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Abstract

In recent years, text recognition has achieved remarkable success in recognizing scanned
document text. However, word recognition in natural images is still an open problem,
which generally requires time consuming post-processing steps. We present a novel ar-
chitecture for individual word detection in scene images based on semantic segmentation.
Our contributions are twofold: the concept of WordFence, which detects border areas
surrounding each individual word and a unique pixelwise weighted softmax loss function
which penalizes background and emphasizes small text regions. WordFence ensures that
each word is detected individually, and the new loss function provides a strong training
signal to both text and word border localization. The proposed technique avoids in-
tensive post-processing by combining semantic word segmentation with a voting scheme
for merging segmentations of multiple scales, producing an end-to-end word detection
system. We achieve superior localization recall on common benchmark datasets - 92%
recall on ICDAR11 and ICDAR13 and 63% recall on SVT. Furthermore, end-to-end
word recognition achieves state-of-the-art 86% F-Score on ICDAR13.
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1. Introduction

It’s the repetition of affirmations that
leads to belief. And once that belief
becomes a deep conviction, things
begin to happen.

Muhammad Ali

Machine reading of text in images has long attracted interest. Text recognition in nat-
ural images has presented great challenges until now. Recent developments in artificial
intelligence, machine learning, computer vision and natural language processing have all
contributed to advances in text recognition in natural images. Text recognition provides
exciting potential both as a test case problem for artificial intelligence and for its many
potential applications in industry: mapping new businesses from Google Street View,
translating menus or billboards from foreign languages, etc.

1.1. Motivation

Detection and recognition of text in natural images has long been an outstanding chal-
lenge in the computer vision and machine learning communities. Text recognition in the
wild can provide context and semantic information for scene understanding, object clas-
sification and action recognition in images or video. The task has attracted interest of
many researchers [5, 12, 11, 32, 31, 44, 7]. Due to the difficulty of text detection in nat-
ural images, even state-of-the-art systems struggle with word localization because of the
staggering variety of text sizes and fonts, potentially poor image quality, low contrast,
image distortions, or presence of patterns visually similar to text such as signs, icons or
textures. Many works in text detection employ knowledge-based algorithms and heuris-
tics in order to tackle these challenges. Some of the most common techniques include:
text line extraction [7, 32], character candidate detection [31, 9] and using secondary
classifiers to remove false positive detections [11].

1.2. Background

Recent successes in computer vision are centered on deep convolutional neural networks
(CNNs). Since the seminal 2012 paper by Krizhevsky et al. [13], that won the ImageNet
competition [25], deep learning and convolutional neural networks in particular have
been the focus of many researchers. Some of the problems being solved are: object-
classification in natural images [13, 29], pixelwise semantic segmentation [18, 15, 21, 43,
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Andrei Polzounov 1. Introduction

Figure 1.1.: Word detection bounding box results on ICDAR2011 (top), ICDAR2013
(middle) and SVT (bottom) datasets. Bounding boxes are the output of the
proposed method.

41], human pose estimation [39, 33], bounding box detection [23, 17, 45, 26], and text
detection in scene images [11, 5, 42, 44, 38, 8].

A major limitation of CNNs is that networks have trouble taking different scales of
images into account when analyzing objects of different sizes. Modern CNNs use max-
pooling layers to reduce resolution and search space for training - this operation reduces
resolution and loses spatial information between different features. Yu and Koltun [41]
have argued that max-pooling operations do not maintain sufficient global scale infor-
mation and thus proposed dilated convolutions to increase the effective receptive field
of convolutional operations without a losing resolution. Other works tackled the scale
problem with methods such as fully convolutional networks (FCNs) [18] or with atrous
convolutions [26, 15].

Another challenge that has been addressed by CNNs is semantic segmentation - prob-
lems where each pixel in the image must be matched to a specific label. Semantic
segmentation has recently been enhanced by dilated convolutions [41], FCNs [18] and

Master Thesis 2



Andrei Polzounov 1. Introduction

probabilistic graphical models, such as conditional random fields [15].

