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by iterations of Ornstein-Uhlenbeck processes

Argimiro Arratia1, Alejandra Cabaña2 and Enrique M. Cabaña3

Abstract

We present a construction of a family of continuous-time ARMA processes based on p iterations

of the linear operator that maps a Lévy process onto an Ornstein-Uhlenbeck process. The con-

struction resembles the procedure to build an AR(p) from an AR(1). We show that this family is in

fact a subfamily of the well-known CARMA(p,q) processes, with several interesting advantages,

including a smaller number of parameters. The resulting processes are linear combinations of

Ornstein-Uhlenbeck processes all driven by the same Lévy process. This provides a straightfor-

ward computation of covariances, a state-space model representation and methods for estimating

parameters. Furthermore, the discrete and equally spaced sampling of the process turns to be

an ARMA(p, p− 1) process. We propose methods for estimating the parameters of the iterated

Ornstein-Uhlenbeck process when the noise is either driven by a Wiener or a more general Lévy

process, and show simulations and applications to real data.

MSC: 60G10, 62M10, 62M99 60M99.
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1. Introduction

The link between discrete time autoregressive moving average (ARMA) processes and

stationary processes with continuous-time has been of interest for many years, see for in-

stance, Doob (1944), Durbin (1961), Bergstrom (1984, 1996) and more recently Brock-

well (2009), Thornton and Chambers (2013). Continuous time ARMA processes are

better suited than their discrete counterparts for modelling irregularly spaced data, and

when the white noise is driven by a non-Gaussian process it becomes a more realistic

model in finance and other fields of application.
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A popular continuous-time representation of ARMA(p,q) process (known as

CARMA(p,q)) can be obtained via a state-space representation of the formal equation

a(D)Y (t) = σb(D)DΛ(t),

where σ > 0 is a scale parameter, D denotes differentiation with respect to t, Λ is a

second-order Lévy process, a(z) = zp+a1zp−1 + . . .+ap is a polynomial of order p and

b(z) = b0+b1z+ . . .+bqzq a polynomial of order q ≤ p−1 with coefficient bq 6= 0 (see,

e.g., Brockwell, 2004, 2009, Thornton and Chambers, 2013). The parameters of this

model are estimated by adjusting first an ARMA(p,q), q < p to regularly spaced data.

Then obtain the parameters of the continuous version whose values at the observation

times have the same distribution of the fitted ARMA. Hence, p+q+1 parameters have

to be estimated.

We propose in this work a parsimonious model for continuous autoregression, with

fewer parameters (as we shall see exactly p plus the variance). Our construction de-

parts from the observation that a Ornstein-Uhlenbeck (OU) process can be thought of as

continuous-time interpolation of an autoregressive process of order one (i.e. an AR(1)).

This is shown in Section 2, where we also review some well known facts on Lévy pro-

cesses, ARMA models and their representations. The model is obtained by a procedure

that resembles the one that allows to build an AR(p) from an AR(1). Departing from

this analogy, we define and analyse the result of iterating the application of the operator

that maps a Wiener process onto an OU process. This operator is defined in Section 3

and denoted OU, with subscripts denoting the parameters involved.

The p iterations of OU, for each positive integer p, give rise to a new family of

processes, the Ornstein-Uhlenbeck processes of order p, denoted OU(p). They can be

used as models for either stationary continuous-time processes or the series obtained

by observing these continuous processes at equally spaced instants. We show that an

OU(p) process can be expressed as a linear combination of ordinary OU processes, or

generalized OU processes, also defined in Section 3. This result resembles the aggrega-

tions of Gaussian (and non-Gaussian) processes studied with the idea of deconstructing

a complicated economic model into simpler constituents. In the extensive literature on

aggregations (or superpositions) of stochastic processes the aggregated processes are

driven by independent Lévy processes (see, e.g., Granger and Morris, 1976, Granger,

1980, Barndorff-Nielsen, 2001, Eliazar and Klafter, 2009, among many others). A dis-

tinctive point of our construction is that the stochastic processes obtained by convolution

of the OU operator result in a linear combination comprised of processes driven by the

same Lévy process.

Another consequence of writing the OU(p) process as the aggregation of simpler

ones is the derivation of a closed formula for its covariance. This has important practical

implications since it allows to easily estimate the parameters of a OU(p) process by

matching correlations (a procedure resembling the method of moments, to be described

in Section 6.2), and by maximum likelihood.
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In Section 4 we show how to write the discrete version of a OU(p) as a state-space

model, and from this representation we show in Section 5 that for p > 1, a OU(p) be-

haves like an aggregation of AR processes (in the manner considered in Granger and

Morris (1976)), that turns out to be an ARMA(p,q), with q ≤ p− 1. Consequently the

OU(p) processes are a subfamily of the CARMA(p,q) processes. Notwithstanding this

structural similarity, the family of discretized OU(p) processes is more parsimonious

than the family of ARMA(p, p− 1) processes, and we shall see empirically that it is

able to fit well the autocovariances for large lags. Hence, OU processes of higher order

appear as a new continuous model, competitive in a discrete time setting with higher

order autoregressive processes (AR or ARMA). The estimation of the parameters of

OU(p) processes is attempted in Section 6. Simulations and applications to real data are

provided in Section 6.5. Our concluding remarks are in Section 7.

2. Preliminaries

Let us recall that a Lévy process Λ(t) is a càdlàg function, with independent and station-

ary increments, that vanishes in t = 0. As a consequence, Λ(t) is, for each t, a random

variable with an infinitely divisible law (Sato, 1999). A Wiener process W is a cen-

tred Gaussian process, with independent increments and variance E(W (t)−W(s))2 =

σ2|t − s|. Wiener processes are the only Lévy processes with almost surely continu-

ous paths. For parameter λ > 0 the classical Ornstein-Uhlenbeck process is defined as
∫ t
−∞ e−λ(t−s)dW (s) (Uhlenbeck and Ornstein, 1930).

Wiener process can be replaced by a second order Lévy process Λ to define a Lévy

driven Ornstein-Uhlenbeck process as

x(t)(= xλ,Λ(t)) :=
∫ t

−∞

e−λ(t−s)dΛ(s) (1)

The previous equation can be formally written in differential form

dx(t) =−λx(t)dt+dΛ(t) (2)

We may think of x as the result of accumulating a random noise dΛ, with reversion to

the mean (that we assume to be 0) of exponential decay with rate λ.

When the Ornstein-Uhlenbeck process x is sampled at equally spaced times {hτ : h=
0,1,2, . . . ,n}, τ > 0, the series Xh = x(hτ) obeys an autoregressive model of order 1 (i.e.

an AR(1)), because Xh+1 = e−λτXh +Zh+1, where Zh+1 =
∫ (h+1)τ

hτ
e−λ((h+1)τ−s)dΛ(s),

is the stochastic innovation.

Hence, we can consider the OU process as continuous-time interpolation of an AR(1)

process. Notice that both models are stationary. This link between AR(1) and OU(1)

suggests the definition of iterated OU processes introduced in Section 3.
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An ARMA(p,q) or autoregressive moving average process of order (p,q) has the

following form

xt = φ1xt−1 + · · ·+φpxt−p + θ0ǫt + θ1ǫt−1 + · · ·+ θqǫt−q

where φ1, . . . , φp are the autoregressive parameters, θ0, . . . , θq are the moving average

parameters, and the white-noise process ǫt has variance one. Denote by B the backshift

operator that carries xt into xt−1. By considering the polynomials in the backshift oper-

ator,

φ(B) = 1−φ1B−·· ·−φpBp and θ(B) = θ0 + θ1B+ · · ·+ θqBq

the ARMA(p,q) model can be written as

φ(B)xt = θ(B)ǫt (3)

This compact expression comes in handy for analysing structural properties of time

series. It also links to the representation of ARMA processes as a state-space model,

useful for simplifying maximum likelihood estimation and forecasting. A state-space

model has the general form

Yt = AYt−1 +ηηηt (4)

xt = K
T
Yt +Nt (5)

where (4) is the state equation and (5) is the observation equation, with Yt the m-

dimensional state vector, A and K are m×m and m× k coefficient matrices, K
T

denotes

the transpose of K, ηηη and N are m and k dimensional white noises. N would be present

only if the process xt is observed subject to additional noise (see Box, Jenkins, and Rein-

sel, 1994 for further details). We present in Section 4 a state-space model representation

of our generalized OU process.

