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Mode-locking via dissipative Faraday instability
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Emergence of coherent structures and patterns at the nonlinear stage of modulation

instability of a uniform state is an inherent feature of many biological, physical and engi-

neering systems. There are several well-studied classical modulation instabilities, such as

Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization

of energy and matter in non-equilibrium physical, chemical and biological systems. Here

we experimentally demonstrate the dissipative Faraday instability induced by spatially

periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent

losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre

laser. We demonstrate features of this instability that distinguish it from both the Benjamin–

Feir and the purely dispersive Faraday instability. Our results open the possibilities for new

designs of mode-locked lasers and can be extended to other fields of physics and engineering.
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U
nderstanding the mechanisms underlying generation
of coherent structures from noise or uniform field
distribution is a fundamental problem of nonlinear

science and its numerous practical applications ranging from
biology to astrophysics. Formation of coherent patterns originates
in nonlinear instabilities that can often be described within
generic mathematical models1, and, as a result, are very similar
across different fields of science. Modulation instability is
responsible for the symmetry breaking of homogeneous spatio-
temporal states or wave envelopes and the formation of stable
patterns in a variety of physical media. There are three major and
well-known classes of instabilities. First, Benjamin–Feir (BF)
instability, originally introduced in fluid dynamics2,3, and later
demonstrated in a variety of physical systems2,4,5. Second, Turing
instability6, where the combined action of local self-enhancement
and lateral inhibition due to the interplay between nonlinearity
and diffusion in coupled equations leads to the pattern formation
in chemical, biological systems7,8, as well as in nonlinear optics
where diffraction or dispersion substitute diffusion9–11. Third and
finally, Faraday instability, which results from the periodic in time
modulation of a dispersive parameter of the system12 and was
studied in different systems, ranging from vertically shaken
granular media13 to periodically driven spatially extended
chemical systems14, repulsive (defocusing-type) Bose–Einstein
condensates15,16 and nonlinear optics17,18. Recently, a new
dissipative type of Faraday instability was demonstrated
theoretically19, in the framework of the complex Ginzburg–
Landau equation, where a suitable parametric modulation of
spectral losses can lead to pattern formation. The dissipative
Faraday instability, induced by periodic modulation of spectral
losses, differs substantially from the usual Faraday instability
where a dispersive parameter, diffraction, dispersion or
nonlinearity, is periodically modulated. Although the traditional
Faraday instability can also occur in a dissipative system,
such as an externally driven optical resonator, as it has
been predicted theoretically18,20, and recently demonstrated
experimentally21, both the excitation method and the sidebands
growth process differ from the case where a dissipative element is
modulated.

In nonlinear science, instability of a uniform state in
non-equilibrium systems triggers a transition to new states with
a rich variety of spatio-temporal structures. In engineering,
instabilities are often associated with somewhat undesirable

effects and problems that ‘should be avoided’. However, they
can also play a constructive role in technology, defining device
design and control methods in non-equilibrium systems. For
instance, instabilities might be important for seeding, enhancing
certain frequencies, dumping others and leading to the formation
of stable patterns, with the characteristics of emerging structures
determined at the nonlinear stage18,20,22,23.

There is a great practical demand for devices and physical
mechanisms, which break the symmetry of the uniform or
continuous wave state of the laser radiation leading to the
formation of temporal structures—optical pulses. Usually, in laser
systems, the symmetry breaking is achieved through modulation
instability22,23, the introduction of a modulator or a saturable
absorber. The latter can be either material, such as for instance
carbon nanotubes24 and SESAM25, or an effective one based on
physical propagation effects, such as, for example, nonlinear
polarization evolution26, Kerr lens27, nonlinear optical loop
mirror28 and others. The demand for a new controllable and
stable all fibre mode-locking mechanism is driven by the field
of high power mode-locked fibre lasers, where it has a great
practical value.

