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Polarimetric SAR Speckle Noise Model

Carlos Lopez-MartineStudent Member, IEEBNd Xavier Fabregadember, IEEE

Abstract—Synthetic aperture radar (SAR) data are affected by ~a solved problem, as it is well known that it has a multiplicative
speckle noise, originated by the SAR system’s coherent nature. nature for the amplitude and an additive nature for the phase [3],
The problem of speckle noise in one-dimensional (1-D) data is [5], [6]. On the contrary, the speckle noise problem for POISAR

already solved, as speckle has a multiplicative characteristic. SAR data s still not solved. A tensi fthe sinale-ch I model
polarimetry represents an extension to multidimensional data by atalis stilinot solved. An extension ot the singie-channel mode

the use of polarization wave diversity. As a consequence of the iS not possible, as the SAR images present generally a corre-
existence of a correlation degree between the SAR images, thelation degree between them. Hence, the speckle noise nature
1-D speckle noise model cannot be extended to multidimensional for PoISAR data is still not known [7], [8]. SAR data modeling
SAR data. This paper is devoted to present a completely new 5,4 SAR data filtering (i.e., information estimation) are two dif-
speckle noise model for the complex covariance matrix describing f t ts of th bl th ilability of
polarimetric SAR data in the distributed scatterers case. As will er'en a_SpeC_S ofthe same problem, as the an"" abil y,o a.po-
be shown, this new model is able to identify which are the noise larimetric noise model would make a correct signal estimation
mechanisms in all the covariance matrix elements. The speckle possible.

noise model is validated by using real L-band polarimetric data  Several alternatives have been investigated in order to reduce
acquired with the German E-SAR sensor. speckle noise in multidimensional SAR data, with special in-

Index Terms—Covariance matrix, noise modeling, speckle noise, terest in PoISAR data. These techniques can be divided into

synthetic aperture radar (SAR) polarimetry. two big groups depending on which is the final purpose. The
first group embraces all those techniques assuming multidimen-
I. INTRODUCTION sional SAR data as a type of diversity, combining all the chan-

) ~nels to derive speckle-free images [9]-[11]. These approaches
SYNTHET|C aperture radar (SAR) is a well-establishegyre characterized for keeping the spatial resolution but loosing
echnology for remote sensing applications. As it hag the polarimetric information. The second group contains all
been extensively reported in the literature, thg |nformat|on thidose techniques based on obtaining the speckle-free input im-
thesg type of systems can gather has a crucial mpoyrtance&e@sy therefore maintaining the correlation information between
monitoring natural fea_tures and changes on the e_arth s surfagm [8], [12]. This second group of techniques is basically
SAR systems have first been employed in a single-chanfiglsed on an spatial processing of the SAR images, therefore,
configuration to obtain high spatial resolution informatioRyffecting the spatial resolution. Relating the two groups of ap-
about the reflectivity properties of the imaged scene [Lhroaches, it is clear that there is a trade-off between spatial res-
The availability of multidimensional SAR systems has mad§ution maintenance and the preservation of the interchannel in-
possible to increase the amount of available information abqytmation. This compromise is due, in part, to the fact that the
the earth’s surface. In particular, SAR polarimetry (POISARhformation about the speckle noise nature for PoISAR data is
is a well-established multidimensional SAR technique basgg complete.
on acquiring earth’s surface information by means of using |, this paper, the authors present a complete speckle noise
a pair of orthogonal polarizations for the transmitted angode for single-look PoISAR data. This new model is able to
received electromagnetic fields [2]. Nowadays, there exists gantify the speckle noise characteristics for all the covariance
extensive amount of techniques based on POISAR data, €ratrix elements. As shown, the developed noise model is also
terrain _cla55|f|cat|0n,_ surface parameter estimation, biomass;ccordance with all the previous theory about speckle. The
estimation, etc. The importance of POISAR can be also segfyde| will be qualitatively and quantitatively validated with real
from the sensor’s point of view, as airborne PoISAR systengg)sAR data.
already exist, and satellite systems are planned. The present paper has been divided as follows. Section Il con-
Speckle noise [3], [4] is one of the most important proble”téins a brief introduction to PoISAR, focused on data descrip-
of SAR data. In order to obtain high spatial resolution in the agyn_section 111 is devoted to present the speckle noise model
imuth dimension, SAR systems coherently record the returngghory, together with an analysis of its properties. A qualita-
echoes. The speckle noise is precisely originating from this Ggze and quantitative validation is reported in Section IV. Finally,
herent nature. Speckle noise in single-channel SAR systemsis:tion V presents the main conclusions derived from the study

presented in this paper.
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illuminating field, for a particular polarization basis. For the Assuming statistical ergodicity and homogené€i€y} can be
linear polarization basis case estimated substituting the ensemble average by spatial aver-
aging, known as multilook

