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Abstract— This paper presents the extension of the zonotopic
Kalman filter of linear systems to nonlinear systems subject to
unknown-but-bounded system disturbances and Gaussian white
noises known as zonotopic extended Kalman filter (ZEKF). Due
to the computational simplicity of zonotopes, the uncertain
system states are bounded into a zonotopic set. The system
consistency test with the system measurements is completed
without using the intersection between two sets but following
the extended Kalman filtering procedure that requires to find
the optimal observer gain. A fault detection method based on
the ZEKF algorithm is also introduced. Finally, the proposed
ZEKF algorithm is applied to the quadrotor helicopter under
an on-line closed-loop simulation scheme and the simulation
results illustrate the effectiveness of the proposed algorithm
and fault detection method.

I. INTRODUCTION

Kalman filter is one of the most popular technique for
state estimation of linear systems in a stochastic way [1],
[2], which uses the real-time measurement data including
stochastic noises to update the prediction values and sub-
sequently provide a more accurate estimated state. Kalman
filter has been widely applied to numerous fields, such as
robotics [3] and other real-time applications [4]. In terms of
nonlinear systems, extended Kalman filter [5] and unscented
Kalman filter [6] have been developed. For the extended
Kalman filter, the mean estimation can be achieved by means
of nonlinear functions directly and the Jacobian matrix of
nonlinear system functions is used for computing the covari-
ance of estimations. At each estimation step, the Jacobian
matrix is evaluated by the current predicted system states.
For the unscented Kalman filter, mean and covariance are
propagated through nonlinear transformations.

Alternatively to the stochastic approach that relies on the
assumption of probability distribution of noises/disturbances,
the deterministic approach for state estimation using the set-
membership approach [7], considers unknown-but-bounded
disturbances and only the bounds of disturbances are re-
quired. In terms of the set-membership estimation approach,
there are several geometric sets that can be utilized, such as
polyhedrons/polytopes, ellipsoids and zonotopes. In [8], [9]
and [10], the set-membership estimation approach has been
well-discussed based on zonotopes due to its simple com-
putational complexity during the state propagations. In the
zonotopic state estimation, the consistency of the predicted
uncertain state set is tested by checking the consistency with
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the measurement state set as proposed in [9] through the
intersection between two sets. However, the intersection set
is not any more a zonotope and it is subsequently bounded
by an over-estimation set.

In [11], a novel zonotopic Kalman filter for linear
time/parameter-varying (LTV/LPV) systems has been pro-
posed by combing the standard Kalman filtering procedure
and the zonotopic state estimation. Unlike the aforemen-
tioned zonotopic state estimation approach, no intersection is
required. The update of the predicted state set is based on the
Kalman filter using an observer scheme. An optimal Kalman
filter gain can be found, which is related to the zonotopic
set and covariance matrices. In [12], both deterministic
(bounded) and stochastic (Gaussian) disturbances have been
taken into account. The explicit zonotopic Kalman observer
is designed for two kinds of disturbances.

The quadrotor helicopter is one of popular unmanned
aerial vehicles and has also attracted a lot of attention in
several research fields. The dynamic model of the quadrotor
helicopter is usually constructed by means of the Newton-
Euler method, where the forces and torques generated from
four propellers are considered. Therefore, this dynamic sys-
tem is inherently unstable and it requires a proper feedback
control strategy to allow its operation, such as PID control
[13] and model predictive control (MPC) [14]. For the
feedback control, it is necessary to obtain the current system
information and measured through sensors and a system state
observer can translate the partial information to estimate the
total current states.

This paper extends the zonotopic Kalman filter for linear
systems to nonlinear systems based on the extended Kalman
filter. In fact, the extended Kalman filter use linearized partial
nonlinear model. Therefore, the Jacobian matrices verified
by the current system states can be obtained. Hence, the
zonotopic extended Kalman filter (ZEKF) makes use of the
nonlinear model and Jacobian matrices to estimate states
following the linear Kalman filter procedure. As introduced
[15], the fault detection method is built based on the interval
observer approach. In this paper, the interval observer is built
by using the ZEKF algorithm and a fault detection method
is introduced as well. The application of the quadrotor
helicopter is provided in order to test the effectiveness of
the zonotopic extended Kalman filter. The control inputs
are obtained by using a nonlinear MPC (NMPC) controller
coupled to a high-fidelity simulator.

The remainder of this paper is organized as follows.
Some preliminary results are briefly introduced in Section
II. Problem statement is addressed in Section III. In Section



IV, the ZEKF algorithm is provided. A fault detection based
on the ZEKF algorithm for nonlinear systems is introduced
in Section VII. An application of a quadrotor helicopter is
provided in Section VI. Finally, conclusions are drawn in
Section VIIL.

