied. The
trainee avatar is symbolically represented by the cursor. When the trainee190

drags an object through the VE, a miniature of this object is attached to
the cursor. The task supervisor manifests indirectly, through messages and
actions.

3.1. System overview

Domain-expert trainers use a visual editor to define the correct way of195

doing a task and the expected reaction of the task supervisor to the trainee
actions. This definition is called reference task. The editor is based on a
description of the VE contents and behaviour called reactive scenario model
(see Figure 3). Once the reference task has been designed, the editor au-
tomatically creates the logical engine of the game, called task engine. The200

game is then ready to be played.
Figure 5 shows the process of a game created with SKETCH’NDO. All

trainee’s interactions are processed by the interaction manager which trans-
lates them into action queries. The interaction manager enqueues the actions
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in a pending actions queue. The logical engine of the game or task engine205

analyses the correctness of the queried actions in comparison to the reference
task. Depending on the level of difficulty of the game, the task engine exe-
cutes all the actions or only the correct ones. It informs the supervisor who
emits feedback and instruction messages, programs new actions or modifies
the level of difficulty of the game. The different components of the game and210

the visual editor are described in the following sections.

3.2. Reactive scenario model and graphical model

The reactive scenario model defines the reactive objects of the scenario
and the actions in which these objects can participate. The reactive objects
have different states. They are represented by a Finite State Automaton215

(FSA), in which nodes are states of the objects and edges are actions. Edges
between nodes are actions that produce change of states and self-loop edges
are actions defined at specified states of the objects.

The reactive scenario model is an abstract model; the concrete imple-
mentation of the objects and actions is done is the graphical model. Every220

reactive object state is associated to a graphical object, either 2D or 3D.
The trainee’s interactions are done at the graphical model level. They are
translated as actions of the reactive scenario and are executed as graphical
actions at the graphical model level. Actions correspond to verbs of gram-
matical valence three, i.e. verbs with three arguments: role, receiver and225

emitter. The first argument role is the subject of the action. In trainee ac-
tions, it is the trainee’s avatar and in system actions, it is the supervisor.
The second argument (receiver) is the object whose graphical representation
has received the interaction. It represents the direct object of transitive ac-
tion verbs (e.g. supervisor picks the apple) or the complement of intransitive230

verbs (e.g. trainee goes to the table). Finally, the emitter is the object car-
ried by the role when interacting with a graphical object. It represents the
instrument of the action (e.g. trainee cuts the apple with a knife).

Figure 4 illustrates the relationship between the reactive scenario model
and the graphical model. The trainee (role) clicks on the iodine cup graphical235

model (receiver) holding a clean gauze (emitter). The corresponding action
causes a change of state of the object gauze from cleaned to stained. The
graphical action is a change of texture of the model.

The graphical model is implemented on top of the Blender Game Engine
[Kul12]. It is built by 3D designers using any digital content creation system240

and then imported to blender. SKETCHEN’DO provides an add-on toolkit
on top of blender that allows to define the relationship between the reactive
scenario model and the graphical model. This is a specialised task aimed at
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graphical designers. However, once a scenario is created, trainers can design
as many training tasks in them.245

3.3. Edition of the reference task

The reference task is defined in terms of blocks of three types: structural,
contextual and atomic (see Figure 7. Structural blocks hierarchically nest
other blocks. They represent the order in which these nested blocks must be
performed, either sequentially or in parallel. In a sequential block, a nested250

block must be done after the former block in the sequence to be considered
correct. In a parallel block, instead, the order is not relevant. Parallel blocks
can be parameterised to require only a subset of the nested blocks to be
completed. This way, the reference task is not a unique, rigid procedure. It
can define various valid ways of performing specific steps while preserving255

order constraints on other steps.
Contextual blocks are used to specify the graphical context in which the

nested blocks are performed: either the 3D environment or a 2D panel. For
instance, Figure 2 bottom, shows the 3D kitchen context used for 3D inter-
actions and a 2D context used at the end of the cooking exercise to help260

