Automorphism group of split Cartan modular curves

Josep González *

Dedicated to the memory of Fumiyuki Momose

Abstract

We determine the automorphism group of the split Cartan modular curves $X_{\text{split}}(p)$ for all primes p.

1 Introduction

For a rational prime p, let $X_{\text{split}}(p)$ be the modular curve defined over \mathbb{Q} attached to the congruence subgroup of level p

$$\Gamma_{\text{split}}(p) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) : b \equiv c \equiv 0 \text{ or } a \equiv d \equiv 0 \pmod{p} \right\}.$$

It is well-known that $X_{\text{split}}(p)$ is isomorphic over \mathbb{Q} to the modular curve $X_0^+(p^2) := X_0(p^2)/w_{p^2}$, where w_{p^2} stands for the Fricke involution. The genus of this curve is positive when $p \geq 11$ and, in this case, it is at least 2.

The automorphism group of the modular curve $X_0(N)$ was determined, except for $N = 63$, by Kenku and Momose in [KM88] and was completed by Elkies in [Elk90]. Later, the automorphism group of the modular curve $X_0^+(p) = X_0(p)/w_p$ was determined by Baker and Hasegawa in [BH03]. In this article, we focus our attention on the automorphism group of the split Cartan modular curves $X_{\text{split}}(p)$. Our main result is the following.

Theorem 1. Assume that the genus of $X_{\text{split}}(p)$ is positive. Then,

$$\text{Aut}(X_{\text{split}}(p)) = \text{Aut}_\mathbb{Q}(X_{\text{split}}(p)) \simeq \begin{cases} \{1\} & \text{if } p > 11, \\ (\mathbb{Z}/2\mathbb{Z})^2 & \text{if } p = 11. \end{cases}$$

2 General facts

We recall that, for a normalized newform $f = \sum_{n \geq 1} a_n q^n \in S_2(\Gamma_1(N))^{\text{new}}$ and a Dirichlet character χ of conductor N', the function

$$f_\chi := \sum_{n \geq 1} \chi(n) a_n q^n$$

is a cusp form in $S_2(\Gamma_1(\text{lcm}(N, N'^2)))$ (cf. Proposition 3.1 of [AL78]). Here, as usual, $q = e^{2\pi i z}$. Let $f \otimes \chi$ denote the unique normalized newform with q-expansion $\sum_{n \geq 1} b_n q^n$ that satisfies

*The author is partially supported by DGI grant MTM2012-34611.

Keywords: Automorphisms of curves, Split Cartan modular curves.

2010 Mathematics Subject Classification: 14G35, 14H37.
implies \(f(\mathbb{CM}) \) by the imaginary quadratic field \(\mathcal{O} \) of there is a unique newform subspace of elements in \(\mathbb{CM} \) field obtained from a Hecke character quotient of \(\mathbb{CM} \) field \(\mathcal{O} \). Moreover, if \(\mathbb{CM} = \mathbb{CM} \), then \(f = f \otimes \chi \).

We restrict ourselves to the cusp forms in \(S_2(\Gamma_0(N)) \). Let \(\text{New}_N \) denote the set of normalized newforms in \(S_2(\Gamma_0(N))^{\text{new}} \). For \(f \in \text{New}_N \), \(\varepsilon(f) \) denotes the eigenvalue of \(f \) under the action of the Fricke involution \(w_N \) and set \(\text{New}_N^+ = \{ f \in \text{New}_N : \varepsilon(f) = 1 \} \). For a cusp form \(f = \sum_n b_n q^n \in S_2(\Gamma_0(N)) \) such that \(\mathbb{Q}(\{b_n\}) \) is a number field, \(S_2(f) \) denotes the \(\mathbb{C} \)-vector space of cusp forms spanned by \(f \) and its Galois conjugates. In the particular case that \(f \in \text{New}_N \), \(A_f \) stands for the abelian variety attached to \(f \) by Shimura. It is well-known that \(A_f \) is a quotient of \(J_0(N) \) := Jac(\(X_0(N) \)) defined over \(\mathbb{Q} \) and the pull-back of \(\Omega_{A_f/\mathbb{Q}}^1 \) is the \(\mathbb{Q} \)-vector subspace of elements in \(S_2(f) \otimes q/q \) with rational \(q \)-expansion, i.e. \(S_2(f) \otimes q/q \cap \mathbb{Q}[[q]] \). Moreover, the endomorphism algebra \(\text{End}_\mathbb{Q}(A_f) \otimes \mathbb{Q} \) is a totally real number field.