Here we experimentally demonstrate the recently
theoretically predicted dissipative Faraday instability19 in a
simple configuration Raman fibre laser. The induced instability
leads to high-order harmonic mode-locking with tunable
repetition rate and high environmental stability. The
experimental results are in a good agreement with theoretical
predictions and numerical simulations.

Results
Dissipative Faraday instability. The instability is initiated by the
introduction of a periodic spatial modulation of a dissipative
parameter of the system (Fig. 1a). When parameters of a system
are modulated with the longitudinal period L, corresponding to
the spatial frequency k¼ 2p/L, then the Faraday instability is
initiated, with the first unstable mode oscillating with the wave-
number k/2, that is, the double period. The corresponding pattern
forms in the temporal domain, with the characteristic frequency
o related to the wavenumber k/2, via the nonlinear dispersion
relation o(k). In the proposed configuration, the light travelling
in the cavity experiences periodic spectral losses after reflection
from the spectrally shifted mirrors at each end of the cavity
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Figure 1 | Dissipative Faraday instability in a fibre laser. (a) The light propagating in a linear laser cavity experiences periodic modulation of group

velocity dispersion and spectrally dependent losses. In the particular example of dispersion modulation, the normal dispersion accumulated along the

propagation over the fibre length is partially compensated at the cavity mirrors. The zig-zag spatial modulation of the dissipation with spatial frequency

k¼ 2p/L, where L¼ 2L, excites the dissipative Faraday instability. The instability frequency is related to half of the spatial forcing frequency, k/2

(parametric resonance condition), via the dispersion relation o(k). (b) The Faraday instability gain developed in the system couples the phases of each

optical cavity mode on and cavity modes separated by the instability frequency f¼o(k)/2p. (c) Coupling of modes separated by frequency f leads to the

harmonic mode-locking and pattern or pulse train formation in the temporal domain. At the later stages, the shape of the pulses is defined by the

combination of self-similar propagation and spectral filtering. FBG, fibre Bragg gratings.
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(zig-zag-like spectral filtering). The reflection profiles of mirrors
were shifted in spectral domain by þDo and �Do.

It has been shown theoretically19 that such a configuration,
with frequency detuned mirror reflectivity profiles, leads to the
dissipative Faraday instability. Indeed, when losses are applied to
the spectral region þDo, the damped spectral components
experience sudden growth, gaining energy due to a four
wave-mixing process where the homogeneous mode and the
symmetrically located modes in spectral region �Do are
involved. Then, after nonlinear evolution of the electric field
inside the fibre laser, when the losses are applied in the spectral
region �Do, the process repeats symmetrically; and the periodic
iteration of such a scheme drives an average growth of spectral
sidebands—modulation modes—which eventually destabilizes the
homogeneous state of the system.

In a fibre laser resonator, the instability gain resulting from the
modulation of spectral losses, with the maximum at the frequency
f¼o(k)/2p, couples the phases of the longitudinal cavity modes
(Fig. 1b), leading to the formation of a pattern in the temporal
domain, with the period 1/f. At the nonlinear stage of evolution,
the pattern in this dissipative system is supported by the balance
of Kerr nonlinearity, gain saturation, dispersion, spectrally
dependant loss and gain (Fig. 1c).

Experimental results. To demonstrate experimentally the
possibility of exciting a stable temporal pattern of optical pulses
by dissipative Faraday instability we built a linear cavity fibre laser
with spectrally shifted fibre Bragg gratings at both ends providing
the modulation of dissipation in a zig-zag manner (Fig. 1a). The
system is described by the generalized nonlinear Schrödinger
equation29,30 (see also Methods) with a loss coefficient having
spatial and spectral dependence: a (z, o). Unlike the case of BF
instability, the growth of the spectral sidebands is not due to the
average effect and is not continuous, but synchronized with the
period of modulation19. In the temporal domain, the pattern
forms with the period corresponding to the strongest component
in the gain spectrum.