3. Ornstein-Uhlenbeck processes of order ppp

The AR(1) process Xt = φXt−1 + ǫt , where ǫt , t ∈Z, is a white noise, can be written

as (1 − φB)Xt = ǫt using the back-shift operator B. Equivalently, Xt can be written

as Xt = MA1/ρǫt , where MA1/ρ is the moving average that maps ǫt onto MA1/ρǫt ,=
∑∞

j=0
1
ρ j ǫt− j , and ρ (= 1/φ) is the root of the characteristic polynomial 1−φz.
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Moreover, the AR(p) process Xt =

p
∑

j=1

φ jXt− j + ǫt ( or φ(B)Xt = ǫt), where φ(z) =

1−

p
∑

j=1

φ jz
j =

p

∏
j=1

(1−z/ρ j) has roots ρ j = eλ j , j = 1, . . . , p, can be obtained by applying

the composition of the moving averages MA1/ρ j
to the noise, that is:

Xt =
p

∏
j=1

MA1/ρ j
ǫt

Now consider the operator MAe−λ that maps ǫt onto

MAe−λǫt =
∑

l≤t,integer

e−λ(t−l)ǫl

A continuous version of this operator is OUλ that maps y(t), t ∈ R onto

OUλy(t) =
∫ t

−∞

e−λ(t−s)dy(s), (6)

whenever the integral can be defined. The definition of OUλ is extended to include

complex processes, by replacing λ by κ= λ+ iµ, λ> 0, µ∈R in (6). The set of complex

numbers with positive real part is denoted by C+, and the conjugate of κ is denoted by

κ̄.

For p ≥ 1 and parameters κκκ= (κ1, . . . ,κp), the previous argument suggests to define

the following process obtained as repeated compositions of operators OUκ j
, j = 1, . . . , p:

OUκκκy(t) := OUκ1
OUκ2

· · ·OUκpy(t) =
p

∏
j=1

OUκ j
y(t) (7)

This is called Ornstein-Uhlenbeck process of order p with parametersκκκ=(κ1, . . . ,κp)∈

(C+)p. The composition ∏
p
j=1OUκ j

is unambiguously defined because the application

of OUκ j
operators is commutative as shown in Theorem 1(i) below.

The particular case of interest where the underlying noise is a second order Lévy

process Λ, namely,

OUκκκΛ(t) := OUκ1
OUκ2

· · ·OUκpΛ(t) =
p

∏
j=1

OUκ j
Λ(t) (8)

is called the Lévy-driven Ornstein-Uhlenbeck process of order p with parameters κκκ =

(κ1, . . . ,κp) ∈ (C+)p.
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For technical reasons, it is convenient to introduce the Ornstein-Uhlenbeck operator

OU
(h)
κ of degree h with parameter κ that maps y onto

OU
(h)
κ y(t) =

∫ t

−∞

e−κ(t−s) (−κ(t − s))h

h!
dy(s) (9)

and Λ onto

ξ(h)κ (t) =
∫ t

−∞

e−κ(t−s) (−κ(t − s))h

h!
dΛ(s) (10)

We call the process (10) generalized Ornstein-Uhlenbeck process of order 1 and

degree h. For the remainder of the paper we restrict the underlying noise to a second

order Lévy Λ, but note that the general properties of the OUκ operator that we are going

to show hold for any random function y(t) for which the integral (6) is defined.

3.1. Properties of the operator OUκOUκOUκ

The following statements summarize some properties of products (compositions) of the

operators defined by (7) and (9), and correspondingly, of the stationary centred processes

ξ
(h)
κ , h ≥ 0. In particular, the Ornstein-Uhlenbeck processes of order 1 and degree 0,

ξ
(0)
κ = ξκ are the ordinary Ornstein-Uhlenbeck processes (1).

Theorem 1

(i) When κ1 6= κ2, the product OUκ2
OUκ1

can be computed as

κ1

κ1 −κ2

OUκ1
+

κ2

κ2 −κ1

OUκ2

and is therefore commutative.

(ii) The composition ∏
p
j=1OUκ j

constructed with pairwise different κ1, . . . ,κp is equal

to the linear combination

p

∏
j=1

OUκ j
=

p
∑

j=1

K j(κ1, . . . ,κp)OUκ j
, (11)

with coefficients

K j(κ1, . . . ,κp) =
1

∏κl 6=κ j
(1−κl/κ j)

. (12)
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(iii) For i = 1,2, . . . , OUκOU
(i)
κ = OU

(i)
κ −κOU(i+1)

κ .

(iv) For any positive integer p the p-th power of the Ornstein-Uhlenbeck operator has

the expansion

OU
p
κ =

p−1
∑

j=0

(

p−1

j

)

OU
( j)
κ . (13)

(v) Let κ1, . . . ,κq be pairwise different complex numbers with positive real parts, and

p1, . . . , pq positive integers, and let us denote by κκκ a complex vector in (C+)p with

components κh repeated ph times, ph ≥ 1, h = 1, . . . ,q,
∑q

h=1 ph = p. Then, with

Kh(κκκ) defined by (12),

q

∏
h=1

OU
ph
κh

=

q
∑

h=1

1

∏l 6=h(1−κl/κh)pl
OU

ph
κh

=

q
∑

h=1

Kh(κκκ)OU
ph
κh
.

An immediate consequence is that the operator OUκκκ with p-vector parameter κκκ can be

written as a linear combination of p operators OUκ or OU(h)
κ for suitable scalar values

κ and non-negative integer h. Therefore, the process OUκκκΛ can be written as a linear

combination of OU processes driven by the same Lévy process, as stated in the following

Corollary.

Corollary 1

(i) The process OUκκκ(Λ) =
q

∏
h=1

OU
ph
κh
(Λ) can be expressed as the linear combination

OUκκκ(Λ) =

q
∑

h=1

Kh(κκκ)

ph−1
∑

j=0

(

ph−1
j

)

ξ
( j)
κh

(14)

of the p processes {ξ
( j)
κh

: h = 1, . . . ,q, j = 0 . . . , ph −1} (see (10)).

(ii) Consequently,

OUκκκΛ(t) =

q
∑

h=1

Kh(κκκ)

ph−1
∑

j=0

(

ph−1
j

)
∫ t
−∞ e−κh(t−s) (−κh(t−s)) j

j!
dΛ(s)

Corollary 2 For real λ,µ, with λ > 0, the product OUλ+iµOUλ−iµ is real, that is, ap-

plied to a real process produces a real image.

The proofs of Theorem 1 and corollaries are in Appendix A.
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3.2. Computing the covariances

The representation

x := OUκκκ(Λ) =

q
∑

h=1

Kh(κ)

ph−1
∑

j=0

(

ph −1

j

)

OU
( j)
κh
(Λ)

of x as a linear combination of the processes ξ
(i)
κh

= OU
(i)
κh
(Λ) allows a direct compu-

tation of the covariances γ(t) = Ex(t)x̄(0) through a closed formula, in terms of the

covariances γ
(i1,i2)
κ1,κ2

(t) = Eξ
(i1)
κ1

(t)ξ̄
(i2)
κ2

(0):

γ(t)=

q
∑

h′=1

ph′−1
∑

i′=0

q
∑

h′′=1

ph′′−1
∑

i′′=0

Kh′(κκκ)K̄h′′(κκκ)

(

ph′ −1

i′

)(

ph′′ −1

i′′

)

γ(i
′,i′′)

κh′ ,κh′′
(t) (15)

with v2 = VarΛ(1),

γ(i1,i2)κ1,κ2
(t) = v2(−κ1)

i1(−κ̄2)
i2

∫ 0

−∞

e−κ1(t−s) (t − s)i1

i1!
e−κ̄2(−s) (−s)i2

i2!
ds

= v2(−κ1)
i1(−κ̄2)

i2e−κ1t

i1
∑

j=0

(

i1

j

)

t j

i1!i2!

∫ 0

−∞

e(κ1+κ̄2)s(−s)i1+i2− jds

=
v2(−κ1)

i1(−κ̄2)
i2e−κ1t

i2!

i1
∑

j=0

t j(i1 + i2 − j)!

j!(i1 − j)!(κ1 + κ̄2)(i1+i2− j+1)
(16)

A real expression for the covariance when the imaginary parameters appear as conjugate

pairs can be obtained but it is much more involved than this one.

4. The OU(ppp) process as a state-space model

Theorem 1 and its corollaries lead to express the OU(p) process by means of linear

state-space models. The state-space modelling provides a unified methodology for the

analysis of time series (see Durbin and Koopman, 2001).