II. PRELIMINARIES

The Minkowski sum of two sets S; and S» is denoted
by S1 ® Sy = {s1+s2|s1 €851, €S2} The linear
transformation of a set S C R™ by a vector or matrix
L € R™™ is denoted by L ® S = {Ls|s€S}. An
interval [a,b] is defined as the set {z|a <z <b}. The
unitary interval B! is defined as B! = [—1,1]. A unitary
box B" € R" is a box composed of 7 unitary intervals.

A zonotope Z is defined with its center p € R™ and
generator matrix H € R™*" in a linear affine image as

ZA(pH) =po HB". (1)

The Frobenius radius Jp of (p, H) [12] is defined by the
Frobenius norm of H as

Tp = \/tr(HTH) - \/tr(HHT), @)

where tr(-) is the trace of a matrix. The Frobenius radius of
a vector x ~ Z = (p, H) is tr(cov(x)), where cov denotes
the covariance. In fact, the Frobenius radius can be regarded
as a size criterion of a zonotope [12].

Zonotope is also a special class of geometrical set and has
a flexible computational rules, some of which are formulated
as follow:

(p1, H1) ® (p2, Hz) = (p1 + p2, [H1 Ha))
L® (p, H) = (Lp, LH).

(3a)
(3b)

Consider a zonotope in (1), the smallest box (interval
hull) containing the zonotope can be (1Z = p & rs(H)B™,
where rs(H) is a diagonal matrix such that rs(H);; =
Z;“:l |H; ;|. Therefore, a zonotope can be enclosed within
its interval hull as Z C OJZ.

A reduction operator for zonotopes proposed in [16] is
denoted as |4, where ¢ specifies the maximum number of
column of generator matrix H after reduction. Thus, |, (H)
is computed as follows:

o Sort the column of generator matrix H with the de-
creasing order of the Frobenius norm || - ||

\H= [hh ha,..., hm] ) th”2 > th+1H2‘

o Hold with first g-column of | H and enclose the set
H_ generated by remaining columns into a smallest
box (interval hull)

If m <qthen |, H=|H,
Else |, H = [H>,rs(H.)] € R"*,

H> == [hl,...,hq], H< == [hq+1,...7hr,n]’

where 7s(-) denotes the row-sum of a matrix.

III. PROBLEM STATEMENT

Consider the discrete-time uncertain nonlinear system with
additive disturbances and noises as

(4a)
(4b)

X1 = f(Xk, ug) + Epwy,
Vi = h(xx) + Fipvi,

where x5, € R™*, u; € R™ and y;, € R™ denote the system
state, control inputs and measured outputs, respectively.
f(-) and h(-) represent sequences of the nonlinear system
dynamic functions and measurement functions. Fj and F}
are time-varying matrices of appropriate dimensions. wy
and v; denote unknown-but-bounded additive disturbances
and measurement noises, both of which are characterized as
standard normal distribution in the following:

Wi NN(QInw), Vi NN(O,InU),

in which I, and I,,, are identity matrices. Meanwhile, wy,
and v, can be also bounded by unit hypercubes as centered
zonotopes. The initial uncertain state is assumed to be in a
zonotope defined by x¢ € Xy = (po, Ho).

In this paper, the objective is to find a sequence of zono-
topes X}, for Vk € Zpy n) of observed system states along
the horizon of NV through a Kalman filter-like procedure. The
consistency test with system measurements is done by means
of the Kalman filter.

IV. THE ZEKF ALGORITHM OF DISCRETE-TIME
NONLINEAR SYSTEMS

A. Zonotopic Observer Design

Given the discrete-time nonlinear system in (4), the stan-
dard Luenberger observer can be formulated with a time-
varying observer gain Gy, as

}A(k+1 = f()ACk, llk) + Exwi + Gi (Yk - h(ik) - Fkvk) 3 )]

where x5, € R™* denotes the observed states.

Based on the observer structure discussed in [12] and
[11], the zonotopic nonlinear observer is introduced in the
following theorem.

Theorem 1 (Nonlinear Observer Structure): Given  the
nonlinear system defined in (4) with initial state xg
in the zonotope X, from the current observed state
Xr € (pk,Hy), then the center and generator matrix of
Xk+1 € (Pr+1, Hit1) can be computed as follows:

Prt1 = f (Pr, ur) + Gryr — Grh (pr) » (6a)
Hyp1 = [(Ar — GkCr)Hy Ep —GiFy], (6b)
with
r gﬁ .. 63f1 7
df 1 Tn g
X |y u=us Ofny Ofny
L Oz, O, X=XJ,U=Uf
- 0hy .. _Ohy -
dh oz Oy
Cr = — =| :
dX |y —x, Ohn,, Ohn,
L Oz, Oz, X=X}




Hk :\Lq (Hk)

for Yk € Z>1, such that X1 = (Pry1, Het1).