trainers to remember the ingredients they have used. Contextual blocks are
also hierarchical. Thus, trainers are allowed to mix 2D and 3D interactions
in the same task, and to select the interaction space dimension more suitable
for each step of the training activity. For each task, there is only one 3D
interaction space: the training scenario. However, the number of 2D interac-265

tion spaces is not limited. For instance, a task may require a 2D telephone
where trainees can only tip numbers, and an address book where they can
select names. When defining a 2D contextual block, trainers must specify in
which 2D space the interactions will occur. Thus, the only actions available
in that contextual block are those allowed in the corresponding 2D spaces.270

Finally, atomic blocks represent the task action triplet (emitter, verb,
receiver). Emitters as well as receivers can be defined as specific instances of
the reactive scenario entities, any instance of a particular category of entities
or a list of entities. Moreover, they can be a reference to an entity used in
a previous block. Figure 6 shows the parameters of an atomic block aimed275

at opening a brick of milk. The action block is the third of the task. The
receiver is defined as a reference. It represents the brick of milk that was the
receiver of the action block 2.

Atomic blocks allow to edit textual information that the supervisor uses
to post instructions and feedback messages related to the action. In addition,280

they allow to edit a set of parameters defining the context of validity of the
action, specifically:
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• Initial time: the action is considered valid only if it starts afters this
time. It requires trainees to pause and think, a frequent educator’s
query.285

• Maximum time: the action must be accomplished at most in this lapse
of time. This parameter allows to check if trainees have internalised
the task and are able to perform it fast. The maximum time of all the
actions can be multiplied by a slowing factor in early training sessions
without having to re-edit the task.290

• Automatic: it indicates whether the supervisor must do or not the
action if the trainee has failed to do it within the allotted time interval

• Permanent: it indicates that the action cannot be undone. If the trainee
undoes the action, the supervisor will ask him/her to do it again. For
example, the action is to turn on the television, the trainee does it, but295

after, he/she turns it off. The action of turning on the television will be
queried again, and the supervisor will only consider valid this action,
until done. The same process will be applied any time the trainee tries
to undo it.

• Dependencies: it indicates which other blocks depend on the action.300

If an action has dependencies, it automatically becomes a permanent
action until all the dependent blocks end. In the former example, if
turning on the television is not permanent, but has the dependent task
to check the volume of the television, it will become permanent until
the checking has been done.305

• Force: It may happen that an action has been freely accomplished
by the trainee before being asked to. This parameter indicates if the
supervisor will force the trainee do the action again at the right time,
or if it can be skipped. Sometimes, it is not feasible to re-do an action.
In this case, the game will end. As an example, the trainee is asked310

to cut a wooden plank, but he/she has already cut it before. The task
may either proceed, force the trainee to cut another plank or finish.

3.4. The task engine

The task engine parses the trainee actions and compares them to the
reference task. Thus, at any step, it knows which actions must be performed.315

In addition, analysing the FSA of the reactive objects, it knows which state
transitions are needed to bring an object to a state in which an action is
feasible. For instance, to fill a cup with water in the sink, it is necessary first
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to turn on the tap. Moreover, the task engine can retrieve information on the
location of the objects in the VE. Thus, it can also determine which actions320

must be performed to make the objects reachable to perform an action. For
instance, to pick a knife in a drawer, it is necessary before to navigate towards
the kitchen cabinet and open the corresponding drawer.

As a consequence, the description of the reference task does not need
to be fully detailed, but only to focus on the important actions, because325

the task engine is able to reconstruct the required auxiliary actions. This
simplifies a lot the trainer’s task definition. In Figure 8, we show a simple
task edited with SKETCHN’DO and we compare it with what it would be
necessary to define in a editor that needs to deploy all possible user moves
and all auxiliary actions. The Task Engine can inform the supervisor to send330

precise and ordered instructions and warnings. In addition, it can detect how
to correct wrong actions, for instance it is necessary to drop a wrong object
in order to be able to pick the correct one, or an object should be put back at
its previous location if it has been erroneously moved. With this information,
the supervisor can warn the trainee and even perform himself the corrective335

action. Finally, the task engine can detect when an action or the whole task
is no longer feasible, to make the supervisor finish the game.