_ Shh Shv n
5= g 5] W 2= - Y[cl ©)
=1

whereh andv represent the horizontal and vertical linear pOIa(/_vheren represents the number of averaged pixels, [ddis

izations, respectivelys,, is the scattering coefficient relating ; . : . ; -
the illuminating field withg-polarization and the received fieldthe covariance matrix of a particular pixel defined|as, =

in p-polarization.[S] can be decomposed in an orthogonal ma.kl.k;r- As the sample covariance matfif] is derived from{s],
trix basis, yielding to the target vector’'s concept [13]. For thiis affected by speckle noise in such a way that the larger the

lexicographic decomposition basis, the target vektisr number of averaged pixels, the lower the speckle noise content
[13],[17]. Inthis case, speckle reduction (i.e., signal estimation)

T is obtained at the expense of spatial resolution. The statistics of
k=[Sm Sww Svn Sw] (2)  the covariance matrijZ] have been found to be the Wishart pdf

S _ ~W([C],n) [15], [16], [18]
where® indicates transpose. For the backscattering direction,

due to the reciprocity theorem under the BSA convention [2],
i.e., Sypv = Sy, k can be simplified to

nin (2]~ exp (~ntr ([C)7(2]))
K(n, g[C]"

piz) ([2]) = ()

whereK (n, q) is
k= [Shh ﬁShV va ]T (3)
K(n,q) = x0/210 00 () - T(o =g +1). @)
where/2 is introduced to maintain the vector’s norik|? or ) .
span.[S] characterizes completely the scattering process f6f-) iS the matrix trace, and represents the number of chan-
deterministic scatterers. On the contrary, it fails to characteri?8!S- In the case of a monostatic PoISAR system configuration,
the scattering process for distributed scatterers [14], i.6.8quals 3.

random targets. For this type of scatterers, as a consequendd©m the pdf given by (7), itis possible to derive the pdf cor-
of the random changes from pixel to pixel, the maf# is, responding to all the quantities within the covariance matrix.

therefore, random. Based on the SAR’s coherent nature, ung&e [15] and [16] for a complete and detailed statistical analysis
the Gaussian scatterer assumptiancan be modeled by a of the Wishart pdf, as well as the pdfs of the associated param-
multivariate, complex, zero-mean, Gaussian probability densf§ers- These pdfs will be employed to derive the speckle noise
function (pdf)A/(0, [C]) [15], [16] model for the covariance matrix.

I1l. POLARIMETRIC SAR DATA SPECKLE NOISE MODEL

1
pi(k) = o] P (—kT|[C]| lk) 4 Al the covariance matriC] elements are obtained as the
product of two elements of the scattering maf§% Therefore,
wheref represents the transpose complex conjugate of a vecinmrder to derive a noise model fgt], only a particular element
and|[C]| denotes the determinant(af]. This pdf is completely will be studied. Any element of thg”| matrix can be written
determined by the & 3 complex, Hermitian, covariance matrixas the complex Hermitian produst S}, wherep, ¢, r, ands

rs?

[C], defined as belong to a pair of orthogonal polarization states. The effects of
using a different polarization basis will be commented on later
+ in this paper.
[C]=E {kk } As mentioned previoushy$,, Sy, has a random nature due

. {|Shh|2} VIE [SunSEt St} to speckle. Its statistical behavior is determined by the complex
2hv v correlation coefficient
= | V2E {SwShnt 2B {|Sh"| } V2E (St} E {55455}

* * p -
E {vashh} \/QE {S""S"h} E {|SVV|2} (5) \/E {|Spq|2} E {|Srs|2}

= |plexp (o)  (9)

. where|p| is called coherence, anf. is known as the effective

\glz)e;rgfn{j'u}g;etgr(e)?zn?o;hlglg;ﬁgﬁﬁ;ﬁﬁge&?ﬁ:&iﬁz&n ggase difference. The average power in the two channels is de-
: — 2 21\1/2 *

are considered as distributed scatterers; therefore, they are CBIrr]r?-d ‘."151/’ (E{|Spa"}E{19::["}) /7. The termsS,,q 5;; can

X . : . e written as

pletely determined, in polarimetric terms, ] and not by

[S]. For distributed scatterers§] has five independent parame- SpaSt = |Spq S| exp (j (ppq — brs)) = zexp ()  (10)

ters, wherea®] has nine. This difference comes from the fact - ® ' “ '

that[C] contains information concerning the data’s correlatiowherez is the amplitude, ang represents the measured phase

structure. difference. In order to derive a speckle model for (10), first, a
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noise model will be derived for the phase differencén the ! ’ ' ' ' ' ' ‘ ‘ T2
complex plane, i.esxp(j¢). Then, the amplitude information 0.8 -
z will be included to derive the final speckle noise model. ¢ -7

A. Phase Difference Noise Model 04r e . Ne 1
Based on the Gaussian scattering model for distributed sc-2| P - ]
terers, the expression for the measured phase differgpel, o—"— s s ‘ . : : : ;
obtained from the Wishart distribution (7), is [15], [16] 0 01 02 03 04 05 06 07 08 08
1 2\
po(9) = r (n + 5) (1 4 ) p Fig. 1. Comparison betweel, and|p|.