In the simplest case, where the elements of κκκ are all different, the process x(t) =

OUκκκΛ(t) is a linear combination of the state vector ξξξκκκ(t) = (ξκ1
(t),ξκ2

(t), . . . ,ξκp(t))
T,

where ξκ j
= OUκ j

(Λ).
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More precisely, the vectorial process

ξξξκκκ(t) = (ξκ1
(t),ξκ2

(t), . . . ,ξκp(t))
T, ξκ j

= OUκ j
(Λ)

and x(t) = OUκκκΛ(t) satisfy the linear equations

ξξξκκκ(t) = diag(e−κ1τ ,e−κ2τ , . . . ,e−κpτ )ξξξκκκ(t − τ)+ηηηκκκ,τττ (t) (17)

and x(t) =KKK
T(κκκ)ξξξ(t), (18)

ηηηκκκ,τττ (t) = (ηκ1,τ (t),ηκ2,τ (t), . . . ,ηκp,τ (t))
T, ηκ j,τ (t) =

∫ t

t−τ
e−κ j(t−s)dΛ(s),

Var(ηηηκκκ,τττ (t)) = v2((v j,l)), v j,l =
∫ t

t−τ
e−(κ j+κ̄l)(t−s)ds =

1− e−(κ j+κ̄l)τ

κ j + κ̄l

(19)

and the coefficients from (12), KKK T(κκκ) = (K1(κκκ),K2(κκκ), . . . ,Kp(κκκ)).
The initial value ξξξ(0) is estimated by means of its conditional expectation ξ̂ξξ(0) =

E(ξ(0)|x(0)) =
KKK

T(κκκ)V x(0)
KKK T(κκκ)VKKK

, with V = Var(ξξξ(0)) =

((

1

κ j + κ̄l

))

.

An application of Kalman filter to this state-space model leads to compute the likeli-

hood of xxx = (x(0),x(τ), . . . ,x(nτ)). Some Kalman filter programs included in software

packages require the processes in the state-space to be real. That condition is not ful-

filled by the model described by equations (17) and (18). An equivalent description by

means of real processes can be obtained by ordering the parametersκκκwith the imaginary

components paired with their conjugates in such a way that κ2h = κ̄2h−1, h = 1,2, . . . ,c

and the imaginary component ℑ(κ j) = 0 if and only if 2c< j ≤ p.

Then the matrix M = ((M j,k)) with all elements equal to zero except M2h−1,2h−1 =

M2h−1,2h = 1, −M2h,2h−1 = M2h,2h = i, h = 1,2, . . . ,c and M j, j = 1, 2c< j ≤ p, induces

the linear transformation ξξξ 7→ Mξξξ that leads to the new state-space description

Mξξξ(t) = Mdiag(e−κ1τ ,e−κ2τ , . . . ,e−κpτ )M−1Mξξξ(t − τ)+Mηηη(t), (20)

x(t) =KKK
T
M−1Mξξξ(t), (21)

where the processes Mξξξ are real.
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Observe that there is no loss of generality in choosing the spacing τ between obser-

vations as unity for the derivation of the state-space equations. Hence, we set τ = 1 in

the sequel and, in addition, τ will be omitted from the notation.

When κ1, . . . ,κq are all different, p1, . . . , pq are positive integers,
∑q

h=1 ph = p and

κκκ is a p-vector with ph repeated components equal to κh, the OU(p) process x(t) =

OUκκκΛ(t) is a linear function of the state-space vector

(

ξ(0)κ1
,ξ(1)κ1

, . . . ,ξ(p1−1)
κ1

, . . . ,ξ(0)κq
,ξ(1)κq

, . . . ,ξ
(pq−1)
κq

)

where the components are given by (10), and the transition equation is no longer ex-

pressed by a diagonal matrix. In this case the state-space model has the following form

ξξξ(t) = Aξξξ(t −1)+ηηη(t)

x(t) =KKK
Tξξξ(t) (22)

We leave the technical details of this derivation to Appendix B. The terms ξξξ(t), A, ηηη(t)

and KKK are precisely defined in (36). The real version of (22), when the process ξξξ has

imaginary components is obtained by multiplying both equations by a block-diagonal

matrix C (which is defined precisely in the Appendix), giving us the real state-space

model

Cξξξ(t) = (CAC−1)(Cξξξ(t −1))+Cηηη(t), (23)

x(t) = (KKK T
C−1)(Cξξξ(t)). (24)

5. The OU(ppp) as an ARMA(ppp, p−1p−1p−1)

The studies of properties of linear transformations and aggregations of similar processes

have produced a great amount of work stemming from the seminal paper by Granger and

Morris (1976) on the invariance of MA and ARMA processes under these operations.

These results and extensions to vector autoregressive moving average (VARMA) pro-

cesses are compiled in the textbook by Lütkepohl (2005).

The description of the OU(p) process x = OUκκκ(Λ) with parameters κκκ as a linear

state-space model, given in the previous section, will allow us to show that the series

x(0), x(1), . . . , x(n) satisfies an ARMA(p,q) model with q smaller than p. We refer

the reader to (Lütkepohl, 2005, Ch. 11) for a presentation on VARMA processes and,

in particular, to the following result on the invariance property of VARMA processes

under linear transformations, which we quote with a minor change of notation:
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Theorem 2 (Lütkepohl, 2005, Cor. 11.1.2) Let y(t) be a d-dimensional, stable, invert-

ible VARMA(p̃,q̃) process and let F be an (m× d) matrix of rank m. Then the process

zt =Fyt has a VARMA(p̌, q̌) representation with p̌≤ (d−m+1) p̃ and q̌ ≤ (d−m) p̃+ q̃.

Equation (23) shows that Cξξξ(t) is a p-dimensional autoregressive vector (a p-dimen-

sional VARMA(1,0) process) and Equation (24) expresses x(t) as a linear transformation

of Cξξξ(t) by the (1× p) matrix F =KKK TC−1. Using Theorem 2 (with d = p, p̃ = 1, q̃ = 0,

m = 1) we conclude that (x(t) : t = 0,1, . . . ,n) is an ARMA(p̌,q̌) process with p̌ ≤ p and

q̌ ≤ p−1:

x(h) =

p
∑

j=1

φ jx(h− j)+

p−1
∑

l=0

θlǫh−l (25)

where ǫ is a Gaussian white noise with variance 1 and the parameters φφφ = (φ1, . . . ,φp)
T,

θθθ = (θ0, . . . ,θp−1)
T of the ARMA process are functions of the parameters κκκ of the OU

process. When the noise is any other second order Lévy process the corresponding

OU(p) process has the same covariances as the process (25).

By using the backshift operator B, and the polynomials φ(z)= 1−
∑p

j=1φ jz
j, θ(z)=

∑p−1
l=0 θlz

l , (25) is written as

φ(B)x = θ(B)ǫ. (26)

5.1. Identifying the ARMA(ppp, p−1p−1p−1) from a given OU(p)(p)(p) process

We proceed now to identify the coefficientsφφφ∈R
p and θθθ ∈R

p−1 of the ARMA(p, p−1)
model that has the same autocovariances as x = OUκκκ(Λ).

Case 1. Consider first that all components of κκκ are pairwise different, and hence x(t)

=
∑p

j=1 K jξκ j
(t) is a linear combination of the OU(1) processes

ξκ j
(t) =

∫ t

−∞

e−κ j(t−s)dΛ(s) = e−κ jξκ j
(t −1)+

∫ t

t−1
e−κ j(t−s)dΛ(s)

with innovations ηηηκκκ with components ηκ j
(t) =

∫ t
t−1 e−κ j(t−s)dΛ(s).

For each j, the series ξκ j
= (ξκ j

(h))h∈ZZZ satisfies the AR(1) model

(1− e−κ j B)ξκ j
= ηκ j
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(see (17)), and from (18) the series x = (x(h))h∈ZZZ follows the ARMA model

p

∏
j=1

(1− e−κ jB)x =

p
∑

j=1

K j(κκκ)∏
l 6= j

(1− e−κl B)ηκ j
.

The sum of moving averages in the right-hand term is distributed as the moving average

ζ =

p−1
∑

h=0

θhBhǫ

where ǫ is a white noise with variance one and the coefficients θh are suitably chosen.

It is readily verified that the autocovariances cl = Eζ(h)ζ̄(h− l) of this MA are the

coefficients in the sum of powers of z

(

p−1
∑

h=0

θhzh

)(

p−1
∑

k=0

θ̄kz−h

)

=

p−1
∑

l=−p+1

clz
l. (27)

A similar formula that takes into account the correlations (19) between the noises

ηκk
indicates that the same autocovariances are given by the identity

J(z) :=

p
∑

j=1

p
∑

l=1

K jK̄lG j(z)Ḡl(1/z)v j,l =

p−1
∑

l=−p+1

clz
l (28)

where G j(z) = ∏l 6= j(1− e−κl z) =
∑p−1

l=0 g j,lz
l .

