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ABSTRACT. The accurate engineering of interfaces between plasmonic nanocrystals and 

semiconducting organic molecules is currently devised as a key for further developments in 

critical fields like photovoltaics and photocatalysis. In this work, a new and unconventional 

source of interface interaction based on metal-metal bonds is presented. With this aim, an Au(I)-

organometallic gelator has been exploited for the formation of hydrogel-like nanocomposites 

containig noble metal nanoparticles and conjugated organic molecules. Noteworthy, the 

establishment of metallophilic interactions at the interface between the two moieties greatly 
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enhances the surface plasmon resonance coupling of nanoparticles in the composites. We believe 

that this new hybrid system might represent a promising alternative for the fabrication of 

improved plasmon-enhanced light harvesting devices.  

INTRODUCTION 

Photovoltaic devices and photocatalytic cells rely both on the possibility to harvest light and 

convert it into clean electrical or chemical energy.1 In this regard, new composite photoactive 

materials are currently being designed to fulfill two different functions: first, performing as light 

antenna, so that the absorption cross-section can be enlarged and consequently more excitons 

(electron-hole pairs) easily generated; second, inducing an efficient charge carrier separation, so 

that electrons and holes can work independently in the composite material.2 Plasmonic 

nanostructures have recently gained a lot of importance as both strong visible light absorbers and 

exciton dissociation enhancers in photovoltaic and photocatalytic devices.3,4 Indeed, in many 

proposed plasmon-enhanced light harvesting systems, the active material layer is formed by a 

blend of organic and inorganic domains, namely polymers or small conjugated organic 

molecules and noble metal nanoparticles (NPs) or metallic contacts, respectively.5–8 Thus, the 

study of interfaces between materials has become an issue of paramount importance in the field, 

and they must be accurately engineered in order to ease charge carrier percolation through the 

composite and consequently maximize energy conversion or photocatalytic activity.9–11  

 An interesting approach to control the organization of organic material is the use of 

noncovalent, supramolecular interactions: it is well-known that semiconducting polymers and -

conjugated organic molecules can self-assemble forming functional gel-like structures based on 

- stacking that lead to superior electronic properties.12,13 Inorganic NPs might then be 
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embedded in these supramolecular systems.14 When polymeric or small organic molecule 

gelators are used for this purpose, the organic-inorganic interface is usually based on covalent 

bonds,15,16 electrostatic interactions,17 and/or hydrogen bonding.18 

 The use of metallogelators instead of only-organic gelators for the formation of either 

hydrogels or organogels has recently become the subject of study.19,20 Metallogelators are 

defined as low molecular weight gelators formed by the coordination of organic ligands to 

metallic ions. As in the case of -conjugated organic gelators, metallogelators spontaneously 

self-assemble through a combination of noncovalent interactions resulting in the formation of 

filaments or aggregated structures. Noteworthy, the presence of a metal ion offers a new and 

unconventional driving force for the formation of the supramolecular structure, which lies in the 

possibility to establish, in some cases, metallophilic intermolecular interactions of strength 

comparable to the hydrogen bond.21 While metal-metal bonds are widely observed in solid state 

molecule-based crystalline systems, such source of interaction has only recently been observed 

in solution22–25  and, to the best of our knowledge, it has never been explored as a way of 

anchoring functional molecules to nanostructured materials in order to enhance synergetic 

phenomena.  

 We present here a new hydrosoluble nanocomposite (NCP) originated from the 

spontaneous supramolecular assembly of noble metal NPs and a highly fluorescent low 

molecular weight Au(I)-metallogelator.26 These novel hybrids are characterized by intimate 

organometallic-inorganic interfaces that induce a strong electronic coupling between the two 

components, becoming in this way potential candidates for future optoelectronic devices or 

photocatalytic systems. 
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EXPERIMENTAL SECTION  

The assembly of the two components leading to the formation of the hydrosoluble NCP is 

achieved simply by mixing two chloroform solutions at room temperature, each of them 

containing separately oleylamine-capped Au NPs (Au-OLAm NPs) and the luminescent gold(I) 

alkynyl phosphine complex [Au(4-pyridylethynyl)(DAPTA)] (Figure 1a), where DAPTA is 3,7-

diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane, hereafter called complex 1 for simplicity. 