- _ g2yn+1/2
2yl(n) (1 - 5%) o\ n Re{-} and Im{-} denote the real and imaginary parts, respec-
(L-10l?) P 1: 1o 11) tively. The parametersV., v;, andv; are due to the phase
+ 21 {1, L ’/H ( ) . .
2T 2 noise termv. The noise model for the complex phase term
whereg = |p| cos (¢ — ¢), anda 1y (a, b; ¢; =) represents the exp(j¢), (18) and (19), has been validated for interferometric

Gauss hypergeometric function. Based on (11), the phase AR (INSAR) data as shown in [20]. Under the assumption

ferenceyp follows an additive noise model in the real plane [193is?rigu?gzszsr;/\f&g]te;?rilﬁ ITtOICSaAr\]Rbga::?):s?gelrgfip}ia(tjatthaeare

¢ =¢:+v (12) phase difference noise model (12) is also valid for PoISAR data

. . . : . [22], [23].
where ¢,. is the original phase difference without noise, and

v represents a zero-mean noise dependindgppandn, and B. Hermitian Product Noise Model
independent fronp,.. The measured phase can be coded in the

complex unitary circle as a unit amplitude phasor In this section, the noise model given by (18) and (19) is taken

as a starting point to obtain the complete noise model for the
exp (7)) = cos (¢) + 7 sin (). 13) Ccovariance matrix term§y,, Sy,. Hence, the amplitude infor-
p(39) (9) +Jsin(¢) 13) mationz has to be introduced within (18) and (19)
In this case, only the real part of (13) will be analyzed, since the ) , ,
imaginary part phase noise model can be derived in the sdthe? exp(j @)} =Nezcos (§s) + 2 v cos (¢z) — 2 vasin (¢s)

way. Based on the additive phase noise model (12), the real part (20)
of (13) can be decomposed as Im{zexp(j ¢)} =N, zsin (¢) + 2z v} sin (¢z) + 2 v5 cos (¢s) -
cos (¢) = cos (¢ +v) = cos (¢) cos (v) — sin (¢, ) sin (v). (21)

(14) In order to derive the speckle noise model $gr, 5., homoge-
In (14), the phase termp, has been separated from the noisgeous data will be assumed. In the following, the three terms of
contributionv. The termscos (v) andsin (v) are only due to (20) and (21) will be studied in detail to identify noise sources,
the noise termv. In [20], the authors gave the expression fore., sources of randomness, and therefore, to see how they de-
the distributions otos (v) andsin (v). These two noise contri- grade the useful information content, i.e., the signal’'s mean

butions can be represented as the addition of their mean valuakie. The model is derived on the analysis of the real and imag-

plus random terms with the same variances [21] inary parts of the Hermitian product, despite a complex model
, will be presented.
v = cos(v) = Ne + vy (15) 1) Noise Model:The first term is N.zcos(¢,) for
vy =sin(v) = Ny + v} (16) Re{S,, 5%} and N, zsin(¢,) for Im{S,, S¥}. For homoge-

. neous data, the terns,, as well ascos(¢,) andsin(¢,) are
whereN, = 0. On the contrary}, C’.Wh'Ch represgnts the MeAN.onstant values. Hence, the first term in (20) and (21) is com-
value ofcos (v), equals, fom = 1 (i.e., one-look imagery)

pletely determined statistically by the amplitude information
T 11 2 The mean and the variance of this term, for the real part case
Ne = Z|ﬂ|2F1 30935 lo|” ) - (17) " (20) based on the expressions given in [16], are

As it will be shown later, this is the key parameter to define theE { N z cos (¢..)} =N.cos (¢.) E {z}

speckle noise model for (10). Fig. 1 shows the behaviaW of _ON T I
as a function ofp|. As (17) shows, this parameter has the same =Y N cos (¢.) 12l -5 -5l o]
information content afp|. Therefore, instead of taking it as a (22)
noise parameter, it will be considered as a signal term. Usin 22 9
(14)—(16), the real and imaginary parts of (13) can be written ggr {Ne zcos (¢e)} =y"N; cos™ (¢) )
) 2_ (T
Re{exp(j )} =N cos () + v} cos (¢) v} sin (¢ (1e0r = (3)
a8 2 (—pmptbP)) @)
Im {exp(j ¢)} =N.sin (¢,) + v sin (¢z) + vh cos (dx) - 20 2

(19) wherevar{-} denotes the variance.
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Fig. 2. Mean value of the first speckle noise term. Fig. 4. Mean value of the second speckle noise term.
1 T T T T T T T T
08k =7 in the previous case, assuming h_omogeneous d&_t@iyz) gnq
g = -~ sin(¢,) are constants. Thus, this second term is statistically
80'6" = E{z} vs. std{z} determined byzv|. From (15),v) = cos(v) — N., and on
204F = 1 the basis of the expressions given in [16], the mean value of
- = / .
L _ = 1 zwjcos IS
02 == E{N 2} vs. std{N z} 1 (qbw)

% 01 02 03 04 05 06 07 08 09 1 E {zv] cos (¢z)} =cos (¢s) (E{zcos(v)} — N.E{z})
Mean
iy

—pcos () (|p| NS

Fig. 3. Mean value versus standard deviation of the first speckle noise term. 4
Dashed—dotted line shows the relation without introduciig whereas the 1 1
continuous line presents the relation introducivig -2 F <_ -, — 5; 1; |p|2>> .