The coefficients g j,l and the function J are completely determined from the parame-

ters of the OU process. In order to express the parameters of the ARMA(p,p−1) process

in terms ofκκκ and v2 =VarΛ(1) it remains to obtain the coefficients θh in the factorization

(27). The roots ρ j ( j = 1,2, . . . , p−1) of

θ(z) =

p−1
∑

h=0

θhzh = θ0

p−1

∏
j=1

(1− z/ρ j) (29)

are obtained by choosing the roots of the polynomial zp−1θ(z)θ̄(1/z) = zp−1J(z) with

modules greater than one (the remaining roots are their inverses). Then all θh are written

in terms of the ρh and the size factor θ0 by applying (29). The value of θ0 follows by

using an additional equation, namely, the equality of the terms of degree zero in J(z)
and θ(z)θ̄(1/z), thus obtaining
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p−1
∑

l=0

|θl|
2 =

p
∑

j=1

p
∑

l=1

K jK̄lv j,l

p−1
∑

h=0

g j,hḡl,h.

The general result, for arbitrary κκκ is much more involved and its derivation is de-

ferred to Appendix C.

6. Estimation of the parameters of OU(ppp)

6.1. Reparameterization by means of real parameters

Our purpose is to insert the expression (15) for the covariance γ(t) of the process

x(t) = OUκκκΛ(t) in a numeric optimization procedure in order to compute the maxi-

mum likelihood estimates of the parameters. Although γ(t) depends continuously on κκκ,

the same does not happen with each term in the expression (15), because of the lack of

boundedness of the coefficients of the linear combination when two different values of

the components of κκκ approach each other. Since we wish to consider real processes x

and the process itself and its covariance γ(t) depend only of the unordered set of the

components of κκκ, we shall reparameterize the process. For the sake of simplicity, but

without losing generality, consider the case where the components in κκκ are pairwise

different. Let K j,i =
1

(−κ j)i ∏l 6= j(1−κl/κ j)
(in particular, K j,0 is the same as K j). Then the

processes xi(t) =
∑p

j=1 K j,iξ j(t) and the coefficients βββ = (β1, . . . ,βp) of the polynomial

g(z) =
p

∏
j=1

(1+κ jz) = 1−

p
∑

j=1

β jz
j. (30)

satisfy

p
∑

i=1

βixi(t) = x(t).

The resulting process is real, because of Corollary 2. This works likewise for the general

case of κκκ with some repetitions. Therefore the new parameter βββ shall be adopted.

6.2. Matching correlations estimation (MCE)

From the closed formula (15) for the covariance γ and the relationship (30) between κκκ

and βββ, we have a mapping (βββ,v2) 7→ γ(t), for each t. Since

ρρρ(T ) := (ρ(1),ρ(2), . . . ,ρ(T ))T = (γ(1),γ(2), . . . ,γ(T ))T/γ(0)
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does not depend on v2, these equations determine a map C : (βββ,T ) 7→ ρρρ(T ) = C(βββ,T )

for each T . After choosing a value of T and obtaining an estimate ρρρ
(T )
e of ρρρ(T ) based on

the empirical covariances of x, we propose as a first estimate of βββ, the vector β̌ββT such

that all the components of the correspondingκκκ have positive real parts, and such that the

Euclidean norm ‖ρρρ
(T )
e −C(β̌ββT ,T )‖ reaches its minimum. The procedure resembles the

estimation by the method of moments. The components of ρρρ
(T )
e for the series (x j) j=1,2,...,n

are computed as

ρe,h = γe,h/γe,0, γe,h =
1

n

n−h
∑

j=1

x jx j+h.

6.3. Maximum likelihood estimation (MLE) in the Gaussian case

In this case x(t) = OUκκκσW (t), where W (t) is standard Wiener process. Assume that

x(t) is observed at times 0,τ ,2τ , . . . ,nτ . By choosing τ the time unit of measure, as in

Section 4, we assume without loss of generality that our observations are xxx= (x(0),x(1),

. . . ,x(n))T.

The likelihood L of the vector xxx is given by

logL(xxx;βββ,σ2) =− n
2

log(2π)− 1
2

log(det(ΓΓΓ(βββ,σ2))− 1
2
xxxT(ΓΓΓ(βββ,σ2))−1xxx

where ΓΓΓ has components Γh, j = γ(|h− j|) (h, j = 0,1, . . . ,n). The Kalman filter associ-

ated to the dinamical state-space model in Section 4 provides an efficient alternative to

compute the likelihood.

From these elements, a numerical optimization leads to obtain the maximum likeli-

hood estimators β̂ββ of βββ and σ̂2 of σ2. If required, the estimations κ̂κκ follow by solving the

analogue of the polynomial equation (30) written in terms of the estimators:

p

∏
j=1

(1+ κ̂ jz) = 1−

p
∑

j=1

β̂ jz
j.

The optimization for large n and the solution of the algebraic equation for large p re-

quire a considerable computation effort, but there are efficient programs to perform both

operations, such as optim and polyroot in R (R Core Team, 2015). An alternative when

the observed process is not assumed to be centred, is to maximize the log-likelihood of

∆xxx = (x(1)− x(0),x(2)− x(1), . . .,x(n)− x(n−1)) given by

logL(xxx;βββ,σ2) =− n
2

log(2π)− 1
2

log(det(V(βββ,σ2))− 1
2
∆xxxT(V(βββ,σ2))−1∆xxx
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with V(βββ,σ2) equal to the n×n matrix with components

Vh, j = 2γ(|h− j|)−γ(|h− j|+1)−γ(|h− j|−1)

that reduce to 2(γ(0)−γ(1)) at the diagonal h = j.

The optimization procedures require an initial guess about the value of the parame-

ter to be estimated. The estimators obtained by matching correlations described in the

previous section can be used for that purpose.

6.4. The Gaussian case: examples

When Λ is a Wiener process W , the OU process of order p belongs to a subclass with

p+1 parameters of the classical family of the 2p-parameters Gaussian ARMA(p, p−1)

xt = φ1xt−1 + · · ·+φpxt−p + θ0ǫt + θ1ǫt−1 + · · ·+ θp−1ǫt−p+1

where φ1, . . . , φp and θ0, . . . , θq are parameters and ǫt is a Gaussian noise with variance

1. The parametersκκκ,σ2 determine the Gaussian likelihood of OUκκκσW , and are estimated

by the values κ̂κκ and σ̂2 that maximize that likelihood.

We have observed in several examples that the covariances of the process with the

maximum likelihood estimators as parameters, follow closely the empirical covariances

of the series. We have simulated the sample paths for the Wiener-driven OU(p) for

different values of the parameters.

In the examples below we present simulated series x( j), j = 0,1,2, . . . ,n obtained

from an OU process x for n = 300 and three different values of the parameters and

computed the MC and ML estimators β̌ββT , and β̂ββ. The value of T for the MC estimation

has been arbitrarily set equal to the integral part of 0.9 ·n, but the graphs of β̌ββT for several

values of T show in each case that after T exceeds a moderate threshold, the estimates

remain practically constant. One of such graphs is included below (see Figure 2). It is

of interest to perform further comparisons of these two methodologies for parameter

estimation. A recent antecedent of this kind of comparisons and its importance can be

found in Nieto, Orbe and Zarraga (2014).

The simulations show that the correlations of the series with the estimated parameters

are fairly adapted to each other and to the empirical covariances. The departure from the

theoretical covariances of x can be ascribed to the simulation intrinsic randomness.

Our first two examples describe OU(3) processes with arbitrarily (and randomly)

chosen parameters and the third one imitates the behaviour of Series A that appears in

Section 6.5.
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Example 1. A series (xh)h=0,1,...,n of n= 300 observations of the OUκκκ process x of order

p= 3,κκκ= (0.9,0.2+0.4i,0.2−0.4i) and σ2 = 1 was simulated, and the parameters βββ =
(−1.30, −0.56, −0.18) and σ2 = 1 were estimated by means of matching correlations:

β̌ββT = (−1.9245,−0.6678,−0.3221),

with T = 270; and maximum likelihood:

β̂ββ = (−1.3546,−0.6707,−0.2355)

and σ̂2 = 0.8958. The corresponding estimators forκκκ are κ̌κκ=(1.6368, 0.1439+0.4196i,
0.14389 −0.4196i) and κ̂κκ = (0.9001, 0.2273+0.4582i, 0.2273−0.4582i).

The following table summarizes the different estimations of this OU(3) process.

original βββ −1.30 −0.56 −0.18 σ2 = 1

original κκκ 0.9 0.2+0.4i 0.2−0.4i σ2 = 1

MCE β̌ββT −1.9245 −0.6678 −0.3221

κ̌κκ 1.6368 0.1439+0.4196i 0.14389−0.4196i

MLE β̂ββ −1.3546 −0.6707 −0.2355 σ̂2 =

κ̂κκ 0.9001 0.2273+0.4582i 0.2273−0.4582i 0.8958
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Figure 1: Empirical covariances (◦) and covariances of the MC (—) and ML (- - -) fitted OU models, for

p = 3, 2 and 4 corresponding to Example 1. The covariances of OUκκκ are indicated with a dotted line.