1.3. Contribution

In this work, we treat the task of word detection as a semantic segmentation problem of
three separate classes: words, background and WordFences (Section 3.2). After detecting
an area of interest we compute bounding boxes for each word-proposal in the image. Most
current state-of-the-art region of interest (ROI) detectors like Faster-RCNN (F-RCNN)
[24] use a variation of the following steps: propose bounding boxes, resample pixels of the
ROI and then apply a second classifier to filter and improve proposals. In contrast with
F-RCNN, our high quality segmentation results allow us to extract accurate bounding
box proposals directly from the segmentation. The segmentation maps are obtained
by inference at different image scales and combining the results with an efficient voting
mechanism. Merging the results from different scales further helps to eliminate duplicate
proposals for the same word and to remove most false positive detections.

The WordFence detection network (WDN) is designed to take advantage of deep resid-
ual connections and whole-image receptive fields. By treating the text localization prob-
lem as a semantic segmentation and training with a self-penalizing loss function which
recalculates class weights on the fly (see Section 3.4) we achieve good detection results
with superior recall. The new model achieves state-of-the-art text detection performance
on benchmark datasets (see Section 4.1) while avoiding the need of knowledge-based
approaches such as text lines. End-to-end word recognition achieves state-of-the-art F-
Score of 86% on ICDAR13 (see Section 4.4). Sample word detection results are presented
in Fig. 1.1 and in Appendix A.

1.4. Outline

This thesis is separated into 5 chapters.

Chapter 2 describes related work in object (and text) recognition, detection and clas-
sification. Recent advances in both object and text detection are reviewed and presented.

Chapter 3 provides a summary of the machine learning components necessary for build-
ing a text detection and recognition pipeline. Concepts of semantic segmentation for text
area recognition and ROI extraction are introduced and provide reference to the rest of
the thesis.

Chapter 4 contains the evaluation results based on well known benchmark datasets.
An overview of the datasets and comparisons with related networks are provided.

Chapter 5 summarizes the thesis and suggests future research directions.

Master Thesis 3



2. Related Work

Traditionally text recognition has focused on documents, and several optical character
recognition (OCR) techniques have been developed for this task. Recently, text detection
in scene imagery has come to the forefront. Generally, text recognition works by first
providing a “candidate bounding box” - or a proposal for a single word or a word-line.
The word proposal is then cropped out of the natural image and fed to a word recognition
network which then matches words against an internal dictionary.

In the aforementioned scenario, text localization is considered to be the key task, since
a well-cropped proposal can be fed to many well known word recognition systems [10].
Before CNNs, popular methods for text localization utilized classical computer vision
techniques such as sliding windows with hand-crafted feature descriptors. More recent
works have utilized CNN features, some prominent methods include: Maximally Stable
Extremal Regions [9], Stroke Width Transform [2], and EdgeBoxes [45], and others.
These methods feature a combination of character recognition CNN and a sliding window
algorithm. Amongst the feature driven techniques, the most impressive results, and the
current state-of-the-art, were achieved by Tian et al. [32] by using a combination of a
CNN for individual character detection and graph optimization techniques. However,
all of these approaches have a general limitation of feature driven engineering - there
are simply too many edge cases to account for. The detectors generate a large amount
of non-text false positives (pictorials, signs, bricks and other textures may appear to be
similar to text to the neural network), raising the problem of creating additional filtering
techniques and work-arounds. Often, a number of post-processing steps is needed to
reach a good performance.

