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Polarimetric SAR Speckle Noise Model
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Abstract—Synthetic aperture radar (SAR) data are affected by
speckle noise, originated by the SAR system’s coherent nature.
The problem of speckle noise in one-dimensional (1-D) data is
already solved, as speckle has a multiplicative characteristic. SAR
polarimetry represents an extension to multidimensional data by
the use of polarization wave diversity. As a consequence of the
existence of a correlation degree between the SAR images, the
1-D speckle noise model cannot be extended to multidimensional
SAR data. This paper is devoted to present a completely new
speckle noise model for the complex covariance matrix describing
polarimetric SAR data in the distributed scatterers case. As will
be shown, this new model is able to identify which are the noise
mechanisms in all the covariance matrix elements. The speckle
noise model is validated by using real L-band polarimetric data
acquired with the German E-SAR sensor.

Index Terms—Covariance matrix, noise modeling, speckle noise,
synthetic aperture radar (SAR) polarimetry.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a well-established
technology for remote sensing applications. As it has

been extensively reported in the literature, the information that
these type of systems can gather has a crucial importance for
monitoring natural features and changes on the earth’s surface.
SAR systems have first been employed in a single-channel
configuration to obtain high spatial resolution information
about the reflectivity properties of the imaged scene [1].
The availability of multidimensional SAR systems has made
possible to increase the amount of available information about
the earth’s surface. In particular, SAR polarimetry (PolSAR)
is a well-established multidimensional SAR technique based
on acquiring earth’s surface information by means of using
a pair of orthogonal polarizations for the transmitted and
received electromagnetic fields [2]. Nowadays, there exists an
extensive amount of techniques based on PolSAR data, e.g.,
terrain classification, surface parameter estimation, biomass
estimation, etc. The importance of PolSAR can be also seen
from the sensor’s point of view, as airborne PolSAR systems
already exist, and satellite systems are planned.

Speckle noise [3], [4] is one of the most important problems
of SAR data. In order to obtain high spatial resolution in the az-
imuth dimension, SAR systems coherently record the returned
echoes. The speckle noise is precisely originating from this co-
herent nature. Speckle noise in single-channel SAR systems is
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a solved problem, as it is well known that it has a multiplicative
nature for the amplitude and an additive nature for the phase [3],
[5], [6]. On the contrary, the speckle noise problem for PolSAR
data is still not solved. An extension of the single-channel model
is not possible, as the SAR images present generally a corre-
lation degree between them. Hence, the speckle noise nature
for PolSAR data is still not known [7], [8]. SAR data modeling
and SAR data filtering (i.e., information estimation) are two dif-
ferent aspects of the same problem, as the availability of a po-
larimetric noise model would make a correct signal estimation
possible.

Several alternatives have been investigated in order to reduce
speckle noise in multidimensional SAR data, with special in-
terest in PolSAR data. These techniques can be divided into
two big groups depending on which is the final purpose. The
first group embraces all those techniques assuming multidimen-
sional SAR data as a type of diversity, combining all the chan-
nels to derive speckle-free images [9]–[11]. These approaches
are characterized for keeping the spatial resolution but loosing
all the polarimetric information. The second group contains all
those techniques based on obtaining the speckle-free input im-
ages, therefore maintaining the correlation information between
them [8], [12]. This second group of techniques is basically
based on an spatial processing of the SAR images, therefore,
affecting the spatial resolution. Relating the two groups of ap-
proaches, it is clear that there is a trade-off between spatial res-
olution maintenance and the preservation of the interchannel in-
formation. This compromise is due, in part, to the fact that the
information about the speckle noise nature for PolSAR data is
not complete.

In this paper, the authors present a complete speckle noise
model for single-look PolSAR data. This new model is able to
identify the speckle noise characteristics for all the covariance
matrix elements. As shown, the developed noise model is also
in accordance with all the previous theory about speckle. The
model will be qualitatively and quantitatively validated with real
PolSAR data.

The present paper has been divided as follows. Section II con-
tains a brief introduction to PolSAR, focused on data descrip-
tion. Section III is devoted to present the speckle noise model
theory, together with an analysis of its properties. A qualita-
tive and quantitative validation is reported in Section IV. Finally,
Section V presents the main conclusions derived from the study
presented in this paper.