Figure 1 describes the theoretical, empirical and estimated covariances of x under the

assumption p = 3, that is, the actual order of x. The results obtained when the estimation

is performed for p = 2 and p = 4 are also shown. Figure 2 shows that the MC estimates

ofβββ become stable for T moderately large, and close to the already indicated estimations

for T = 270 (the horizontal lines).
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Figure 2: The MC estimations β̌1(◦), β̌2(▽) and β̌3(⋄) for different values of T , corresponding to Exam-

ple 1. The horizontal lines indicate the estimations for T = 270.

The coefficients φ1,φ2,φ3 of the ARMA(3,2) model (26) satisfied by the series

(x(h))h=0,1,...,300 are obtained by computing the product
3

∏
j=1

(1−e−κ jB) = 1 − φ1B −

φ2B2 −φ3B3 = 1−1.9148B+1.2835B2−0.2725B3.

As for the coefficients θ0,θ1,θ2, the first step is to compute the function

J(z) = 0.2995z−2 −1.1943z−1+1.7904−1.1943z+0.2995z2,

then obtain the roots ρ1 = 1.1443 − 0.1944i, ρ2 = 1.1443 + 0.1944i, ρ3 = 0.8494

− 0.1443i, ρ4 = 0.8494 + 0.1443i of the equation z2J(z) = 0, ordered by decreasing

moduli, discard the last two, and write the function θ(z) = θ0 + θ1z+ θ2z2 defined in

(29):

θ0

2

∏
j=1

(1−B/ρ j) = θ0(1−1.6988z+0.7423z2).

Solve θ2
0(1+(−1.6988)2+0.742292) = 1.7904 to have θ0 = 0.6352, and hence θ(B) =

0.6352−1.0791B+0.4715B2.

Example 2. The process x = OU(0.04,0.21,1.87) is analysed as in Example 1. The result-

ing estimators are β̌ββT = (−2.0611, −0.7459, −0.0553), T = 270, κ̌κκ= (1.6224, 0.3378,

0.1009), β̂ββ =(−1.8253,−0.7340,−0.0680), σ̂2 = 0.7842, κ̂κκ=(1.3015, 0.3897, 0.1342).
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Figure 3: Empirical covariances (◦) and covariances of the MC (—) and ML (- - -) fitted OU models, for

p = 2, p = 4 and p = 3, the actual value of the parameter, corresponding to Example 3. The covariances of

OUκκκ are indicated with a dotted line.
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The associated ARMA(3,2) model is

(1−1.9255B+1.05185B2−0.1200B3)x = (0.4831−0.9044B+0.4230B2)ǫ.

Example 3. The parameter κκκ = (0.83,0.0041,0.0009) used in the simulation of the

OU process x treated in the present example is approximately equal to the parameter κ̂κκ

obtained by ML estimation with p = 3 for Series A in Section 6.5.1. A graphical pre-

sentation of the estimated covariances is given in Figure 3. The associated ARMA(3,2)

model is

(1−2.4311B+1.8649B2−0.4339B3)x = (0.6973−1.3935B+0.6962B2)ǫ

The description of the performance of the model is complemented by comparing in

Figure 4 the simulated values of the process in 400 equally spaced points filling the

interval (199,201) with the predicted values for the same interval, based on the OU(3)

model and the assumed observed data x(0),x(2),x(3), . . . ,x(200). Also a confidence

band limited by the predicted values plus and minus twice their standard deviation (2-

st.-dev. confidence band) is included in the graph, in order to describe the precision of

the predicted values.

199.0 199.5 200.0 200.5 201.0

-2
-1

0
1

2

Figure 4: Estimated interpolation and prediction of x(t) for 199< t < 200 and 200< t < 201, respectively

(- - -), 2-st.-dev. confidence bands based on (x(i))i=0,1,...,200 (· · · ), and a refinement of the simulation of x(t)

on 199 < t < 200.

6.5. Applications to real data

In this section we present experimental results on two real data sets. We fit OU(p)
processes for small values of p and also some ARMA processes. In each case we have

observed that we can find an adequate value of p for which the empirical covariances are

well approximated by the covariances of the adjusted OU(p) model. This is not the case
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for the ARMA models adjusted by maximum likelihood, in all examples. We present a

detailed comparison of both methodologies for the first example.

The first data set is taken from Box, Jenkins, and Reinsel (1994), and correspond to

equally spaced observations of continuous-time processes that might be assumed to be

stationary. The second one is a series obtained by choosing one in every 100 terms of

a high frequency recording of oxygen saturation in blood of a newborn child. The data

were obtained by a team of researchers of Pereira Rossell Children Hospital in Montev-

ideo, Uruguay, integrated by L. Chiapella, A. Criado and C. Scavone. Their permission

to analyse the data is gratefully acknowledged by the authors.

6.5.1. Box, Jenkins and Reinsel “Series A”

The Series A is a record of n = 197 chemical process concentration readings, taken

every two hours, introduced with that name and analysed in (Box, Jenkins, and Reinsel,

1994, Ch. 4)1. Box et al. suggest an ARMA(1,1) as a model for this data, and subsets

of AR(7) are proposed in (Cleveland, 1971) and (McLeod and Zhang, 2006). Figure 5

shows that these models fit fairly well the autocovariances for small lags, but fail to

capture the structure of autocorrelations for large lags present in the series. On the other

hand, the approximations obtained with the OU(p) processes, for p = 3,4 reflect both

the short and long dependences, as shown in Figure 6.
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Figure 5: Empirical covariances (◦) and covariances of the ML (—) fitted models ARMA(1,1) and AR(7)

for Series A.

1. see also http://rgm2.lab.nig.ac.jp/RGM2/tfunc.php?rd id=FitAR:SeriesA



Argimiro Arratia, Alejandra Cabaña and Enrique M. Cabaña 287

0 50 100 150

0
.0

0
0
.0

5
0
.1

0
0
.1

5
Covariances − = 3p Covariances − =p 4

co
v
ar

ia
n
ce

s

0 50 100 150

0
.0

0
0
.0

5
0
.1

0
0
.1

5

co
v
ar

ia
n
ce

s
Figure 6: Empirical covariances (◦) and covariances of the MC (—) and ML (- - -) fitted OU(p) models,

for p = 3,4 corresponding to Series A.

It is interesting to consider jointly the ARMA(3,2) model (31) fitted to the origi-

nal data by maximum likelihood (computed also with the R function arima) and the

ARMA(3,2) model (32) obtained by the procedure described in Section 5, correspond-

ing to the OU(3) process also fitted to the data by maximum likelihood. The estimated

parameters of this OU process are

κ̂κκ= (0.8293,0.0018+0.0330i,0.0018−0.0330i) and ĉ = 0.4401

and the ARMA(3,2) processes are respectively

(1−0.7945B−0.3145B2+0.1553B3)x=0.3101(1−0.4269B−0.2959B2)ǫ (31)

and

(1−2.4316B+1.8670B2−0.4348B3)x=0.4401(1−1.9675B+0.9685B2)ǫ. (32)

The autocorrelations of both ARMA models, shown in Figure 7, together with the

empirical correlations of the series were computed by means of the R function ARMAacf,

although the ones corresponding to (32) could have been obtained as the restrictions

to integer lags of the covariance function for continuous-time described in Section 3.2.

It is worth to notice that the autocorrelations of (31) do not approach the empirical

correlations, indicated by circles, as much as the correlations of (32). The logarithms

of the likelihoods of (31) and (32) are ℓ′ =−49.23, and ℓ′′ =−50.95, respectively. But

since the number of parameters of the second model (which is four) is smaller than the

number of parameters of the complete family of ARMA(3,2) processes (six), the Akaike
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Figure 7: Empirical correlations (◦) of Series A, and autocorrelations of models (31) and (32) fitted by

maximum likelihood from the family of all ARMA(3,2) and the restricted family of ARMA(3,2) derived from

OU(3).
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Figure 8: Confidence bands for interpolated and extrapolated values of Series A for continuous domain.
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information criterion (AIC) of the parsimonious OU model is 8−2ℓ′′ = 109.90, slightly

better than the AIC of the unrestricted ARMA model, equal to 12−2ℓ′ = 110.46.