The task engine is the dynamically programmable logic component of the
system. It consists of a hierarchical State Machine (SM) that controls the
task execution. It is generated from the reference task description created340

with the task editor. For each block of the reference task, a template program
is used to generate the SM that controls the behaviour of this block. The
generated Task Engine is the hierarchical composition of the block’s SM. The
child SMs are evaluated only if they fulfil a constraints function that ensures
a correct synchronisation between the different child SMs.345

The SMs corresponding to structural blocks are defined as follows:

Sequential The SM of a sequential block is generated by connecting the
state of acceptance (SA) of each child SMs with the child SM of the
next nested block of the sequence. The SA state of the last child is the
SA state of the sequential block SM.350

Parallel The SA state of each child SM increases a counter. The Parallel
block SM accepts when the counter reaches the number of nested blocks
required to be completed. For instance, if the required task is to select
four vegetables in any order and there are more than four vegetables
in the scenario, the correct approach to model the task is to model a355

parallel block nesting selections for all vegetables in the scenario and
require only four to be completed.
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The contextual block does not change the state of the task execution.
Therefore the contextual block SM only changes the context of execution
(from 2D to 3D or vice-versa) and passes the transition to its child.360

Finally, the atomic block SM is represented in Figure 9 in a simplified
version. The transitions are the interactions performed by the trainee and
the supervisor. The actions described in the reference task as the triplet
(emitter, verb, receiver) cause the transitions between states. The atomic
block SM accepts if the conditions that make the action realisable are fulfilled.365

Specifically, it requires to have picked the correct emitter (if the emitter is
not the trainee) and to have the receiver accessible (state S5). The transition
between S5 and SA executes the action.

The collection of states [S1−S5] includes the possible cases considered in
the simplified version. The states are evaluated in order so that the current370

state corresponds to the first state that accomplishes its condition. For in-
stance, if the receiver is accessible but a wrong object is picked, the current
state is S1. This consideration simplifies the scheme and avoids to evalu-
ate all the possible combinations. The effect of this simplification is that
the trainee must first drop the wrong emitter, then pick the correct emitter,375

and then select the receiver, in this order necessarily. In addition, if the
interaction has been done before the state evaluation, the SM passes to the
SA state, except if the force parameter of the corresponding atomic block is
enabled.

In Figure 9 the black transitions represent the interactions that proceed380

to reach the final goal, and the red ones represent the incorrect interactions
that can be considered as trainee errors. We next describe the different state
transitions with the sample task of picking a brick of milk from the fridge
and filling a glass with it.

S1: Wrong emitter The trainee has picked an object that is not contained385

in the emitter list of the atomic block, the brick of milk in the example.
This object must be dropped anywhere in order to be able to pick the
brick.

S2: Inaccessible emitter The trainee has not picked any emitter yet, and
the correct emitters are enclosed in closed objects (containers) or nested390

containers (a box in a closed cupboard, for instance) making them
inaccessible. The trainee must first open the containers to make the
emitter objects accessible. It is the case when the milk is inside the
closed fridge.

S3: Accessible emitter The trainee has not picked any emitter yet, and395

one or more emitter objects are accessible. The trainee must pick one
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of the emitter objects. In the example, the milk is in the opened fridge.

S4: Inaccessible receiver The trainee has picked a correct emitter or he/she
is the emitter of the action. There are not accessible receivers, so the
trainee must open a receiver container to make one or more receivers400

accessible. For instance, the trainee has just picked the brick of milk,
but the glass is in a cupboard.