Proof: Assume Xj € (py, Hy) is the prior condition
at the time instant k and by the reduction operator |, (-),
X € (pr, Hy) is obtained. Following the proof procedure in
Proposition 1 [11] and substituting the system matrix A and
B with the nonlinear function f(-), (6a) can be obtained.
Besides, (6b) is derived from the extended Kalman filter [5]
and the verified Jacobian matrices Ay and Cj can represent
the system matrices. ]

The ZEKF observer is defined by (5), (6a) and (6b) and
depends on the a time-varying observer gain matrix Gjy.
Then, the estimated state X1 is inside the zonotopic set
denoted by Xy+1 € (Pk+1, Hit1)-

B. Optimal Observer Gain

Following the proposed way to compute the observer gain
in [11] and [12], the optimal observer gain G, at time instant
k can be found by minimizing the Frobenius radius of the
zonotope (pr41, Hi11).

Theorem 2 (Optimal Nonlinear Observer Gain): Given
the observer with the structure defined in Theorem I and
the weight matrix W = W7 ~ 0, the optimal time-varying
observer gain G, is obtained as follows

Gy = A K}, (7a)
Kj = LiS; ', (7b)
Ly, = P,CF, (7c)
Sk = CuPuCy + Qu, (7d)
where
Py = HeHy , Quy = F
Proof: 1In order to prove the above theorem, some

matrices are defined as follows:

Pii1 = Hept Hi , Quy, = ExEj
The optimal observer gain Gj, is obtained by satisfying
G, = Gy, such that dJF’“ =0, where Jp, = tr(Py11) with
Pey1 = Hi Hi
= (A, — GyCi) Pe(Ar, — GiCi)"

+ Qui + GrQu,GY,

As proved in Theorem 5 of [11], %‘g’v =

a(tr(GkSkGT)) o0t (AxLkGY)
G,

0 gives

= and it is equivalent to
(AkLk)lj" SkTGT Hence, the proof is completed. [ |

C. The ZEKF Algorithm

Consider the discrete-time uncertain nonlinear system in
(4), the ZEKF algorithm is based on an explicit iterations
of (5) with the time-varying optimal observer gain. The ob-
served system states at each step are bounded in a underlying
zonotope computed by the ZEKF algorithm. The interval
hull of the zonotope provides a deterministic interval of
uncertain states. In general, the ZEKF algorithm considering
N simulation steps is described in Algorithm 1.

Algorithm 1 The ZEKF Algorithm for Nonlinear Systems

1: Initialize pr <= po, Hr <= Ho and ux = up
2: for k:=1to N do
3:  Compute verified Jacobian matrices Ay and Cj

4: Obtain Hy, =4 (Hk) Pk Hka and Q“k = Fka
5. Compute Ly, = P,C{ and Sy = CxPLCY + Qu,
6:  Get the optimal observer gain:
Gy = ApKj with K} = LSy "
7:  Measure yj at time instant k
8:  Compute the center of zonotope:

pr+1 = f (P, uk) + Geyr — Grh (pr)
9:  Compute the generator matrix:
Hiq = [(Ak — GrCx)H, Ey *Gka}
10:  Obtain the zonotope Zi+1 = (Pr+1, Het1)
11:  Compute the interval hull of Zj41:
OZk+1 = (pr+1,78 (Hpt1))
12: Compute the maximum and minimum observed states:

X% = pry1 + r5(Hey)
X" = prr1 — rs(Het1)
13: end for

V. FAULT DETECTION BASED ON THE ZEKF ALGORITHM

A family of interval observers are designed by using the
ZEKF algorithm in order to observe the healthy behavior of
the nonlinear system and the system consistency is tested
by comparing the measured outputs and healthy behaviors
observed by interval observers. As defined in (5), the system
states Xy, are estimated to be in the zonotope (pg, Hy) and
subsequently the healthy outputs y; can be also estimated
to be in a zonotope (p}, H}'), where the center p} and the
generator matrix H,; are described by

pp = hipe),

(8a)
(8b)

The residual signals, that is the output errors, are defined
by differences between the current measurements and ob-
served outputs as follows:

re £ Vi — Vi 9

where rj denotes the vector of residual signals r{; for Vj €
Z1,n,) and yj represents the vector of measured outputs
at time instant k. Besides, the zonotopic set of the residual
signals can be obtained since yj, € Vi = (p}, H;) , which
is formulated as

Ry £ (ri, HE) = y1 © V. (10)

The consistency test can be proceed by checking whether
the bounds of residual signals contain the zero vector:

Ri €0, 11

in which if the R, € 0 is true, then there is no fault occurred.
Otherwise, the fault is occurred at time instant k.