Specifically, 4.2 mg (8μmol) of complex 1 were dissolved in 8 mL CHCl3 and mixed with 0.17 

nmol Au-OLAm NPs. The solution was shaked for 2h and centrifuged for 3 min at 4500 rpm. 

Then, the precipitate was washed with chloroform and the solid redispersed in polar solvents like 

water, methanol or ethanol forming an optically clear blue solution, as shown in Figure 1b. The 

formation of NCPs of complex 1 with inorganic NPs other than Au-OLAm NPs was adapted 

from the protocol described above using Ag/CdSe/Fe3O4@Au NPs instead of Au NPs. The 

syntheses of the inorganic NPs and complex 1 can be found in the Supporting Information (SI).  

NCPs were characterized by Field Emission Scanning Electron Microscopy (FESEM) using a 

Zeiss Neon40 scanning electron miscroscope Crossbeam Station equipped with a field emission 

electron source operating at 5 kV. A Zetasizer NanoS Spectrometer was used for the Dynamic 

Light Scattering (DLS) measurements. The samples were measured in quartz cuvettes. Infrared 

(IR) spectra were carried out on a FTIR 520 Nicolet Spectrophotometer. For the measurements a 

pellet of a mixture of the sample and KBr was used. X-ray photoelectron spectroscopy (XPS) 

was performed on a SPECS system equipped with an Al anode XR50 source operating at 150 

mW and a Phoibos 150 MCD-9 detector. The pass energy of the hemispherical analyzer was set 
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at 25 eV and the energy step was set at 0.1 eV. The binding energy (BE) values were referred to 

the C 1s peak at 284.8 eV. ES(+) mass spectra were recorded on a 4800Plus MALDI TOF/TOF 

Analyser Applied Biosystems MDS SCIEX. A Cary 100 Scan 388 Varian UV-Vis 

spectrophotometer and a NanoLog Horiba Jobin Yvon fluorometer were used with quartz 

cuvettes for optical characterization. Raman spectrum were acquired with a Jobin-

YvonLabRamHR 800 spectophotometer coupled with an Olympus BXFM optical microscope 

using a 532 nm laser. An Hitachi H800 MP conventional transmission electron microscope 

(TEM) equipped with Bioscan Gatan camera and tungsten filament, operating at an acceleration 

voltage of 200 kV and 3 μm spot size was used for the morphological study of all synthesized 

nanostructures. The samples were prepared by drop casting and evaporation of the solvent onto 

carbon-coated 300-μm mesh Cu grids.  

The composition and concentration of the nanoparticles solutions was determined by 

Inductively Coupled Plama-Atomic Emission Spectroscopy (ICP-AES). The measurements were 

carried out by an Optima 3200 RL Perkin Elmer spectrometer. For this measurements 50 µL of 

the solutions were precipitated in MeOH and re-dispersed in CHCl3. The solution was 

evaporated in an oven overnight at 90°C. 2.5 mL aqua regia and 0.7 mL H2O2 were added to the 

precipitate before the vial was sealed and then heated to 90°C for 72h. The resulting solution 

were transferred to 25 mL volumetric flask and diluted with milliQ water. 

RESULTS AND DISCUSION 

Au-complex 1 NCP was characterized by different techniques in order to study its size and 

morphology. While Transmission Electron Microscopy (TEM) images confirmed that the 

original size and shape of the hydrophobic Au-OLAm NPs was preserved after the formation of 

the hydrophilic NCP (see Figure S1), Field Emission Scanning Electron Microscopy (FESEM) 
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showed the formation of aggregates formed by metallic particles and surrounded by a light 

contrasted shell of lower atomic weight, as shown in Figure 1c and inset, suggesting the presence 

of an organic coverage. Dynamic Light Scattering (DLS) measurements indicate that the solution 

is formed by colloidally stable aggregates of average size around 117 nm as indicated in Figure 

1d. The measurements revealed that the aggregates were stable in solution for long periods of 

time, i.e. up to 6 months at least, at room temperature as well as at 50 °C, and at any value of pH 

within the range between 4 and 9 (Figures S2 and S3). 
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Figure 1. (a) Scheme of complex 1 molecular structure (b) Solubility of the initial 

hydrophobic Au-OLAm NPs and the final hydrophilic Au-complex 1 NCP (c) FESEM 

micrograph of Au-complex 1 NCP (d) DLS measurements of hydrophobic Au-OLAm NPs and 

hydrophilic Au-complex 1 NCP. 