With the prominence of deep learning, CNN based regression of candidate bound-
ing boxes have started being utilized for filtering false positive candidates. Bounding
box detection has been proposed in the context of object detection by works such as
YOLO [23], F-RCNN [24] and SSD: Single Shot MultiBox Detector [17]. Advances in
semantic segmentation [42, 7] have allowed dense prediction to provide input to bound-
ing box generation algorithms. Building on successful implementations of CNNs for
semantic segmentation using FCNs for dense prediction [18, 43], several researchers have
introduced object localization with FCNs [14, 21]. For example, F-RCNN [24] utilizes
an FCN for accurate bounding box proposal generation. However, Gidaris and Ko-
modakis [3] found that regressing bounding boxes directly from neural network param-
eters constitutes a complicated learning task that may not provide accurate bounding
boxes. Accuracy in bounding boxes for word proposals is doubly important in text lo-
calization and recognition. Word proposals with characters cut off or proposals with
overlap over other words would significantly inhibit the word recognition stage of an
end-to-end learning system (see Section 4.4 for our end-to-end testing results).
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With the growing popularity of neural networks and end-to-end pipelines, the com-
puter vision community has shifted its focus on to the general problem of object detec-
tion [24, 26, 23, 17]. Most object proposal generators follow the blueprint of end-to-end
supervised training on a big amount of labeled data for direct prediction of object bound-
ing boxes in the image with a single step inference. Although detectors show impressive
results and surpass previous work in object detection, these methods may not produce
accurate localization results. Usually, post processing steps are needed to further refine
object localization.

Reinforcement learning is another interesting area of research to text localization.
Caicedo and Lazebnik [1] trained a network for iterative object localization based on
reinforcement learning principles. An improved version of their approach was developed
by Lu et al. [19]. However, due to high data variability and complicated reward func-
tions these works do not outperform state-of-the-art object detection results, but this is
an interesting direction for further research and this field could potentially prove fruitful
with larger datasets.

Several text detection works have been inspired by recent object detection approaches.
Early work by Zhang et al. [42] used a semantic segmentation model to extract text
proposals and refine them by applying hand-crafted heuristics. He et al. [7] improved
on previous approaches by introducing an additional CNN for refinement, by building
a cascade of networks. Two networks were trained separately, and were executed in
series for evaluation. Gupta et al. [5] adapted YOLO’s approach [23] for text detection
and introduced SynthText - a new synthetic dataset (see Section 4.1) proving that a
model trained on synthetic data could generalize to real world scenes. Although the
model was trained on large amount of data, three post processing steps were applied in
order to achieve a good performance. Analogously, F-RCNN [24] was adapted for text
recognition by Zhong et al. [44] and Tian et al. [32]. The former integrated the F-
RCNN framework into a more powerful model and added several improvements into the
filtering stage. However, the resulting three hundred proposals per image (on average)
were then filtered with a time consuming process. Tian et al. [32] fused F-RCNN with
a recurrent neural network (RNN), allowing the RNN to consider the proposals as a
sequence and unite them into text lines. Although He et al. [7] also relied on semantic
segmentation between text and non-text regions, they did not have a word border area
which often caused the resulting segmentations to bleed together (see Fig 3.3). Our
approach allows for clean segmented regions without the need for textlines.

Our proposed architecture is inspired by previously mentioned works, but it allows
to perform bounding box detection in a single step. Instead of producing a highly
non-linear bounding box coordinate prediction as in YOLO [23] and F-RCNN [24], our
network takes advantage of semantic segmentation to produce a dense pixel labeling
map. Afterwards, word proposals are extracted from the given heat map in a linear
time. An overview of the proposed system is shown in Fig. 3.1.

Master Thesis 5



Figure 3.1.: WordFence detection network architecture.

3. WordFence Detection Network Model

3.1. Overview

Inspired by the success of deep ConvNets with residual connections (ResNets), such as
the one for semantic segmentation by Chen et al. [15], WDN takes advantage of neural
network research of the past few years to produce highly accurate detection results.
The overall architecture is illustrated in Fig. 3.1. The network includes a ResNet-101
(101 layer residual network introduced by He et al. [6]), followed by a number of dilated
convolutions [41] that add full-image context to the final classification, before finally
performing a bilinear interpolation on the resulting belief map. After the interpolation,
connected components are extracted. Each component represents a standalone word on
the image which is further processed in the recognition step. Bounding boxes are then
extracted from these connected components (see Figure 3.1).

The process of word localization as semantic segmentation is further demonstrated in
Figure 3.2.