II. POLARIMETRIC SAR DATA DESCRIPTION

A polarimetric SAR sensor measures the 22 complex
scattering matrix , for each resolution cell, which relates
the components of the scattered electromagnetic field with the
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illuminating field, for a particular polarization basis. For the
linear polarization basis case

(1)

where and represent the horizontal and vertical linear polar-
izations, respectively. is the scattering coefficient relating
the illuminating field with -polarization and the received field
in -polarization. can be decomposed in an orthogonal ma-
trix basis, yielding to the target vector’s concept [13]. For the
lexicographic decomposition basis, the target vectoris

(2)

where indicates transpose. For the backscattering direction,
due to the reciprocity theorem under the BSA convention [2],
i.e., , can be simplified to

(3)

where is introduced to maintain the vector’s norm or
span. characterizes completely the scattering process for
deterministic scatterers. On the contrary, it fails to characterize
the scattering process for distributed scatterers [14], i.e.,
random targets. For this type of scatterers, as a consequence
of the random changes from pixel to pixel, the matrix is,
therefore, random. Based on the SAR’s coherent nature, under
the Gaussian scatterer assumption,can be modeled by a
multivariate, complex, zero-mean, Gaussian probability density
function (pdf) [15], [16]

(4)

where represents the transpose complex conjugate of a vector,
and denotes the determinant of . This pdf is completely
determined by the 3 3 complex, Hermitian, covariance matrix

, defined as

(5)

where represents the ensemble average, andis the com-
plex conjugate of a complex quantity. Most of natural scenes
are considered as distributed scatterers; therefore, they are com-
pletely determined, in polarimetric terms, by and not by

. For distributed scatterers, has five independent parame-
ters, whereas has nine. This difference comes from the fact
that contains information concerning the data’s correlation
structure.

Assuming statistical ergodicity and homogeneity, can be
estimated substituting the ensemble average by spatial aver-
aging, known as multilook

(6)

where represents the number of averaged pixels, andis
the covariance matrix of a particular pixel defined as

. As the sample covariance matrix is derived from ,
it is affected by speckle noise in such a way that the larger the
number of averaged pixels, the lower the speckle noise content
[13], [17]. In this case, speckle reduction (i.e., signal estimation)
is obtained at the expense of spatial resolution. The statistics of
the covariance matrix have been found to be the Wishart pdf

[15], [16], [18]

tr
(7)

where is

(8)

tr is the matrix trace, and represents the number of chan-
nels. In the case of a monostatic PolSAR system configuration,

equals 3.
From the pdf given by (7), it is possible to derive the pdf cor-

responding to all the quantities within the covariance matrix.
See [15] and [16] for a complete and detailed statistical analysis
of the Wishart pdf, as well as the pdfs of the associated param-
eters. These pdfs will be employed to derive the speckle noise
model for the covariance matrix.

III. POLARIMETRIC SAR DATA SPECKLENOISEMODEL

All the covariance matrix elements are obtained as the
product of two elements of the scattering matrix. Therefore,
in order to derive a noise model for , only a particular element
will be studied. Any element of the matrix can be written
as the complex Hermitian product , where , , , and
belong to a pair of orthogonal polarization states. The effects of
using a different polarization basis will be commented on later
in this paper.

As mentioned previously, has a random nature due
to speckle. Its statistical behavior is determined by the complex
correlation coefficient

(9)

where is called coherence, and is known as the effective
phase difference. The average power in the two channels is de-
fined as . The terms can
be written as

(10)

where is the amplitude, and represents the measured phase
difference. In order to derive a speckle model for (10), first, a
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noise model will be derived for the phase differencein the
complex plane, i.e., . Then, the amplitude information

will be included to derive the final speckle noise model.

