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Abstract—Two polar coding schemes are proposed for the de-
graded broadcast channel under different reliability and secrecy
requirements. In these settings, the transmitter wishes to send
multiple messages to a set of legitimate receivers keeping them
masked from a set of eavesdroppers, and individual channels are
assumed to gradually degrade in such a way that each legitimate
receiver has a better channel than any eavesdropper. The layered
decoding structure requires receivers with better channel quality
to reliably decode more messages, while the layered secrecy
structure requires eavesdroppers with worse channel quality to
be kept ignorant of more messages.

I. INTRODUCTION

Information theoretic security over noisy channels was
introduced by Wyner in [1], which characterized the secrecy-
capacity of the degraded wiretap channel. Csiszár and Körner
in [2] generalized Wyner’s results to the general wiretap
channel. In the last decade, information theoretic security
has been extended to a large variety of contexts, and this
paper focuses on two classes of discrete memoryless Degraded
Broadcast Channels (DBC) introduced in [3] 1:a) with Layered
Decoding and Non-Layered Secrecy (DBC-LD-NLS), b) with
Non-Layered Decoding and Layered Secrecy (DBC-NLD-LS).

The secrecy-capacity region of these models was first cha-
racterized in [3], [5], [6]. However, the achievable schemes
used by these works rely on random coding arguments that
are nonconstructive in practice. In that sense, the purpose of
this paper is to provide coding schemes based on polar codes,
which were originally proposed by Arikan [7]. Polar codes
for the symmetric degraded wiretap channel were introduced
in [8] and [9], and recently have been extended to the general
wiretap channel in [10]–[13]. Furthermore, [12] and [13]
generalize their results providing polar codes for the broadcast
channel with confidential messages and [11] also proposes
polar coding strategies to achieve the best-known inner bounds
on the secrecy-capacity region of some multi-user settings.

Although recent literature has explored different polar co-
ding schemes for multi-user scenarios, practical polar codes for
the two models considered in this paper are, as far as we know,
not analyzed yet. As mentioned in [3], these settings captures
practical scenarios in wireless systems, in which channels
can be ordered based on the quality of the received signals
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69648-REDC and TEC2016-75067-C4-2-R) and the Catalan Government
(2014 SGR 60 AGAUR).

1In the long version of this paper [4], another class is investigated.

(for example, in the context of Gaussian fading channels).
Our proposed polar coding schemes are based mainly on that
introduced by [13] for the broadcast channel with confidential
messages and the polar coding strategies given in [14] for
secret-key generation. As in [13], a superposition-based polar
coding scheme [15, Sec. VI] is used for the models with
an imposed layered decoding structure. However, the secrecy
constraints require to protect a set of messages from more than
one eavesdropper, which is possible because of the degraded
nature of the channels. Although [13] highlights the connection
between polar code constructions and random binning proofs
that allows polar codes to be applied to different problems in
network information theory, the particularization to polar code
constructions for the two models proposed in this paper is not
straightforward. Indeed, while one of the goals of the scheme
proposed in [13] is to minimize the use of the total randomness
by the system, our aim is to avoid the use of the chaining
construction in order to reduce the complexity of the encoding
and decoding algorithms, which would be crucial when the
number of legitimate receivers and eavesdroppers is very large.
However, as in [13], the transmitter and legitimate receivers
needs to share a secret seed of negligible size (in terms of rate
penalty) to deal with the non-uniform input distribution and
to provide explicit coding schemes which do not rely on the
existence of certain deterministic mappings.

Notation: Through this paper, let [n] = {1, . . . , n} for
n ∈ Z+, an denotes a row vector (a(1), . . . , a(n)). We write
a1:j for j ∈ [n] to denote the subvector (a(1), . . . , a(j)).
Finally, let A ⊂ [n], then we write a[A] to denote the sequence
{a(j)}j∈A and we use AC to denote the set complement with
respect to the universal set [n].