In the experiment we used a 2.2 km-long fibre placed
between two highly reflective mirrors—fibre Bragg gratings
(Supplementary Fig. 1). The fibre was chosen with high normal
group velocity dispersion, b2¼ 25.5 ps2 km� 1, so BF instability is
not initiated. Laser mirrors had negative linear chromatic chirp of
� 53 ps2, partially compensating the fibre dispersion, so that the
total cavity dispersion was normal. The gratings had super-
Gaussian reflectivity profile with a full-width at half-maximum of
1 nm, and were shifted by B0.75 nm or 90 GHz, and stabilized
by Peltier elements. The laser operated via the Raman gain,

and generated at 1,550 nm, pumped by a multi-Watt power
quasi-continuous wave pump laser at 1,450 nm. Polarization was
not controlled in any way.

With the properly chosen parameters of the system, the laser
readily mode-locked as soon as the lasing threshold was reached,
and produced a train of high-repetition-rate pulses (Fig. 2a), with
no stable continuous wave regime of operation observed, due to
the presence of the instability. The generated pulses, propagating
in the normal dispersion cavity, evolve asymptotically into
parabolic pulses31 with the optical spectra broadening by a
factor of two (Supplementary Fig. 2 and Supplementary Note 1),
before the shifted gratings reshape them and suppress the
background radiation through a mechanism known as Mamyshev
regenerator32,33. The pulses had the uncompressed full-width at
half-maximum of 7.3 ps measured after reflection from a grating
(Fig. 2a, inset), and were Gaussian shaped, which is consistent
with the expected asymptotic shape of the output of a Mamyshev
regenerator. Optical spectrum had a width of 0.65 nm or 80 GHz,
and is shown in Fig. 2b. Power spectrum (Fig. 2c) reveals large
supermode noise-associated timing jitter in the system, with
repetition rates reaching 11 GHz, which corresponds to the
B2.4� 105 harmonic of the fundamental frequency.

It should be noted that no additional technical efforts
were made to improve the quality of mode-locking, however,
even in such simple configuration the laser operation was
environmentally very stable and reproducible. Therefore, there
is a great potential for further improvement in the quality of
mode-locking based on the proposed instability.

Theoretical analysis. The onset of Faraday patterns can be
studied using the linear Floquet stability analysis and direct
numerical simulations of the set-up. Figure 3a shows the gain
level dependence on power obtained from Floquet linear stability
analysis, with spectral detuning of the chirped cavity mirrors
taken into account. As expected, for Faraday (both dispersive and
dissipative19) instability, in the case of net normal dispersion, the
frequency corresponding to the maximum gain decreases with the
pump power increase and follows the simple asymptotical
dependence: oinstpP� 1/2 in contrast to the BF instability.
The pulse repetition rate dependence on power from the
numerical simulation (Supplementary Note 2) agrees well with
the experiment (Fig. 3c), and is consistent with the predictions of
the linear Floquet stability analysis.

Although it has been shown that periodic group velocity
dispersion modulation can lead to instability and pattern
formation18,21, we emphasize that the instability leading to
generation of pulses in our system is triggered by the periodic
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Figure 2 | Experimental results. (a) Pulse train and intensity autocorrelation of a single pulse (inset) with a Gaussian fit. (b) Optical spectrum of the

pulses in experiment (orange) and in numerical simulations (blue). (c) Typical radio-frequency (RF) spectrum (resolution bandwidth 10 kHz) with inset

showing the 11 GHz peak in detail (resolution bandwidth 1 Hz). Intermodal distance corresponds to the cavity length.
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modulation of dissipation. While the dispersion compensation,
operated by the chirped gratings has a small impact on the pulses’
repetition rate and is not responsible for exciting the instability.
This point is discussed in detail in Supplementary Note 3 where
it is shown that the gain related to the modulation of
dispersion, when modulation of dissipative terms is turned off,
is located at a much higher frequency compared with the case
where dissipation is modulated (Supplementary Fig. 3) so that it
can be ruled out as the main mechanism of the instability.
Furthermore, we have verified that the repetition rate of the
pulses is only marginally affected by varying drastically the
amount of chirp in the gratings (Supplementary Note 3 and
Supplementary Fig. 4). Further studies should be undertaken to
exploit the dispersion compensation for the control of the pulses’
chirp and shape.