From now on, we assume \(p \geq 11 \) and \(\chi \) denotes the quadratic Dirichlet character of conductor \(p \), i.e. the Dirichlet character attached to the quadratic number field \(K = \mathbb{Q}(\sqrt{p}) \), where \(p^* = (-1)^{(p-1)/2}p \).

Lemma 1. The map \(f \mapsto f \otimes \chi \) is a permutation of the set \(\text{New}_p^2 \cup \text{New}_p \). Under this bijection, there is a unique newform \(f \), up to Galois conjugation, such that \(f = f \otimes \chi \) when \(p \equiv 3 \pmod{4} \).

Proof. Since \(f_\chi \in S_2(\Gamma_0(p^2)) \) for \(f \in \text{New}_p^2 \cup \text{New}_p \) (cf. Proposition 3.1 of [AL78]), the level of \(f \otimes \chi \) divides \(p^2 \) and, thus, the map is well defined. The bijectivity follows from the fact that \((f \otimes \chi) \otimes \chi = f \). The condition \(f = f \otimes \chi \) amounts to saying that \(f \) has complex multiplication (CM) by the imaginary quadratic field \(K \) attached to \(\chi \), i.e. \(p \equiv 3 \pmod{4} \), and, moreover, \(f \) is obtained from a Hecke character \(\psi \) whose conductor is the ideal of \(K \) of norm \(p \), which implies \(f \in \text{New}_p^2 \). Since \(f \) has trivial Nebentypus, the Hecke character \(\psi \) is unique up to Galois conjugation.

Remark 1. The above map does not preserve the eigenvalue of the corresponding Fricke involution, i.e. it may be that \(\varepsilon(f) \) and \(\varepsilon(f \otimes \chi) \) are different.

Remark 2. Let \(f \in \text{New}_p^2 \cup \text{New}_p \) without CM. If \(f \) has an inner twist \(\chi' \neq 1 \), i.e. \(f \otimes \chi' = ^\sigma f \) for some \(\sigma \in G_\mathbb{Q} := \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \), then \(\chi' = \chi \) because \(\chi' \) must be a quadratic character of conductor dividing \(p^2 \). In such a case, \(\text{End}(A_f) \otimes \mathbb{Q} = \text{End}_K(A_f) \otimes \mathbb{Q} \) is a non commutative algebra. Otherwise, \(\text{End}(A_f) \otimes \mathbb{Q} = \text{End}_\mathbb{Q}(A_f) \otimes \mathbb{Q} \) is a totally real number field.

Remark 3. If \(f \in \text{New}_p \) has CM, then the dimension of \(A_f \) is the class number of \(K \), \(A_f \) has all its endomorphisms defined over the Hilbert class field of \(K \) and \(\text{End}_K(A_f) \otimes \mathbb{Q} \) is the CM field \(\text{End}_\mathbb{Q}(A_f) \otimes K \) which only contains the roots of the unity \(\pm 1 \) (cf. Theorem 1.2 of [GL11] and part (3) in Proposition 3.2 of [Yan04]). Moreover, \(f \in \text{New}_p^+ \) if, and only if, \(p \equiv 3 \pmod{8} \) (cf. Corollary 6.3 of [MY00]).

Remark 4. For two distinct \(f_1, f_2 \in (\text{New}_p^2 \cup \text{New}_p)/G_\mathbb{Q} \), the abelian varieties \(A_{f_1} \) and \(A_{f_2} \) are nonisogenous over \(\mathbb{Q} \) and isogenous if, and only if, \(f_1 \otimes \chi = ^\sigma f_2 \) for some \(\sigma \in G_\mathbb{Q} \) (see Proposition 4.2 of [GJU12]) and, in this particular case, there is an isogeny defined over \(K \).