II. SYSTEM MODEL AND SECRECY-CAPACITY REGION

A. DBC-LD-NLS

In this model, the transmitter wishes to send K messages,
{Wk}Kk=1, to K legitimate receivers with the presence of M
eavesdroppers. The broadcast channel is assumed to gradually
degrade in such a way that each legitimate receiver has better
channel than any eavesdropper, that is,

X − YK − · · · − Y1 − ZM − · · · − Z1 (1)

forms a Markov chain. The layered decoding structure re-
quires the k-th receiver to reliably decode the messages
{Wi}ki=1, and the non-layered secrecy requires all eaves-
droppers to be kept ignorant of all K messages. Consider a
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(⌈2nR1⌉, . . . , ⌈2nRK ⌉, n) code for the DBC-LD-NLS, where
Wk ∈ [⌈2nRk⌉] for k = 1, . . . ,K. The reliability condition of
this code is measured in terms of the average probability of
error at each receiver and is given by

lim
n→∞

Pr
[
(Ŵk, . . . , Ŵ1) ̸= (Wk, . . . ,W1)

∣∣∣Y n
k

]
= 0, (2)

for k = 1, . . . ,K. The strong secrecy condition is measured
in terms of the information leakage to each eavesdropper,

lim
n→∞

I(W1, . . . ,WK ;Zn
m) = 0, for m = 1, . . . ,M. (3)

Proposition 1 (Adapted from [3] and [5]). The secrecy-
capacity region of the DBC-LD-NLS contains all K-tuples of
rates (R1, . . . , RK) ∈ RK

+ satisfying

k∑
i=1

Ri ≤
k∑

i=1

I(Vi;Yi|Vi−1)− I(Vk;ZM ), k = 1, . . . ,K,

where V0 ≜ ϕ and VK ≜ X , for some distribution pV1...VK

such that V1 − V2 − · · · − VK forms a Markov chain.

Corollary 1. The sub-region of the secrecy-capacity given in
Prop. 1 without considering rate-sharing is the closure of all
K-tuples of rates (R1, . . . , RK) ∈ RK

+ satisfying

Rk ≤ I(Vk;Yk|Vk−1)− I(Vk;ZM |Vk−1), k = 1, . . . ,K,

where V0 ≜ ϕ and VK ≜ X , for some distribution pV1...VK

such that V1 − V2 − · · · − VK forms a Markov chain.

B. DBC-NLD-LS

In this setting, the transmitter wishes to send M messages,
{Wm}Mm=1, to K legitimate receivers with the presence of M
eavesdroppers. The broadcast channel is assumed to gradually
degrade in the same way as described in Eq. (1). The non-
layered decoding structure requires each receiver to reliably
decode all M messages and the layered secrecy structure
requires the m-th eavesdropper to be kept ignorant of messages
{Wi}Mi=m. Consider a (⌈2nR1⌉, . . . , ⌈2nRM ⌉, n) code for the
DBC-NLD-LS, where Wm ∈ [⌈2nRm⌉] for m = 1, . . . ,M ,
the reliability condition for this code is given by

lim
n→∞

Pr
[
(Ŵ1, . . . , ŴM ) ̸= (W1, . . . ,WM )

∣∣∣Y n
k

]
= 0, (4)

for k = 1, . . . ,K; and the strong secrecy condition by

lim
n→∞

I(Wm, . . . ,WM ;Zn
m) = 0 for m = 1, . . . ,M. (5)

Proposition 2 (Adapted from [3] and [6]). The secrecy-
capacity region of the DBC-NLD-LS contains all M -tuples
of rates (R1, . . . , RM ) ∈ RM

+ satisfying

M∑
i=m

Ri ≤ I(X;Y1)− I(X;Zm), m = 1, . . . ,M,

for some distribution pX .

Corollary 2. The sub-region of the secrecy-capacity given in
Prop. 2 without considering rate-sharing is the closure of all
K-tuples of rates (R1, . . . , RM ) ∈ RM

+ satisfying

Rm ≤ I(X;Zm+1)− I(X;Zm), m = 1, . . . ,M − 1,

RM ≤ I(X;Y1)− I(X;ZM ),

for some distribution pX .

III. POLAR CODES FOR DBCS

For compactness of the notation, let L denote the number
of input random variables, i.e., the channel input X and the
auxiliary random variables involved in the characterization of
the secrecy-capacity for the two models: L ≜ K for the DBC-
LD-NLS, and L ≜ 1 for the DBC-NLD-LS. Thus, consider the
Discrete Memoryless Source (DMS) that represents the input
and output random variables of the DBC of Sec. II,

(V1 × · · · × VL × YK × · · · × Y1

×ZM × · · · × Z1, pV1...VLYK ...Y1ZM ...Z1), (6)

such that V1−· · ·−VL−YK−· · ·−Y1−ZM−· · ·−Z1 forms a
Markov chain and where VL ≜ X . Without loss of generality,
{Vℓ}Lℓ=1 are assumed to have binary alphabet and an extension
to q-ary alphabets is entirely possible [16].