The fault detection method based on the ZEKF algorithm
is proposed as follows:

Note that after fault is occurred, the zonotopic set of
observed states at next simulation step is updated in Step
(8) of Algorithm 1 by means of faulty measurement. Hence,
a suitable fault isolation method is required.



Algorithm 2 Fault Detection for Nonlinear systems

1: Initialize pr <= po, Hr <= Ho, ux = up and }A’k =Yo

2: Compute the zonotope of the observed outputs Yy

3: Compute the zonotope of the residual signals Ry

4: for k:=1to N do

5: Apply Steps (3)-(7) in Algorithm 1

6:  Compute the bounds rj, € [r, 79, of the residual zonotope,
for Vj € Z[Lny]:
v = o ra(H),
ri =y —rs(Hyp),

7. for j:=1ton, do

8: if 0 ¢ [rk,rk} then
9: fault] =0

10: else _

11: fault] =1

12: end if

13:  end for

14:  Repeat Steps (8)-(11) in Algorithm 1

15:  Compute the zonotope of the observed outputs Vi1
16:  Compute the zonotope of the residual signals Ry41
17: end for

VI. APPLICATION TO A QUADROTOR HELICOPTER

The quadrotor helicopter is configured with four propellers
to produce the lift forces. The translations and rotational mo-
tions are realized by means of differences among speeds of
four rotors. The dynamic model of the quadrotor helicopter
uses the one proposed in [14] with mild modifications of the
selection of positive directions in the inertial and body-fixed
frames. The NMPC controller with full state model is utilized
to provide the proper control inputs. The ZEKF algorithm is
implemented in the on-line closed-loop simulations.

A. Nonlinear Dynamics of the Quadrotor Helicopter

The quadrotor helicopter has six degree-of-freedom (alti-
tude and attitude) according to the earth-fixed frame. The
altitude of this helicopter is described by [z, v, z]T and its
attitude is defined by three Euler angles (pitch, roll and yaw)
as [QS,G,w]T, where these three angles have to satisfy the
following constraints [17]:

™ ™

— - <p< — 12
5 SP< 3 (12a)
T m

——<0< = 12
2_9_2, (12b)
—rm <y <. (120)

Consider the earth-fixed frame as inertial frame and body-
fixed frame with origin in the mass center of the quadro-
tor helicopter and its body is rigid and symmetric, the
continuous-time dynamic model of the quadrotor helicopter
is written as follows [14]:

¢ = Opar + 0az, + by Uy, (13a)
0 = dhaz — $asQy + boUs, (13b)
¥ = dhas + b3Uy, (13¢)
Z = —g + (cos¢cost) Uy /m, (13d)
% = (cosgsinfcosy) + singsiny) Uy /m, (13e)
ij = (cosgsinfsing — singcosy) Uy /m, (13f)
with
U, b(02+ 03+ 03+ Q2)
Us b (02— 02)
Us| = b (0% +Q3)
Ur|  [d(=0F +93 - 95+ 0F)
Q, —0 4+ Qe — Q3 +Qy
_ Iyy - Izz _ Jr _ Izz - I’I"I‘
ay = Ixz y a2 = Iajm’ asz = Iyy )
Jr Izz - Iyy
a4 = , A5 = )
Iyy IZZ
l Y4 1
1 Imzv 2 Iyy7 3 IZZ

where Q1,€5,Q3 and €2 denote speeds of four rotors,
respectively. I, I,, and I,. are the moments of inertial
of the quadrotor helicopter for three axes, respectively. J, is
the rotational moment of inertial. ¢ denotes the arm length of
the quadrotor helicopter. Moreover, b and d represent thrust
and drag coefficients.