The abelian variety \(J_0^+(p^2) := \text{Jac}(X_0^+(p^2)) \) splits over \(\mathbb{Q} \) as the product \((J_0(p^2)^{\text{new}})^{\text{old}} \times J_0(p) \). More precisely,

\[
J_0^+(p^2) \cong \prod_{f \in (\text{New}_p^2 \cup \text{New}_p)/G_\mathbb{Q}} A_f .
\]

Each \(f \in \text{New}_p \) provides a vector subspace of \(S_2(\Gamma_0(p^2))^{\text{old}} \) of dimension 2 generated by \(f(q) \) and \(f(q^p) \). The normalized cusp forms \(f(q) + \varepsilon(f)f(q^p) \) and \(f(q) - \varepsilon(f)f(q^p) \) are eigenforms
for all Hecke operators T_m with $p \nmid m$ and the Fricke involution w_{p^2} with eigenvalues 1 and -1 respectively. The splitting of $J_{0}^+(p^2)$ over \mathbb{Q} provides the following decomposition for its vector space of regular differentials

$$\Omega_1^{+}(J_{0}^+(p^2)) = \left(\bigoplus_{f \in \text{New}^+_{p^2}/G_0} S_2(f(q)) \frac{dq}{q} \right) \oplus \left(\bigoplus_{f \in \text{New}_p/G_0} S_2(f(q) + p\varepsilon(f)q^p) \frac{dq}{q} \right). \quad (2.2)$$

Let g^+ and g_0 be the genus of the curves $X_0^+(p^2)$ and $X_0(p)$, respectively. From the genus formula for these curves, one obtains the following values

<table>
<thead>
<tr>
<th>p</th>
<th>g^+</th>
<th>g_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \equiv 1$ (mod 12)</td>
<td>$(p - 1)(p - 7)/24$</td>
<td>$p - 13/12$</td>
</tr>
<tr>
<td>$p \equiv 5$ (mod 12)</td>
<td>$(p - 3)(p - 5)/24$</td>
<td>$p - 5/12$</td>
</tr>
<tr>
<td>$p \equiv 7$ (mod 12)</td>
<td>$(p - 1)(p - 7)/24$</td>
<td>$p - 7/12$</td>
</tr>
<tr>
<td>$p \equiv 11$ (mod 12)</td>
<td>$(p - 3)(p - 5)/24$</td>
<td>$p + 1/12$</td>
</tr>
</tbody>
</table>

3 Hyperelliptic case for $X_{\text{split}}(p)$

Proposition 1. Assume $p \geq 11$. Then, $X_{\text{split}}(p)$ is hyperelliptic if, and only if, $p = 11$. Moreover, one has

$$\text{Aut}(X_{\text{split}}(11)) = \text{Aut}_{\mathbb{Q}}(X_{\text{split}}(11)) \simeq (\mathbb{Z}/2\mathbb{Z})^2.$$**

Proof. Assume $X_0^+(p^2)$ is hyperelliptic. By applying Lemma 3.25 of [BGGP05], we obtain $g^+ \leq 10$, which implies $p \leq 19$. We have $g^+ = 2$ if, and only if, $p = 11$ and, thus, the curve $X_0^+(11^2)$ is hyperelliptic. For $p > 11$, one has $g^+ > 2$ and, moreover, $p > 13$ because $X_0^+(13^2)$ is a smooth plane quartic (cf. [Bar10]). Lemma 2.5 of [BGGP05] states that there is a basis f_1, \cdots, f_g of $S_2(\Gamma_0(p^2))^{(w_{p^2})}$ with rational q-expansions satisfying

$$f_i(q) = \begin{cases}
q^i + O(q^4) & \text{if the cusp } \infty \text{ is not a Weierstrass point of } X_0^+(p^2), \\
q^{2i-1} + O(q^{2i-1}) & \text{otherwise.}
\end{cases} \quad (3.1)$$

Moreover, for any such a basis, the functions on $X_0^+(p^2)$ defined by

$$x = \frac{f_g}{f_{g+1}}, \quad y = \frac{qdx/dq}{f_{g+1}},$$

satisfy $y^2 = P(x)$ for a unique squarefree polynomial $P(X) \in \mathbb{Q}[X]$ which has degree $2g^+ + 1$ or $2g^+ + 2$ depending on whether ∞ is a Weierstrass point or not. The first part of the statement follows from the fact that, for $p = 17$ and $p = 19$, the vector space $S_2(\Gamma_0(p^2))^{(w_{p^2})}$ does not have any bases as in (3.1).