Consider an i.i.d. n-sequence of the DMS, being n any
power of 2. The following polar transforms are defined for
the n-sequence of input random variables (V n

1 , . . . , V n
L ):

Un
ℓ ≜ V n

ℓ Gn, for ℓ = 1, . . . , L, (7)

being Gn the polar generation matrix defined in [7]. Since
Gn = G−1

n then Un
1 − Un

2 − · · · − Un
L also forms a Markov

chain and, for polar coding purposes, the joint distribution of
(Un

1 , . . . , U
n
L) can be expressed as

pUn
1 ...Un

L
(un

1 , . . . , u
n
L)

≜
L∏

ℓ=1

n∏
j=1

pUℓ(j)|U1:j−1
ℓ V n

ℓ−1

(
uℓ(j)

∣∣u1:j−1
ℓ , un

ℓ−1Gn

)
. (8)

Consider the polar transform Un
ℓ = V n

ℓ Gn, reference [17]
shows that this polarization transform extracts the randomness
of V n

ℓ in the sense that, as n → ∞, the set of indices j ∈
[n] can be divided practically into two disjoint sets (polarized
sets), namely H(n)

Vℓ
and L(n)

Vℓ
, such that Uℓ(j) for j ∈ H(n)

Vℓ
is

practically independent of U1:j−1
ℓ and uniformly distributed,

i.e., H
(
Uℓ(j)|U1:j−1

ℓ

)
→ 1, and Uℓ(j) for j ∈ L(n)

Vℓ
is almost

determined by U1:j−1
ℓ , i.e., H

(
Uℓ(j)|U1:j−1

ℓ

)
→ 0.

Different polarized sets can be defined for the input ran-
dom sequence V n

ℓ by considering V n
ℓ−1, and Y n

k (for some
k = 1, . . . ,K) or Zn

m (for some m = 1, . . . ,M ) as side
information [17]. Typically, these sets are specified based on
the Bhattacharyya parameter, defined as

Z(Uℓ|W ) ≜ 2
∑
w∈W

pW (w)
√
pUℓ|W (0|w)pUℓ|W (1|w),

for some Uℓ ∈ {0, 1} and W ∈ W . Although the polarized
sets are defined based on the Bhattacharyya parameter, [15,



Lemma 16] proves that Z(Uℓ|W ) → 1 implies H(Uℓ|W ) →
1, and Z(Uℓ|W ) → 0 implies H(Uℓ|W ) → 0.

Definition 1 (Polarized sets). For compactness of the notation,
let {Ok′}K′

k′=1 denote all output variables, where K ′ = K+M ,
and define O0 ≜ ϕ. Let δn = 2−nβ

for some β ∈
(
0, 1

2

)
. The

following K ′+1 partitions of the universal set [n] are defined
for the polar transform Un

ℓ = V n
ℓ Gn by considering V n

ℓ−1,
and a given On

k′ as side information:

H(n)
Vℓ|Vℓ−1Ok′

≜
{
j∈ [n] :Z

(
Uℓ(j)

∣∣∣U1:j−1
ℓ , V n

ℓ−1, O
n
k′

)
≥ 1−δn

}
,

L(n)
Vℓ|Vℓ−1Ok′

≜
{
j∈ [n] :Z

(
Uℓ(j)

∣∣∣U1:j−1
ℓ ,V n

ℓ−1, O
n
k′

)
≤ δn

}
,

B(n)
Vℓ|Vℓ−1Ok′

≜
(
H(n)

Vℓ|Vℓ−1Ok′

)C
∩
(
L(n)
Vℓ|Vℓ−1Ok′

)C
,

for k′ = 0, . . . ,K ′.

Notice that, in fact, the sets B(n)
Vℓ|Vℓ−1Ok′

contain those indices
that have not been polarized.

The following lemma provides a useful property of the po-
larized sets under the assumption of channels being degraded.