Finally we show in Figure 8 the predicted values of the continuous parameter process

x(t), for t between n− 7 and n+ 4 (190-201), obtained as the best linear predictions

based on the last 90 observed values, and on the correlations given by the fitted OU(3)

model. The upper and lower lines are two standard deviation confidence limits for each

value of the process.

6.5.2. Oxygen saturation in blood

The oxygen saturation in blood of a newborn child has been monitored during 17 hours,

and measures taken every two seconds. We assume that a series x0,x1, . . . ,x304 of mea-

sures taken at intervals of 200 seconds is observed, and fit OU processes of orders

p = 2,3,4 to that series.
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Figure 9: Empirical covariances (◦) and covariances of the MC (—) and ML (- - -) fitted OU(p) models

for p = 2,3,4 corresponding to the series of oxygen saturation in blood.

Again the empirical covariances of the series and the covariances of the fitted OU(p)

models for p = 2,3,4 are plotted (see Figure 9) and the estimated interpolation and

extrapolation are shown in Figure 10. In the present case, the actual values of the series

for integer multiples of 1/100 of the unit measure of 200 seconds are known, and plotted

in the same figure.

6.6. Estimating the shape of the Lévy noise

There are various methods proposed in the literature to estimate the parameters of Lévy

driven Ornstein–Uhlenbeck processes; in particular, the Lévy-Khinchin triplet com-

prised of two real numbers and a measure. For example, Valdivieso, Schoutens, and

Tuerlinckx (2009) propose a maximum likelihood estimation methodology based on the

inversion of the characteristic function of the Lévy process and the use of the discrete

fast Fourier transform. Jongbloed, van der Meulen, and van der Vaart (2005) propose

a nonparametric estimation based on a preliminary estimator of the characteristic func-

tion. Both methods require a large amount of information and intensive computation.
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Figure 10: Partial graph showing the five last values of the series of O2 saturation in blood at integer

multiples of the 200 seconds unit of time (◦), interpolated and extrapolated predictions (—), 2-st.-dev.

confidence bands (· · · ), and actual values of the series.

We propose a naive method of estimating the parameters of the Lévy driven Ornstein–

Uhlenbeck process that works in general situations when the maximum likelihood func-

tion is not known or difficult to approximate. These estimators are easy to compute, but

also require a large amount of data to attain high accuracy.

Our method of estimation resembles the methods described in (Yu, 2004) consist-

ing on matching the characteristic function derived from the model and the empirical

characteristic function derived from the data.

Given a Lévy process Λ(t), the characteristic function of Λ(t) is EeiuΛ(t) =(EeiuΛ(1))t ,

and is usually written as EeiuΛ(1) = eψΛ(iu). The function ψΛ(iu) = logEeiuΛ(1) is called

characteristic exponent and has the form

ψΛ(iu) = aiu−
σ2

2
u2 +

∫

|x|<1
(eiux −1− iux)dν(x)+

∫

|x|≥1
(eiux −1)dν(x)

where ν({0}) = 0,
∫

|x|<1 x2dν(x) < ∞,
∫

|x|≥1 dν(x) < ∞. The Lévy-Khinchin triplet is

(σ2,a,ν).

Assume that the admissible exponents belong to a parametric class Ψ = {ψθ : θ ∈ Θ}
where Θ ⊂ R

d , and obtain the value of θ for which a chosen quadratic distance between

the exponential of ψθ(iu) and the empirical characteristic function of the residuals is

minimum.
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In order to ease notation, let us consider the case of an OU(p) model with parameter

κκκ of pairwise different components; either κκκ is known or it is estimated by maximum

likelihood or matching correlation methods. The innovation in each component ξ j is

η j(t) =
∫ t

t−1
e−κ j(t−s)dΛ(s),

so that the innovation of x
κ

is

η(t) =
∫ t

t−1
g(t − s)dΛ(s) where g(t) =

p
∑

j=1

K je
−κ jt .

Hence, if we denote η := η(1), we have

η ∼
∫ 1

0
g(1− s)dΛ(s)∼

∫ 1

0
g(s)dΛ(s)

and its characteristic exponent is therefore

ψη(iu) = logEeiuη = logEeiu
∫ 1

0 g(s)dΛ(s) =
∫ 1

0
ψΛ(iug(s))ds

Example 4. Consider the estimation of a noise sum of a Poisson process plus a Gaus-

sian term. Let us assume that the noise is given by

Λ(t) = σW (t)+a(N(t)−λt)

where W is a standard Wiener process and N is a Poisson process with intensity λ. The

family of possible noises depends on the three parameters (σ,λ,a). In this case, the

characteristic exponent has a simple form:

ψΛ(1)(iu) =−
σ2u2

2
+λ(eiua − iua−1),

hence

ψη(iu) =
∫ 1

0

(

−
σ2u2g2(s)

2
+λ(eiug(s)a − iug(s)a−1)

)

ds

Defining gh =
∫ 1

0 gh(s)ds, we have

ψη(iu) =−
σ2u2g2

2
+λ

(

−
u2g2a2

2
− i

u3g3a3

6
+

u4g4a4

24
+ . . .

)
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Then we propose to estimate the parameters by equating the coefficients of u2,u3,u4

in ψη(iu) with the corresponding ones in the logarithm of the empirical characteristic

function of the residuals.

Assuming that the mean of the residuals r1,r2, . . . ,rn is zero, their empirical charac-

teristic function is

1

n

n
∑

h=1

eiurh = 1−
1

2
u2R2 −

1

6
iu3R3 +

1

24
u4R4 + . . .

where Rm = 1
n

∑n
h=1 rm

h . Then the logarithm has the expansion

log
1

n

n
∑

h=1

eiurh =−
1

2
u2R2 −

1

6
iu3R3 +

1

24
u4R4 −

1

8
u4R2

2 + . . .

Consequently, the estimation equations are

(σ2 +λa2)g2 = R2,

λa3g3 = R3,

λa4g4 = R4 −3R2
2

from which the estimators follow:

ã =
R4 −3R2

2

R3

g3

g4

, λ̃=
R4

3

(R4 −3R2
2)

3

g3
4

g4
3

,

σ̃2 =
R2

g2

−
R2

3

(R4 −3R2
2)

g4

g2
3

.

Figure 11 shows the empirical c.d.f. of 90 estimators of the parameters obtained from

simulated series of 200 terms. The residuals were obtained by applying a Kalman filter

to the space state formulation, starting from the actual value of κκκ used at the simulation

(-·-), that in practical situations is unknown, and from matching correlations estimation

(– –) and by maximum likelihood estimation (–·–).

The estimators are not sharp at all, but the ones obtained by the same procedure

applied directly on the unfiltered noise Λ (– –) are equally rough. Larger series (of size

10000 and 1000000) produce sharper estimates, also shown in the figures by dotted

lines.
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c.d.f. of 90 estimators of σ c.d.f. of 90 estimators of λ c.d.f. of 90 estimators of c

Figure 11: Estimation of the parameters of the noise (σ –left panel–, λ –center–, a –right–) from 90

replications of {xκκκ(t) : t = 0,1, . . . ,200}, κκκ= (0.01±0.1i,0.2), driven by Λ(t) = 0.1W (t)+N0.3(t)−0.3t.

Normality is rejected in all cases.

7. Conclusions

We have proposed a family of continuous-time stationary processes, based on p itera-

tions of the linear operator that maps a second order Lévy process onto an Ornstein-

Uhlenbeck process. These operators have some nice properties, such as being commu-

tative, and their p-compositions decompose as a linear combination of simple operators

of the same kind. We remark that this result, stated in Theorem 1, is independent of the

process onto which the operators OUκκκ act on. We have reduced the present scope of

the applications envisaged by applying the operators only to Lévy processes, but other

choices deserve consideration, for example, the results of applying the same operators

to fractional Brownian motions.

An OU(p) process depends on p+1 parameters that can be easily estimated by either

maximum likelihood (ML) or matching correlations (MC) procedures. MC estimators

provide a fair estimation of the covariances of the data, even if the model is not well

specified. When sampled on equally spaced instants, the OU(p) family can be written

as a discrete time state-space model; i.e., a VARMA model in a space of dimension p.

As a consequence, the families of OU(p) models are a parsimonious subfamily of the

ARMA(p, p− 1) processes in the Gaussian case. Furthermore, the coefficients of the

ARMA can be deduced from those of the corresponding OU(p). We have shown exam-

ples for which the ML-estimated OU model is able to capture features of the empirical

autocorrelations at large lags that the ML-estimated ARMA model does not (see for in-

stance Figure 7). This leads to recommend the inclusion of OU models as candidates to

represent stationary series, either in discrete time or continuous-time.
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Appendix A: Proofs of Theorem 1 and its corollaries

Parts (i) and (iii) are obtained by direct computation of the integrals, (ii) follows from

(i) by finite induction, as well as (iv) from (iii).