B. Nonlinear Control-oriented Model of the Quadrotor He-
licopter

According to the dynamic model of the quadrotor heli-
copter, from the control point of view, the vectors of system
state x, control input u and measured output y are chosen
as follows:

T

=[r1 w2 @3 T4 X5 T Ty Tz T9 Tio Ti1 Ti2)
. . . T
pp 00y ziaxzyy ,

u=[u; us us u4]T: Q1 Q2 Qs Q4]T,

T T
Y=y v2 y3s] =[z z y

By means of the Euler discretization method, the discrete-
time uncertain control-oriented model of the quadrotor he-
licopter in presence of state disturbances and measurement
noises is generally formulated as

(14a)
(14b)

X1 = f(xk, u) + Ewyg,
i = Cxp + F'vy,



with

[0 0o 00000 0 0 0 0 017
o0 0 00O0OO0O O O 0 0 o0
0o 0 00000 0 0O O 0 O
o0 00 0O0OO0O O O o0 0 o0
0o 0o 00000 0 O O 0 O
E— o0 0 0O0O0OO0O O O o0 0 o0
~/0 000000 O O O 0O 0]
0 0 0600 O0OO0OO0KKO0O 0 0 o0
0o 0060000 o 0 0 0 o0
00 060000 O 0 003 0 o0
0o 0o 00000 0 0O O 0 o0
0 0 6 06000 0 O 0 0 0.03]
00 00 0 O0OT1O0OO0TO0TO0TO0
cC=0 00000 0O0OT1T 0 0 0f,
0 0 0 0 0 O0OO0OO0OO0OO0OT1TO0
0 0 000 O0CO0O0KCQTO0O O 0 0 O
F=]0 0 00 OO 0O 0 001 0 0 0.
o0 06000 0 0 O 0 00 O

where C, E and I are assumed as time-invariant matrices.
The sensors only provide the altitude informations. System
disturbances and measurement noises are assumed as Gaus-
sian white noises following the normal distribution:

wi ~N(0,1,,), vi~N(OI,).

C. The Closed-loop Simulation Scheme

Fig. 1 shows the on-line closed-loop simulation scheme.
The design of the NMPC controller is out of the scope of this
paper. Assume that the NMPC controller for the quadrotor
helicopter can provide the admissible control inputs when the
system is under perturbations and the full-state information
can be fed back to the NMPC controller. The observer
is designed by using the ZEKF algorithm in Algorithm 1.
At each sampling time, the full states can be observed
through the ZEKF observer as Xj; in a zonotopic set. The
center of the zonotopic set can be regarded as the nominal
observation. The bounded box (interval hull) of the zonotopic
set describes the bounds of observed states including the
propogated uncertainty. On the other hand, some unexpected
faults (from actuators or sensors) might happen during the
simulations. It is assumed that the NMPC controller has the
capacity to tolerate these faults. By applying Algorithm 2,
the occurred faults can be detected.

The closed-loop simulation is implemented in MATLAB
R2015a (64-bit) with YALMIP toolbox [18] and IPOPT
nonlinear solver included in OPTI toolbox [19].

w, Quadrotor ‘ ‘
NMPC Controller . Sensors
X, Helicopter

Yk

ZEKF X
Observer

Fig. 1. The on-line closed-loop simulation scheme

D. Results

Fig. 2 shows the results of applying the ZEKF algorithm to
the quadrotor helicopter. The bounds of observed states (blue
real lines) in Fig. 2 are due to the Gaussian noises included
in the measurement sensors. From all these figures, the
state observations (red dashed lines) are approximating quite
well the data obtained from the simulator of the quadrotor
helicopter. Therefore, the ZEKF algorithm is available for
estimating the full system states using system measurements
obtained from the non-linear simulator.

The results of fault detection are shown in Fig. 3. Because
there are three measured outputs, three residuals are gen-
erated. By checking whether the residual intervals contain
zero, the occurred fault is detected in Residual 1 at time
40s. In order to discover where is the fault, a appropriate
fault isolation method is required. But this paper did not
include the fault isolation method. Therefore, as shown in
Fig. 3(a), after the fault at time 40s is detected, the healthy
interval observer is updated by the measurement including
the detected fault.

Residual 1
Residual 2
Residual 3|

Residuals
5
&
IS
s

. . .
5 10 15 20 25 30 35 40 45 50 55
Time [s]

(a) Residual signals

[ 10 20 30 40 50 60
Time [s]

(b) Detected faults

Fig. 3. Fault detection results of the quadrotor helicopter

VII. CONCLUSIONS

This paper extends the zonotopic Kalman filter to nonlin-
ear system and presents the application results of applying
the ZEKF algorithm to a quadrotor helicopter. The zonotopic
Kalman filter for linear systems is extended into nonlinear
systems under perturbations. During the on-line closed-loop
simulation, the additive disturbances to system states and
measurement noises are sampled by random values with
known bounds. The ZEKF algorithm has been successfully
applied into the quadrotor helicopter in simulation and the
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estimated states are in agreement with the non-linear simu-
lated behaviour. Moreover, the faults in the system can be
detected by means of the proposed fault detection method.
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