S5: Accessible receiver The trainee has picked a correct emitter or he/she
is the emitter of the action, and one or more receiver objects are acces-
sible. The trainee must perform the interaction. In the example, the405

trainee has picked the milk, and the glass is accessible on the kitchen
marble.

SA: Accepting The trainee has performed the interaction and the block is
accepted. The trainee must perform the next interactions.

A transition is considered wrong if it does not yield to a state further410

than the current one. There are only four possibilities of doing a wrong
interaction:

1. To pick a wrong object in any state causes a transition to S1.

2. To drop a correct emitter object in S4 or S5 causes a transition to state
S3.415

3. To close the emitter or receiver containers causes a back transition from
S3, S5 to S2, S4 respectively.

4. To do any action with no impact in the emitter or receiver objects does
not change the state of the block (loop transitions).

As can be seen, the SM only considers the states and transitions necessary420

to complete the specified task and ignores the actions that do not yield to the
goal (”Do anything else” transitions in Figure 9). This approach simplifies
the scheme and guarantees the achievement of the goal whenever possible,
i.e. when the task design is terminable and the trainee errors don’t break
the task requirements.425

The simplified scheme exposed represents only the transitions caused by
trainee interactions. In addition to these, some supervisor actions can alter
the state of the execution. Specifically, when the maximum time for the
interaction is exceeded in any state, the supervisor makes a transition that
forces the accepting state SA. If the supervisor is configured to do the430

interaction, it does it, including the opening of the emitter and receiver
containers if necessary. The supervisor also forces the SM of permanent
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action blocks or actions having dependencies to exit the accepting state if
the action is undone.

The constraints function imposes restrictions on the SM machines to be435

evaluated. Specifically, it delays the evaluation of an atomic block SM in the
following cases:

• if the initial time of the corresponding block has not been reached;

• if the action block has emitters or receivers that reference objects of
other action blocks, the SM corresponding to these blocks must be440

accepted to evaluate the current block;

• if the atomic block is considered permanent or has dependencies, and
the action is undone, all the other SM are delayed until the atomic
block is accepted.

3.5. Assistance445

This architecture provides a trainee customised level of challenge and
a continuum of degrees of assistance from a fully driven interaction mode
to a completely free one (see Figure 10). The key elements to provide this
gradation are the set of trainee’s interactions allowed at each step of the game,
the instructions given, the feedback provided on trainees’ performance, the450

time left to do each action and the number of allowed errors. The higher level
of assistance is provided when only the ”correct” interactions are allowed, i.e.
those that follow the reference task. In this case, trainees can try to interact
with other objects, but the corresponding actions will not be performed.
Therefore, learning is free-of-error. At this higher level of assistance, detailed455

instructions on each next step are given as well as reward and correction
feedback on the last interaction. Moreover, if the trainee exceeds the time
allowed to perform a particular action or makes a number of trials higher
than a given threshold, the system will perform the action automatically to
let the trainee proceed to the next step. The opposite side of the continuum460

allows all interactions and does not give instructions and feedback. In this
mode, the task finishes because the trainee has completed it, when the total
task time is exhausted or when the task is no longer feasible due to the
trainee’s errors. Intermediate levels of assistance guide some actions and let
trainees perform freely others, but warn them and guide them on how they465

should be corrected.

3.6. Assessment

Since the task engine controls all trainees interactions in their context,
it is able to deliver an evaluation report of the trainee’s performance. The
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assessment takes into account four different parameters: trainee interactions,470

trainee actions, supervisor actions, times and trainee avatar’s travelled dis-
tances (see Table 1).

Trainee interactions are trainee input intended at yielding game actions.
They can be of different types: click on 2D widgets, 2D and 3D objects,
virtual keyboard or camera orientation. Trainee interactions are classified475

into two categories: fruitful and unfruitful. Only the former ones yield to
the execution of actions in the VE. Unfruitful interactions are done on ob-
jects that are not reactive at that stage of the game. Unfruitful interactions
are relevant in the trainee assessment, because, during the realisation of a
concrete procedure, they indicate potential errors and, in a free exploration,480

instead, they may indicate curiosity.
Trainee actions are classified into two groups: correct and incorrect. The

former ones match with the expected actions of the reference task or are
considered as necessary to perform the expected actions. Each correct action
is evaluated according to a score defined in the editor. This way, it is possible485

to define different valid paths to fulfil an action and scoring higher those
considered to be better.