Lemma 1 (Adapted from [15, Lemma 4]). Consider the polar
transform Un

ℓ = V n
ℓ Gn. If Vℓ−1−Vℓ−OK′ −· · ·−O1 forms

a Markov chain, then

L(n)
Vℓ|Vℓ−1

⊆ L(n)
Vℓ|Vℓ−1O1

⊆ · · · ⊆ L(n)
Vℓ|Vℓ−1OK′

, and,

H(n)
Vℓ|Vℓ−1OK′

⊆ · · · ⊆ H(n)
Vℓ|Vℓ−1O1

⊆ H(n)
Vℓ|Vℓ−1

.

Remark 1. Although we have considered physically degra-
dedness, Lemma 1 is also valid for stochastically degraded
channels and, therefore, the following polar coding schemes
and their performance analysis are suitable for both cases.

IV. POLAR CODING SCHEME FOR THE DBC-LD-NLS
The polar coding scheme provided in this section is de-

signed to achieve the corner point of the secrecy-capacity
subregion given in Cor. 1. Consider an i.i.d. n-sequence
of the DMS, (V n

1 , . . . , V n
K , Y n

K , . . . , Y n
1 , Zn

M , . . . , Zn
1 ), and

define the K polar transforms (Un
1 , . . . , U

n
K) for the input

random variables (V n
1 , . . . , V n

K).

A. Polar Encoding
The polarization-based encoder consist of K encoding

blocks operating sequentially at each superposition layer.

Polar code construction at layer k. Based on the polarized
sets given in Def. 1, the following partition of the universal
set [n] is defined for each polar transform Un

k = V n
k Gn:

I(n)
k ≜ H(n)

Vk|Vk−1
∩ L(n)

Vk|Vk−1Yk
∩H(n)

Vk|Vk−1ZM
, (9)

C(n)
k ≜ H(n)

Vk|Vk−1
∩ L(n)

Vk|Vk−1Yk
∩
(
H(n)

Vk|Vk−1ZM

)C
, (10)

F (n)
k ≜ H(n)

Vk|Vk−1
∩H(n)

Vk|Vk−1Yk
, (11)

D(n)
k ≜ H(n)

Vk|Vk−1
∩ B(n)

Vk|Vk−1Yk
, (12)

J (n)
k ≜

(
H(n)

Vk|Vk−1

)C
∩ B(n)

Vk|Vk−1Yk
, (13)

T (n)
k ≜

(
H(n)

Vk|Vk−1

)C
∩
(
B(n)
Vk|Vk−1Yk

)C
. (14)

F (n)
k I(n)

k C(n)
k T (n)

k

H(n)
Vk|Vk−1Yk

(
H(n)

Vk|Vk−1Yk

)CH(n)
Vk|Vk−1ZM

(
H(n)

Vk|Vk−1ZM

)C

H(n)
Vk|Vk−1

(
H(n)

Vk|Vk−1

)C
Fig. 1: Polar code construction for the DBC-LD-NLS at layer
k. The cross-hatched gray area represents those indices j ∈
D(n)

k and the solid gray area represents those indices j ∈ J (n)
k .

Fig. 1 depicts the polar code construction at the k-th layer.
Note that, in general, if j ∈ D(n)

k ⊆ B(n)
Vk|Vk−1Yk

then

this index can belong to B(n)
Vk|Vk−1ZM

⊆ (H(n)
Vk|Vk−1ZM

)C or

H(n)
Vk|Vk−1ZM

. Furthermore, notice that only the eavesdrop-
per’s channel corresponding to the channel output random
variable ZM is involved in the polar code construction at
each layer. The polar encoding process modifies the joint
distribution of the original DMS. In this sense, we intro-
duce (Ṽ1, . . . , ṼK , ỸK , . . . , Ỹ1, Z̃M , . . . , Z̃1) and define Ũn

k =
Ṽ n
k Gn, for k = 1, . . . ,K, to distinguish the random variables

of the original DMS and the ones after the encoding procedure.