A. Phase Difference Noise Model

Based on the Gaussian scattering model for distributed scat-
terers, the expression for the measured phase differencepdf,
obtained from the Wishart distribution (7), is [15], [16]

(11)

where , and represents the
Gauss hypergeometric function. Based on (11), the phase dif-
ference follows an additive noise model in the real plane [19]

(12)

where is the original phase difference without noise, and
represents a zero-mean noise depending onand , and

independent from . The measured phase can be coded in the
complex unitary circle as a unit amplitude phasor

(13)

In this case, only the real part of (13) will be analyzed, since the
imaginary part phase noise model can be derived in the same
way. Based on the additive phase noise model (12), the real part
of (13) can be decomposed as

(14)
In (14), the phase term has been separated from the noise
contribution . The terms and are only due to
the noise term . In [20], the authors gave the expression for
the distributions of and . These two noise contri-
butions can be represented as the addition of their mean values
plus random terms with the same variances [21]

(15)

(16)

where . On the contrary, , which represents the mean
value of , equals, for (i.e., one-look imagery)

(17)

As it will be shown later, this is the key parameter to define the
speckle noise model for (10). Fig. 1 shows the behavior of
as a function of . As (17) shows, this parameter has the same
information content as . Therefore, instead of taking it as a
noise parameter, it will be considered as a signal term. Using
(14)–(16), the real and imaginary parts of (13) can be written as

Re

(18)

Im

(19)

Fig. 1. Comparison betweenN andj�j.

Re and Im denote the real and imaginary parts, respec-
tively. The parameters , , and are due to the phase
noise term . The noise model for the complex phase term

, (18) and (19), has been validated for interferometric
SAR (InSAR) data as shown in [20]. Under the assumption
of a Gaussian scatterer, as PolSAR data and InSAR data are
distributed as n [15], it can be considered that the
phase difference noise model (12) is also valid for PolSAR data
[22], [23].

B. Hermitian Product Noise Model

In this section, the noise model given by (18) and (19) is taken
as a starting point to obtain the complete noise model for the
covariance matrix terms . Hence, the amplitude infor-
mation has to be introduced within (18) and (19)

Re

(20)

Im

(21)

In order to derive the speckle noise model for , homoge-
neous data will be assumed. In the following, the three terms of
(20) and (21) will be studied in detail to identify noise sources,
i.e., sources of randomness, and therefore, to see how they de-
grade the useful information content, i.e., the signal’s mean
value. The model is derived on the analysis of the real and imag-
inary parts of the Hermitian product, despite a complex model
will be presented.

1) Noise Model: The first term is for
Re and for Im . For homoge-
neous data, the terms , as well as and are
constant values. Hence, the first term in (20) and (21) is com-
pletely determined statistically by the amplitude information.
The mean and the variance of this term, for the real part case
(20) based on the expressions given in [16], are

(22)

(23)

where denotes the variance.
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Fig. 2. Mean value of the first speckle noise term.

Fig. 3. Mean value versus standard deviation of the first speckle noise term.
Dashed–dotted line shows the relation without introducingN , whereas the
continuous line presents the relation introducingN .

Fig. 2 depicts the mean value given by (22), assuming
and . Fig. 3 shows the effect of the parameter

over the mean and the variance of the first term of (20),
also considering and . If the parameter

is not taken into consideration, the mean and the variance
given by (22) and (23) correspond to the statistical parame-
ters of the amplitude . In this case, if the standard deviation
is plotted as a function of the mean, a clear relation cannot be
established, as shown by the dashed–dotted line in Fig. 3. On
the other hand, if is introduced, and the standard deviation
is plotted as a function of the mean, it can be observed from
the continuous line in Fig. 3 that the relation between them
is very close to an equality relation, i.e., std
abs , where std is the standard deviation.
As a consequence, the term can be approximated
by a multiplicative noise term in the following way:

(24)
where denotes an homogeneous noise term with

and . The parameter is the mean amplitude and
is the same quantity but normalized, i.e., . For the

imaginary part case (21), the term has to be substituted
by in (22)–(24).

The second term in (20) and (21) is and
for the real and imaginary parts, respectively. As

Fig. 4. Mean value of the second speckle noise term.

in the previous case, assuming homogeneous data, and
are constants. Thus, this second term is statistically

determined by . From (15), , and on
the basis of the expressions given in [16], the mean value of

is

(25)

Assuming and , the maximum value of (25)
is lower than 0.2 (see Fig. 4). In order to obtain the value of the
variance for the second term (15) is used again. The variance
value is as shown in (26) at the bottom of the page. As (26)
shows, the variance of the second term presents a complicated
expression, making difficult to extract conclusions concerning
its dependence with the different parameters. For this reason, an
approximation for (26) has been considered. The type of curve
used to approximate (26) has been selected taking into account
its dependence on (see Fig. 5), but also its similar dependence
on compared to the third term variance of (20), as it will be
shown in (31). The approximation is hence

(27)

As it can be seen from Fig. 5, for and , the
approximation presents a very small error with respect to the
real value. Besides, it can be seen that the variance (26) has a
well-defined dependence on the coherence.