5 (25)
Fig. 2 depicts the mean value given by (22), assunging 1

and cos(¢,) = 1. Fig. 3 shows the effect of the parametef\ssumingy = 1 andcos(¢,) = 1, the maximum value of (25)

Nc over the mean and the variance of the first term of (20§ lower than 0.2 (See F|g 4) In order to obtain the value of the

also considering) = 1 andcos(¢,) = 1. If the parameter variance for the second term (15) is used again. The variance

N. is not taken into consideration, the mean and the variané@ue is as shown in (26) at the bottom of the page. As (26)

given by (22) and (23) correspond to the statistical paranﬁhows, the variance of the second term presents a complicated

ters of the amplitude. In this case, if the standard deviatiorXPression, making difficult to extract conclusions concerning

is plotted as a function of the mean, a clear relation cannot edependence with the different parameters. For this reason, an

established, as shown by the dashed—dotted line in Fig. 3. @Proximation for (26) has been considered. The type of curve

the other hand, ifV. is introduced, and the standard deviatiodsed to approximate (26) has been selected taking into account

is plotted as a function of the mean, it can be observed frdts dependence dp| (see Fig. 5), butalso its similar dependence

the continuous line in Fig. 3 that the relation between thef{! |»| compared to the third term variance of (20), as it will be

is very close to an equality relation, i.e., 6.z cos(¢,)} ~ Shownin (31). The approximation is hence

abg E{N.z cos(¢.)}), where std-} is the standard deviation. 1 L6a

As a consequence, the teth z cos(¢,) can be approximated ~ var {zv} cos(¢,)} ~ 51/)2 cos? (o) (L—p[?)" . (27)

by a multiplicative noise term in the following way:
As it can be seen from Fig. 5, fafr = 1 andcos(¢,) = 1, the

N zcos (¢z) 2 Nz €os () nm = )N cos (¢z) Znnm  approximation presents a very small error with respect to the
_ (24)  real value. Besides, it can be seen that the variance (26) has a
wheren,,, denotes an homogeneous noise term \tifn,,} =  \well-defined dependence on the coherepge

Landvar{n,,} = 1. The parametet is the mean amplitude and | a similar way as it has been done with the first term of
zy, is the same quantity but normalized, i.2.= z,. Forthe (20) and (21), in this case, the random variable defined by
imaginary part case (21), the terms(¢) has to be substituted ;. ¢os(¢, ) can be divided into its mean value plus a random

by sin(¢.) in (22)-(24). term with the same variance
The second term in (20) and (21) isv] cos(¢,) and

zv] sin(¢,) for the real and imaginary parts, respectively. As  zv] cos (¢.) = 1 cos (¢z) {(|p| = NeZn) + na1}  (28)

var (e cos(6)) =cos? () (1] (01 = 300) "} ) = cos? (00) (1 {32 foost) = 80"} = 12 )

1 97 11
=1 cos*(¢bg) {5 (1= 1pI%) +2lpl* + N + NZ|pl” = Nelpl -2 F1 <—§7 —5i2 |p|2>

™ 11 O\
- I/)I—chzFl —5,—5;1;|p| (26)
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Fig. 5. Standard deviation of the second speckle noise term. The dashed fie 7. Covariance value between the first and the second speckle noise terms.
represents the approximation, and the solid line is the exact value.

wheren,» determines a random term wifi{n,»} = 0 and a

0.8 1 ' ‘ ‘ ' ‘ ' ' ’ variance
0.6 T - :

5 TTI var {ng»} = var{zv } . (33)

5 R P?

Co4t T |

) BN The above analysis has shown which is the behavior of the indi-
0.2 "S> ] vidual terms of (20) and (21). The first term can be thought of as

0 : , . . K , s . .V amultiplicative noise term, (24), whereas the last two terms (28)