Supervisor actions also split in two types: expected actions, already in-
cluded in the reference task and assistance actions carried out by the su-
pervisor because the trainee has failed in doing an action and, according to490

the level of difficulty of the training, this failure yields an intervention of the
supervisor.

The times needed to perform each individual action, a task and the whole
game are compared to the maximum allotted corresponding times to provide
indications of the fastness of the trainee. Finally, in 3D tasks the distances495

travelled are also compared to the expected distances to measure to which
extent trainees have get lost in the VE.

On the basis of all these indicators, in the visual editor, trainers define
a global scoring formula. During the game, this overall score is used to
dynamically raise or lower the level of difficulty of the game through different500

parameters. First, trainers can restrict the number of allowed actions at each
step of the game flow in order to prevent trainees from getting lost in an
irrecoverable situation, if they launch incorrect actions. When only correct
actions are available at each step the learning process is error-free. Next,
they can define the factor that modulates the maximum time of each atomic505

block. Finally, they can define the frequency of the instructions and feedback
messages posted by the supervisor. Therefore, the same reference task can
be used to train with different levels of assistance.
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4. Results - Case Study

To illustrate the system’s features we describe three simple tasks in three510

different scenarios: a virtual kitchen, an office and a surgery room (Figure
2). The three tasks can be performed with different levels of assistance.
These are simple tasks designed just to analyse how trainers designed them.
However, SKETCH’NDO can be used to design much more complex tasks.
In fact, we have used SKETCH’NDO in a variety of scenarios for various515

types of training tasks, from complex surgery procedures to hotel cleaning
protocols.

Trained educators create these tasks in less than fifteen minutes. The time
needed to train educators depends on their previous skills in using computers
and on their degree of involvement in the educational project. It can last520

from 2 to 10 hours before they are able to design simple tasks as the next
described. The difficulties faced by trainers in using the framework were not
so related with application interface, but with the fact that they were not used
to describe the procedures in a non-verbal, rigorous way. Using the editor
requires a reflexion that they were not used to in that way. However, it is525

precisely this reflexion that is needed to specify tasks. In fact, trainers report
that this description of procedures was useful also for other applications than
serious games, for instance to design storyboards of simulation sessions in the
surgery training case.

4.1. Cooking training530

The scenario represents a kitchen filled with a large diversity of objects.
The objective of the training is to learn cooking by following recipes. The
sample task consists of dressing a dish of macaroni. It all happens in a
3D context. The trainee must put tomato sauce and cheese on top of the
macaroni no matter in which order. In order to put the tomato, he/she must535

first open the tomato can with a can opener. The plate with the macaroni
must stay on the kitchen counter while it is prepared, and at the end it must
to brought to the table. This simple task illustrates the need of parallel
and sequential blocks and of the dependencies between blocks. It can be
performed with various levels of assistance.540

4.2. Office work

The scenario model shows an office for administrative work training. The
sample task consists of looking for the phone number of a given person in a
phone book, learning the number within a limited time interval, and dialling
it. The task involves the 3D environment plus two 2D interaction spaces:545

the phone book and the telephone. It illustrates fluent integration of the
interaction spaces.
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4.3. Surgery

The 3D virtual environment is an operating room to train all clinical
roles involved in a surgical intervention. The sample task is addressed to550

instrument nurses. Its goal is help them to find the most suitable distribution
of instrument on the Mayo table. The trainees have a limited time to freely
order the instruments on the table. After, the supervisor asks them to select
a sequence of instruments as fast as possible. This task shows that the system
allows completely free interactions, as well as controlled ones. Specifically,555

in the first part of the task, the trainee can do any action, without any
validation, but in the second part, he/she is required to pick the correct
objects in the correct order. With a high level of assistance, in this second
part, the trainee will only be able to pick the correct ones, and with a lower
level, he/she will be able to pick other objects but will be warned to drop560

them and pick the valid ones.
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6. Conclusions565