In a similar way as it has been done with the first term of
(20) and (21), in this case, the random variable defined by

can be divided into its mean value plus a random
term with the same variance

(28)

(26)
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Fig. 5. Standard deviation of the second speckle noise term. The dashed line
represents the approximation, and the solid line is the exact value.

Fig. 6. Standard deviation corresponding to the additive noise terms. Dashed
line: stdfn g. Dotted line: stdfn g. Continuous line: Approximation for
stdfn g and stdfn g.

where denotes a noise term with and a variance

(29)

In this case, the value of is extracted from the mean and vari-
ance values, as the final noise model will be easily interpreted.

The last term of (20) and (21), and
respectively, is analyzed next. As it will be seen, it is very similar
to the second term. Based on (16) and [16], the mean value is

(30)

The variance of this third term can be derived also using (15)

(31)

Comparing (31) and (27), as shown by Fig. 6, the variance of
this term has the same type of behavior as the second term (26):
the lower the coherence value, the larger the variance value.
Hence, it can be deduced that the last two terms within (20) and
(21) will determine the speckle behavior for low coherences. As
performed before, this third term can be written as

(32)

Fig. 7. Covariance value between the first and the second speckle noise terms.

where determines a random term with and a
variance

(33)

The above analysis has shown which is the behavior of the indi-
vidual terms of (20) and (21). The first term can be thought of as
a multiplicative noise term, (24), whereas the last two terms (28)
and (32) can be interpreted as additive noise terms. In order to
obtain a final noise model, it is necessary to determine the corre-
lations between the three terms of (20) and (21). First of all, the
covariance between the first an the second term, for the real part
case, is obtained as in (34), shown at the bottom of the page.

Fig. 7 presents the plot of this covariance value. The covari-
ance between the first and the third term of (20) is

(35)

Equally, the covariance between the second and the third addi-
tive terms is zero

(36)

The noise model for the elements of the covariance matrix
(10) is finally obtained substituting (24), (28) and (32), together
with the equivalent expression for the imaginary part, within
(20) and (21). These expressions are combined to form the com-
plex Hermitian product speckle noise model

(37)

2) Noise Model Simplification:The approximation intro-
duced within (20) and (21) by (24), has allowed to define a
linear noise model for (10) as shown by (37). Three noise

(34)
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sources have been identified: a multiplicative noise source
given by and two additive noise sources defined by
and . As (36) shows, the additive noise components are
uncorrelated, making it possible to join them

(38)

(39)

where denotes a single additive term for the complex Her-
mitian product real part noise model, and is the additive term
for the imaginary part. As and ,
hence, and . In order to calculate
the variance, as and are uncorrelated and

, the following inequality will be employed

(40)

Due to (40), and the similarity between and
(see Fig. 6), the variances of and can be approximated
by any value between and . For this approx-
imation, a curve removing the dependence on the phase, at
the expense of introducing an small error in the final variance,
will be taken. In order to minimize this error on average, a mean
curve is chosen. The justification for this approximation lies in
the fact that a simple noise model can be derived. The selected
curve is

(41)

The effect of this approximation can also be observed in Fig. 6.
Introducing the approximations given by (38) and (39) within
(37), the final expression for the speckle noise model for
is

(42)

In (42), it can easily be identified that the speckle noise, for any
element of the covariance matrix , has two different noise
components. The first term, given by , has
a multiplicative noise characteristic, given by the term. As
this noise term affects equally the real and the imaginary parts
of the complex Hermitian product, it only introduces noise in
the amplitude, whereas the phase is not altered. The third term,
denoted by , introduces noise both in the am-
plitude and the phase, as the processesand are dif-
ferent. The second term is just a mean
value without noise. Fig. 8 presents a vectorial view of the noise
model. As it can be seen, the two first terms only affect the am-
plitude, whereas the third term defines a cloud which introduces
noise, as mentioned, in amplitude and in phase. In the following,
the first term of (42) is referred as the multiplicative speckle
noise term, whereas the addition of the last two terms will be
referred as the additive speckle noise term.