Discussion
In conclusion, we predict that the dissipative Faraday instability-
initiated patterns, originally proposed in the very general
framework of the complex Ginzburg–Landau equation, can be
observed in a Raman fibre laser and we demonstrate it
experimentally. The result is a train of pulses with extremely
high repetition rate, corresponding to the instability frequency.
The proposed and designed dissipative Faraday instability in a
fibre laser resonator constitutes a novel nonlinear science-based
mechanism of mode-locking with potential for various practical
applications. In particular, the formation of a pattern of optical
pulses in a dissipative system is promising for the generation
of high-repetition-rate pulses with energies unachievable in a
conservative system.

In our experiments the main focus was on presenting the novel
mechanism of mode-locking by keeping the set-up design as
simple as possible to highlight the underlying physical processes.
Despite being extremely simple, the laser readily mode-locks,
once in the range of corresponding operational parameters. This
shows a great potential for control of this mode-locking
mechanism and future improvements in the quality of the
generated pulse train.

Methods
Numerical simulations. To confirm the nature of the mode-locking mechanism,
we performed a numerical analysis using a well-established model describing a
Raman fibre laser30. We used the Ikeda-map-like procedure: in the first stage an
integration of the fields evolution equations along the fibre followed by the action

of the first Bragg grating was performed, a second integration of the fields to
describe backward propagation, and interaction with the second grating close the
full roundtrip. The equations for the Stokes As and pump Ap (forwardþ and
backward� propagating) waves evolution along the fibre read
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where z denotes the propagation spatial coordinate along the fibre, t is the time
coordinate, b2 is the fibre group velocity dispersion, b1 accounts for the group
velocity mismatch between pump and Stokes waves, g is the Raman gain, g is the
Kerr nonlinear phase shift coefficient and a describes the distributed losses.
For numerical simulations we have used the following set of parameters:
b2p¼ 25.78 ps2 km� 1, b2s¼ 25.49 ps2 km� 1, gp¼ 2.5 (W � km)� 1, gs¼ 2.32
(W � km)� 1, ap¼ 0.6 (km)� 1, as¼ 0.6 (km)� 1 (also takes into account connector,
splice, coupling and bending losses), gp¼ 8 (W � km)� 1, gs¼ 6.5 (W � km)� 1 and
distance between the two mirrors L¼ 2.2 km. Subscripts, p and s, in the coefficients
refer to the pump and Stokes fields, respectively. Equations (1) and (2) have been
supplemented by the following boundary conditions in correspondence to the
cavity extremities: chirped Bragg mirrors having frequency detuned super-
Gaussian profiles of sixth order described by the functions f±¼R
exp[� (o±o±)6/O6] with R¼ 0.98, o±¼ 150 rad ns� 1 and O¼ 190 rad ns� 1.
Pump injection was applied in correspondence to the first cavity mirror while the
second cavity mirror was chosen to have no reflectivity for the pump according to
the experimental situation. The spectrum of the multimode pump field was
simulated as a sum of spectral modes with randomly generated amplitude and
phases with a Gaussian envelope.

In the numerical study, first, we calculated numerically the homogeneous field
distributions of equations (1) and (2) by suppressing temporal modulations; the
stationary state reached corresponds to non-zero field background with the
amplitude depending on the value of the pump field injected at z¼ 0. Next, we
performed both linear stability analysis and a complete integration of the equations
for many cavity roundtrips to characterize the full dynamics.

Stability analysis. The Floquet stability analysis was performed by computing the
evolution of real and imaginary small perturbations of each spectral mode over one
cavity roundtrip. Diagonalization of the map provided the Floquet multipliers
spectrum F(o). Denoted by Fm(o)¼max (|F(o)|) the maximum among the Flo-
quet multipliers absolute values, the average growth exponent for each mode can be
calculated as x¼ ln (Fm(o)). Note that the power gain in dimensional units of
km� 1 is given by G¼ 2x/L. In this way we could draw the instability map in
Fig. 3a, which depicts the growth exponent in the o� P space, where P is the
injected pump power.