0 01 02 03 04 05 06 07 08 09 1 gznd(32)can be interpreted as additive noise terms. In order to
obtain a final noise model, itis necessary to determine the corre-
Fig. 6. Standard deviation corresponding to the additive noise terms. Dashations between the three terms of (20) and (21). First of all, the
line: std{n,,}. Dotted line: stdn..}. Continuous line: Approximation for covariance between the first an the second term, for the real part
std{r.,} and stn.i case, is obtained as in (34), shown at the bottom of the page.
Fig. 7 presents the plot of this covariance value. The covari-
wheren,; denotes anoise termwiffi{n,; } = 0 andavariance gnce between the first and the third term of (20) is

var{n,i } = M, (29) E{cos (¢z) (Nez — Nez) sin (¢,) (2v5) }
P? =cos (pg) sin(¢,) (NE {z*sin(v)} — NezE{zsin(v)})
In this case, the value af is extracted from the mean and vari- =0. (35)

ance values, as the final noise model will be easilyinterpreteg. liv. th . b h d and the third addi
The last term of (20) and (213 sin(¢.) and zu) cos(¢.) qually, the covariance between the second and the third addi-

respectively, is analyzed next. As it will be seen, itis very simildl/€ t&rms Is zero
to the second term. Based on (16) and [16], the mean value is E{cos(¢z) (Zq/l — E) sin(¢,) (zv5)}

E {zv}ysin(¢,)} = sin (¢,) E{zsin(v)} = 0. (30) =cos(¢y) sin(qﬁg,;)(E{z2 cos(v)sin(v)} — E{22 sin(v)})
The variance of this third term can be derived also using (15) =0 (36)
The noise model for the elements of the covariance m#ftjx
var {zvh sin (¢,)} =E {sin2(¢m)(zv'2 - %)2} (10) is finally obtained substituting (24), (28) and (32), together
1 with the equivalent expression for the imaginary part, within
251/)2 sin” (¢ ) (1 — |p[?). (31) (20)and (21). These expressions are combined to form the com-

plex Hermitian product speckle noise model
Comparing (31) and (27), as shown by Fig. 6, the variance of

this term has the same type of behavior as the second term (26):  SpaSts =¥ NeZnnm exp (j¢z)

the lower the coherence vall, the larger the variance value. + 1 [(|p] = NeZn) + nar] exp(joa)

Hence, it can be deduced that the last two terms within (20) and + Pz exp (§ (o + 7)) - (37)
(21) will determine the speckle behavior for low coherences. As

performed before, this third term can be written as 2) Noise Model Simplification:The approximation intro-
duced within (20) and (21) by (24), has allowed to define a

205 sin(¢y) = P sin(py )na2 (32) linear noise model for (10) as shown by (37). Three noise

E {COS(QS,,;) (Nez — N.2) cos(¢z) (zvi - E)} = cos? () (NCE {2*v]} - chzv’l) = 1p?N.. cos*(¢s)

97 1 1' e 9 T 1 1' e B s _1 _l_ o
[Iplszl( 5 272,|p|> Ne(1+ |p|%) 42F1< 5 271,|p| > (Ipl Nc42F1< 5 2,1,|p|
(34)
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(]

sources have been identified: a multiplicative noise source
given by n,, and two additive noise sources defined oy,

and n,». As (36) shows, the additive noise components are
uncorrelated, making it possible to join them

Pnar =1 c08(dg )1 — ¥ SIn(Py )Na2 (38) v(lpI-NZ,)
PYa; =1 Sin(dz)na1 + ¥ cos(py )na2 (39)

wheren,, denotes a single additive term for the complex Her- .
mitian product real part noise model, ang is the additive term
for the imaginary part. A& {n,;} = 0 and E{n.2} = 0, L — R
hence,E{n.,} = 0 and E{n,;} = 0. In order to calculate

the variance, as,; andn,» are uncorrelated anebs?(¢,) + Fig. 8. Speckle noise model scheme.

sin?(¢,) = 1, the following inequality will be employed

C. Speckle Noise Model Interpretation

var{nar } < var{ngs} (40) Equation (42) has been derived for a general term of the
~ a2f- . . . .

var{7na;} sample covariance matrix given By, Sy.. A diagonal element

of the covariance matrix is a particular case, which has the
Due to (40), and the similarity betweear{n,, } andvar{n,»} expressionS,,S; . Therefore, it can be analyzed as the
(see Fig. 6), the variances of, andn.; can be approximated Hermitian product of two termsS,, and S} respectively,
by any value betweewmr{n,; } andvar{n,2}. For this approx- characterized by a complex correlation coefficient with unit
imation, a curve removing the dependence on the phhasat amplitude and a zero phase. In this case, (42) simplifies to
the expense of introducing an small error in the final variance,
will be taken. In order to minimize this error on average, a mean SpaSpq = Pnm. (43)
curve is chosen. The justification for this approximation lies in
the fact that a simple noise model can be derived. The selecldt noise terms... andn.; disappear, as their mean and vari-
curve is ance values are zero. As a result, (43) defines the multiplicative
speckle noise model for the diagonal terms of the covariance
matrix [8]. In the same way, the defined speckle noise model is
in accordance with the additive noise model for the phase dif-
ference in the real plane [19] by construction. Therefore, the
The effect of this approximation can also be observed in Fig. @erived speckle noise model is in accordance with the previous
Introducing the approximations given by (38) and (39) withitheory about speckle noise, generalizing it for all the covariance
(37), the final expression for the speckle noise modebfrSy, matrix elements. Thatis, (42) defines which is the speckle noise

var{n,;} <

var{na} = var{n.;} ~ %1/}2(1 — |p|)1'32. (41)

is nature for the diagonal, as well as for the off-diagonal covari-
ance matrix elements.
* - . As presented previously, the multiplicative speckle noise term
SpqSrs = YN Zpnm exp(jds) P P Y p P