From the continuity of the integrals with respect to the parameter κ, the power OUp
κ

satisfies

OU
p
κ = lim

δ↓0

p

∏
j=1

OUκ+ jδ = lim
δ↓0

p
∑

j=1

K′
j(δ,κ, p)OUκ+ jδ (33)

with

K′
j(δ,κ, p) =

1

∏1≤l≤p,l 6= j

(

1− κ+lδ
κ+ jδ

) .

On the other hand, by (i),

q

∏
h=1

OU
ph
κh

= lim
δδδ↓0

q

∏
h=1

ph

∏
j=1

OUκh+ jδh
= lim

δδδ↓0

q
∑

h=1

ph
∑

j=1

K′′
h, j(δδδ,κκκ)OUκh+ jδh

(34)

where δδδ = (δ1, . . . ,δq),

K′′
h, j(δδδ,κκκ) =

1

∏ 1≤h′≤q,1≤ j′≤ph,

(h′, j′) 6=(h, j)

(

1−
κh′+ j′δh′

κh+ jδh

) = K′′′
h, j(δδδ,κκκ)K

′
j(δh,κh, ph),

and

K′′′
h, j(δδδ,κκκ) =

1

∏ 1≤h′≤q,
h′ 6=h

∏
ph′

j′=1
(1− (κh′ + j′δh′)/(κh + jδh))

→ Kh(κκκ) as δδδ ↓ 0

For the h-th term in the right-hand side of (34), we compute

lim
δδδ↓0

ph
∑

j=1

K′′
h, j(δδδ,κκκ)OUκh+ jδh

= lim
δδδ↓0

ph
∑

j=1

K′′′
h, j(δδδ,κκκ)K

′
j(δh,κh, ph)OUκh+ jδh

= lim
δδδ↓0

ph
∑

j=1

(K′′′
h, j(δδδ,κκκ)−Kh(κκκ))K

′
j(δh,κh, ph)OUκh+ jδh

+ Kh(κκκ) lim
δδδ↓0

ph
∑

j=1

K′
j(δh,κh, ph)OUκh+ jδh

= Kh(κκκ)OU
ph
κh
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by Equation (33) since, in addition, each term in the first sum tends to zero. This ends

the verification of (v).
Corollary 1 is an immediate consequence of (iv) and (v), and Corollary 2 follows by

applying (i) to compute

OUλ+iµOUλ−iµ =
λ+ iµ

2iµ
OUλ+iµ−

λ− iµ

2iµ
OUλ−iµ

=
∫ t

−∞

e−λ(t−s)
[

λ+iµ
2iµ

(cos(µ(t − s))+ isin(µ(t− s)))

−λ−iµ
2iµ

(cos(µ(t− s))− isin(µ(t− s)))
]

dΛ(s)

=
∫ t

−∞

e−λ(t−s)(cos(µ(t − s))+ λ
µ

sin(µ(t − s)))dΛ(s).

Appendix B: Derivation of a state-space model

The form of equations (22) for a state-space representation of the OU(p) process in the

general case can be derived by considering three special cases:

1. When the components of κκκ are all different. This case is treated in Section 4.

2. When the components of κκκ are all equal. Let κ denote the common value of the

components of κκκ. The state of the system is described by the vector

ξξξκ,p = (ξ(0)κ ,ξ(1)κ , . . . ,ξ(p−1)
κ )T,

with components ξ(h)κ (t) =
∫ t

−∞

e−κ(t−s) (−κ(t − s))h

h!
dΛ(s).

Each of these terms can be written as the sum

ξ(h)κ (t) = e−κ
∫ t−1

−∞

e−κ(t−1−s) (−κ(t −1− s+1))h

h!
dΛ(s)+ηκ,h(t) (35)

where ηκ,h(t) =

∫ t

t−1
e−κ(t−s) (−κ(t − s))h

h!
dΛ(s).

The first term in the right-hand side of (35) is equal to

e−κ
h
∑

j=0

(−κ)h− j

(h− j)!

∫ t−1

−∞

e−κ(t−1−s) (−κ(t −1− s)) j

j!
dΛ(s)

= e−κ
h
∑

j=0

(−κ)h− j

(h− j)!
ξ( j)
κ (t −1)



Argimiro Arratia, Alejandra Cabaña and Enrique M. Cabaña 297

and therefore, by introducing the matrix

Aκ,p = e−κ





























1 0 0 . . . 0 0
(−κ)

1!
1 0 . . . 0 0

(−κ)2

2!

(−κ)
1!

1 . . . 0 0

...
...

...
. . .

...
...

(−κ)p−2

(p−2)!
(−κ)p−3

(p−3)!
(−κ)p−4

(p−4)! . . . 1 0

(−κ)p−1

(p−1)!
(−κ)p−2

(p−2)!
(−κ)p−3

(p−3)! . . . (−κ)
1!

1





























we may write

ξξξκ,p(t) = Aκ,pξξξκ,p(t −1)+ηηηκ,p

where ηηηκ,p(t) = (ηκ,0(t),ηκ,1(t), . . . ,ηκ,p−1(t))
T is a vector of centered inno-

vations (independent of the σ-algebra generated by {Λ(s) : s ≤ t−1}) with covari-

ance matrix Bκ,κ,p obtained with κ1 = κ2 and p1 = p2 from the general expression

of the p1 × p2 matrix Bκ1,κ2,p1,p2
= ((bκ1,κ2,h1,h2

))1≤h1≤p1,1≤h2≤p2
, where

bκ1,κ2,h1,h2
= Eηκ1,h1

(t)η̄κ2,h2
(t)

= v2

∫ t

t−1
e−(κ1+κ̄2)(t−s)(−κ1)

h1(−κ̄2)
h2(t − s)h1+h2ds

= v2

∫ 1

0
e−(κ1+κ̄2)y(−κ)h1(−κ̄)h2yh1+h2dy.

The equation x(t) =KKK T

pξξξκκκ,p(t), with KKK T

p = (
(

p−1
0

)

,
(

p−1
1

)

, . . . ,
(

p−1
p−1

)

) completes the

description of the system state dynamics.

3. The vector κ has components κ1 = λ+µi and κ2 = λ−µi, µ 6= 0, each repeated p1

times. A description involving imaginary processes is immediate from the previous

case. The equations

(

ξξξκ1,p1
(t)

ξξξκ2,p1
(t)

)

=

(

Aκ1,p1
0

0 Aκ2,p1

)(

ξξξκ1,p1
(t −1)

ξξξκ2,p1
(t −1)

)

+

(

ηηηκ1,p1

ηηηκ2,p1

)

x(t) = (KKK T

p1
,KKK T

p1
)

(

ξξξκ1,p1
(t)

ξξξκ2,p1
(t)

)

hold, and Var

(

ηηηκ1,p1

ηηηκ2,p1

)

=

(

Bκ1,κ1,p1,p1
Bκ1,κ2,p1,p1

Bκ2,κ1,p1,p1
Bκ1,κ1,p1,p1

)

.



298 A construction of continuous-time ARMA models by iterations of Ornstein-Uhlenbeck processes

A description in terms of real processes is obtained by multiplying the first equa-

tion by the matrix

Cp1
=

(

Ip1
Ip1

−iIp1
iIp1

)

(Ip denotes the p× p identity matrix), because the vectorial process Cp1

(

ξξξκ1,p1
(t)

ξξξκ2,p1
(t)

)

has real components. The new equations are

Cp1

(

ξξξκ1,p1
(t)

ξξξκ2,p1
(t)

)

= Cp1

(

ηηηκ1,p1

ηηηκ2,p1

)

+

(

Cp1

(

Aκ1,p1
0

0 Aκ2,p1

)

C−1
p1

)

×

(

Cp1

(

ξξξκ1,p1
(t −1)

ξξξκ2,p1
(t −1)

))

and

x(t) =
(

(KKK T

p1
,KKK T

p1
)C−1

p1

)

×

(

Cp1

(

ξξξκ1,p1
(t)

ξξξκ2,p1
(t)

))

General case, real processes

Let us assume that κ1, . . . ,κq are distinct components of κκκ, each repeated p1, . . . , pq

times. We assume in addition that the imaginary components are κ1,κ2 = κ̄1, . . . ,κ2c−1,
κ2c = κ̄2c−1 and the remaining κ2c+1, . . . ,κq are real. With this notation, p2h−1 = p2h for

h = 1,2, . . . ,c. We make intensive use of the notations introduced in previous cases to

write

ξξξ(t) = Aξξξ(t −1)+ηηη(t), (36)

x(t) = K
Tξξξ(t)

with

ξξξ(t) =







































ξξξκ1,p2
(t)

ξξξκ2,p2
(t)

ξξξκ3,p4
(t)

ξξξκ4,p4
(t)

. . .