3.2. Word Localization as Semantic Segmentation

Object segmentation, has recently been considerably improved with the introduction of
the deconvolutional layer [18], dilated convolutions (increasing effective receptive field)
[41], etc. Significant improvements of resulting metrics and accurate segmentation of
objects in difficult scenes have been demonstrated. Several published works [42, 7]
have adapted object segmentation for text localization. Semantic segmentation for text
localization, despite showing promising results, has had trouble distinguishing individual

6



Andrei Polzounov 3. WordFence Detection Network Model

words from segmented images. Generally, post processing methods and heuristics were
applied to refine word localization results, or the task was not addressed at all as in the
case of textline approaches.

We have tackled the challenge of separating each unique word in our segmentation
results by our unique method of training the semantic segmentation network. Our
training method provides the following new techniques:

• Penalization by training to detect a pixel border between individual words in the
image segmentation.

• A unique pixelwise weighted loss function to weigh the words, background and
word-separation border regions with an equal weight (see Algorithm 1).

3.3. ResNet of Exponential Receptive Fields

ResNets have achieved great success in recent computer vision tasks [6, 15], surpassing
human accuracy. Their depth and structure allow ResNets to train very deep neural
networks without a vanishing gradient. Veit et al. [35] argue that residual networks
implicitly represent an ensemble of shallow networks, thus allowing the architecture to
learn a highly non-linear function and produce outstanding results.

Our model is based on the very deep ResNet-101 introduced by He et al. [6]. In
contrast to the semantic segmentation model introduced by Chen et al. [15], we do not
use parallel replications of ResNet-101 on different scales as it makes the network com-
putationally expensive to train. Instead, we use several parallel convolutional layers of
the same kernel size, but different dilation parameters. This way we transform the con-
volutional features into parallel segmentation maps of different receptive fields. Separate
dilated convolutions allow us to enlarge the effective receptive field of the CNN. This
context information improves the network’s understanding of text at different scales.
Dilated convolutions do not increase the number of parameters, ensuring that the model
remains easy to train. Lastly, the obtained parallel segmentation maps are fused together
by element wise summation, providing the final segmentation map, which can then be
used for word extraction.

3.4. Weighted Softmax Loss Function

A common loss function for training semantic segmentation networks is a pixelwise
classification softmax loss. Such a function is appropriate for dense pixelwise labelling
if there are many classes. For text localization, the pixelwise softmax loss tends to force
the network to produce merged segmenations on the borders of words results such as
the ones illustrated in Fig. 3.3. Post processing techniques are required to enhance
the segmentation bounding boxes in order to use them for text recognition. In order
to overcome this problem, a simple and efficient technique is introduced: instead of a
binary text/non-text classification we define the notion of a border for each separate

Master Thesis 7



Andrei Polzounov 3. WordFence Detection Network Model

Figure 3.2.: Word localization as semantic image segmentation. Individual words are
trained to be split up using purely visual information. Left and middle-
left: confidence levels as heatmaps for text and WordFence area. Mid-
right: segmentation results. Far-right: word bounding box obtained from
segmentation by connected component analysis.

word as a third class. The border acts as a penalization for training. The model is
driven to surround each separate word with an artificial barrier, which greatly reduces
the ease and computational cost of reading separate words. During inference, individual
words are cleanly segmented from each other and can then be extracted using connected
components analysis.

Since the number of text pixels in a text recognition dataset may not be balanced
among labels and the vast majority of all pixels are simply background - networks tend
to predict background everywhere. To solve this issue, we introduce a weighted nor-
malization. The new loss function automatically penalizes predictions for pixels which
form the majority of a given image and emphasizes pixels which are fewer in number.
This makes the loss function well constrained for the task of text segmentation. Weight
normalization is applied in two places: loss calculation and loss backpropagation. The
normalization factors are calculated on the fly and are inversely proportional to the count
of pixels of each class. The general algorithm of the weighted softmax loss function is
shown in Algorithm 1.