The linear stability analysis predictions differ slightly from the results of the
experiment and from full numerical integration. The small discrepancy is likely due
to a nonlinear resonance, which takes place when the amplitude of the growing
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Figure 3 | Faraday instability spectrum and pulses repetition rate. (a) The parametric resonance tongues of the Faraday instability are revealed by the

Floquet linear stability analysis, which takes into account the growth process of perturbations in modulated systems over one modulation period and allows

the calculation of the frequency-dependent growth exponents (instability spectrum). At variance with what happens in the BF instability, the frequency of

the most unstable mode is a decreasing function of the pump power and this is a genuine feature of parametric instabilities in the net normal dispersion

regime. The gain maximum is emphasized by the black line. (b) The results of numerical simulations. Pulse shape and repetition rates are in a good

agreement with the experiment. (c) The scaling of repetition rate with power for the numerical simulations, experiment and the prediction of the stability

analysis.
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modulation modes becomes large enough to violate the assumption of the small
perturbation (linear regime).

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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15. Staliunas, K., Longhi, S. & De Valcárcel, G. J. Faraday patterns in Bose-Einstein
condensates. Phys. Rev. Lett. 89, 210406 (2002).

16. Engels, P., Atherton, C. & Hoefer, M. A. Observation of Faraday waves in a
Bose-Einstein condensate. Phys. Rev. Lett. 98, 095301 (2007).

17. Abdullaev, F. K., Darmanyan, S. A., Bischoff, S. & Sørensen, M. P. Modulational
instability of electromagnetic waves in media with varying nonlinearity. J. Opt.
Soc. Am. B 14, 27 (1997).

18. Conforti, M., Mussot, A., Kudlinski, A. & Trillo, S. Modulational instability in
dispersion oscillating fiber ring cavities. Opt. Lett. 39, 4200–4203 (2014).

19. Perego, A. M., Tarasov, N., Churkin, D. V., Turitsyn, S. K. & Staliunas, K.
Pattern generation by dissipative parametric instability. Phys. Rev. Lett. 116,
28701 (2016).

20. Staliunas, K., Hang, Chao & Konotop, V. V. Parametric patterns in optical fiber
ring nonlinear resonators. Phys. Rev. A 88, 023846 (2013).

21. Copie, F., Conforti, M., Kudlinski, A., Mussot, A. & Trillo, S. Competing Turing
and Faraday instabilities in longitudinally modulated passive resonators. Phys.
Rev. Lett. 116, 143901 (2016).

22. Nakazawa, M., Suzuki, K. & Haus, H. A. The modulational instability laser. I.
Experiment. IEEE J. Quantum Electron. 25, 2036–2044 (1989).

23. de Matos, C. J. S., Chestnut, D. A. & Taylor, J. R. Low-threshold self-induced
modulational instability ring laser in highly nonlinear fiber yielding a
continuous-wave 262-GHz soliton train. Opt. Lett. 27, 915–917 (2002).

24. Set, S. Y., Yaguchi, H., Tanaka, Y. & Jablonski, M. Laser mode locking using a
saturable absorber incorporating carbon nanotubes. J. Light. Technol. 22, 51–56
(2004).

25. Ippen, E. P., Eilenberger, D. J. & Dixon, R. W. Picosecond pulse generation by
passive mode locking of diode lasers. Appl. Phys. Lett. 37, 267 (1980).

26. Fermann, M. E. Passive mode locking by using nonlinear polarization
evolution in a polarization-maintaining erbium-doped fiber. Opt. Lett. 18, 894
(1993).

27. Lariontsev, E. G. & Serkin, V. N. Possibility of using self-focusing for increasing
contrast and narrowing of ultrashort light pulses. Sov. J. Quantum Electron. 5,
796–800 (1975).