Now, we consider $p = 11$. In this case, $|\text{New}_{112}^+| = |\text{New}_{11}| = 1$. Let $f_1 \in \text{New}_{112}^+$ and let $f_2 \in \text{New}_{11}$. The newform f_1 is the one attached to the elliptic curve E_1/\mathbb{Q} of conductor 11^2 with CM by $\mathbb{Z}[(1 + \sqrt{-11})/2]$, and f_2 is the newform attached to an elliptic curve E_2/\mathbb{Q} of conductor 11 without CM. Since $\varepsilon(f_2) = -1$, the cusp forms $f_1(q)$ and $h(q) = f_2(q) - 11f_2(q^{11})$ are a basis of $S_2(\Gamma_0(11^2))^{(w_{112})}$. Take the following functions on $X_0^+(11^2)$

$$x = \frac{h}{f_1} = 1 - 2q + 2q^3 - 2q^5 + O(q^5), \quad y = -2q\frac{dx/dq}{f_1} = 4 - 8q^2 + 8q^3 + 24q^4 - 32q^5 + O(q^5). \quad (3.3)$$

3
Using q-expansions, we get the following equation for $X_0^+(11^2)$:

$$g^2 = x^6 - 7x^4 + 11x^2 + 11.$$ \hfill (3.2)

The maps $(x, y) \mapsto (\pm x, \pm y)$ provide a subgroup of Aut$_Q(X_0^+(11^2))$ isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$. Since Aut$_{\mathbb{Q}}(X_0^+(11^2))$ is a finite subgroup of End(E_1) \times End(E_2) $\simeq \mathbb{Z}[(1 + \sqrt{-11})/2] \times \mathbb{Z}$, we have that it must be a subgroup of $(\mathbb{Z}/2\mathbb{Z})^2$, which proves the second part of the statement. \hfill \square

4 Preliminary lemmas

For an abelian variety A defined over a number field, we say that a number field L is the splitting field of A if it is the smallest number field where A has all its endomorphisms defined.

We recall that K is the quadratic field $\mathbb{Q}(\sqrt{p'})$, where $p' = (-1)^{(p-1)/2} p$, and χ is the quadratic Dirichlet character attached to K.

Lemma 2. Let L be the splitting field of $J_0^+(p^2)$. If $p \equiv 3 \pmod{8}$, then L is the Hilbert class field de K. For $p \not\equiv 3 \pmod{8}$, $L = K$ if there exists $f \in \text{New}_{p^2}^+ \cup \text{New}_{p}$ such that $f \otimes \chi \in \text{New}_{p^2}^+ \cup \text{New}_{p}$, otherwise $L = \mathbb{Q}$.

Proof. On the one hand, for two distinct $f_1, f_2 \in (\text{New}_{p^2}^+ \cup \text{New}_{p})/G_{\mathbb{Q}}$ without CM, A_{f_1} and A_{f_2} are isogenous if, and only if, f_2 is the Galois conjugate of $f_1 \otimes \chi$ and, in this case, the isogeny is defined over K.

On the other hand, if $f \in \text{New}_{p^2}^+ \cup \text{New}_{p}$ does not have CM, then f has at most χ as an inner twist. In this case, the splitting field of A_f is K or \mathbb{Q} depending on whether χ is an inner twist of f or not. If f has CM, then the splitting field of A_f is the Hilbert class field of K and A_f is the unique CM factor of $J_0^+(p^2)$.

Lemma 3. All automorphisms of $X_0^+(p^2)$ are defined over K.