Algorithm 1 Pixelwise Weighted Softmax Loss

Require: Predicates after fusion Pr, ground truth labels L
1: probs← Softmax(Pr) . pixel probabilities
2: m← NumberOfUniqueLabels(L)
3: n1, n2, . . . , nm ← CountsOfUniqueLabels(L) . get counts of each label on a ground

truth image
4: loss← −

∑ 1
ngt

log(probsgt) . weighted loss calculation

5: Backpropagate(loss, 1
n1
, 1
n2
, . . . , 1

nm
) . loss backpropagation with normalization

factors

Master Thesis 8
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Figure 3.3.: Comparisons of segmentation with and without WordFence. The first col-
umn from the left shows the original images. The second and third show the
text position belief map and the resulting segmentation, respectively. Last
two columns show the belief map and the segmentation from our method.
Localizing words without WordFence has a tendency of individual words
bleeding over into each other, which causes difficulties to posterior word
recognition.

Master Thesis 9



4. Evaluation and Experiments

4.1. Datasets

Our model is evaluated on a number of different datasets (See Table 4.1). There is a
large variety of quality in the datasets. Some are only used for training and others for
evaluation. The datasets are summarized in Table 4.1.

The COCO-Text dataset tagged by Veit et al. [34] is based on the earlier MS-COCO
dataset meant for object classification [16]. The full COCO-Text dataset consists of
20510 images with legible, machine labeled text in English. SynthText consists of 858750
natural images with synthetic text labels. The synthetic labels show a high level of so-
phistication with randomized locations of text, varying fonts, sizes and colors of text.
ICDAR 2011 [27] and ICDAR 2013 [4] are common benchmark datasets from the Inter-
national Conference of Document Analysis and Recognition. Street View Text dataset
(SVT) [37] was harvested from Google Street View images, the images in this dataset
exhibit high variability and low resolution making it a good metric for inspection, how-
ever the ground truth is often mislabeled resulting in low test accuracies. We train our
model on MS-COCO, finetune on SynthText and then evaluate on ICDAR11, ICDAR13
and SVT for comparison with other state-of-the-art methods.

4.2. Word Detection Experiments

For the evaluation of our word detection results we use a PASCAL VOC style protocol
where a proposal with intersection-over-union (IoU) ≥ 0.5 is considered a positive de-
tection. PASCAL VOC is suitable for detecting individual words as it penalizes areas
covering multiple words. The other common evaluation metric - DetEval [40] is better
suited to textlines as it does not penalize merged words. PASCAL VOC evaluation
protocol on the other hand is more suitable for individual word detection as it heavily

Label Description Mode # Images

Synth SynthText in the wild Train 858750
COCO COCO-Text Train 20510
IC11 ICDAR 2011 Test 255
IC13 ICDAR 2013 Test 233
SVT SVT Test 250

Table 4.1.: Description of the text recognition datasets

10



Andrei Polzounov 4. Evaluation and Experiments

Model
PASCAL VOC IoU = 0.5

ICDAR11 ICDAR13 SVT
P R F P R F P R F

Tian et al. [32] 0.89 0.79 0.84 0.93 0.83 0.88 - - -
Gupta et al. [5] 0.78 0.63 70.0 0.78 0.63 0.70 0.47 0.45 0.46
Jaderberg et al. [11]* 0.89 0.68 77.4 0.89 0.68 0.77 0.59 0.49 0.54
Gupta et al. [5]* 0.94 0.77 0.85 0.94 0.76 0.84 0.65 0.60 0.62

WDN (ours) 0.64 0.92 0.75 0.65 0.92 0.76 0.47 0.63 0.54

Table 4.2.: Comparisons with other methods of word detection. Precision, Recall and
F-Score are reported. Recall maximization was necessary for obtaining good
word detection results. Methods marked with * use a multistage false-positive
filtering process to increase precision, the code was not published thus the
results are not directly comparable with ours.

penalizes areas covering multiple words. The PASCAL VOC metric illustrates the real
number of words that were detected in an image, and are immediately ready for the
recognition stage.