- . . n., IS homogeneous, as it does not depend either on the power
(ol = NeZn) exp(jda) + ¢ (nar + jnai).  (42) term or on the complex correlation coefficigntOn the other
hand, the additive noise terms, andn,; cannot be consid-
In (42), it can easily be identified that the speckle noise, for amyed as homogeneous, since their variances depefd fsee
element of the covariance matrj&’], has two different noise (41)]. Despite these dependencies, the final nature of the com-
components. The first term, given yV.z,,n.,, exp(j¢..), has plex Hermitian product speckle noise, i.e., the combination of
a multiplicative noise characteristic, given by the teim. As the multiplicative and the additive speckle noise terms, is clearly
this noise term affects equally the real and the imaginary padstermined by the complex correlation coefficigntAs ob-
of the complex Hermitian product, it only introduces noise iserved in (42), the first additive term, i.&.N .z, 1., exp(jd.),
the amplitude, whereas the phase is not altered. The third teoontains the complex coefficienf. exp(j¢..). This coefficient
denoted by (na. + jnai), introduces noise both in the am-determines the influence of the multiplicative ters, on the
plitude and the phase, as the processgsand n,; are dif- final speckle noise. For low coherences, siiéeis low and
ferent. The second terif(|p| — N.z,) exp(j¢.) is justamean the variances of the additive noise terms andn,; present
value without noise. Fig. 8 presents a vectorial view of the noiseaximum values, speckle noise is dominated by an additive be-
model. As it can be seen, the two first terms only affect the arhavior. When|p| = 0, speckle noise is completely additive as
plitude, whereas the third term defines a cloud which introducéé = 0. The situation is more complex when the coherence has
noise, as mentioned, in amplitude and in phase. In the followirggmedium or a high value, since in this case, the plasalso
the first term of (42) is referred as the multiplicative speckldetermines how the multiplicative and the additive noise terms
noise term, whereas the addition of the last two terms will kee combined. The higher the coherence, the lower the additive
referred as the additive speckle noise term. noise variances, but at the same time, the higher the contribution
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of the multiplicative noise term as,. grows with|p|. Regardless }
of the phasep,., it can be concluded that the higher the cohe
ence, the lower the contribution of the additive noise term ag:
the higher the importance of the multiplicative term. Whens
one, speckle noise is completely multiplicative. Using the sa
argument, the real and imaginary parts of the first additive te
of (42) depend, respectively, ams(¢,) andsin(¢,). Hence,
whenever any of these terms equals zero, it will produce t ¢
corresponding real or imaginary part of the complex Hermitig
product to contain only the additive speckle noise term. The
fore, this can produce the additive speckle noise to be more i
portant than the multiplicative one, even for high coherences.fi&
conclusion, despite the multiplicative term is homogeneous a
the additive noise terms depends only|ph the final nature of
speckle noise depends ppas it controls the contribution of the ' .
multiplicative speckle noise term. [
In order to see the behavior of each of the noise terms in (425 -
it is necessary to find a way to separate those components. As @
it has been mentioned, the term containing the multiplicati#E N AL ST ) S
noise term is completely characterized, in statistical terms,
the amplitudez. Therefore, this term can be obtained multi
plying the amplitude: by the termN. exp(j¢. ). N exp(jo..)
can be derived from the complex correlation coefficignt
transforming its amplitude taV. by using (24). The term
Y {(|p| — NeZn)} exp(jda) + 1(nar + jnai) can be obtained,
thus, by subtractingV,z exp(j, ) from Sy, S%. e
Equation (42) represents the speckle noise model for a parfidis
ular element of the sample covariance mat#x in the case of
single-look SAR imagery. Since all the elements of this matr i
are obtained as the Hermitian product of a pair of SAR image st
it is straightforward to derive a noise model {¢f], since (42)
is valid for all its elements. Additionally, since the Wishart pdg
is completely characterized 1], it is not necessary to inves-
tigate speckle noise in higher moments, since these can be i
tained as a function dt”] [24]. ' &
Some polarimetric data processing techniques are based on (b)
changing the polarization basis [25]. The basis change canfyg 9. -band PoISAR data. Pictures present the complex correlation
interpreted as a matrix rotation, whose main effect is a changefficient for the ternfy,, 5, . (@) Amplitude or coherence. (b) Phase.
on the data’s correlation structure, varying the correlation coef-
ficients between the different channels [13]. Therefore, a pola 10— - . . - . - .
metric basis change also alters the speckle noise characteris
of the covariance matrix elements.