Proof. By Lemma 2, we only have to consider the case $p \equiv 3 \pmod{8}$ and, by Proposition 1, we can assume $p \geq 19$. Let g_e be the dimension of the abelian variety A_f with $f \in \text{New}_{p^2}$ having CM. We know that g_e is the class number of K and, thus, $g_e = (2V - (p - 1)/2)/3$, where V is the number of quadratic residues modulo p in the interval $[1, (p - 1)/2]$ (see Théorème 4 in p. 388 off [BC67]). Hence, $g_e \leq (p - 1)/6$. Since $g^+ > 1 + (p - 1)/3$ for $p \geq 17$, we obtain $g^+ > 1 + 2g_e$. Now, the statement is obtained by applying the same argument used in the proof of Lemma 1.4 of [KM88]. Indeed, assume there is a nontrivial automorphism $u \in \text{Aut}(X_0^+(p^2))$ and put $v = u^\sigma \cdot u^{-1}$ for some nontrivial $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/K)$. Let g_v denote the genus of the curve $X_v := X_0^+(p^2))/\langle v \rangle$. On the one hand,

$$g_v \geq g^+ - g_e,$$ \hfill (4.1)

because v acts as the identity on the factors of $J_0^+(p^2)$ without CM. On the other hand, if v is not the identity, then its order is ≥ 2 and, applying the Riemann-Hurwitz formula to the natural projection $X_0^+(p^2) \to X_v$, we get

$$g^+ - 1 \geq 2(g_v - 1).$$ \hfill (4.2)

Combining (4.1) with (4.2), we obtain

$$g^+ \leq 1 + 2g_e.$$ \hfill \square

Lemma 4. The group $\text{Aut}_\mathbb{Q}(X_0^+(p^2))$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^s$ for some integer $s \geq 0.$
Hecke operators and, thus, there are two normalized eigenforms such that their corresponding principal divisor.
Indeed, by the Eichler Shimura congruence we know that
Proof. Following the arguments used in Lemma 2.6 of [KM88], we claim that
Lemma 5. If u is a nontrivial automorphism of $X_0^+(p^2)$, then $u(\infty)$ is not a cusp.
Proof. The modular curve $X_0(p^2)$ has $p+1$ cusps. Only the cusps ∞ and 0 are defined over \mathbb{Q}. The remaining cusps $1/p, \ldots, (p-1)/p$ are defined over the p-th cyclotomic field $\mathbb{Q}(\zeta_p)$.
Let u be an automorphism of $X_0^+(p^2)$ such that $u(\infty)$ is a cusp. By Lemma 3, $u(\infty)$ is defined over K and, thus, $u(\infty) = \infty$. Let G_∞ denote the subgroup of $\text{Aut}(X_0^+(p^2))$ consisting of the automorphisms which fix ∞ and let T_∞ be the tangent space of $X_0^+(p^2)$ at ∞ over \mathbb{Q}.
Now, we will prove that, if $u \in \text{Aut}_\mathbb{Q}(X_0^+(p^2))$ is nontrivial, then $u(\infty) \neq \infty$. For the hyperelliptic case $p = 11$, the cusp ∞ has $(1, 4)$ as (x, y) coordinates in the equation given in (3.2). Hence, ∞ is not a fixed point for any of the three nontrivial involutions of $X_0^+(11^2)$. Let $p > 11$. Since $X_0^+(p^2)$ is nonhyperelliptic and, by Lemma 5, u is an involution, we can exclude the case where all eigenvalues of u acting on $\Omega^1_{J_0^+(p^2)}$ are equal to -1 and, thus, u must have eigenvalues 1 and -1 acting on this vector space. The vector space of cusp forms $\Omega^1_{J_0^+(p^2)}q/dq$ has a basis of normalized eigenforms (see (2.2)). Since u is defined over \mathbb{Q}, u commutes with the Hecke operators and, thus, there are two normalized eigenforms such that their corresponding regular differentials $\omega_1 = (1 + \sum_{n>1} a_n q^n)dq$ and $\omega_2 = (1 + \sum_{n>1} b_n q^n)dq$ satisfy $u^*(\omega_1) = \omega_1$ and $u^*(\omega_2) = -\omega_2$. Hence, u sends $\omega_1 + \omega_2$, which does not vanish at ∞, to $\omega_1 - \omega_2$, which vanishes at ∞.
In particular, the K-gonality of $X_0^+(p^2)$ is at most 6 and u has at most 12 fixed points.
Proof. Following the arguments used in Lemma 2.6 of [KM88], we claim that $u T_2 = T_2 u^*$. Indeed, by the Eichler Shimura congruence we know that T_2 acting on $J_0^+(p^2) \otimes \mathbb{F}_2$ is equal to $\text{Frob}_2 + 2 / \text{Frob}_2$. On $X_0^+(p^2) \otimes \mathbb{F}_2$, one has $u^* = u^\text{Frob}_2$. The claim is obtained from the equality $u \cdot \text{Frob}_2 = \text{Frob}_2 \cdot u^\text{Frob}_2$ and the injection $\text{End}(J_0^+(p^2)) \hookrightarrow \text{End}(J_0^+(p^2) \otimes \mathbb{F}_2)$. Hence, D_S is a principal divisor.
Set $Q = u(\infty)$ and let $P \in X_0(p^2)(\overline{\mathbb{Q}})$ be such that $\pi^+(P) = Q$, where $\pi^+: X_0(p^2) \to X_0^+(p^2)$ is the natural projection. Since Q is not a cusp, there is an elliptic curve E defined over $\overline{\mathbb{Q}}$ and a p^2-cyclic subgroup C of $E(\overline{\mathbb{Q}})$ such that $P = (E, C)$. The other preimage of Q under π^+ is the point $w_{p^2}(P) = (E/C, E[p^2]/C)$. Observe that if $P \notin X_0(p^2)(K)$, then P is defined
over a quadratic extension L of K and $w_{P'}(P) = P''$ for the nontrivial Galois conjugation $\sigma \in \text{Gal}(L/K)$ and, in particular, $E/C = E''$.