Encoding at layer k. Let Wk and Ck be uniformly distributed
random vectors of size

∣∣I(n)
k

∣∣ and
∣∣C(n)

k

∣∣ respectively, where
Wk represents the message intended to receivers k to K, and
Ck the local randomness required at the k-th layer to confuse
the eavesdroppers about this message. In addition, let Fk be a
given uniformly distributed binary random

∣∣F (n)
k

∣∣-sequence,
which represents a source of common randomness that is
available to all parties. The encoder constructs the sequence
Ũn
k as follows. First, the encoder stores Wk, Ck and Fk into

Ũk

[
I(n)
k

]
, Ũk

[
C(n)
k

]
and Ũk

[
F (n)

k

]
, respectively. Then, given

Ũk

[
I(n)
k ∪ C(n)

k ∪ F (n)
k

]
and the sequence Ṽ n

k−1 = Ũn
k−1Gn

provided by the previous encoding block that operates at the
(k − 1)-th layer (recall that Ũn

0 = Ṽ n
0 = ϕ), the encoder

samples the remaining entries Ũk(j) from the distribution

qUk(j)|U1:j−1
k V n

k−1

(
ũk(j)|ũ1:j−1

k , ṽnk−1

)
≜
{

1
2 if j∈D(n)

k ,

pUk(j)|U1:j−1
k V n

k−1

(̃
uk(j)|ũ1:j−1

k , ṽnk−1

)
if j∈J (n)

k ∪ T (n)
k ,

where pUk(j)|U1:j−1
k V n

k−1
is the distribution induced by the

original DMS (see Eq. (8)). Finally, the k-th encoder block
computes Ṽ n

k = Ũn
k Gn and delivers it to the next encoding

block, which is responsible of the encoding at the (k + 1)-th
superposition layer. If k = K, then Ṽ n

K ≜ X̃n and the K-th
encoding block transmits X̃n over the broadcast channel.

Secret messages. In addition of the sequence X̃n, the encoder
outputs the following messages from each layer

Sk ≜ Ũk

[
D(n)

k ∪ J (n)
k

]
, k = 1, . . . ,K, (15)

which must be transmitted secretly to the legitimate receivers
k to K to help them reconstruct the message Wk. Neverthe-
less, transmitting these messages can be accomplished with
negligible rate penalty.



B. Polar Decoding

The random sequences {Fk}Kk=1 are assumed to be known
by all parties. Moreover, each secret message Sk, for k =
1, . . . ,K, is assumed to be received by the corresponding
legitimate receivers previously to the decoding procedure.

Decoding at the k-th legitimate receiver. The k-th re-
ceiver must form an estimate of the sequences {Ũn

i }ki=1 in
a successive manner from Ũn

1 to Ũn
k , and the procedure to

estimate Ũn
i , for some i ≤ k, is as follows. First, given

that Si and Fi are available to the k-th receiver, notice
that the receiver knows Ũi

[(
L(n)
Vi|Vi−1Yi

)C]
. By Lemma 1,

we have
(
L(n)
Vi|Vi−1Yk

)C ⊆
(
L(n)
Vk|Vk−1Yi

)C
for any i ≤ k.

Thus, the k-th legitimate receiver uses SC decoding for source
coding with side information [17] to estimate Ũi

[
L(n)
Vi|Vi−1Yk

]
from Ũi

[(
L(n)
Vi|Vi−1Yk

)C], its observations Ỹk and the sequence
V̂ n
i−1 = Ûn

i−1Gn estimated previously. Finally, the decoder
outputs Ŵi = Ûi

[
I(n)
i

]
for i = 1, . . . , k.

C. Performance of the polar coding scheme

Theorem 1. Consider the DBC-LD-NLS defined in Sec. II-A.
The coding scheme defined in Secs. IV-A and IV-B achieves any
rate tuple of the secrecy-capacity subregion defined in Cor. 1
satisfying the reliability and the strong secrecy conditions.

Sketch of the proof2. The proof follows in four steps,
1) By applying the polarization theorem [17] and by the

definition of the sets I(n)
k for k = 1, . . . ,K, we prove that

the corner point of the secrecy-capacity subregion given in
Cor. 1 is achieved and, moreover, the overall additional rate
required to transmit the secret messages defined in Eq. (15)
is negligible in terms of rate penalty.

2) We show that the total variation distance between the joint
distribution of the original DMS and the one after the
encoding is bounded to some δ

(n)
ld-nls such that δ(n)ld-nls

n→∞−−−−→0,
which is crucial for the reliability and secrecy analysis.