IV. SPECKLE NOISE MODEL VALIDATION T

The rest of this paper is focused on validating the propos &f
speckle noise model using real POISAR data. These data ¢z
respond to an L-band, fully polarimetric dataset acquired ovi
the Oberpfaffenhofen test site, located nearby the German ¢ 4+ itk
of Munich, with the airborne E-SAR system, operated by DLF o
These polarimetric data are referred to the horizontahd ver-
tical v linear polarization basis. Fig. 9 presents the complex cc 2+
relation coefficient of the terrfi,,;, S, . The speckle noise model
is tested by using scatter diagrams in which the standard de\
tion is plotted against the mean employing 7 pixel nonover- . . . . . : . J A
lapping windows. Fig. 10 depicts the scatter diagram for tt ~  ™* ¢ 72 L ez et e e
term R S,,.S%, }. As pointed out in [8], this diagram confirms
that speckle noise is neither multiplicative nor additive. Fig. 10. Scatter diagram for R&,,57, }.
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Fig. 11. Mean versus standard deviation scatter diagrams for different coherence ranges and the different terms of the speckle noise fishdél fof Rene
first column represents Ré4, 5%, }, and the second column gives the multiplicative speckle noise term, whereas the third column corresponds to the additive
speckle noise term.

First of all, the speckle noise dependence on the cohei-a high coherence, the similarity of the scatter diagram of
ence|p| is tested. In this case, the phase dependence is R&{ 5,5, } with the multiplicative noise term can be clearly
considered, as it will be analyzed later in this section. Therseen. As Fig. 11 demonstrates, multiplicative noise term ef-
fore, only Re S,,S%, } is taken into consideration. The termfects increase with the coherengg, whereas importance of
Im{Su,S%, }, as it can be concluded from (42), presents thtée additive speckle noise decreases.
same type of behavior, with the only difference that it de- The previous analysis has shown that speckle noise, in all the
pends onsiu(¢,) instead ofcos(¢,). Data are divided into covariance matrix terms, can be divided into two noise terms,
three coherence ranges: from 0 to 0.2 (low coherence), frammose contribution to the final speckle noise depends on the
0.4 to 0.6 (medium coherence), and from 0.8 to 1 (high coemplex correlation coefficient. In the following, a quanti-
herence). For every case, the scatter diagrams correspondétiye validation of the speckle noise model given by (42) is
to Re[SLnS%, }, its multiplicative term, and its additive termpresented. This analysis is based on showing that real polari-
are calculated. Such an analysis is presented in Fig. 11. Reetric data follow the theoretical mean and standard deviation
low coherences, the scatter diagram of{Rg, S} is very values obtained in the first part of this paper. To perform this
similar to the one corresponding to the additive speckle noisecond analysis, data already presented in Fig. 9 are used. The
term, i.e., a signal with a zero mean and a variance dependspgckle noise model validity is shown, without loss of gener-
on 3. The multiplicative term is negligible in terms of mearality, over the copolar termy, S, , as it presents the wider co-
and standard deviation with respect to the additive speclierence range (for most of natural targets) of all the covariance
noise term. For a medium coherence, it can be observed thmttrix terms. These results can be extended to the rest of the
there is not a dominant noise mechanism. Finally, for the casevariance matrix terms.



2240

Mult. noise term

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 10, OCTOBER 2003

Add. noise term

Mult. noise term

Add. noise term

1 1 1 1
0.5 0.5 0.5 0.5
c c e — —
§ o— § o—— § of——— # § ol |
= = s =
-0.5 -0.5 -0.5 -0.5
-1 -1 -1 -1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.8 1 0 0.2 0.4 06 0.8 1 0 02 04 06 0.8 1
Iel Iel Iel Iol
1 1 1 1
0.8
306
b=l
bl -
» 04 =l
0.2 )
f_’/ -
0
Q 0.2 0.4 0.6 0.8 1

08

Cov.

0.4

0.2

0.4
el

06
5
Q
o

0.4

0.2

0 0.2

QiA_u_i

0.4
el

0.6 08 1

(b) (b)

Fig.12. Comparison between theoretical values (continuous and dashed lirdg) 13. Comparison between theoretical values (continuous and dashed lines)
of mean and standard deviation for the different components §FRe5;,}  of mean and standard deviation for the different components 651mS;:, }

for the area withp equal t00.79 exp(j 0.39) and values estimated from data.for the area withp equal ta).79 exp(j 0.39). (a) Mean and standard deviations

(a) Mean and standard deviations of the multiplicative and additive terms. @f)the multiplicative and additive terms. (b) Covariance of the multiplicative and
Covariance of the multiplicative and additive terms. additive terms.