If D_S is a zero divisor, then $uT_2(\infty)\sigma$ must be equal to $T'_2u''(\infty)$ because $T_2(\infty) = 3\infty$ and ∞ is not in the support of $T_2(S)$. To prove that D_S is a nonzero divisor, we only need to prove that the condition $3(Q) = T_2(Q''\sigma)$ cannot occur for a noncuspidal point $Q \in X_0^+(p^2)(K)$.

Let C_i, $1 \leq i \leq 3$, be the three 2-cyclic subgroups of $E''[2]$. Since

$$T_2(Q'\sigma) = \sum_{i=1}^3 \pi^+((E''/C_i, (C'' + C_i)/C_i)), $$

the condition $3(Q) = T_2(Q''\sigma)$ implies that each elliptic curve E'/C_i is isomorphic to E or E/C. So, at least two quotients E''/C_i are isomorphic. By using the modular polynomial $\Phi_2(X, Y)$, one can check that there are exactly five j-invariants of elliptic curves for which the polynomial $\Phi_2(j, Y)$ has at least a double root.

Now, assume that u is defined over Q, i.e. $u(E) \in \{0, 123, -153\}$. Let E' be the elliptic curve E/C_i isomorphic to another quotient E/C_j. In all cases, E' has CM by the order \mathcal{O} and isomorphic to E/C. The composition of the cyclic isogenies $E' \to E$ and $E \to E/C = E'$ of degrees 2 and p^2 respectively is a $2p^2$-cyclic isogeny of E' itself. This fact is not possible due to the fact that the order $\mathcal{O} + 2\mathcal{O}$ does not have any elements of norm $2p^2$ because $2p^2 \equiv 2 \pmod{4}$.

Now, assume that E is defined over $Q(\sqrt{5})$ and not over Q. Let F be the elliptic curve which is the nontrivial Galois conjugated of E. Since P is not defined over K, E/C must be F. In this case, it turns out that there are two 2-subgroups C_1 and C_2 of $E[2]$ such that E/C_1 and E/C_2 are isomorphic to F and none of the curves E and F are isomorphic to E/C_3. Hence, it is proved that D_S is a nonzero divisor.

By taking $S = u(\infty)$, D_S is defined over K and, thus, the K-gonality is at most 6. Finally, since $u'(DS) \neq DS$ for some noncuspidal point $S \in X_0^+(p^2)(\mathbb{C})$, any nontrivial automorphism of $X_0^+(p^2)$ has at most 12 fixed points (cf. Lemma 3.5 of [BH03]).

Lemma 7. If $X_0^+(p^2)$ has a nontrivial automorphism and $p > 11$, then $p \in \{17, 19, 23, 29, 31\}$.