Infrared (IR) spectra of the initial hydrophobic Au NPs, free complex 1 molecules and the 

synthesized hydrophilic NCP sample are shown in Figure 2a. The NCP was previously washed 

with dichloromethane in order to discard any unbound molecules of complex 1. The intense 

carboxylic C=O and pyridinic C=N stretching bands between 1500 and 1700 cm-1 indicate the 

presence of complex 1 molecules in the sample. Slight shifts to lower wavenumbers and the 

wider range of frequencies for the transitions observed, compared to the spectrum of free 

complex 1, suggest the effective chemisorption of the molecules on the surface of the metallic 

nanostructures,27 as well as the presence of complex 1 molecules interacting differently with 

NPs, forming a significantly thick envelope that confers solubility to the aggregates. Noteworthy, 

the intensity of the aliphatic C-H stretching bands at around 2900 cm-1 observed for the initial 

oleylamine-capped Au NPs suffers a drastic damping, evidencing the quantitative removal of the 

hydrophobic surfactant. Mass spectra of the sample show several characteristic peaks 

corresponding to the free complex 1 with additional atoms of Au, the latter being most probably 

knocked out from the metallic surface during the ionization process (see Figure S4). X-ray 

Photoelectron Spectroscopy (XPS) was also used for the chemical characterization of the NCP. 

XPS spectrum shown in Figure 2b proves the coexistence of Au0 and Au(I) species in the 

sample, in agreement with the formation of hybrid systems containing both metallic Au NPs and 

an Au(I)-based metallogelator. However, the surface-sensitive character of XPS does not allow 

quantifying the amount of complex 1 molecules per Au NP in the sample. 
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Thus, this ratio has been alternatively estimated by means of UV-Vis absorption 

measurements, which provide a theoretical value of 2000 molecules per NP. The fitting of the 

XPS spectrum in the N and P regions indicates a N/P ratio of 3.6 in the NCP, in fair agreement 

with the theoretical ratio of 4 for complex 1, further confirming its presence in the sample and 

the removal of the initial aliphatic amine surfactant (see Figure S5). 

Figure 2. (a) IR spectra of Au-OLAm NPs, free complex 1, and Au-complex 1 NCP. (b) XPS 

spectrum of Au-complex 1 NCP. 
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UV-Vis spectra of the hybrid system at different pH media present two signals as shown in 

Figure 3. On the one side, there is a vibronically resolved band at 260 nm attributed to complex 

1 metallogelator chomophore, which in its free form present three characteristic peaks around 

this wavelength.26 On the other side, the signal at 500-600 nm is assigned to the characteristic 

surface plasmon resonance (SPR) band of gold NPs. For a better study of the NCP formation, 

two series of absorption spectra have been carried out fixing one of the components (complex 1 

or Au-OLAm NPs) and adding small amounts of the other successively at pH 7. Both 

experiments (see Figure S6) show a gradual shift and widening of the SPR band. The red-shift 

and broadening of this band, compared to the band observed for the isolated oleylamine-capped 

Au NPs in toluene, denote an agglomeration of the NPs.28 The collected data so far suggest that 

the aggregation is due to the trapping of the NPs inside the entangled complex 1-based 

structures. Our previous studies showed how aqueous solutions of free complex 1 spontaneously 

form hydrogel structures propagated through supramolecular interactions.26 Similar hydrogel 

structures are likely formed also in the presence of Au NPs, wrapping the latter inside and 

guaranteeing their water solubility. As depicted in Figure 3, the SPR band is more red-shifted 

and broader at neutral and slightly basic media (pH 7-8), evidencing a clear enhancement of 

interparticle interactions. Interestingly, in the UV-Vis spectra of water solutions of free complex 

1 at pH 7-8 (see Figure S7) there is a notable intensification of the broad and weak band at 300 

nm, assigned to the aurophilic interactions,29 indicating a better capacity of complex 1 to create 

Au(I)-Au(I) bonds at this pH. Indeed, for the NCP sample, the ratio of absorption intensities at 