3) We show that the reliability condition of Eq. (2) is satisfied
by upperbounding the average probability of error at the k-
th receiver as the sum of to terms: one which depends on
the total variation distance mentioned above, and another
which is the average probability of error of SC decoding
for source coding with side information [17]. Since the k-
th receiver knows

(
L(n)
Vi|Vi−1Yk

)C
for any i ≤ k, the second

probability term also tends to zero as n grows to infinity.
4) Besides the channel output observations Z̃n

m, the m-
th eavesdropper has access to the common randomness
{Fk}Kk=1. Thus, we provide the following upperbound,

H
(
W1, . . . ,WK , F1, . . . , FK

∣∣Z̃n
m

)
≥ H

(
U1

[
I(n)
1 ∪F (n)

1

]
, . . . , UK

[
I(n)
K ∪F (n)

K

]∣∣Zn
m

)
−ϵn,

where ϵn ≜ f(δ
(n)
ld-nls)

n→∞−−−−→ 0 because f(·) is a mono-
tonically decreasing function of the total variation distance
mentioned previously when n grows to infinity. Finally, we

2The full proof is omitted for lack of space and is given in [4].

show that the secrecy condition of Eq. (3) is satisfied by
proving that the first term of the previous bound tends to∑K

k=1

∣∣I(n)
k ∪F (n)

k

∣∣ for n sufficiently large, and therefore,
I(W1, . . . ,WK ;F1, . . . , FK , Z̃n

m)
n→∞−−−−→ 0, which follows

from the chain rule for entropy, the definition of the sets
given in Eqs. (9)-(14) and, therefore, on the properties
of the polarized sets given in Def. 1. Intuitively, eaves-
droppers cannot leak enough information about messages
because I(n)

k ⊆ H(n)
Vk|VkZm

for any k = 1, . . . ,K and

m = 1, . . . ,M . Moreover, since F (n)
k ⊆ H(n)

Vk|VkZm
, the

source of common randomness do not compromise the
secrecy.

Indeed, by a slight modification of the polar coding scheme,
any border point of the secrecy-capacity region of Def. 1 can
be achieved (see [4] for details).

V. POLAR CODING SCHEME FOR THE DBC-NLD-LS

The polar coding scheme for the DBC-NLD-LS provided
in this section is designed to achieve the corner point of the
secrecy-capacity subregion given in Cor. 2. Consider an i.i.d.
n-sequence of the DMS, (Xn, Y n

K , . . . , Y n
1 , Zn

M , . . . , Zn
1 ), and

define the polar transform Un ≜ XnGn.

A. Polar Encoding

Polar code construction. Based on the polarized sets given
in Def. 1, the following partition of the universal set [n] is
defined for the polar transform Un = XnGn:

I(n)
m ≜ H(n)

X ∩ L(n)
X|Zm+1

∩H(n)
X|Zm

(m=1, . . . ,M−1), (16)

I(n)
M ≜ H(n)

X ∩ L(n)
X|Y1

∩H(n)
X|ZM

, (17)

C(n) ≜ H(n)
X ∩ L(n)

X|Y1
∩
(
H(n)

X|Z1

)C
, (18)

F (n) ≜ H(n)
X ∩H(n)

X|Y1
, (19)

D(n) ≜ H(n)
X ∩ B(n)

X|Y1
, (20)

J (n) ≜
(
H(n)

X

)C
∩ B(n)

X|Y1
, (21)

T (n) ≜
(
H(n)

X

)C
∩
(
B(n)
X|Y1

)C
. (22)

Fig. 2 shows graphically this partition of the universal set [n].
Notice that, in general, if j ∈ D(n) ⊆ B(n)

X|Y1
then this index

can belong to the set B(n)
X|Zm

⊆ (H(n)
X|Zm

)C or to the set H(n)
X|Zm

(for any m = 1, . . . ,M ). Also, note that only the legitimate
receiver’s channel corresponding to the channel output random
variable Y1 is involved in the polar code construction.

Again, since the polar encoding process modifies the
joint distribution of the original DMS, we introduce
(X̃, ỸK , . . . , Ỹ1, Z̃M , . . . , Z̃1) and define Ũn = X̃nGn to
distinguish the random variables of the original DMS and the
ones after the encoding procedure.