Proof. By applying Lemma 3.25 of [BGGP05] for the prime 2, we obtain that

$$g^+ < |X_0^+(p^2)(\mathbb{F}_4)| + 1.$$

By Lemma 6, the \mathbb{F}_4-gonality of $X_0^+(p^2) \otimes \mathbb{F}_4$ is at most 6 and, thus, $|X_0^+(p^2)(\mathbb{F}_4)| \leq 30$. Hence, $g^+ \leq 30$, which implies $p \leq 31$. The algebra $\text{End}(J^+_0(13^2)) \otimes \mathbb{Q}$ is a totally real number field and, thus, it only contains the roots of unity ± 1. Since $X_0^+(13^2)$ is nonhyperelliptic, $\text{Aut}(X_0^+(13^2))$ is trivial and we can discard the case $p = 13$.

Lemma 8. Every nontrivial automorphism of $X_0^+(p^2)$ has even order.

Proof. Assume that there is a nontrivial automorphism u of $X_0^+(p^2)$ whose order m is odd. Let X_u be the quotient curve $X_0^+(p^2)/u$ and denote by g_u its genus. Next, we find a positive lower bound t for g_u.

The endomorphism algebra $\text{End}_K(J^+_0(p^2)) \otimes \mathbb{Q}$ is the product of some noncommutative algebras and some number fields $E_f = \text{End}_K(A_f) \otimes \mathbb{Q}$ attached to the newforms f lying in a
certain subset S of $(\text{New}^+_p \cup \text{New}_p)/G_Q$. The set S is formed by newforms f without CM such that $f \otimes \chi \notin \text{New}^+_p \cup \text{New}_p$ $(E_f = \text{End}_Q(A_f)$ is a totally real number field) and by a newform f with CM by K if $p \equiv 3 \pmod{8}$ $(E_f = \text{End}_Q(A_f) \otimes K$ is a CM field). For $f \in S$, the unique root of unities contained in E_f are ± 1. Since m is odd, the automorphism u must act on each E_f as the identity and, thus, we have

$$t := \sum_{f \in S} \dim A_f \leq g_u.$$

An easy computation provides the following values for t:

<table>
<thead>
<tr>
<th>p</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>g^+</td>
<td>7</td>
<td>9</td>
<td>15</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td>t</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>

Applying Riemann-Hurwitz formula,

$$m \leq g^+ - 1 \leq \frac{g^+ - 1}{t - 1} < 3,$$

which yields a contradiction. \square

5 Proof of Theorem 1

Assume that, for $p \in \{17, 19, 23, 29, 31\}$, there is a nontrivial automorphism $u \in \text{Aut}_K(X_0^+(p^2))$. By Lemma 8, we can suppose that u is an involution. Let g_u be the genus of the quotient curve $X_0^+(p^2)/u$. We know that u has at most 12 fixed points. By Riemann-Hurwitz formula, we get that the number of fixed points by u must be even, say $2r$, and, moreover,

$$g_u = \frac{g^+ + 1 - r}{2}, \quad 0 \leq r \leq 6.$$

If g^+ is even, then u can have 2, 6 or 10 ramification points, while for the case g^+ odd, u can have 0, 4, 8 or 12 such points.

For a prime $\ell \neq p$, the curve $X = X_0^+(p^2)$ has good reduction at ℓ. Let \tilde{X} be the reduction of X modulo ℓ. We write