300 nm and 260 nm (A300/A260) is maximum at pH 7-8, confirming the higher degree of 

aurophilic interactions under these specific conditions (Figure S8). Accordingly, the affinity of 

the metallogelator for the surface of Au NPs is greatly enhanced at neutral pH. This is translated 
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into a reversible change of color of the solution from violet at low (< 7) and high (> 8) pH, to 

blue at neutral and slightly basic medium as shown in inset of Figure 3 and in Figure S9. The 

enhancement of interparticle SPR coupling originating the red shift and broadening of the SPR 

band at pH 7-8 can be mainly associated to an increase of aurophilic interactions in the NCP, 

since no significant shrinkage or variation of size of the aggregates is observed by DLS 

measurements in samples at different pH (Figure S3).17,30 Although these results confirm the key 

role of metallophilic bonds in the system, the interaction of the surface atoms of Au NPs with 

complex 1 through the pyridinic nitrogen atom of the latter should not be neglected: the 

successful transfer of metallic nanostructures from organic solvents to water solutions by means 

of only-organic pyridine derivatives has been previously reported by other authors.31,32 

Figure 3. UV-Vis absorption spectra of hydrophilic Au-complex 1 NCP at different pH media, 

hydrophobic Au-OLAm NPs in toluene and free complex 1 at neutral pH.  For ease of 

understanding, the spectrum of Au-OLAm NPs in toluene is shown only above 300 nm, avoiding 

the appearance of solvent absorption in the figure. (inset) Au-complex 1 NCP water dispersions 

at different pH media. 
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The efficient quantitative quenching of fluorescence of complex 1 observed in the Au-complex 

1 NCP,33,34 and the surface enhanced Raman scattering processes (SERS) experienced by 

complex 1 molecules bound onto and placed in the proximity of plasmonic NPs,35 allowed 

studying our system by Raman spectroscopy as shown in Figure S10. Strong bands are observed 

at ca. 1650-1500 cm-1, that can be assigned to the carbonyl and C=N vibrations of the 

organometallic complex. Remarkably, the Raman spectrum allows also confirming the presence 

of the C≡C bond of complex 1, characterized by a broad band at 2050 cm-1, which could not be 

observed in the NCP sample by infrared spectroscopy.  

 All in all, these data confirm the formation of hydrosoluble Au-complex 1 NCPs and 

illustrate how aurophilic interactions strengthen the interface between the inorganic NPs and the 

organometallic gelator, and enhance the interparticle SPR coupling. In order to further confirm 

these evidences, additional experiments were made replacing Au NPs by other types of inorganic 

nanocrystals of similar sizes but different chemical nature. Ag NPs as well as CdSe quantum dots 

and Fe3O4 nanocrystals were chosen as representative systems.  Ag NPs behave in an analogous 

way to that of Au NPs (see Figures S11-S15). Metallophilic Ag-Au interactions are expected to 

play an important role in this system as well as they do in many supramolecular assemblies of 

organometallic molecules.36 On the contrary, no hydrophilic materials were obtained when 

replacing Au NPs by CdSe or Fe3O4 nanocrystals. This behavior is believed to be due to the 

absolute lack of affinity between the surface of these inorganic NPs and complex 1, most 

probably related to their inability to form metallophilic interactions. However, a fine atomic Au 

coating of the surface of Fe3O4 nanocrystals was sufficient so as to improve their affinity for 

complex 1 and obtain stable aqueous solutions of Fe3O4@Au-complex 1 NCPs (see Figure S16). 
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CONCLUSIONS 

A new strategy is presented for the functionalization and coupling of noble metal plasmonic NPs 

with conjugated organic moieties by means of direct metal-metal bonds. With this purpose, a 

small molecule conjugated metallogelator has been used, which is characterized by the presence 

of a Au(I) ion covalently linked to a short conjugated  system, with the ability to establish 

strong metallophilic interactions with the surface atoms of Au and Ag NPs. Such new source of 

chemical affinity induces the room temperature formation of stable NCPs that are soluble in 

water and alcohol solutions. We believe that this type of system could represent a significant 

improvement in terms of interface design between plasmonically active NPs and photoactive 

polymers, since metallogelators are prone to create a direct link between surface atoms of 

metallic nanostructures and - stacking systems in semiconducting polymers, chemically 

smoothing their interface. Thus, significant improvements in the field of plasmon enhanced light 

harvesting devices are expected thereof. The potential of other organometallic gelators for the 

successful functionalization of inorganic NPs, as well as the capacity of these novel NCPs to 

form functional blends of materials, are currently being addressed. 
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