The validation process is based on analyzing two homarea has a high coherence. As it can be observed in Fig. 12,
geneous areas of the dataset. The first area correspondshéomultiplicative speckle noise term is more important than the
an area characterized by a complex correlation coefficieadiditive speckle term, in standard deviation terms. But this sit-
equal t00.79 exp(j0.39), where the phase is expressed imation changes for the imaginary part. In this case, it is possible
radians. The second region is characterized by a comptexsee that the additive speckle term is more important than the
correlation coefficient with the valu@.36 exp(—50.12), i.e., multiplicative one in terms of standard deviation. Therefore, as
a low-coherence area. In each case, the mean and the stanganationed before, the speckle noise characteristics depend on
deviation are calculated over %X 7 pixel nonoverlapped the value of the complex correlation coefficient, as it determines
windows. In Figs. 12-14, solid lines represent the theoretidéle way in which the multiplicative and the additive noise terms
values of the statistical parameters, whereas dashed lines shesvcombined. Thus, it is also necessary to take into consider-
the approximated values in the case of the standard deviatiation the differences between the real and imaginary parts of
As it can be observed in Figs. 12-14, the approximated valugseckle noise.
are very close to the actual ones, and they allow to obtain aThe agreement between theoretical and real values for the
linear speckle noise model. mean and standard deviation of the different terms of the pro-

Fig. 12 presents the analysis performed over the real partpafsed speckle noise model has been measured by a linear least
the high-correlation area, i.e., R&,,5%, }, whereas Fig. 13 squares regression analysis. The results concerning the high-co-
gives the results for 1§S,,,.5%, }. The graphics present den-herence area are given in Table I. This table shows three pa-
sity information coded by gray level: black for high densitiegsameters concerning the regression analysis. Twag@aada,,
whereas white for low ones. For the sake of simplicity, data hawich refer to the regression line constant parameter and the
been normalized by, as this parameter acts as an scaling fact@lope respectively, whose values in case of a total agreement
At a first sight, the complete accordance between the data afuld be zero forny and one fora;. The third parameter is
the values given by the theory is obvious. This agreement is spige coefficient of determination, which measures the agree-
cially high for the mean values. Some important points have teent between two quantities, quantifying it between zero and
be commented on for these data. As mentioned, the analyoee. It can also be understood as a correlation measurement.
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TABLE I
LEAST SQUARES REGRESSIONANALYSIS RESULTS IN THELOW COHERENCE
AREA (0.36 exp(—5 0.12)) FORRe{ Sy S, }

a0 ay r
Mean 0] 0.98 | 0.99
Mult. term > 0T 090 T 088
Mean 01 1.0210.97
Add. term = 55 T0.26

analysis done (cf. Table I). The imaginary part{l&,Si, }
is not analyzed in this case, as it presents basically the same in-
formation as R&Sy, S, }.

Allthe covariance matrix terms, as presented along this paper,
have the same statistical behavior. The difference between them
lies in the fact that due to the scatterer properties, they will
present different complex correlation coefficients. Hence, these
results, obtained withy,;, S, can be extended to the rest of the
covariance matrix elements. The speckle noise model validity
has been explicitly tested over the rest of the covariance matrix
elements, obtaining in all the cases the same level of agreement.

V. CONCLUSION

A speckle noise model for the complete covariance matrix in
PoISAR is proposed in this paper. This new speckle noise model
allows to identify the noise characteristics for all the covariance
matrix elements. As presented, this speckle noise model gener-
alizes all the previous theory about speckle noise.

Fig. 14. Comparison between theoretical values (continuous and dashed linesgmall approximations have been necessary in order to obtain

of mean and standard deviation for the different components ¢6Re5;, }
for the area withp equal td).36 exp(—j 0.12) and values estimated from data.
(a) Mean and standard deviations of the multiplicative and additive terms.
Covariance of the multiplicative and additive terms.

TABLE

LEAST SQUARES REGRESSIONANALYSIS RESULTS FOR THEHIGH

COHERENCEAREA (0.79 exp(j 0.39)). (a) REsuLTs FORRe{ S, S, }.

(b) REsuLTS FORIM{ SynS7, }

a0 ap T
/ Mean 01099 | 0.9
Mult. t
e 003 [0.84 [ 0.47
Add. term Mean | 0.01 | 0.98 | 0.79
' o | 001 [098[0.69
(a)
a0 a T
Mult. term |Miean 0099|099
o 01089 0384
Add. term | Mean 0 1.03 [ 0.97
o | -0.02 ] 1.00 | 0.55
(b)

From Table |, the total agreement between the theoretical

the measured values is clearly seen.
The noise model has also been analyzed over the low-coher-
ence region. Fig. 14 presents the graphics at the statistical pa-

rameters concerning only R6y,,.5% }. As in the previous case,

a linear speckle noise model. The speckle noise characteristics
@epend on the complex correlation coefficigntcausing the
speckle noise nature to vary according to it. Two clear noise
mechanisms have been identified. First of all, a multiplicative
noise mechanism controlled by the real and imaginary parts of
the complex correlation coefficient has been shown. This mech-
anism is dominant only when the real or imaginary parts of the
complex correlation coefficient are close to one. The second
mechanism has an additive nature, being dominant for low-co-
herence values. As a result, speckle noise for the off-diagonal
covariance matrix elements is nonstationary, but also speckle
characteristics vary between its real and imaginary parts.

The model has been validated with real L-band PolSAR data,
obtaining a total agreement between the data and the developed
theory.
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