$$N_\ell(n) := 1 + \ell^n - \sum_{i=1}^{2g^+} \alpha_i^n,$$

where $\alpha_1, \cdots, \alpha_{2g^+}$ are the roots of polynomial

$$\prod_{f \in \text{New}^+_p \cup \text{New}_p} (x^2 - a_\ell(f)x + \ell)$$

and $a_\ell(f)$ is the ℓ-th Fourier coefficient of f. By Eichler-Shimura congruence, $N_\ell(n) = |\tilde{X}(\mathbb{F}_{\ell^n})|$. Let I be a prime of K over ℓ with residue degree s. The reduction of $X \otimes K$ modulo I is $\tilde{X} \otimes \mathbb{F}_{\ell^n}$ which has an involution, say \tilde{u}, with at most $2r$ fixed points. The automorphism \tilde{u} acts on the set $\tilde{X}(\mathbb{F}_{\ell^n})$ as a permutation. If $Q \in \bigcup_{i=1}^{n} \tilde{X}(\mathbb{F}_{\ell^s})$, then the set $S_Q = \{\tilde{u}^i(Q) : 1 \leq i \leq 2\}$ is contained in $\bigcup_{i=1}^{n} \tilde{X}(\mathbb{F}_{\ell^s})$ and its cardinality is equal to 1 or 2 according to Q is a fixed point of \tilde{u} or not. Hence, almost all integers $R_\ell(n) := |\bigcup_{i=1}^{n} \tilde{X}(\mathbb{F}_{\ell^s})|$, $n \geq 1$, are equivalent to the
number of fixed points of \(\tilde{u} \mod 2 \) and, moreover, the sequence \(\{ R_\ell(n) \}_{n \geq 1} \) can only contain at most \(2r \) or \(2r - 1 \) changes of parity depending on whether \(N_\ell(s) \) is even or odd. In other words, the sequence of integers \(\{ P_\ell(n) \}_{n \geq 1} \) defined by
\[
0 \leq P_\ell(n) \leq 1 \quad \text{and} \quad P_\ell(n) = R_\ell(n + 1) - R_\ell(n) \pmod{2},
\]
can only contain at most \(2r \) or \(2r - 1 \) ones according to \(N_\ell(s) \) being even or odd.

Note that the integer \(R_\ell(n + 1) - R_\ell(n) \) can be obtained from the sequence \(\{ N_\ell(s \ n) \} \) by using
\[
\tilde{X}(\mathbb{F}_{\ell^s \cdot d_1}) \cap \tilde{X}(\mathbb{F}_{\ell^s \cdot d_2}) = \tilde{X}(\mathbb{F}_{\ell^s \cdot \gcd(d_1, d_2)}), \quad \text{and if } d_1 | d_2 \text{ then } \tilde{X}(\mathbb{F}_{\ell^s \cdot d_1}) \cup \tilde{X}(\mathbb{F}_{\ell^s \cdot d_2}) = \tilde{X}(\mathbb{F}_{\ell^s \cdot d_2}).
\]

More precisely, if \(\{ p_1, \ldots, p_k \} \) is the set of primes dividing \(n + 1 \) and we put \(d_i = (n + 1)/p_i \) for \(1 \leq i \leq k \), then
\[
R_\ell(n + 1) - R_\ell(n) = N_\ell(s(n + 1)) - \sum_{j=1}^{k} (-1)^{j+1} \sum_{1 \leq i_1 < \cdots < i_j \leq k} N_\ell(s \gcd(d_{i_1}, \ldots, d_{i_j})).
\]

For the five possibilities for \(p \), we have:

\(p = 31: \) \(g^+ = 30, \ 2r \leq 10 \) and \(\ell = 2 \) splits in \(K = \mathbb{Q}(\sqrt{-31}) \). One has
\[
N_2(1) = 9, \quad \sum_{n \leq 36} P_2(n) = 10.
\]

\(p = 29: \) \(g^+ = 26, \ 2r \leq 10 \) and \(\ell = 2 \) is inert in \(K = \mathbb{Q}(\sqrt{29}) \). One has
\[
N_2(2) = 42, \quad \sum_{n \leq 42} P_2(n) = 11.
\]

\(p = 23: \) \(g^+ = 15, \ 2r \leq 12 \) and \(\ell = 2 \) splits in \(K = \mathbb{Q}(\sqrt{-23}) \). One has
\[
N_2(1) = 8, \quad \sum_{n \leq 38} P_2(n) = 13.
\]

\(p = 19: \) \(g^+ = 9, \ 2r \leq 12 \) and \(\ell = 2 \) is inert in \(K = \mathbb{Q}(\sqrt{-19}) \). One has
\[
N_2(2) = 22, \quad \sum_{n \leq 46} P_2(n) = 13.
\]

\(p = 17: \) \(g^+ = 7, \ 2r \leq 12 \) and \(\ell = 2 \) splits in \(K = \mathbb{Q}(\sqrt{17}) \). One has
\[
N_2(1) = 6, \quad \sum_{n \leq 46} P_2(n) = 13.
\]

So, we can discard the five cases considered and the statement is proved.
References

Josep González
josep.gonzalez@upc.edu
Departament de Matemàtiques
Universitat Politècnica de Catalunya
EPSEVG, Avinguda Víctor Balaguer 1
E-08800 Vilanova i la Geltrú, Catalonia