Running the image inference at different scales produces different segmentation maps
that need to be processed afterwards. When merging segmentations from different scales,
the results will contain many duplicates and false positives, but recall will be high since
true positives will likely have been found. We adopt a mechanism for merging segmen-
tation maps of different scales before extracting the bounding boxes, while maintaining
a high recall. We use a voting scheme to produce a final segmentation map. To do
that we upscale all segmentation maps and find labels that correspond to maximal class
probabilities in the segmentation maps. We extract the probability values for the found
labels and sum them up on corresponding channels producing the map of summed max-
imum probabilities from different scales. The final segmentation is obtained by finding
the labels with maximum probabilities on the combined map giving fewer false positives.
Merge processing is fast and computationally cheap as it only needs to upsample images.

Table 4.2 shows the performance of our WDN model on the benchmark datasets.
Although we did not obtain the highest precision, our model achieved a significant
improvement in recall in comparison with previous state-of-the-art methods that do
not incorporate filtering steps, generating a very small number of false positives (15 on
average per image). On average we improved recall by 15% over the previous multi-scale
detection method by Gupta et al. [5].

4.3. Timings

During test time the WDN model processes one image of four scales including word
extraction in 2 seconds on a GPU (input size 513× 513 px). The scales of images were
chosen to be 1

2 , 1, 3
2 and 2. So, from one average image at most 10 crops are generated

Master Thesis 11
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Label Time

Jaderberg et al. [11] 7.00 (s)
Gupta et al. [5] 2.47 (s)

WDN 2.00 (s)

Table 4.3.: Comparison of word detec-
tion time (in seconds)

Model Year IC11 IC13

Neumann et al. [20] 2013 0.45 -
Jaderberg et al. [11] 2015 0.69 0.76
Gupta et al. [5] 2015 0.84 0.85

WDN 2016 0.84 0.86

Table 4.4.: Evaluation of end-to-end word
recognition on ICDAR 2011 and
2013 datasets. F-score is re-
ported.

in order to run a multi-scale inference: one crop for resolutions 1
2 and 1 and 4 crops for

resolutions 1.5 and 2. In comparison with previous detection approaches (see Table 4.3)
we gain a 0.25× speed-up for the overall execution time for a single image as compared
with Gupta et al. [5], which achieved the highest precision.

In constrast to works by Jaderberg et al. [11] and Gupta et al. [5] our approach gen-
erates an average of 15 detections per images eliminating the need of difficult and time
consuming post-processing steps like random-forest classifier, CNN bounding box regres-
sion etc.

4.4. End-to-end Word Detection and Recognition

Using ideal, single-word proposals recognition accuracy can be as high as 98% [11]. In
order to show the effectiveness and quality of proposals we integrate our model with
a state-of-the-art recognition model by Shi et al. [28]. The recognition model consists
of a CNN with an RNN component to recognize words of different length. Our word
proposals are cropped out and evaluated with the recognition network.

We followed the evaluation protocol outlined by Wang et al. [36], where all word pro-
posals that are three characters long or less or those that contain non-alphanumeric
characters are ignored. An IoU overlap of 0.5 is required for a positive detection. The
results for common recognition dataset are illustrated in Table 4.4. Our detection net-
work achieves state-of-the-art recall rates - ensuring good candidate words. This com-
bined with the recognition module obtains very accurate results for end-to-end word
recognition. The network outperforms results by Jaderberg et al. [11] and is on par or
better than Gupta et al. [5] while working in linear time.
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5. Conclusion

5.1. Summary

In this paper we have presented a novel WordFence Detection Network. WDN relies on
space between words to learn how to accurately split words using purely visual informa-
tion, even for a wide variety of fonts, text sizes, scales, orientations and text languages.
After segmenting an image proposal bounding boxes are extracted at multiple scales
with very high detection recall. Lastly, end-to-end word recognition achieves state-of-
the-art results with 84 % and 86 % F-Score on ICDAR11 and ICDAR13, respectively.
We obtain such high end-to-end scores by leveraging the high quality proposals and high
recall of the detection stage. Experimental results show that our approach achieves very
competitive performance on ICDAR11 and ICDAR13 without utilizing any heuristics or
knowledge based approaches.