ξξξκ2c−1,p2c
(t)

ξξξκ2c,p2c
(t)

ξξξκ2c+1,p2c+1
(t)

ξξξκ2c+2,p2c+2
(t)

. . .

ξξξκq,pq(t)







































,ηηη(t) =







































ηηηκ1,p2
(t)

ηηηκ2,p2
(t)

ηηηκ3,p4
(t)

ηηηκ4,p4
(t)

. . .

ηηηκ2c−1,p2c
(t)

ηηηκ2c,p2c
(t)

ηηηκ2c+1,p2c+1
(t)

ηηηκ2c+2,p2c+2
(t)

. . .

ηηηκq,pq(t)







































,
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A =











Aκ1,p2
0 . . . 0

0 Aκ2,p2
. . . 0

...
...

. . .
...

0 0 . . . Aκq,pq











and

KKK
T = (K T

κ1,p1
,K T

κ2,p2
, . . . ,K T

κq,pq
).

The real version, when the process ξξξ has imaginary components is obtained by mul-

tiplying (36) by the matrix

C =















Cp2
0 . . . 0 0

0 Cp4
. . . 0 0

...
...

. . .
...

...

0 0 . . . Cp2c
0

0 0 . . . 0 Ip2c+1+···+pq















(37)

thus obtaining

Cξξξ(t) = (CAC−1)× (Cξξξ(t −1))+Cηηη(t), (38)

x(t) = (KKK T
C−1)× (Cξξξ(t)). (39)

Appendix C: Identification of the ARMA

In order to find the coefficients of the ARMA with the same autocovariances as x(t) in

the general case, we need the following technical results.

Lemma 1 For each positive integer p,
∑p

j=1 jp−1 ∏l 6= j
1

j−l
= 1 and for h = 0,1, . . . , p−

2,
∑p

j=1 jh ∏l 6= j
1

j−l
= 0.

Proof: The polynomial G(z) =
∑p

j=1

(

1
j

)p−1−h

∏l 6= j
1−lz

1−l/ j
has degree p− 1 and coin-

cides for p different values of the variable, namely z = 1/ j, j = 1,2, . . . , p, with the

polynomial zp−1−h, also of degree not greater than p− 1 for h = 0,1, . . . , p− 1. There-

fore, both polynomials are identical, and hence G(0) = 0 for h< p−1 and G(0) = 1 for

h = p−1.
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Lemma 2 The power series g(z,n) =
∑∞

h=0 zhhn, |z|< 1,n = 0,1,2, . . . has the sum

n
∑

h=0

αn,h(1− z)−h−1

with coefficients determined by α0,0 = 1 and the recurrence relations

αn+1,h = hαn,h−1 − (h+1)αn,h,h = 0,1, . . . ,n+1,n = 0,1,2, . . . ,αn,n+1 = 0.

In particular, αn,0 = (−1)n.

As an intermediate step from the case described in Section 5.1 and building to the

general case, let us approach the OU(p) process x with parameter equal to the p-vector

with equal components κκκ = (κ,κ, . . . ,κ)T as the limit of xδ = OUκκκ(δ)Λ, κκκ(δ) = (κ(1+

δ),κ(1+ 2δ), . . . ,κ(1+ pδ))T when δ tends to zero. From the results in Section 5.1 we

use the representation

xδ =

p
∑

j=1

K jξ j, K j =
(1+ jδ)p−1

δp−1 ∏
l 6= j

1

j− l
(40)

in terms of the vector

ξξξ = (ξ1,ξ2, . . . ,ξp)
T, ξ j(t) =

∫ t

−∞

e−κ(1+ jδ)(t−s)dΛ(s)

that satisfies ξξξ = diag(e−κ(1+ jδ))Bξξξ+ηηη where B is the backshift operator defined in

Section 2 and

η j(t) =
∫ t

t−1
e−κ(1+ jδ)(t−s)dΛ(s)

and introduce the power expansions

ξ j(t) =
∫ t

−∞

e−κ(t−s)
∞
∑

h=0

( jδ)h(−κ(t − s))h

h!
dΛ(s) =

∞
∑

h=0

( jδ)hξ(h)κ (t)

with ξ
(h)
κ (t) =

∫ t
−∞ e−κ(t−s) (−κ(t−s))h

h!
dΛ(s) and the similar expansion for the innovations

η j(t) =
∞
∑

h=0

( jδ)hη(h)κ (t) with η(h)κ (t) =
∫ t

t−1
e−κ(t−s) (−κ(t − s))h

h!
dΛ(s). (41)
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We write now the ARMA model

p

∏
j=1

(1− e−κ(1+ jδ)B)xδ =

p
∑

j=1

∏
l 6= j

(1− e−κ(1+lδ)B)K jη j

and notice that the limit when δ→ 0 of the left-hand side is (1− e−κB)px.

In order to take limits at the right-hand side, we replace K j by its expression in (40),

expand ∏l 6= j(1− e−κ(1+lδ)B) as the product of the series

p

∏
l=1

(1− e−κ(1+lδ)B) =
∞
∑

ν=0

aνδ
ν (42)

independent of j and

(1− e−κ(1+ jδ)B)−1 =
∞
∑

h=0

(e−κ(1+ jδ)B)h =
∞
∑

µ=0

bµ( jδ)µ (43)

with coefficients independent of j and substitute the expansion (41) for η j thus obtaining

the series

p
∑

j=1





∞
∑

ν=0

aνδ
ν ×

∞
∑

µ=0

bµ( jδ)µ× (1+ jδ)p−1
∏
l 6= j

1

j− l
×

∞
∑

h=0

( jδ)hη(h)κ





divided by δp−1. After ordering this series by increasing powers of δ, it may be noticed

that the terms in δ raised to a power smaller than p− 1 vanish, because their coeffi-

cient include a factor
∑p

j=1 jh ∏l 6= j
1

j−l
with h ∈ {0,1, . . . , p−2} that is equal to zero as

established in Lemma 1 below. Therefore, the limit when δ → 0 of the series divided

by δp−1 is the coefficient of δp−1 in the series. Unless the term a0 of the first factor is

taken, the power of j appearing in the coefficient of δp−1 will be smaller than p− 1

and again Lemma 1 leads to conclude that the coefficient vanishes. Therefore, since

the same lemma establishes that
∑p

j=1 jp−1 ∏l 6= j
1

j−l
= 1, the required limit is the linear

combination of moving averages

a0

∑

µ+i+h=p−1

(

p−1

i

)

bµη
(h)
κ (44)

where it remains to make explicit the dependence with respect to the backshift operator

B.
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From (42) it follows immediately that a0 = (1− e−κB)p, while from (43) we get

bµ jµµ! =
[

∂µ

∂δµ

∑∞
h=0 e−κhBhe−h jδ

]

δ=0
= (− j)µ

∑∞
h=0(e

−κB)hhµ and hence

bµ =
(−1)µ

µ!

∞
∑

ν=0

(e−κB)ννµ.

Now we apply Lemma 2 (stated at the end of this section) such that, with the coeffi-

cients αµ,ν there defined, leads us to write

∞
∑

ν=0

(e−κB)ννµ =

µ
∑

ν=0

αµ,ν(1− e−κB)−ν−1

and therefore (44) is equal to the moving average of order at most p−1

∑

µ+i+h=p−1

(

p−1

i

)

(−1)µ

µ!

µ
∑

ν=0

αµ,ν(1− e−κB)p−ν−1η(h)κ . (45)

Let us observe finally that the order of the moving average is actually p− 1. The

term in Bp−1 corresponds to ν = 0 and reduces to

∑

µ+i+h=p−1

(

p−1

i

)

(−1)µ

µ!
αµ,0(−1)p−1e−(p−1)κBp−1η(h)κ .

At least the term in Bp−1η
(p−1)
κ with coefficient (−1)p−1e−(p−1)κ does not vanish. On

the other hand, neither the term with lag zero in η
(p−1)
κ vanishes, because its coefficient

is α0,0 = 1.

General case. We now join the previous results for the general case with parameter κκκ,

a p-vector with p j components equal to κ j, j = 1,2, . . . ,q, with κ1, . . . ,κq all different

of each other and
∑q

j=1 p j = p. We use the result of Theorem 1(1) and conclude that

x = OUκκκ(Λ) has the same second-order moments as the ARMA(p, p−1) model

q

∏
j=1

(1− e−κ j B)p jx =

q
∑

j=1

K j ∏
l 6= j

(1− e−κl B)pl MA j (46)

with MA j the moving average of order p j −1 given by Equation (45).