Fig. 8. Speckle noise model scheme.

C. Speckle Noise Model Interpretation

Equation (42) has been derived for a general term of the
sample covariance matrix given by . A diagonal element
of the covariance matrix is a particular case, which has the
expression . Therefore, it can be analyzed as the
Hermitian product of two terms and respectively,
characterized by a complex correlation coefficient with unit
amplitude and a zero phase. In this case, (42) simplifies to

(43)

The noise terms and disappear, as their mean and vari-
ance values are zero. As a result, (43) defines the multiplicative
speckle noise model for the diagonal terms of the covariance
matrix [8]. In the same way, the defined speckle noise model is
in accordance with the additive noise model for the phase dif-
ference in the real plane [19] by construction. Therefore, the
derived speckle noise model is in accordance with the previous
theory about speckle noise, generalizing it for all the covariance
matrix elements. That is, (42) defines which is the speckle noise
nature for the diagonal, as well as for the off-diagonal covari-
ance matrix elements.

As presented previously, the multiplicative speckle noise term
is homogeneous, as it does not depend either on the power

term or on the complex correlation coefficient. On the other
hand, the additive noise terms and cannot be consid-
ered as homogeneous, since their variances depend on[see
(41)]. Despite these dependencies, the final nature of the com-
plex Hermitian product speckle noise, i.e., the combination of
the multiplicative and the additive speckle noise terms, is clearly
determined by the complex correlation coefficient. As ob-
served in (42), the first additive term, i.e., ,
contains the complex coefficient . This coefficient
determines the influence of the multiplicative term on the
final speckle noise. For low coherences, sinceis low and
the variances of the additive noise terms and present
maximum values, speckle noise is dominated by an additive be-
havior. When , speckle noise is completely additive as

. The situation is more complex when the coherence has
a medium or a high value, since in this case, the phasealso
determines how the multiplicative and the additive noise terms
are combined. The higher the coherence, the lower the additive
noise variances, but at the same time, the higher the contribution
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of the multiplicative noise term as grows with . Regardless
of the phase , it can be concluded that the higher the coher-
ence, the lower the contribution of the additive noise term and
the higher the importance of the multiplicative term. Whenis
one, speckle noise is completely multiplicative. Using the same
argument, the real and imaginary parts of the first additive term
of (42) depend, respectively, on and . Hence,
whenever any of these terms equals zero, it will produce the
corresponding real or imaginary part of the complex Hermitian
product to contain only the additive speckle noise term. There-
fore, this can produce the additive speckle noise to be more im-
portant than the multiplicative one, even for high coherences. In
conclusion, despite the multiplicative term is homogeneous and
the additive noise terms depends only on, the final nature of
speckle noise depends on, as it controls the contribution of the
multiplicative speckle noise term.

In order to see the behavior of each of the noise terms in (42),
it is necessary to find a way to separate those components. As
it has been mentioned, the term containing the multiplicative
noise term is completely characterized, in statistical terms, by
the amplitude . Therefore, this term can be obtained multi-
plying the amplitude by the term .
can be derived from the complex correlation coefficient,
transforming its amplitude to by using (24). The term

can be obtained,
thus, by subtracting from .

Equation (42) represents the speckle noise model for a partic-
ular element of the sample covariance matrix in the case of
single-look SAR imagery. Since all the elements of this matrix
are obtained as the Hermitian product of a pair of SAR images,
it is straightforward to derive a noise model for , since (42)
is valid for all its elements. Additionally, since the Wishart pdf
is completely characterized by , it is not necessary to inves-
tigate speckle noise in higher moments, since these can be ob-
tained as a function of [24].

Some polarimetric data processing techniques are based on
changing the polarization basis [25]. The basis change can be
interpreted as a matrix rotation, whose main effect is a change
on the data’s correlation structure, varying the correlation coef-
ficients between the different channels [13]. Therefore, a polari-
metric basis change also alters the speckle noise characteristics
of the covariance matrix elements.