28. Doran, N. J. & Wood, D. Nonlinear-optical loop mirror. Opt. Lett. 13, 56–58
(1988).

29. Turitsyn, S. K., Bale, B. & Fedoruk, M. P. Dispersion-managed solitons in fibre
systems and lasers. Phys. Rep. 521, 135–203 (2012).

30. Agrawal, G. P. Nonlinear Fiber Optics 4th edn Ch. 8 (Academic, 2007).
31. Fermann, M. E., Kruglov, V. I., Thomsen, B. C., Dudley, J. M. & Harvey, J. D.

Self-similar propagation and amplification of parabolic pulses in optical fibers.
Phys. Rev. Lett. 84, 6010–6013 (2000).

32. Mamyshev, P. V. in 24th Eur. Conf. Opt. Commun. ECOC ’98 (IEEE Cat. No.
98TH8398) 1, 475–476 (1998).

33. Pitois, S., Finot, C., Provost, L. & Richardson, D. J. Generation of localized
pulses from incoherent wave in optical fiber lines made of concatenated
Mamyshev regenerators. J. Opt. Soc. Am. B 25, 1537–1547 (2008).

Acknowledgements
We acknowledge financial support from ERC project ULTRALASER (267763);
Ministry of Education and Science of the Russian Federation (14.B25.31.0003); Russian
Foundation For Basic Research (project 16-32-60153), the Russian Science Foundation
(14-21-00110) (work of N.T.); and Spanish Ministerio de Educación y Ciencia, European
FEDER (FIS2015-65998-C02-01); A.M.P. acknowledges support from the ICONE
Project through Marie Curie Grant No 608099. K.S. acknowledges Leverhulme visiting
Professorship VP1-2015-032. We thank Prof. A. Rubenchick for fruitful and stimulating
discussions.

Author contributions
K.S. proposed the concept; D.V.C proposed the experiment; K.S. and S.K.T. initiated the
study; N.T. carried out the experiments; A.M.P. designed and conducted the numerical
modeling; S.K.T., K.S. and D.V.C. guided the theoretical and numerical studies; K.S.,
S.K.T., D.V.C., N.T. and A.M.P. analysed the data; K.S., S.K.T., D.V.C., N.T. and A.M.P.
wrote the paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Tarasov, N. et al. Mode-locking via dissipative Faraday
instability. Nat. Commun. 7:12441 doi: 10.1038/ncomms12441 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12441 ARTICLE

NATURE COMMUNICATIONS | 7:12441 | DOI: 10.1038/ncomms12441 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Dissipative Faraday instability

	Figure™1Dissipative Faraday instability in a fibre laser.(a) The light propagating in a linear laser cavity experiences periodic modulation of group velocity dispersion and spectrally dependent losses. In the particular example of dispersion modulation, t
	Experimental results
	Theoretical analysis

	Figure™2Experimental results.(a) Pulse train and intensity autocorrelation of a single pulse (inset) with a Gaussian fit. (b) Optical spectrum of the pulses in experiment (orange) and in numerical simulations (blue). (c) Typical radio-frequency (RF) spect
	Discussion
	Methods
	Numerical simulations
	Stability analysis

	Figure™3Faraday instability spectrum and pulses repetition rate.(a) The parametric resonance tongues of the Faraday instability are revealed by the Floquet linear stability analysis, which takes into account the growth process of perturbations in modulate
	Data availability

	CrossM. C.HohenbergP. C.Pattern formation outside of equilibriumRev. Mod. Phys.658511993ZakharovV. E.OstrovskyL. A.Modulation instability: the beginningPhys. D2385405482009BenneyD. J.NewellA. C.The propagation of nonlinear wave envelopesJ. Math. Phys.4613
	We acknowledge financial support from ERC project ULTRALASER (267763); Ministry of Education and Science of the Russian Federation (14.B25.31.0003); Russian Foundation For Basic Research (project 16-32-60153), the Russian Science Foundation (14-21-00110) 
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