The work done can be summarized into the following work steps:

• Analysis of available machine learning technologies and state-of-the-art

• Training network for text localization using semantic segmentation

• Adding WordFence areas to delineate individual words

• Adding pixelwise weighted softmax loss function as penalization for training

• Evaluation of the proposed solution

5.2. Dissemination

This project has been developed in partnership with the A*STAR Institute for Infocomm
Research in Singapore. It has been submitted for review to the IEEE International
Conference on Image Processing (ICIP) 2017 that will take place in Beijing, China in
September 2017.

5.3. Problems Encountered

Some of the major problems that were encountered while developing the project include:

• Going from segmentations to bounding boxes

• Noisy detections and false positives

13



Andrei Polzounov 5. Conclusion

5.3.1. Segmentations to bounding boxes

We used connected components analysis [30] for transformning segmentations into bound-
ing box ROIs. The problem with this approach is that it only yields rectangular results.
This was not a huge problem because the ICDAR datasets generally only has horizontal
text. It is foreseeable however that this limitation would not deal with text rotated at
an angle successfully. Rotated text would require matching a best-fit rotated rectangle
bounding box to the predicate connected region.

5.3.2. Noisy detections and false positives

It was difficult to filter out small false positive regions. This was an extremely challenging
problem because of the delicate balance between precision and recall (see Table 4.2).
Having a large number of proposals ensures that recall is high, because the true positives
are more likely to be covered by at least one of the proposals. However, precision tends
to be low when there are many false positives.

Precision =
TruePositives

(TruePositives + FalsePositives)
(5.1)

Recall =
TruePositives

(TruePositives + FalseNegatives)
(5.2)

Maintaining a high recall was central to our end-to-end word recognition framework.
Knowing that we could still get a high F-Score in word recognition we decided to maintain
high recall at the expense of precision in the detection stage.

5.4. Future Work

The WDN relies on purely visual information for delineating individual words. While, it
is impressive that it is able to handle the large variety of possible fonts, character sizes
and text kerning, it is not the same way that humans read. Humans, while reading text
are able to utilize word semantics to understand where words begin, end or if they have
spelling or other irregularities. In fact according to the aptly titled paper ”Raeding wrods
with jubmled letetrs” by Rayner et al. [22], normal people can easily correct misspelled
words while reading text, just based on approximate length and begining and starting
symbols. The combination of natural language processing and semantic understanding
of words along with the visual information of the specific words and characters is needed
for true understanding of text in natural scene images. Semantic models could be built
into a text recognition network using RNNs or other memory mechanisms. Such a model
could be trained to directly recognize text in an image, without intermediate computer
vision steps and it would be a great step forward for artificial intelligence.
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List of Acronyms

A*STAR Singaporean Agency for Science, Technology and Research
CNN Convolutional neural network
COCO Text Text dataset extracted from MS-COCO
ConvNet Convolutional network
FCN Fully convolutional network
F-RCNN Faster R-CNN
I2R A*STAR Institute for Infocomm Research
ICDAR International Conference on Document Analysis and Recognition
ICIP IEEE International Conference on Image Processing
IEEE Institute of Electrical and Electronics Engineers
IoU Intersection-over-union
MS-COCO Microsoft Common Objects in Context
OCR Optical character recognition
R-CNN Regions with Convolutional Neural Network Features
ResNet Residual network
RNN Recurrent neural network
RoI Region of interest
SOTA State-of-the-art
SSD Single Shot Decoder
SVT Google Streetview Dataset
WDN WordFence Detection Network
YOLO You Only Look Once
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Appendices

A. Text Detection

A.1. ICDAR 2011

TODO: ICDAR 2011 detection samples
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A.2. ICDAR 2013

TODO: ICDAR 2013 detection samples
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A.3. SVT

TODO: SVT detection samples
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