IV. SPECKLE NOISE MODEL VALIDATION

The rest of this paper is focused on validating the proposed
speckle noise model using real PolSAR data. These data cor-
respond to an L-band, fully polarimetric dataset acquired over
the Oberpfaffenhofen test site, located nearby the German city
of Munich, with the airborne E-SAR system, operated by DLR.
These polarimetric data are referred to the horizontaland ver-
tical linear polarization basis. Fig. 9 presents the complex cor-
relation coefficient of the term . The speckle noise model
is tested by using scatter diagrams in which the standard devia-
tion is plotted against the mean employing 77 pixel nonover-
lapping windows. Fig. 10 depicts the scatter diagram for the
term Re . As pointed out in [8], this diagram confirms
that speckle noise is neither multiplicative nor additive.

(a)

(b)

Fig. 9. L-band PolSAR data. Pictures present the complex correlation
coefficient for the termS S . (a) Amplitude or coherence. (b) Phase.

Fig. 10. Scatter diagram for RefS S g.
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Fig. 11. Mean versus standard deviation scatter diagrams for different coherence ranges and the different terms of the speckle noise model for RefS S g. The
first column represents RefS S g, and the second column gives the multiplicative speckle noise term, whereas the third column corresponds to the additive
speckle noise term.

First of all, the speckle noise dependence on the coher-
ence is tested. In this case, the phase dependence is not
considered, as it will be analyzed later in this section. There-
fore, only Re is taken into consideration. The term
Im , as it can be concluded from (42), presents the
same type of behavior, with the only difference that it de-
pends on instead of . Data are divided into
three coherence ranges: from 0 to 0.2 (low coherence), from
0.4 to 0.6 (medium coherence), and from 0.8 to 1 (high co-
herence). For every case, the scatter diagrams corresponding
to Re , its multiplicative term, and its additive term
are calculated. Such an analysis is presented in Fig. 11. For
low coherences, the scatter diagram of Re is very
similar to the one corresponding to the additive speckle noise
term, i.e., a signal with a zero mean and a variance depending
on . The multiplicative term is negligible in terms of mean
and standard deviation with respect to the additive speckle
noise term. For a medium coherence, it can be observed that
there is not a dominant noise mechanism. Finally, for the case

of a high coherence, the similarity of the scatter diagram of
Re with the multiplicative noise term can be clearly
seen. As Fig. 11 demonstrates, multiplicative noise term ef-
fects increase with the coherence, whereas importance of
the additive speckle noise decreases.

The previous analysis has shown that speckle noise, in all the
covariance matrix terms, can be divided into two noise terms,
whose contribution to the final speckle noise depends on the
complex correlation coefficient. In the following, a quanti-
tative validation of the speckle noise model given by (42) is
presented. This analysis is based on showing that real polari-
metric data follow the theoretical mean and standard deviation
values obtained in the first part of this paper. To perform this
second analysis, data already presented in Fig. 9 are used. The
speckle noise model validity is shown, without loss of gener-
ality, over the copolar term , as it presents the wider co-
herence range (for most of natural targets) of all the covariance
matrix terms. These results can be extended to the rest of the
covariance matrix terms.
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Fig. 12. Comparison between theoretical values (continuous and dashed lines)
of mean and standard deviation for the different components of RefS S g
for the area with� equal to0:79 exp(j 0:39) and values estimated from data.
(a) Mean and standard deviations of the multiplicative and additive terms. (b)
Covariance of the multiplicative and additive terms.

The validation process is based on analyzing two homo-
geneous areas of the dataset. The first area corresponds to
an area characterized by a complex correlation coefficient
equal to , where the phase is expressed in
radians. The second region is characterized by a complex
correlation coefficient with the value , i.e.,
a low-coherence area. In each case, the mean and the standard
deviation are calculated over 7 7 pixel nonoverlapped
windows. In Figs. 12–14, solid lines represent the theoretical
values of the statistical parameters, whereas dashed lines show
the approximated values in the case of the standard deviation.
As it can be observed in Figs. 12–14, the approximated values
are very close to the actual ones, and they allow to obtain a
linear speckle noise model.