Designing serious games for professional training requires a strong in-
volvement of trainers. We have presented SKETCH’NDO, a framework for
the fast creation of task-based serious games. The system brings trainers
the possibility of editing games by themselves in pre-designed 2D and 3D
reactive environment. The created games allow a gradation of levels of as-570

sistance, and an exhaustive control of trainees behaviour that can used for
their evaluation. SKETCH’NDO is currently being used to design a variety
of games in different scenarios. Its main advantage in comparison to other
frameworks is that it requires trainers to define only the expected procedure,
at a high level and without having to deploy all situations that can happen575

depending on how the trainee acts.
Currently, the creation of the reactive scenario is done by game designers

following general requirements of trainers. Thus, trainer define tasks on pre-
defined scenarios. The next step in the development of the system is to create
a graphical scene editor that could be used by educators to customise the580

environments using pre-designed objects and actions. This would provide
even more flexibility in designing tasks.

The current implementation of SKETCH’NDO is for single-user training.
However, the architecture of the task engine can easily be extended to support
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multiple trainees working collaboratively on the same task. In the future, we585

plan to implement this extension and modify the task definition to restrict
some steps of the task to specific trainees.
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Table captions710

• Table 1: Registered indicators for user assessment

Figure captions

• Figure 1: Program layers of a SG and the role of domain experts and
game developers in game creation.

• Figure 2: Three different training scenarios for training games design715

with SKETCH’NDO. Top left: surgery training; top right: office work;
bottom: cooking, at left a 3D view at right a 2D context view.

• Figure 3: Overview of the system: educators use the visual game editor
to create the the game.

• Figure 5: Structure of the system: the interaction manager enqueues720

the trainee’s action query; the task engine evaluates them and in-
forms the supervisor, who enqueues new actions and emits messages
addressed to the trainee.

• Figure 4: A trainee interaction on the iodine cup graphical model is
interpreted as the action trainee stain the gauze that produces a state725

transition of the reactive object gauze. The action is implemented as
a change of texture of the graphical model.

• Figure 6: A panel for the edition of atomic blocks. The reciver of the
action is a reference to the receiver of a prvious action

• Figure 7: A view of the SKETCH’NDO editor. Users select the different730

types of blocks from the upper menu bar and distribute them on the
graphical area. The blocks can be nested. The parameters of a block
are defined in the panel at right. The blocks of the reference task shown
in the figure consist of opening the fridge and either picking the cheese
or picking the milk and looking its expiracy date. All the block, but735

ticking the expiracy date are 3D contexts.

• Figure 8: Example of a task specified with the SKETCH’NDO edi-
tor (left) and using a graph description technique (right). The task
consists first of putting the salad on a plate and then add salt, olive
oil and vinegar in any order. As it can be seen the expression of the740

task in editor is simpler, faster to edit and more readable. The graph
description has been simplified avoiding to put states where the user
grabs other objects that are not related to the task.
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• Figure 9: Simplified state machine of the Atomic action block. It
controls the context to perform a user interaction.745

• Figure 10: The level of assistance continuum
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Navigation and camera orientation
Virtual keyboard

Interaction 2D widgets Fruitful
Click on 2D objects Unfruitful

3D objects
User actions Per type Correct

Incorrect
Supervisor Per type Expected
actions Assistance
Times Per action Per task Per game
Traveled Per action Per task Per game
distance

Table 1:

Figure 1:
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Figure 2:

Figure 3:
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Figure 4:

Figure 5:
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Figure 6:
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Figure 7:

Figure 8:
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Figure 9:

Figure 10:
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