Encoding. Let {Wm}Mm=1 and C be uniformly distributed
random vectors of size {

∣∣I(n)
m

∣∣}Mm=1 and
∣∣C(n)

∣∣ respectively,
where {Wm}Mm=1 represent the messages intended to all
legitimate receivers, and C the additional local randomness



F (n) I(n)
M

· · · I(n)
1 C(n) T (n)

H(n)
X|Y1

(
H(n)

X|Y1

)CH(n)
X|ZM

(
H(n)

X|ZM

)C ...
...

H(n)
X|Z2

(
H(n)

X|Z2

)CH(n)
X|Z1

(
H(n)

X|Z1

)C

H(n)
X

(
H(n)

X

)C
Fig. 2: Polar code construction for the DBC-NLD-LS. The
cross-hatched gray area represents those indices j ∈ D(n) and
the solid gray area represents those indices j ∈ J (n).

required to confuse the eavesdroppers. In addition, let F be a
given uniformly distributed binary random

∣∣F (n)
∣∣-sequence,

which represents a source of common randomness that is
available to all parties. The encoder constructs the sequence
Ũn as follows. First, the encoder stores the messages Wm into
Ũ
[
I(n)
m

]
, for m = 1, . . . ,M , and stores C and F into Ũ

[
C(n)

]
and Ũ

[
F (n)

]
, respectively. Then, given Ũ

[(
∪M
m=1 I(n)

m

)
∪

C(n) ∪F (n)
]
, the encoder samples the remaining entries Ũ(j)

from the distribution

qU(j)|U1:j−1

(
ũ(j)|ũ1:j−1

)
≜

{
1
2 if j ∈ D(n),
pU(j)|U1:j−1

(
ũ(j)|ũ1:j−1

)
if j ∈ J (n) ∪ T (n),

where pU(j)|U1:j−1 is the distribution induced by the original
DMS (see Eq. (8)). Finally, the encoder computes the sequence
X̃n = ŨnGn and transmits it over the DBC.

Secret message. In addition of the sequence X̃n, the encoder
outputs the following message

S ≜ Ũ
[
D(n) ∪ J (n)

]
, (23)

which must be transmitted secretly to all legitimate receivers.
Nevertheless, transmitting these messages can be accom-
plished with negligible rate penalty.

B. Polar Decoding

The sequence F is assumed to be known by all parties.
Moreover, the secret message S is assumed to be received by
all legitimate receivers previously to the decoding procedure.

Decoding at the k-th receiver. The k-th legitimate forms an
estimate of the sequence Ũn as follows. First, given that S and
F are available to the receiver k, notice that the receiver knows
Ũ
[(
L(n)
X|Y1

)C]. Since, by Lemma 1,
(
L(n)
X|Yk

)C ⊆
(
L(n)
X|Y1

)C

for any k > 1, the k-th legitimate receiver uses SC decoding
for source coding with side information to estimate Ũ

[
L(n)
X|Yk

]
from Ũ

[(
L(n)
X|Yk

)C]
and its channel output observations Ỹk. Fi-

nally, the decoder of the k-th receiver outputs Ŵm = Û
[
I(n)
m

]
for m = 1, . . . ,M .

C. Performance of the polar coding scheme

Theorem 2. Consider the DBC-NLD-LS defined in Sec. II-B.
The coding scheme described in Secs. V-A and V-B achieves
any rate tuple of the secrecy-capacity subregion given in Cor. 2
satisfying the reliability and the strong secrecy conditions.

Proof. The proof follows similar reasoning to that of Th. 1
and is omitted due to lack of space. See [4].

VI. CONCLUSIONS

We have proposed two strongly secure polar coding schemes
for the DBC with an arbitrary number of legitimate receivers
and eavesdroppers. Each polar coding scheme achieves any
rate tuple inside the secrecy-capacity region of the two models
for the DBC introduced in Sec. II, which are given by different
reliability and secrecy constraints, and which capture practical
scenarios in wireless systems. The polar coding schemes do
not require any chaining construction because of the degra-
dedness condition of the channels and the assumption of a
given source of common randomness available to all parties.
However, the transmitter and legitimate receivers must share
a secret seed of negligible size (in terms of rate penalty).
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