Fig. 12 presents the analysis performed over the real part of
the high-correlation area, i.e., Re , whereas Fig. 13
gives the results for Im . The graphics present den-
sity information coded by gray level: black for high densities,
whereas white for low ones. For the sake of simplicity, data have
been normalized by, as this parameter acts as an scaling factor.
At a first sight, the complete accordance between the data and
the values given by the theory is obvious. This agreement is spe-
cially high for the mean values. Some important points have to
be commented on for these data. As mentioned, the analyzed

Fig. 13. Comparison between theoretical values (continuous and dashed lines)
of mean and standard deviation for the different components of ImfS S g
for the area with� equal to0:79 exp(j 0:39). (a) Mean and standard deviations
of the multiplicative and additive terms. (b) Covariance of the multiplicative and
additive terms.

area has a high coherence. As it can be observed in Fig. 12,
the multiplicative speckle noise term is more important than the
additive speckle term, in standard deviation terms. But this sit-
uation changes for the imaginary part. In this case, it is possible
to see that the additive speckle term is more important than the
multiplicative one in terms of standard deviation. Therefore, as
mentioned before, the speckle noise characteristics depend on
the value of the complex correlation coefficient, as it determines
the way in which the multiplicative and the additive noise terms
are combined. Thus, it is also necessary to take into consider-
ation the differences between the real and imaginary parts of
speckle noise.

The agreement between theoretical and real values for the
mean and standard deviation of the different terms of the pro-
posed speckle noise model has been measured by a linear least
squares regression analysis. The results concerning the high-co-
herence area are given in Table I. This table shows three pa-
rameters concerning the regression analysis. Two areand ,
which refer to the regression line constant parameter and the
slope respectively, whose values in case of a total agreement
should be zero for and one for . The third parameter is
the coefficient of determination, which measures the agree-
ment between two quantities, quantifying it between zero and
one. It can also be understood as a correlation measurement.
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Fig. 14. Comparison between theoretical values (continuous and dashed lines)
of mean and standard deviation for the different components of RefS S g
for the area with� equal to0:36 exp(�j 0:12) and values estimated from data.
(a) Mean and standard deviations of the multiplicative and additive terms. (b)
Covariance of the multiplicative and additive terms.

TABLE I
LEAST SQUARES REGRESSIONANALYSIS RESULTS FOR THEHIGH

COHERENCEAREA (0:79 exp(j 0:39)). (a) RESULTS FORRefS S g.
(b) RESULTS FORImfS S g

From Table I, the total agreement between the theoretical and
the measured values is clearly seen.

The noise model has also been analyzed over the low-coher-
ence region. Fig. 14 presents the graphics at the statistical pa-
rameters concerning only Re . As in the previous case,
the complete agreement between theoretical and real values con-
cerning the different statistical parameters can be observed. This
agreement can also be seen from the least-square regression

TABLE II
LEAST SQUARESREGRESSIONANALYSIS RESULTS IN THELOW COHERENCE

AREA (0:36exp(�j 0:12)) FOR RefS S g

analysis done (cf. Table II). The imaginary part Im
is not analyzed in this case, as it presents basically the same in-
formation as Re .

All the covariance matrix terms, as presented along this paper,
have the same statistical behavior. The difference between them
lies in the fact that due to the scatterer properties, they will
present different complex correlation coefficients. Hence, these
results, obtained with , can be extended to the rest of the
covariance matrix elements. The speckle noise model validity
has been explicitly tested over the rest of the covariance matrix
elements, obtaining in all the cases the same level of agreement.

V. CONCLUSION

A speckle noise model for the complete covariance matrix in
PolSAR is proposed in this paper. This new speckle noise model
allows to identify the noise characteristics for all the covariance
matrix elements. As presented, this speckle noise model gener-
alizes all the previous theory about speckle noise.

Small approximations have been necessary in order to obtain
a linear speckle noise model. The speckle noise characteristics
depend on the complex correlation coefficient, causing the
speckle noise nature to vary according to it. Two clear noise
mechanisms have been identified. First of all, a multiplicative
noise mechanism controlled by the real and imaginary parts of
the complex correlation coefficient has been shown. This mech-
anism is dominant only when the real or imaginary parts of the
complex correlation coefficient are close to one. The second
mechanism has an additive nature, being dominant for low-co-
herence values. As a result, speckle noise for the off-diagonal
covariance matrix elements is nonstationary, but also speckle
characteristics vary between its real and imaginary parts.

The model has been validated with real L-band PolSAR data,
obtaining a total agreement between the data and the developed
theory.
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